WO2017148022A1 - 发光装置和形成发光装置的方法以及显示装置 - Google Patents

发光装置和形成发光装置的方法以及显示装置 Download PDF

Info

Publication number
WO2017148022A1
WO2017148022A1 PCT/CN2016/083276 CN2016083276W WO2017148022A1 WO 2017148022 A1 WO2017148022 A1 WO 2017148022A1 CN 2016083276 W CN2016083276 W CN 2016083276W WO 2017148022 A1 WO2017148022 A1 WO 2017148022A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light emitting
layer
light
emitting unit
Prior art date
Application number
PCT/CN2016/083276
Other languages
English (en)
French (fr)
Inventor
孙杰
李延钊
李重君
徐晓光
陈卓
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/528,422 priority Critical patent/US10163988B2/en
Publication of WO2017148022A1 publication Critical patent/WO2017148022A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display, and in particular to a light emitting device, a method of forming the same, and a display device.
  • OLED organic light-emitting diode
  • a general OLED light-emitting device includes a multi-layer structure. As shown in FIG. 4, the OLED light-emitting device includes three stacked OLED light-emitting units. A charge generating layer is disposed between the light emitting units.
  • the OLED light-emitting device of the prior art has a high cost.
  • the light saturation emitted by the OLED light-emitting device needs to be further improved.
  • a light emitting device comprising at least one OLED light emitting unit and at least one quantum dot light emitting unit, wherein the at least one quantum dot light emitting unit and the at least one OLED light emitting unit are arranged in series.
  • a method of forming a light emitting device is provided, the following steps:
  • the at least one quantum dot illumination unit and the at least one OLED illumination unit are connected in series.
  • a display device comprising the aforementioned light emitting device and the light emitting device of the foregoing method.
  • Figure 1 shows a schematic view of a light emitting device in accordance with one embodiment of the present invention
  • FIG. 2 shows a schematic view of a light emitting device according to an embodiment of the present invention, in which a specific structure of a second light emitting unit is shown;
  • Figure 3 is a schematic view showing the wavelength of light emission of different bulk materials
  • FIG. 4 shows a schematic diagram of a prior art multilayer OLED lighting device.
  • a light emitting device comprising at least one OLED light emitting unit 100O and at least one quantum dot light emitting unit 100P, wherein the at least one quantum dot light emitting unit 100P and the at least one OLED light emitting unit 100O are connected in series Way layout.
  • Quantum dot light-emitting unit refers to a light-emitting unit comprising quantum dots, in which the light-emitting material is in the form of particles, for example, the size is several nanometers, ten nanometers, or several tens of nanometers; On the order of micrometers, certain nano-sized luminescent material particles may be referred to as quantum dot luminescent materials, while some correspondingly sized luminescent material particles may be referred to as fluorescent luminescent materials.
  • the nanometer-sized particles of such a luminescent material can emit light whose wavelength is modified or changed due to the quantum effect of size, for example, due to quantum binding effects, nanometers.
  • the particles of the sized luminescent material may emit light having a shorter wavelength than the wavelength of the light emitted by the block of luminescent material.
  • the size of the luminescent material particles can be controlled to adjust the wavelength of the emitted light of the luminescent layer or the illuminating unit containing the luminescent material particles, which satisfies the design requirements.
  • the light emitted by the illuminating device can be further adjusted by designing the wavelength of the outgoing light of the at least one OLED lighting unit 100O and the wavelength of the outgoing light of the at least one quantum dot illuminating unit 100P. Get a full-color light.
  • the light-emitting device according to the present invention has flexibility and thus can be applied to a flexible light-emitting device, a lighting device, and a flexible display device.
  • the illumination device can have a flexible base.
  • the at least one quantum dot light emitting unit 100P may include any one or more of a red light quantum dot light emitting unit 100PR, a green light quantum dot light emitting unit 100PG, and a blue light quantum dot light emitting unit 100PB. These quantum dot light emitting units 100P may have flexibility. In order to achieve higher brightness and more saturation, in one embodiment of the present invention, the light emitting device includes a plurality of light emitting units, and the light emitting units may include any one of a red light quantum dot light emitting unit 100PR, a green light quantum dot light emitting unit 100PG, and a blue light quantum dot light emitting 100PB.
  • a green OLED light emitting unit 100OG a green OLED light emitting unit 100OG
  • a red OLED light emitting unit 100OR a red OLED light emitting unit 100OR
  • a blue OLED light emitting unit 100OB Those skilled in the art can make selection according to actual needs.
  • a plurality of quantum dot light emitting units and OLED light emitting units may be provided, for example, a total of 10 or more light emitting units are provided.
  • these lighting units have compatible flexible properties.
  • Each of the quantum dot light emitting units 100P may include a hole injection layer, a quantum dot light emitting layer, and an electron injection layer, respectively, and the hole injection layer and the electron injection layer are respectively disposed on opposite sides of the quantum dot light emitting layer.
  • FIG. 1 shows a light emitting device including a blue OLED light emitting unit 100OB, a green light quantum dot light emitting unit 100PG, and a red light quantum dot light emitting unit 100PR, in accordance with an embodiment of the present invention.
  • the blue OLED light emitting unit 100OB is coupled to the green light quantum dot light emitting unit 100PG, and in turn, the green light quantum dot light emitting unit 100PG is coupled to the red light quantum dot light emitting unit 100PR.
  • the illumination device may further include one or more other OLED illumination units 100O and other quantum dot illumination units 100P.
  • the light emitting device may further include a charge generating layer 30. As shown in FIG.
  • a charge generating layer 30, a green light quantum dot light emitting unit 100PG, and a red light quantum dot light emitting unit may be disposed between the blue OLED light emitting unit 100OB and the green light quantum dot light emitting unit 100PG.
  • a charge generating layer 30 may be disposed between the 100PRs.
  • the charge generating layer refers to a layer which generates carriers after being energized by the light-emitting device for injection into the light-emitting layer to generate light, and the charge generating layer can generate electrons and/or holes. In an embodiment of the invention, the charge generating layer may have flexibility.
  • the light emitting device further includes a first electrode 10 and a second electrode 20 respectively disposed on the first surface of the light emitting device and the second surface opposite to the first surface for realizing electricity of the light emitting device and the outside connection.
  • the first surface and the second surface may refer to two opposite surfaces of the light emitting device, such as the upper and lower surfaces of the device of FIG.
  • the first electrode 10 is coupled to the red light quantum dot light emitting unit 100PR
  • the second electrode 20 is coupled to the green light quantum dot light emitting unit 100PG.
  • the light emitting device may include a plurality of OLED light emitting units 100O and a plurality of quantum dot light emitting units 100P connected in series as shown in FIG.
  • the illumination device has flexibility.
  • the quantum dot light emitting unit 100P may further include a hole transport layer disposed between the hole injection layer and the quantum dot light emitting layer, and an electron transport layer disposed on the electron Between the injection layer and the quantum dot luminescent layer.
  • the light emitting device includes a first light emitting unit 100I, a second light emitting unit 100II, and a third light emitting unit 100III.
  • the first light emitting unit 100I, the second light emitting unit 100II, and the third light emitting unit 100III are all flexible.
  • the first light emitting unit 100I, the second light emitting unit 100II, and the third light emitting unit 100III may be the OLED light emitting unit 100O, or may be a quantum dot light emitting unit 100P.
  • the second light emitting unit 100II may be an OLED light emitting unit 100O or a quantum dot light emitting unit 100P.
  • the light-emitting layer 101 in FIG. 2 may be an OLED light-emitting layer or a quantum dot light-emitting layer.
  • the second light emitting unit 100II includes an electron injection layer 104, an electron transport layer 102, a light emitting layer 101, a hole transport layer 103, and a hole injection layer 105, which are stacked in this order.
  • a charge generation layer 30 is disposed between the first light emitting unit and the second light emitting unit, and a charge generating layer 30 is disposed between the second light emitting unit and the third light emitting unit.
  • the illumination device may comprise more than three illumination units that may be selected and configured as needed to emit light of a desired wavelength and saturation, with a charge placed between the illumination units The layers are produced, and these light emitting units are flexible, so that the light emitting devices including these light emitting units have flexibility.
  • the OLED light emitting unit 100O may be formed by a solution coating process or an evaporation process.
  • the material for forming the blue OLED light-emitting layer 101 may include one of Table 1.
  • the quantum dot light emitting unit 100P may include a quantum dot light emitting layer 101 including a close-packed structure of a plurality of quantum dots.
  • the quantum dot light-emitting layer 101 includes quantum dots randomly distributed in the light-emitting layer 101.
  • the quantum dot light emitting layer is a light emitting layer having flexibility.
  • the quantum dot light-emitting layer 101 is formed by applying a quantum dot solution to a substrate to be cured.
  • the quantum dot light-emitting layer 101 is formed by coating a quantum dot solution onto a substrate. Formed afterwards.
  • a quantum dot solution is first formed; then, a quantum dot solution is applied onto the substrate to form a quantum dot light-emitting layer 101 after solidification. Some or all of the solvent may be volatilized during this curing process.
  • Such a method of forming the light-emitting layer 101 by solution coating onto a substrate is advantageous because the formation of the quantum dot light-emitting layer 101 by a solution process requires low process conditions, and the solution process is not required as compared with the use of molecular beam epitaxy or vapor phase epitaxy.
  • High vacuum and cleanliness which is particularly advantageous for forming the quantum dot light emitting unit 100P on the OLED light emitting unit 100O, because the process of forming the quantum dot light emitting unit 100P on the OLED light emitting unit 100O using an epitaxial method generally requires a lot of complexity. A series of complicated pretreatments and process conditions, such as a secondary cleaning step and a drying step, make the actual production cost extremely high.
  • the quantum dot light-emitting layer 101 formed by the solution process can have flexibility; and the quantum dot light-emitting layer 101 can easily realize the configuration of material properties with the layer of the OLED light-emitting unit, thereby making the light-emitting device according to the present invention overall Has good flexibility. This is beneficial to meet the flexibility requirements of some existing devices.
  • the light emitting device includes two quantum dot light emitting units 100P, such as the red light quantum dot light emitting unit 100PR and the green light quantum dot light emitting unit 100PG shown in FIG.
  • the solution for forming the red light quantum dot light emitting layer and the solution for forming the green light quantum dot light emitting layer are different in nature and are not in phase with each other.
  • the solution is so that the materials in the respective solutions used to form the adjacent layers do not dissolve in the other solution.
  • each quantum dot illumination unit has multiple layers, and any two adjacent layers are formed using solutions of different properties.
  • the solutions for forming adjacent two layers in the quantum dot light-emitting unit are respectively solutions having different properties and being mutually incompatible.
  • an aqueous green light quantum dot solution may be formed using an aqueous solvent, and then the solution is coated on the OLED light emitting unit or on the substrate to form a green light quantum dot light emitting layer after curing; and then, used on the green light quantum dot light emitting layer.
  • the oily solution forms, for example, an electron transport layer or a hole transport layer. It is known that, according to the present invention, after forming an electron or hole transport layer, an electron injecting layer or a hole injecting layer is formed correspondingly using an aqueous solution.
  • adjacent may include two layers directly adjacent; however, “adjacent” may include other cases, for example, when two different layers are manufactured using a solution process, the two layers may be One or more layers are formed using an evaporation process or other processes, and the two layers formed using the solution process are also two adjacent layers.
  • a solution of a suitable property can be selected, and then a solution of a different property can be selected to form a second layer on the first layer.
  • Mutual contamination between adjacent layers can be avoided by alternately forming two adjacent layers using solutions of different nature.
  • an electron injecting layer and an electron transporting layer may be formed using a solution of the same nature, for example, using an aqueous solution; and subsequently using an oily solution adjacent to the electron transporting layer. form.
  • the hole transport layer adjacent to the other side of the light-emitting layer may be formed using an aqueous solution.
  • an oily red light quantum dot solution can be formed using an oily solution. Since the oily red light quantum dot solution is insoluble in the previously used aqueous solution, the substance in the previously used aqueous solution is not dissolved in the subsequently used oily red light quantum dot solution, thereby avoiding the contamination caused by the mutual dissolution of the solute of the two solutions. .
  • a plurality of quantum dot illumination units may be included in the illumination device.
  • a solution for forming a first quantum dot luminescent layer and a solution for forming a second quantum dot luminescent layer may be It is a solution in which different properties are mutually incompatible, such that the materials in the respective solutions for forming adjacent layers are not dissolved in the other solution, thereby avoiding the contamination caused by the mutual dissolution of the solute of the two solutions.
  • the solution for forming the first quantum dot light-emitting layer and the solution for forming the adjacent electron transport layer or hole transport layer are different in nature and do not dissolve each other, thereby avoiding the mutual dissolution of the solute of the two solutions.
  • Quantum dot solutions for forming various color lights can also be purchased directly from the market.
  • aqueous quantum dot solutions can be purchased at http://www.mesolight.cc/list-27.html
  • oily quantum dot solutions can be used. Purchased at http://polyoe.com/index.html .
  • a quantum dot light-emitting layer can be formed by curing.
  • the solvent in the solution can be volatilized, leaving the quantum dots to form an aligned structure.
  • the structure of quantum dots is roughly divided into three layers from the inside to the outside, including: inorganic nuclei, the nature of inorganic nuclei determines the luminescence spectrum of quantum dots, ie, for example, red, green or blue light, and the properties of inorganic nuclei include inorganic nuclei.
  • Type, size of inorganic core, etc. such as CdTe material and the size of quantum dots formed by it; inorganic shell to protect and stabilize the structure of inorganic core; and, organic ligand, organic ligand in solution to stabilize and disperse quantum
  • the organic ligand will shrink and adhere to the inorganic shell of the quantum dots.
  • the conductivity of the quantum dot layer can be considered to be equivalent to that of the organic semiconductor film.
  • a water-soluble quantum dot solution for example, a water-soluble quantum dot material
  • a hydrothermal method that is, a quantum dot which is reacted in a direct water system to form a luminescent material, and is used.
  • the ligand is generally a water-soluble ligand such as thioglycolic acid; the second is formed by forming a quantum dot of the oil-soluble luminescent material by using a thermal injection method in an organic solvent, and then forming a ligand by exchange (replacement of the oil-soluble ligand with a water-soluble ligand) Water soluble luminescent material quantum dots.
  • a surface such as -COOH, -OH, -NH 2 , -SO 3 H, thioglycolyl group or the like may be attached to the surface of the CdTe quantum dot by surface modification. Soluble in aqueous solution.
  • the water-soluble solution is a single-component quantum dot material, and the modifying group is hung on the surface of the quantum dot and is not present in the solution in the form of ions.
  • the surface of the CdTe quantum dots can be hung by surface modification such as -R, -X, -C 6 H 5 , TOP/TOPO, oleic acid groups, and octylamino groups.
  • R represents an alkyl or alkenyl group having 4 to 20 carbon atoms
  • X represents a halogen
  • TOP/TOPO represents trioctyl phosphate/trioctylphosphine oxide, which is soluble in an aqueous solution.
  • a single-component quantum dot material in an oil-soluble or oily solution, the modifying group is hung on the surface of the quantum dot.
  • the quantum dot material itself is not a simple substance, but a composite material, for example, a core-shell structure.
  • Both the hydrothermal method and the organic thermal injection method are quantum dots in which, for example, a Cd-containing precursor and, for example, a Te-containing precursor are reacted in an aqueous solution or an organic solution to form CdTe nanocrystals.
  • the hydrothermal method and the organic thermal injection method can form the same product, that is, quantum dots, except that the ligands on the surface of the quantum dots are different.
  • the quantum dots are adjusted to be soluble in water or in an organic solvent (oily solvent) by hydrophilic or lipophilic nature of the ligand.
  • a solution containing quantum dots refers to a solution of quantum dots containing a luminescent material (for example, CdTe) having a size of 10 to 100 nm, and a nano-scale film is formed after coating.
  • a luminescent material for example, CdTe
  • the ligand may be selected from the group of ligands conventionally used in water soluble luminescent materials.
  • the invention is not limited thereto.
  • the ligand may be selected from the group of ligands conventionally used in the art for oil soluble luminescent materials.
  • the invention is not limited thereto.
  • the aqueous solvent may be selected from the group consisting of water, and a mixture of water and a water-miscible organic solvent, wherein the volume of water in the mixture of water and the water-miscible organic solvent is 10% or more, preferably 20% or more. More preferably, it is 50% or more, still more preferably 75% or more.
  • the water-miscible organic solvent may include methanol, ethanol, formic acid, acetic acid, and the like.
  • the oily solvent may be selected from the group consisting of halogenated hydrocarbon fluxes such as chloroform, carbon tetrachloride, dichloroethane; ester solvents such as ethyl acetate, butyl acetate, amyl acetate, etc.; Solvents such as benzene, toluene, xylene, hexane, cyclohexane, etc.; ketone solvents such as acetone, methyl ethyl ketone, methyl isopropanone, cyclohexanone, etc.; various vegetable oils such as rapeseed oil, soybean oil, etc.; animal oils such as cattle Oils and the like; ether solvents such as diethyl ether; terpene solvents such as turpentine, pine oil, etc.; petroleum solvents such as gasoline, diesel, pine perfume, and the like.
  • halogenated hydrocarbon fluxes such as chloroform, carbon tet
  • the weight ratio of the water-soluble luminescent material in the aqueous solvent may be from 0.001 to 30%, preferably from 0.01 to 25%, further preferably from 0.1 to 10%.
  • the weight ratio of the oil-soluble luminescent material in the oily solvent may be from 0.005 to 25%, preferably from 0.01 to 20%, further preferably from 0.1 to 15%.
  • Coating a quantum dot solution onto a substrate refers to coating a CdTe quantum dot solution onto the substrate using spin coating or printing techniques.
  • the formed film is a nano-sized particle film formed by linking of ligands.
  • inorganic nanoparticles ie, quantum dots
  • the particles do not fuse with the particles.
  • a solution of quantum dots of luminescent materials can be applied to a substrate to form a film of particles having a size of nanometers by spin coating solution or printing technique, and the principle is similar to that of forming a polymer film.
  • This method is much simpler than the epitaxy method, requires much lower process conditions, and is therefore much less expensive.
  • Figure 3 shows the relationship between different bulk materials and corresponding wavelengths of illumination.
  • the quantum dot structure of these materials will have a relatively small emission wavelength, which is called "blue shift".
  • the appropriate material can be selected according to actual needs and a suitable quantum dot luminescent layer can be designed.
  • the quantum dot light-emitting layer 101 may be a light-emitting layer 101 including quantum dots, or may be a light-emitting layer 101 containing particles (microspheres) of a fluorescent material, and a material for forming the light-emitting layer 101 may be passed through the company shown above. buy. It should be understood that it is also possible to form a desired quantum dot light-emitting layer 101 by purchasing a solution product by another company, thereby forming a desired quantum dot light-emitting unit 100P.
  • the light-emitting material in the aqueous solvent may include at least one of the following hydrophilic groups: -COOH , -OH, -NH 2 , -SO 3 H, and thioglycolate.
  • the light-emitting material in the oil solvent may include at least one of the following lipophilic groups: -R, -X, -C 6 H 5 , TOP/TOPO, oleic acid group, and octylamino group, wherein R represents an alkyl or alkenyl group having 4 to 20 carbon atoms, X represents a halogen such as fluorine, chlorine, bromine or iodine, and TOP/TOPO represents phosphoric acid III.
  • Octyl ester / trioctyl phosphine oxide is an alkyl or alkenyl group having 4 to 20 carbon atoms
  • TOP/TOPO represents phosphoric acid III.
  • the charge generation layer 30 is disposed between the OLED light emitting unit 100O and the quantum dot light emitting unit 100P or between the two quantum dot light emitting units 100P.
  • a charge generation layer 30 may be disposed between the blue OLED light emitting unit 100OB and the green light quantum dot light emitting unit 100PG, and charge generation may be disposed between the green light quantum dot light emitting unit 100PG and the red light quantum dot light emitting unit 100PR. Layer 30.
  • the charge generating layer 30 may include a layer composed of any one of the following materials: metal oxide, Li or a salt thereof, Mg or a salt thereof, Cs 2 CO 3 , CsN 3 , CsF And a host material to which a p-type/n-type dopant is added.
  • the red light quantum dot light emitting unit comprises a red light quantum dot light emitting layer comprising a quantum dot of at least one of the following materials: PbSe/Te, PbS, InAs, CuInSe 2 , Cd 3 As 2 , Cd 3 P 2 , CdTe, AgInS 2 .
  • the green light quantum dot light emitting unit comprises a green light quantum dot light emitting layer comprising a quantum dot of at least one of the following materials: CdSe/CdZnSe alloy, InP, CuInS 2 , AgInS 2 , CdTe, CdSe/Te alloy.
  • the blue quantum dot light emitting unit comprises a blue quantum dot light emitting layer comprising quantum dots of at least one of the following materials: CdS and ZnSe.
  • the quantum dot luminescent layer may have a thickness of from 1 to 100 nm.
  • the red light quantum dot light emitting layer may have a thickness of 1 to 100 nm.
  • the green light quantum dot light emitting layer may have a thickness of from 1 to 100 nm.
  • the blue quantum dot light emitting layer may have a thickness of 1 to 100 nm.
  • the material for forming the hole injection layer 105 may include any of the materials of Table 2.
  • the material for forming the hole injection layer may be lithium fluoride.
  • dissolving a tetrafluorotetracyanoquinodimethane material in water may form an aqueous solution, and an aqueous solution containing a tetrafluorotetracyanoquinodimethane material is coated on a substrate including a light-emitting layer.
  • the hole injection layer 105 including a tetrafluorotetracyanoquinodimethane material may be formed by a conventional treatment (for example, curing, drying, volatilization, etc.) well known to those skilled in the art.
  • the tetrafluorotetracyanoquinodimethane material is dissolved in an organic solvent to form an oily solution, and the aqueous solution containing the tetrafluorotetracyanoquinodimethane material is coated.
  • a hole injection layer e.g., 105 including a tetrafluorotetracyanoquinodimethane material may be formed on a substrate including the light-emitting layer by a conventional treatment (e.g., curing, drying, volatilization, etc.) well known to those skilled in the art.
  • Materials for forming a hole transport layer may include any of the materials of Table 3, in accordance with embodiments of the present invention.
  • Materials for forming an electron transport layer may include any of the materials of Table 4, in accordance with embodiments of the present invention.
  • the electron injection layer 104, the electron transport layer 102, the hole transport layer 103, and the hole injection layer 105 may be prepared using a solution process.
  • the electron injection layer 104, the electron transport layer 102, the hole transport layer 103, and the hole injection layer 105 may have flexibility as the light-emitting layer 101, whereby the entire light-emitting device has flexibility.
  • one quantum dot light emitting unit may include two kinds of quantum dot light emitting layers or a plurality of quantum dot light emitting layers.
  • a quantum dot light emitting unit includes an electron injection layer, an electron transport layer and a hole transport layer, and a hole injection layer disposed on both sides of the light emitting layer, and the quantum dot light emitting layer includes a blue quantum dot light emitting layer and a red light quantum dot light emitting layer. That is, the light-emitting layer 101 such as the light-emitting unit 100II in FIG. 2 includes the blue-quantum quantum dot light-emitting layer 101a and the red light-quantum dot light-emitting layer 101b.
  • the light emitting layer 101 of FIG. 2 further includes a blue quantum dot light emitting layer 101a, a red light quantum dot light emitting layer 101b, and a green light quantum dot light emitting layer 101c.
  • a plurality of quantum dot light-emitting layers are included in the same light-emitting unit. Due to such an arrangement, the light emitting unit can generate light of a plurality of different wavelengths with fewer layers.
  • the blue quantum dot light-emitting layer 101a makes When an aqueous solution is used, the red light quantum dot light-emitting layer 101b adjacent to (adjacent to) the blue quantum dot light-emitting layer 101a is preferably prepared using an oily solution, and similarly, the green light quantum dot adjacent (adjacent) to the red light quantum dot light-emitting layer 101b.
  • the light-emitting layer 101c is preferably prepared using an aqueous solution, whereby contamination that may occur between different solutions can be avoided.
  • the OLED may be formed by a solution process or may be formed by an evaporation process.
  • adjacent layers may use solutions of different properties when forming the OLED lighting unit. I won't go into details here.
  • the idea of the present invention can be applied, that is, when a solution is used to form an adjacent layer, the solution properties of different properties are selected to form adjacent layers, so that in the process of forming adjacent layers, before formation
  • the solution in one layer and the material in its solution will not dissolve in the latter solution, thus avoiding contamination.
  • an aqueous solution and an oily solution can be used alternately. It should be understood that it is not required to use an aqueous solution and an oily solution in strict alternating form to form adjacent layers.
  • the solution forming the electron injecting layer and the electron transporting layer may be a solution of the same nature
  • the solution for forming the hole injecting layer and the hole transporting layer may be a solution of the same nature.
  • a method of forming a light emitting device includes forming at least one OLED light emitting unit 100O on a substrate.
  • the method of forming a light emitting device further includes forming at least one quantum dot light emitting unit 100P on a substrate.
  • the at least one quantum dot light emitting unit 100P and the at least one OLED light emitting unit 100O are connected in series. Further, the light emitting device has flexibility.
  • the order of forming the at least one OLED light emitting unit 100O and the at least one quantum dot light emitting unit 100P on the substrate may be arbitrary, that is, the at least one OLED light emitting unit 100O may be first formed on the substrate, It is also possible to first form at least one quantum dot light emitting unit 100P on a substrate; then, other light emitting cells are formed on the substrate on which the light emitting unit is formed.
  • the forming of the at least one quantum dot light emitting unit 100P of the method of forming a light emitting device includes: forming at least one quantum dot solution; and coating at least one quantum dot solution onto the substrate to form at least one Quantum dot light-emitting layer 101.
  • the at least one quantum dot light-emitting layer 101 includes particles or luminescent quantum dots of a plurality of closely packed luminescent materials.
  • at least one quantum dot light-emitting layer 101 may be formed by a solution process or an evaporation process.
  • At least one quantum dot light emitting unit 100P may be formed by a solution process or an evaporation process.
  • the OLED light emitting unit 100O may be formed by a solution process or an evaporation process.
  • the solutions for forming the adjacent two layers of the quantum dot light-emitting layer 101 are respectively solutions having different properties and being incompatible with each other, so that the materials in the solution for forming the adjacent layers are not Dissolved in another solution.
  • the meaning of "adjacent” may include two layers directly adjacent; however, “adjacent” may Including other situations, for example, when a different process is used to fabricate two different layers, one or more layers may be formed between the two layers using an evaporation process or other processes, and two layers formed using a solution process. It is also two adjacent layers.
  • solutions for forming adjacent two layers in a quantum dot light-emitting unit and an OLED light-emitting unit by a solution process respectively use solutions which are mutually incompatible with each other.
  • the solution for forming the adjacent two layers of the quantum dot light-emitting layer 101 forms an aqueous solution and an oily solution, respectively, using an aqueous solvent and an oily solvent.
  • an aqueous solvent and an oil solvent may be used respectively for the solution for forming the adjacent two layers in the quantum dot light-emitting unit and the OLED light-emitting unit by a solution process.
  • Example an aqueous solution comprising at least one hydrophilic group in accordance with one embodiment of the present invention.
  • R represents:
  • the charge generation layer 30 is disposed between the at least one OLED light emitting unit 100O and the at least one quantum dot light emitting unit 100P.
  • a light emitting device includes a plurality of OLED light emitting units and a plurality of quantum dot light emitting units, and a charge generating layer is disposed between any two of the light emitting units.
  • a charge generating layer is disposed between any two of the at least one OLED light emitting unit and the at least one quantum dot light emitting unit.
  • the charge generating layer 30 includes a layer composed of any one of the following materials: a metal oxide, Li or a salt thereof, Mg or a salt thereof, Cs 2 CO 3 , CsN 3 , CsF, and The host material of the p-type/n-type dopant is added.
  • the at least one quantum dot light emitting unit 100P includes any one or more of a red light quantum dot light emitting unit 100PR, a green light quantum dot light emitting unit 100PG, and a blue light quantum dot light emitting unit 100PB.
  • the step of forming at least one quantum dot light emitting unit 100P on the substrate further includes: forming a hole injection layer 105, a quantum dot light emitting layer 101, and an electron injection layer 104, wherein the hole injection layer 105 and the electron The injection layers 104 are respectively disposed on opposite sides of the quantum dot light-emitting layer 101.
  • the step of forming at least one quantum dot light emitting unit 100P on the substrate further comprises: forming a hole transport layer 103 and an electron transport layer 102, wherein the hole transport layer 103 is disposed in the hole injection Between the entrance layer 105 and the quantum dot light-emitting layer 101, the electron transport layer 102 is disposed between the electron injection layer 104 and the quantum dot light-emitting layer 101.
  • the red light quantum dot light emitting unit comprises a red light quantum dot light emitting layer
  • the red light quantum dot light emitting layer comprises quantum dots of at least one of the following materials: PbSe/Te, PbS, InAs, CuInSe 2 , Cd 3 As 2 , Cd 3 P 2 , CdTe, AgInS 2 .
  • the green light quantum dot light emitting unit comprises a green light quantum dot light emitting layer comprising a quantum dot of at least one of the following materials: CdSe/CdZnSe alloy, InP, CuInS 2 , AgInS 2 , CdTe , CdSe / Te alloy.
  • the blue quantum dot light emitting unit comprises a blue quantum dot emitting layer
  • the blue quantum dot emitting layer comprises quantum dots of at least one of the following materials: CdS and ZnSe.
  • the at least one OLED lighting unit 100O comprises a blue OLED lighting unit 100OB.
  • a method of forming a light emitting device further includes the steps of forming a first electrode 10 and a second electrode 20, wherein the first electrode 10 and the second electrode 20 are respectively disposed on the first surface of the light emitting device and the first The opposite second surface of the surface serves to electrically connect the light emitting device to the outside.
  • a display device comprising a light emitting device according to an embodiment of the present invention.
  • the light emitting device serves as a backlight for the display device.
  • Comparative Example 1 Conventional OLED light-emitting device of the structure shown in FIG.
  • HIL 30nm, HTL 200nm, R-OLED 30nm, ETL 30nm, CGL 30nm, HTL 30nm, G-OLED 30nm, ETL 30nm, CGL 30nm, HTL are sequentially performed on the substrate (anode) on which the TFTF array has been prepared by IJP technique.
  • Example 1 Inventive device (similar to the structure shown in Figure 4, in which red and green OLEDs were replaced with red and green quantum dot illumination units, respectively)
  • HIL 30nm, HTL 200nm, R-QDL 30nm, ETL 30nm, CGL 30nm, HTL 30nm, G-QDL 30nm, ETL30nm, CGL 30nm, HTL 30nm are sequentially performed on the substrate (anode) on which the TFTF array has been prepared by IJP technique.
  • the Mg/Ag cathode total reflection electrode was 150 nm.
  • the light-emitting saturation of the light-emitting device of the present invention is increased by at least 5% or more.
  • Example 1 Comparative Example 1:
  • HIL hole injection layer, using tetrafluorotetracyanoquinodimethane
  • HTL hole transport layer using N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine
  • R-QDL red quantum dot layer, using PbSe/Te
  • ETL electron transport layer using 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline
  • G-QDL green quantum dot layer using CdSe/CdZnSe alloy
  • B-OLED blue organic light-emitting layer using 9,9'-(1,3-phenyl)di-9H-carbazole
  • R-OLED red organic light-emitting layer with TPBD
  • G-OLED green organic light-emitting layer with coumarin dye (Coumarin 6)

Abstract

一种发光装置、形成发光装置的方法以及显示装置。发光装置包括至少一个OLED发光单元(100O)和至少一个量子点发光单元(100P),该至少一个量子点发光单元和至少一个OLED发光单元以串联的方式布置。

Description

发光装置和形成发光装置的方法以及显示装置 技术领域
本发明涉及显示领域,具体地,涉及发光装置、形成发光装置的方法以及显示装置。
背景技术
近年来,有机发光二极管(OLED)发光装置由于具有柔性得到快速的发展,为了获得白光,一般OLED发光装置包括多层结构,如图4所示,OLED发光装置包括三个堆叠的OLED发光单元,在发光单元之间设置电荷产生层。然而,现有这种结构的OLED发光装置成本较高。
进一步,OLED发光装置所出射的光饱和度有待进一步提高。
发明内容
鉴于此,本发明的目的在于提供一种发光装置和制备该发光装置的方法,可以至少克服现有技术中的部分问题或缺点。
根据本发明一方面,提供一种发光装置,包括至少一个OLED发光单元和至少一个量子点发光单元,其中该至少一个量子点发光单元和至少一个OLED发光单元以串联的方式布置。
根据本发明的另一方面,提供一种形成发光装置的方法,以下步骤:
在基底上形成至少一个OLED发光单元;和
在所述至少一个OLED发光单元上形成至少一个量子点发光单元;
或者
在基底上形成至少一个量子点发光单元;和
在所述至少一个量子点发光单元上形成至少一个OLED发光单元;
其中,所述至少一个量子点发光单元和所述至少一个OLED发光单元串联连接。
根据本发明的再一方面,提供一种显示装置,包括前述的发光装置及由前述方法的发光装置。
附图说明
图1示出根据本发明的一个实施例的发光装置的示意图;
图2示出根据本发明的一个实施例的发光装置的示意图,其中示出第二发光单元的具体结构;
图3示出不同块体材料的发光波长的示意图;和
图4示出现有技术的多层OLED发光装置的示意图。
具体实施方式
现在对本发明的实施例提供详细参考,其范例在附图中说明,图中相同的数字全部代表相同的元件。为解释本发明下述实施例将参考附图被描述。
根据本发明的一个实施例,提供一种发光装置,包括至少一个OLED发光单元100O和至少一个量子点发光单元100P,其中,该至少一个量子点发光单元100P和至少一个OLED发光单元100O以串联的方式布置。
“量子点发光单元”指的是一种包含量子点的发光单元,在这种发光单元中发光材料是颗粒形式,例如尺寸在几纳米、十几纳米,也可以是几十纳米;也可以是微米量级,某些纳米级尺寸的发光材料颗粒可以被称为量子点发光材料,而有些对应尺寸的发光材料颗粒可以被称为荧光发光材料。当颗粒的尺寸在几纳米至几十纳米量级时,这种发光材料的纳米量级的颗粒由于尺寸带来的量子效应可以发出波长被修改或改变的光,例如,由于量子束缚效应,纳米尺寸的发光材料的颗粒所发出的光的波长可以比该发光材料的块体发出的光的波长短。通过这样的效应,可以控制发光材料颗粒的尺寸以调节包含该发光材料颗粒的发光层或发光单元的出射光的波长,满足设计所需。进一步,由于量子点发光层的出射光波长可以调节,因而发光装置发出的光可以进一步调节,通过设计至少一个OLED发光单元100O的出射光波长和至少一个量子点发光单元100P的出射光波长,可以获得色度饱满的光。
进一步,根据本发明的发光装置具有柔性,因而可以应用于柔性发光设备、照明设备以及柔性显示设备中。例如,发光装置可以具有柔性基部。
在本发明的实施例中,至少一个量子点发光单元100P可以包括红光量子点发光单元100PR、绿光量子点发光单元100PG以及蓝光量子点发光单元100PB中的任一种或多种。这些量子点发光单元100P可以具有柔性。为了获得亮度更高、饱和度更 佳的光,在本发明的一个实施例中,发光装置包括多个发光单元,这些发光单元可以包括红光量子点发光单元100PR、绿光量子点发光单元100PG以及蓝光量子点发光100PB中的任一种或多种,同时还可以包括绿光OLED发光单元100OG、红光OLED发光单元100OR以及蓝光OLED发光单元100OB中的任一种或多种。本领域技术人员可以根据实际需要进行选择。并且,在优选的实施例中,为了获得较强的发光强度,可以设置多个量子点发光单元和OLED发光单元,例如共设置10个以上的发光单元。优选地,这些发光单元具有兼容的柔性特性。
每一种量子点发光单元100P可以分别包括空穴注入层、量子点发光层以及电子注入层,空穴注入层和电子注入层分别布置在量子点发光层的相反的侧面。
图1示出根据本发明一个实施例的发光装置,包括一个蓝光OLED发光单元100OB、一个绿光量子点发光单元100PG和一个红光量子点发光单元100PR。在图1中,蓝光OLED发光单元100OB联接绿光量子点发光单元100PG,依次地,绿光量子点发光单元100PG联接红光量子点发光单元100PR。在本发明的其他实施例中,发光装置还可以包括一个或多个其他OLED发光单元100O和其他量子点发光单元100P。发光装置还可以包括电荷产生层30,如图1所示,在蓝光OLED发光单元100OB和绿光量子点发光单元100PG之间可以设置电荷产生层30,绿光量子点发光单元100PG和红光量子点发光单元100PR之间可以设置电荷产生层30。电荷产生层指的是在发光装置通电之后产生载流子用以注入到发光层进而产生光的层,电荷产生层可以产生电子和/或空穴。在本发明的实施例中,电荷产生层可以具有柔性。在本发明的一个实施例中,发光装置还包括第一电极10和第二电极20,分别布置在发光装置第一表面和与第一表面相对的第二表面用以实现发光装置与外部的电连接。在本说明书中,第一表面和第二表面可以指的是发光装置的两个相对的表面,例如图1中的装置的上表面和下表面。在图1的实施例中,第一电极10联接红光量子点发光单元100PR,第二电极20联接绿光量子点发光单元100PG。在本发明的其他实施例中,发光装置可以包括多个OLED发光单元100O和多个量子点发光单元100P,它们如图1所示的串联方式连接。优选地,发光装置具有柔性。
在本发明的一个实施例中,量子点发光单元100P还可以包括空穴传输层和电子传输层,空穴传输层设置在空穴注入层和量子点发光层之间,电子传输层设置在电子注入层和量子点发光层之间。
图2示出根据本发明一个实施例的发光装置的示意图,其中图2右侧具体示出 第二发光单元100II的结构。在如图2所示的实施例中,发光装置包括第一发光单元100I、第二发光单元100II和第三发光单元100III。第一发光单元100I、第二发光单元100II和第三发光单元100III都具有柔性。第一发光单元100I、第二发光单元100II和第三发光单元100III可以是OLED发光单元100O,也可以是一种量子点发光单元100P。图2中示出了多个发光单元中的一个发光单元的具体结构,例如第二发光单元100II的具体结构,第二发光单元100II可以是OLED发光单元100O,也可以是量子点发光单元100P。换句话说,图2中的发光层101可以是OLED发光层,也可以是量子点发光层。如图2所示,第二发光单元100II包括电子注入层104、电子传输层102、发光层101、空穴传输层103和空穴注入层105,这些层依此次序堆叠布置。在第一发光单元和第二发光单元之间设置电荷产生层30,第二发光单元和第三发光单元之间设置电荷产生层30。在本发明的其他实施例中,发光装置可以包括多于三个发光单元,这些发光单元可以根据需要进行选择和配置,以便发射想要波长和饱和度的光,在这些发光单元之间设置电荷产生层,并且这些发光单元具有柔性,从而包括这些发光单元的发光装置具有柔性。
在本发明的实施例中,可以通过溶液涂覆工艺或蒸镀工艺形成OLED发光单元100O。用于形成蓝光OLED发光层101的材料可以包括表1中的一种。
表1用于形成蓝光OLED发光层的材料
Figure PCTCN2016083276-appb-000001
根据本发明的一个实施例,量子点发光单元100P可以包括量子点发光层101,量子点发光层101包括多个量子点的密排结构。在本发明的另一实施例中,量子点发光层101包括随机分布在发光层101中的量子点。量子点发光层是具有柔性的发光层。
根据本发明的一个实施例,通过将一种量子点溶液涂覆至基板上固化之后形成量子点发光层101。换句话说,量子点发光层101为将量子点溶液涂覆至基板上固化 之后形成的。例如,首先形成量子点溶液;然后,将量子点溶液涂覆至基板上,固化后形成一种量子点发光层101。在此固化过程中,部分或全部溶剂可以挥发掉。这种通过溶液涂覆到基板上形成发光层101的方法是有利的,因为通过溶液工艺形成量子点发光层101对工艺条件要求低,相比使用分子束外延或气相外延工艺,溶液工艺不要求高的真空度和洁净度,这对于在OLED发光单元100O上形成量子点发光单元100P尤其有利,因为使用外延的方法在OLED发光单元100O上形成量子点发光单元100P的工艺一般都需要繁复的多次清洗步骤、干燥步骤等一系列的复杂的预处理和工艺条件,使得实际生产成本极高。此外,尤其有利的是,溶液工艺形成的量子点发光层101可以具有柔性;并且量子点发光层101可以容易地与OLED发光单元的层实现材料性质的配置,从而使得根据本发明的发光装置总体具有良好的柔性。这有利于满足现有的一些设备对柔性的需要。
在本发明的一个实施例中,发光装置中包括两个量子点发光单元100P,例如图1中示出的红光量子点发光单元100PR和绿光量子点发光单元100PG。根据本实施例,在制备红光量子点发光单元100PR和绿光量子点发光单元100PG时,用于形成红光量子点发光层的溶液和用于形成绿光量子点发光层的溶液是不同性质且互不相容的溶液,这样使得用于形成相邻层的各自的溶液中的材料不会溶解于另一种溶液中。实际上,每个量子点发光单元具有多个层,任意两个相邻的层使用不同性质的溶液形成。即用于形成量子点发光单元中的相邻两层的溶液分别是具有不同性质且互不相容的溶液。具体地,可以使用水性溶剂形成水性的绿光量子点溶液,然后在OLED发光单元上或在基板上涂覆该溶液,固化后形成绿光量子点发光层;然后,在该绿光量子点发光层上使用油性溶液形成例如电子传输层或空穴传输层。可以知道,根据本发明,在形成电子或空穴传输层之后,使用水性溶液相应地形成电子注入层或空穴注入层。此处,“相邻”的意义可以包括直接邻接的两层;然而,“相邻”可以包括其他情形,例如,当使用溶液工艺制造不同的两个层的时候,可以在这两个层之间使用蒸镀工艺或其他工艺形成一层或多层,而使用溶液工艺形成的两个层也是相邻的两层。
根据本发明的这种思路,在基板上首次形成发光单元的第一层时,可以选用合适性质的溶液,随后可以选用不同性质的溶液在该第一层上来形成第二层。通过使用不同性质的溶液交替地形成两个相邻的层可以避免相邻层之间的相互污染。
在本发明的一个实施例中,例如电子注入层和电子传输层可以使用相同性质的溶液形成,例如都使用水性溶液形成;随后与电子传输层相邻的发光层使用油性溶液 形成。而在发光层的另一侧相邻的空穴传输层可以使用水性溶液形成。
在本发明的一个实施例中,可以使用油性溶液形成油性红光量子点溶液。由于油性红光量子点溶液不溶于之前使用的水性溶液,使得之前使用的水性溶液中的物质不会溶解于随后使用的油性红光量子点溶液,从而避免了两种溶液的溶质相互溶解带来的污染。
在本发明的其他实施例中,发光装置中可以包括多个量子点发光单元。在制备两个相联接(相邻)的包含不同的发光材料的量子点的发光单元时,用于形成第一个量子点发光层的溶液和用于形成第二个量子点发光层的溶液可以是不同性质互不相容的溶液,这样使得用于形成相邻层的各自的溶液中的材料不会溶解于另一种溶液中,从而避免了两种溶液的溶质相互溶解带来的污染。或者,用于形成第一个量子点发光层的溶液和用于形成相邻的电子传输层或空穴传输层的溶液性质不同,不会相互溶解,从而避免了两种溶液的溶质相互溶解带来的污染。
关于用于形成各种颜色光的量子点溶液也可以从市场直接购买,例如水性量子点溶液可以通过网址http://www.mesolight.cc/list-27.html购买获得,油性量子点溶液可以通过网址http://polyoe.com/index.html购买获得。
量子点溶液在被涂覆到基板上,或基板上的OLED发光单元表面上之后,通过固化后可以形成量子点发光层。在固化过程中,溶液中的溶剂可以挥发掉,留下的量子点形成排列结构。量子点的结构从内到外大致分为三层,包括:无机核,无机核的性质决定量子点的发光光谱,即例如发红光、绿光或蓝光,无机核的性质包括无机核的材料类型、无机核的尺寸等,例如CdTe材料以及其形成的量子点的尺寸;无机壳,用以保护和稳定无机核的结构;以及,有机配体,有机配体在溶液中稳定和分散量子点,在涂覆形成发光层以后,有机配体将收缩,紧贴量子点的无机壳。关于量子点层的导电性,可以其认为与有机半导体膜相当。
本说明书提到的“溶液工艺”或“溶液法”大体上指的是制备量子点溶液和将溶液涂覆到基底层上的工艺过程或方法。根据本发明的实施例,水溶性的量子点溶液(例如水溶性量子点材料)可以通过两种方法制备:一是使用水热法,即在直接水体系中反应生成发光材料的量子点,所用配体一般为巯基乙酸等水溶性配体;二是通过在有机溶剂中使用热注入法生成油溶性发光材料量子点后,通过配体交换(将油溶性配体换成水溶性配体)形成水溶性发光材料量子点。
在一个实施例中,例如,对于水溶性CdTe材料,可通过表面修饰将CdTe量 子点表面挂上诸如-COOH、-OH、-NH2、-SO3H、巯基乙酸基等基团,即可溶于水性溶液中。水溶性溶液中为单一成分的量子点材料,修饰基团挂在量子点表面,不以离子形式存在于溶液中。
在一个实施例中,例如,对于油溶性CdTe材料,可通过表面修饰将CdTe量子点表面挂上诸如-R,-X,-C6H5,TOP/TOPO,油酸基,和辛胺基,其中R表示含有4至20个碳原子的烷基或烯基,X表示卤素,并且TOP/TOPO表示磷酸三辛酯/三辛基氧膦,即可溶于水性溶液中。油溶性或油性溶液中为单一成分的量子点材料,修饰基团挂在量子点表面。
量子点材料本身不是单质,是复合的材料,例如可以是核壳结构等。水热法、有机热注入法都是将例如含Cd前体以及例如含Te前体在水溶液或者有机溶液中反应,生成CdTe纳米晶体的量子点。水热法和有机热注入法可以形成相同的产物,即量子点,所不同的是量子点表面的配体不同。通过配体的亲水或亲油性来调节量子点能够溶于水还是溶于有机溶剂(油性溶剂)。对于水溶性CdTe材料,包含量子点的溶液是指含有发光材料(例如CdTe)的量子点的溶液,量子点的大小在10-100nm,涂覆之后形成的是纳米级的膜。
在一个实施例中,对于水溶性发光材料,配体可以选自:本领中常规用于水溶性发光材料的配体。本发明对此没有限制。
在一个实施例中,对于油溶性发光材料,配体可以选自:本领中常规用于油溶性发光材料的配体。本发明对此没有限制。
在一个实施例中,水性溶剂可以选自:水,以及水和水混溶性有机溶剂的混合物,其中水在水和水混溶性有机溶剂的混合物中的体积含量为10%以上,优选20%以上,更优选50%以上,再更优选75%以上。水混溶性有机溶剂的实例可以包括:甲醇、乙醇、甲酸、乙酸等。
在一个实施例中,油性溶剂可以选自:卤代烃类熔剂如三氯甲烷、四氯化碳、二氯乙烷;酯类溶剂如乙酸乙酯、乙酸丁酯、乙酸戊酯等;烃类溶剂如苯、甲苯、二甲苯、己烷、环己烷等;酮类溶剂如丙酮、甲乙酮、甲异丙酮、环己酮等;各种植物油如菜籽油、大豆油等;动物油如牛油等;醚类溶剂如乙醚等;萜烯类溶剂如松节油、松油等;石油类溶剂如汽油、柴油、松香水等。
在一个实施例中,水溶性发光材料在水性溶剂中的重量比可以为0.001至30%,优选为0.01至25%,进一步优选为0.1至10%。
在一个实施例中,油溶性发光材料在油性溶剂中的重量比可以为0.005至25%,优选为0.01至20%,进一步优选为0.1至15%。
将量子点溶液涂覆到基板上,例如将包含CdTe量子点溶液涂覆在基板上是指利用旋涂或者打印技术,将CdTe量子点溶液涂覆在基板上。形成的膜是由配体连接而形成的纳米级的粒子膜。实际上无机纳米粒子(即量子点)在基板表面紧密推挤,但粒子与粒子之间不会融合。
溶液法制备量子点层可以通过旋涂溶液或者打印技术将发光材料的量子点的溶液涂覆在基板上形成尺寸为纳米量级的颗粒的薄膜,原理与形成高分子薄膜类似。这种方法比外延法简便得多,对工艺条件的要求要低得多,因而成本要低得多。
有关量子点发光材料与对应波长的关系可以参照图3。图3示出不同的块体材料与相应的发光波长之间的关系。这些材料的量子点结构对应的发光波长将会相对减小,也就是所谓的“蓝移”。可以根据实际需要选择合适的材料并设计合适的量子点发光层。
量子点发光层101可以是包含量子点的发光层101,也可以是包含荧光材料的颗粒(微球)的发光层101,用于形成这些发光层101的材料可以通过上面示出的网址的公司购买。应该知道,还可以通过其他公司购买溶液产品形成所需要的量子点发光层101,进而形成所需要的量子点发光单元100P。
在本发明的实施例中,在使用水性溶剂的用于形成量子点发光层101的溶液的情况下,在所述水性溶剂中的发光材料可以包括如下亲水基团中至少一种:-COOH、-OH、-NH2、-SO3H、和巯基乙酸基。使用油性溶剂的用于形成量子点发光层101的溶液的情况下,在所述油性溶剂中的发光材料可以包括如下亲油基团中至少一种:-R、-X、-C6H5、TOP/TOPO、油酸基、和辛胺基,其中R表示含有4至20个碳原子的烷基或烯基,X表示卤素如氟、氯、溴或碘,并且TOP/TOPO表示磷酸三辛酯/三辛基氧膦。
在本发明的一个实施例中,在OLED发光单元100O和量子点发光单元100P之间或在两个量子点发光单元100P之间设置电荷产生层30。例如,如图1所示,可以在蓝光OLED发光单元100OB和绿光量子点发光单元100PG之间设置电荷产生层30,可以在绿光量子点发光单元100PG和红光量子点发光单元100PR之间设置电荷产生层30。
在本发明的一个实施例中,电荷产生层30可以包括下列材料中任一种构成的层: 金属氧化物、Li或其盐类、Mg或其盐类、Cs2CO3、CsN3、CsF,以及加入p-型/n-型掺杂剂的主体材料。
根据本发明的实施例,红光量子点发光单元包括红光量子点发光层,红光量子点发光层包括下列材料中至少一种的量子点:PbSe/Te、PbS、InAs、CuInSe2、Cd3As2、Cd3P2、CdTe、AgInS2
根据本发明的实施例,绿光量子点发光单元包括绿光量子点发光层,绿光量子点发光层包括下列材料中至少一种的量子点:CdSe/CdZnSe合金、InP、CuInS2、AgInS2、CdTe、CdSe/Te合金。
根据本发明的实施例,蓝光量子点发光单元包括蓝光量子点发光层,蓝光量子点发光层包括下列材料中至少一种的量子点:CdS和ZnSe。
在本发明的一个实施例中,量子点发光层的厚度可以为1至100nm。
在本发明的一个实施例中,红光量子点发光层的厚度可以为1至100nm。
在本发明的一个实施例中,绿光量子点发光层的厚度可以为1至100nm。
在本发明的一个实施例中,所述蓝光量子点发光层的厚度可以为1至100nm。
根据本发明的实施例,用于形成空穴注入层105的材料可以包括表2材料中的任一种。
表2用于形成空穴注入层的材料
缩写 CAS No. 中文名
F4TCNQ 29261-33-4 四氟四氰基醌二甲烷
TCNQ 1518-16-7 7,7,8,8-四氰基对苯二醌二甲烷
HAT-CN 105598-27-4 2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲
2T-NATA 185690-41-9 4,4′,4″-三(2-萘基苯基氨基)三苯基胺
根据本发明的实施例,用于形成空穴注入层的材料可以是氟化锂。
根据本发明的实施例,例如,将四氟四氰基醌二甲烷材料溶于水可以形成水性溶液,将包含四氟四氰基醌二甲烷材料的水性溶液涂覆于包含发光层的基板上,经过本领域技术人员熟知的常规处理(例如,固化、干燥、挥发等)可以形成包括四氟四氰基醌二甲烷材料的空穴注入层105。在另一种实施例中,将四氟四氰基醌二甲烷材料溶于有机溶剂中可以形成油性溶液,将包含四氟四氰基醌二甲烷材料的水性溶液涂 覆于包含发光层的基板上,经过本领域技术人员熟知的常规处理(例如,固化、干燥、挥发等)可以形成包括四氟四氰基醌二甲烷材料的空穴注入层(例如105)。
根据本发明的实施例,用于形成空穴传输层(例如103)的材料可以包括表3材料中的任一种。
表3用于形成空穴传输层103的材料
Figure PCTCN2016083276-appb-000002
根据本发明的实施例,用于形成电子传输层(例如102)的材料可以包括表4材料中的任一种。
表4用于形成电子传输层102的材料
Figure PCTCN2016083276-appb-000003
根据本发明的实施例,电子注入层104、电子传输层102、空穴传输层103以及空穴注入层105可以使用溶液工艺制备。电子注入层104、电子传输层102、空穴传输层103以及空穴注入层105可以与发光层101一样具有柔性,由此,整个发光装置具有柔性。
在本发明的一个实施例中,一个量子点发光单元中可以包括两种量子点发光层或多种量子点发光层。例如一个量子点发光单元包括布置在发光层两侧的电子注入层、电子传输层和空穴传输层、空穴注入层,量子点发光层包括蓝光量子点发光层和红光量子点发光层。即,例如图2中的发光单元100II的发光层101包括蓝光量子点发光层101a和红光量子点发光层101b。在另一实施例中,图2中的发光层101进一步包括蓝光量子点发光层101a、红光量子点发光层101b和绿光量子点发光层101c。换句话说,在同一个发光单元中包含多个量子点发光层。由于这样的布置,发光单元可以用较少的层产生多种不同波长的光。在上述结构中,例如蓝光量子点发光层101a使 用水性溶液时,与蓝光量子点发光层101a相邻(邻接)的红光量子点发光层101b则优选使用油性溶液制备,同理,与红光量子点发光层101b相邻(邻接)的绿光量子点发光层101c优选使用水性溶液制备,由此可以避免不同溶液之间可能带来的污染。
根据本发明的实施例,与形成量子点发光单元类似,OLED可以通过溶液工艺形成,也可以通过蒸镀工艺形成。在本发明的实施例中,在形成OLED发光单元时相邻的层可以使用不同性质的溶液。这里不再赘述。
同时在形成整个发光装置的过程可以应用本发明的思想,即在使用溶液形成相邻层的时候,选用不同性质的溶液性质形成相邻层,从而使得在形成相邻层的过程中,形成前一层的溶液及其溶液中的材料不会溶解于后一溶液中,从而避免污染。例如,可以交替地使用水性溶液和油性溶液。应该理解,并不要求严格地交替使用水性溶液和油性溶液形成相邻的层。例如,形成电子注入层和电子传输层的溶液可以是同种性质的溶液,用于形成空穴注入层和空穴传输层的溶液可以是同种性质的溶液。
根据本发明的一个实施例,提供一种形成发光装置的方法,可以形成本发明的上述实施例的发光装置。形成发光装置的方法包括:在基底上形成至少一个OLED发光单元100O。形成发光装置的方法还包括:在基底上形成至少一个量子点发光单元100P。该至少一个量子点发光单元100P和至少一个OLED发光单元100O串联连接。进一步,发光装置具有柔性。根据本发明的实施例,在基底上形成所述至少一个OLED发光单元100O和所述至少一个量子点发光单元100P的次序可以是任意的,即可以首先在基底上形成至少一个OLED发光单元100O,也可以首先在基底上形成至少一个量子点发光单元100P;然后,在形成有发光单元的基底上形成其他发光单元。
根据本发明的一个实施例,形成发光装置的方法的形成至少一个量子点发光单元100P的步骤包括:形成至少一种量子点溶液;和将至少一种量子点溶液涂覆至基板上形成至少一个量子点发光层101。至少一个量子点发光层101包括密排的多个发光材料的颗粒或发光量子点。根据本发明的一个实施例的方法,可以通过溶液工艺或蒸镀工艺形成至少一个量子点发光层101。根据本发明的一个实施例的方法,可以通过溶液工艺或蒸镀工艺形成至少一个量子点发光单元100P。根据本发明的一个实施例的方法,可以通过溶液工艺或蒸镀工艺形成OLED发光单元100O。
根据本发明的一个实施例,用于形成相邻两层的量子点发光层101的溶液分别是具有不同性质而互不相溶的溶液,使得用于形成相邻层的溶液中的材料不会溶解于另一种溶液中。此处,“相邻”的意义可以包括直接邻接的两层;然而,“相邻”可以 包括其他情形,例如,当使用溶液工艺制造不同的两个层的时候,可以在这两个层之间使用蒸镀工艺或其他工艺形成一层或多层,而使用溶液工艺形成的两个层也是相邻的两层。
根据本发明的一个实施例,通过溶液工艺用于形成量子点发光单元和OLED发光单元中的相邻两层的溶液分别使用不同性质互不相溶的溶液。
根据本发明的一个实施例,用于形成相邻两层的量子点发光层101的溶液分别使用水性溶剂和油性溶剂形成水性溶液和油性溶液。
在本发明的实施例中,通过溶液工艺用于形成量子点发光单元和OLED发光单元中的相邻两层的溶液可以分别使用水性溶剂和油性溶剂。
根据本发明的一个实施例,水性溶液包括如下亲水基团中的至少一种:-COOH、-OH、-NH2、-SO3H、巯基乙酸。
根据本发明的一个实施例,油性溶液包括如下亲油基团中的至少一种:-R、-X、-C6H5、TOP/TOPO、油酸基、和辛胺基,其中R表示含有4至20个碳原子的烷基或烯基,X表示卤素,并且TOP/TOPO表示磷酸三辛酯/三辛基氧膦。
根据本发明的一个实施例,在至少一个OLED发光单元100O和至少一个量子点发光单元100P之间设置电荷产生层30。
根据本发明的一个实施例,发光装置包括多个OLED发光单元和多种量子点发光单元,在任意两个发光单元之间设置电荷产生层。换句话说,在至少一个OLED发光单元和至少一个量子点发光单元中的任意两个发光单元之间设置电荷产生层。
根据本发明的一个实施例,电荷产生层30包括下列材料中任一种构成的层:金属氧化物、Li或其盐类、Mg或其盐类、Cs2CO3、CsN3、CsF,以及加入p-型/n-型掺杂剂的主体材料。
根据本发明的一个实施例,至少一个量子点发光单元100P包括红光量子点发光单元100PR,绿光量子点发光单元100PG以及蓝光量子点发光单元100PB任一种或多种。
根据本发明的一个实施例,在基底上形成至少一个量子点发光单元100P的步骤还包括:形成空穴注入层105、量子点发光层101以及电子注入层104,其中空穴注入层105和电子注入层104分别布置在量子点发光层101的相反的侧面。
根据本发明的一个实施例,在基底上形成至少一个量子点发光单元100P的步骤还包括:形成空穴传输层103和电子传输层102,其中空穴传输层103设置在空穴注 入层105和量子点发光层101之间,电子传输层102设置在电子注入层104和量子点发光层101之间。
根据本发明的一个实施例,红光量子点发光单元包括红光量子点发光层,红光量子点发光层包括下列材料中至少一种的量子点:PbSe/Te、PbS、InAs、CuInSe2、Cd3As2、Cd3P2、CdTe、AgInS2
根据本发明的一个实施例,绿光量子点发光单元包括绿光量子点发光层,绿光量子点发光层包括下列材料中至少一种的量子点:CdSe/CdZnSe合金、InP、CuInS2、AgInS2、CdTe、CdSe/Te合金。
根据本发明的一个实施例,蓝光量子点发光单元包括蓝光量子点发光层,蓝光量子点发光层包括下列材料中至少一种的量子点:CdS和ZnSe。
根据本发明的一个实施例,至少一个OLED发光单元100O包括蓝光OLED发光单元100OB。
根据本发明的一个实施例,形成发光装置的方法还包括形成第一电极10和第二电极20的步骤,其中第一电极10和第二电极20分别布置在发光装置第一表面和与第一表面相对的第二表面用以实现发光装置与外部的电连接。
根据本发明的一个实施例,提供一种显示装置,包括根据本发明的实施例的发光装置。发光装置作为显示装置的背光源。
实施例
比较例1:图4所示结构的常规OLED发光装置
在已制备好TFTF阵列的基板(阳极)上依次利用IJP技术分别完成HIL 30nm、HTL 200nm、R-OLED 30nm、ETL 30nm、CGL 30nm、HTL 30nm、G-OLED 30nm、ETL 30nm、CGL 30nm、HTL 30nm、B-OLED 30nm、ETL 30nm各层的打印和固化,蒸镀Mg/Ag阴极全反射电极150nm。
实施例1:发明装置(类似于图4所示的结构,其中将红色和绿色OLED分别更换为红色和绿色量子点发光单元)
在已制备好TFTF阵列的基板(阳极)上依次利用IJP技术分别完成HIL 30nm、HTL 200nm、R-QDL 30nm、ETL 30nm、CGL 30nm、HTL 30nm、G-QDL 30nm、ETL30nm、CGL 30nm、HTL 30nm、B-OLED 30nm、ETL 30nm各层的打印和固化,蒸镀 Mg/Ag阴极全反射电极150nm。
相比于图4所示结构的常规OLED发光装置,本发明的发光装置的出射的光饱和度提高至少5%以上。
在实施例1和比较例1中:
HIL:空穴注入层,采用四氟四氰基醌二甲烷
HTL:空穴传输层,采用N,N′-二苯基-N,N′-(1-萘基)-1,1′-联苯-4,4′-二胺
R-QDL:红色量子点层,采用PbSe/Te
ETL:电子传输层,采用2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲
CGL:电荷产生层,采用Cs2CO3
G-QDL:绿色量子点层,采用CdSe/CdZnSe合金
B-OLED:蓝色有机发光层,采用9,9′-(1,3-苯基)二-9H-咔唑
R-OLED:红色有机发光层,采用TPBD
G-OLED:绿色有机发光层,采用香豆素染料(Coumarin 6)
尽管已经参考本发明的典型实施例,具体示出和描述了本发明,但本领域普通技术人员应当理解,在不脱离所附权利要求所限定的本发明的精神和范围的情况下,可以对这些实施例进行形式和细节上的多种改变。

Claims (40)

  1. 一种发光装置,包括至少一个OLED发光单元和至少一个量子点发光单元,
    其中所述至少一个量子点发光单元和所述至少一个OLED发光单元以串联的方式布置。
  2. 如权利要求1所述的发光装置,其中所述量子点发光单元包括量子点发光层,其中所述量子点发光层包括多个量子点的密排结构。
  3. 如权利要求2所述的发光装置,其中所述量子点发光层的厚度为1至100nm。
  4. 如权利要求1所述的发光装置,所述发光装置还包括在所述至少一个OLED发光单元和所述至少一个量子点发光单元中的任意两个发光单元之间设置的电荷产生层。
  5. 如权利要求4所述的发光装置,其中所述电荷产生层包括由下列材料中任一种构成的层:金属氧化物、Li或其盐类、Mg或其盐类、Cs2CO3、CsN3、CsF,以及加入p-型/n-型掺杂剂的主体材料。
  6. 如权利要求1所述的发光装置,其中所述至少一个量子点发光单元包括红光量子点发光单元、绿光量子点发光单元以及蓝光量子点发光单元的任一种或多种。
  7. 如权利要求1所述的发光装置,其中所述至少一个量子点发光单元包括空穴注入层、量子点发光层以及电子注入层,其中所述空穴注入层和所述电子注入层分别布置在所述量子点发光层的相反的侧面。
  8. 如权利要求7所述的发光装置,其中所述至少一个量子点发光单元还包括空穴传输层和电子传输层,其中所述空穴传输层设置在所述空穴注入层和所述量子点发光层之间,并且所述电子传输层设置在所述电子注入层和所述量子点发光层之间。
  9. 如权利要求6所述的发光装置,其中所述红光量子点发光单元包括红光量子点发光层,其中所述红光量子点发光层包括下列材料中至少一种的量子点:PbSe/Te、PbS、InAs、CuInSe2、Cd3As2、Cd3P2、CdTe、AgInS2
  10. 如权利要求6所述的发光装置,其中所述绿光量子点发光单元包括绿光量子点发光层,其中所述绿光量子点发光层包括下列材料中至少一种的量子点:CdSe/CdZnSe合金、InP、CuInS2、AgInS2、CdTe、CdSe/Te合金。
  11. 如权利要求6所述的发光装置,其中所述蓝光量子点发光单元包括蓝光量子点发光层,其中所述蓝光量子点发光层包括下列材料中至少一种的量子点:CdS和 ZnSe。
  12. 如权利要求9所述的发光装置,其中所述红光量子点发光层的厚度为1至100nm。
  13. 如权利要求10所述的发光装置,其中所述绿光量子点发光层的厚度为1至100nm。
  14. 如权利要求11所述的发光装置,其中所述蓝光量子点发光层的厚度为1至100nm。
  15. 如权利要求1所述的发光装置,其中所述至少一个OLED发光单元包括蓝光OLED发光单元。
  16. 如权利要求1所述的发光装置,所述发光装置还包括第一电极和第二电极,其中所述第一电极和所述第二电极分别布置在所述发光装置的第一表面和与所述第一表面相对的第二表面用以实现发光装置与外部的电连接。
  17. 一种形成发光装置的方法,所述方法包括以下步骤:
    在基底上形成至少一个OLED发光单元;和
    在所述至少一个OLED发光单元上形成至少一个量子点发光单元;
    或者
    在基底上形成至少一个量子点发光单元;和
    在所述至少一个量子点发光单元上形成至少一个OLED发光单元;
    其中,所述至少一个量子点发光单元和所述至少一个OLED发光单元串联连接。
  18. 根据权利要求17所述的方法,其中,形成至少一个量子点发光单元的步骤包括:
    形成至少一种量子点溶液;和
    将所述至少一种量子点溶液涂覆至基板上固化之后形成所述至少一个量子点发光层。
  19. 根据权利要求17所述的方法,其中所述量子点发光层的厚度为1至100nm。
  20. 根据权利要求18所述的方法,其中,所述至少一个量子点发光层包括多个量子点的密排结构。
  21. 根据权利要求17所述的方法,其中通过溶液工艺形成所述量子点发光单元。
  22. 根据权利要求17所述的方法,其中通过溶液工艺或蒸镀工艺形成所述OLED发光单元。
  23. 根据权利要求18所述的方法,其中,通过溶液工艺用于形成所述量子点发光单元和所述OLED发光单元中的相邻两层的溶液是互不相溶的溶液。
  24. 根据权利要求23所述的方法,其中,通过溶液工艺用于形成所述量子点发光单元和所述OLED发光单元中的相邻两层的溶液分别使用水性溶剂和油性溶剂,以形成发光材料在所述水性溶剂中的溶液,或发光材料在所述油性溶剂中的溶液。
  25. 根据权利要求24所述的方法,其中,在所述水性溶剂中的发光材料包括如下亲水基团中的至少一种:-COOH,-OH,-NH2,-SO3H,和巯基乙酸基。
  26. 根据权利要求24所述的方法,其中,在所述油性溶剂中的发光材料包括如下亲油基团中的至少一种:-R,-X,-C6H5,TOP/TOPO,油酸基,和辛胺基,其中R表示含有4至20个碳原子的烷基或烯基,X表示卤素,并且TOP/TOPO表示磷酸三辛酯/三辛基氧膦。
  27. 根据权利要求17所述的方法,其中,在所述至少一个OLED发光单元和所述至少一个量子点发光单元中的任意两个发光单元之间设置电荷产生层。
  28. 根据权利要求27所述的方法,其中,所述电荷产生层包括下列材料中任一种构成的层:金属氧化物、Li或其盐类、Mg或其盐类、Cs2CO3、CsN3、CsF,以及加入p-型/n-型掺杂剂的主体材料。
  29. 根据权利要求17所述的方法,其中,所述至少一个量子点发光单元包括红光量子点发光单元、绿红光量子点发光单元以及蓝光量子点发光单元中的任一种或多种。
  30. 根据权利要求17所述的方法,其中形成至少一个量子点发光单元的步骤还包括:形成空穴注入层量子点发光层以及电子注入层,其中所述空穴注入层和所述电子注入层分别布置在所述量子点发光层的相反的侧面。
  31. 根据权利要求30所述的方法,其中形成至少一个量子点发光单元的步骤还包括:
    形成空穴传输层和电子传输层,其中所述空穴传输层设置在所述空穴注入层和所述量子点发光层之间,其中所述电子传输层设置在所述电子注入层和所述量子点发光层之间。
  32. 根据权利要求29所述的方法,其中所述红光量子点发光单元包括红光量子点发光层,其中所述红光量子点发光层包括下列材料中至少一种的量子点:PbSe/Te、PbS、InAs、CuInSe2、Cd3As2、Cd3P2、CdTe、AgInS2
  33. 根据权利要求29所述的方法,其中所述绿光量子点发光单元包括绿光量子点发光层,其中所述绿光量子点发光层包括下列材料中至少一种的量子点:CdSe/CdZnSe合金、InP、CuInS2、AgInS2、CdTe、CdSe/Te合金。
  34. 根据权利要求29所述的方法,其中所述蓝光量子点发光单元包括蓝光量子点发光层,其中所述蓝光量子点发光层包括下列材料中至少一种的量子点:CdS和ZnSe。
  35. 根据权利要求19所述的方法,其中所述至少一个OLED发光单元包括蓝光OLED发光单元。
  36. 如权利要求33所述的方法,其中所述红光量子点发光层的厚度为1至100nm。
  37. 如权利要求34所述的方法,其中所述绿光量子点发光层的厚度为1至100nm。
  38. 如权利要求35所述的方法,其中所述蓝光量子点发光层的厚度为1至100nm。
  39. 根据权利要求17所述的方法,所述方法还包括形成第一电极和第二电极的步骤,其中所述第一电极和所述第二电极分别布置在所述发光装置的第一表面和与所述第一表面相对的第二表面用以实现发光装置与外部的电连接。
  40. 一种显示装置,所述显示装置包括如权利要求1-16中任一项所述的发光装置。
PCT/CN2016/083276 2016-02-29 2016-05-25 发光装置和形成发光装置的方法以及显示装置 WO2017148022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/528,422 US10163988B2 (en) 2016-02-29 2016-05-25 Light-emitting apparatus, method for forming light-emitting apparatus, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610111792.9A CN105514295A (zh) 2016-02-29 2016-02-29 发光装置和形成发光装置的方法以及显示装置
CN201610111792.9 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017148022A1 true WO2017148022A1 (zh) 2017-09-08

Family

ID=55722115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083276 WO2017148022A1 (zh) 2016-02-29 2016-05-25 发光装置和形成发光装置的方法以及显示装置

Country Status (3)

Country Link
US (1) US10163988B2 (zh)
CN (1) CN105514295A (zh)
WO (1) WO2017148022A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514295A (zh) * 2016-02-29 2016-04-20 京东方科技集团股份有限公司 发光装置和形成发光装置的方法以及显示装置
CN106206967A (zh) * 2016-08-10 2016-12-07 京东方科技集团股份有限公司 量子点发光器件及其制备方法、显示装置
CN106981504B (zh) * 2017-05-27 2020-03-27 华南理工大学 一种显示面板及显示装置
KR102337204B1 (ko) 2017-06-30 2021-12-07 엘지디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
US10411213B2 (en) * 2017-07-03 2019-09-10 Shenzhen China Star Optoelectronics Technology Co., Ltd White LED with two blue layers and a yellow layer and the display panel thereof
CN107394020A (zh) * 2017-07-31 2017-11-24 京东方科技集团股份有限公司 一种发光器件的制作方法及发光器件、显示装置
CN107302017B (zh) * 2017-08-14 2020-04-10 武汉天马微电子有限公司 一种有机发光显示面板及装置
CN107623075A (zh) * 2017-09-22 2018-01-23 深圳市华星光电半导体显示技术有限公司 量子发光二极管和显示装置
US10418578B2 (en) 2017-09-22 2019-09-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dot light-emitting diode and display device
CN107958961A (zh) * 2017-11-20 2018-04-24 深圳市华星光电半导体显示技术有限公司 串联量子点发光器件、面板即显示器
CN109935718B (zh) * 2017-12-15 2020-08-14 Tcl科技集团股份有限公司 白光量子点发光二极管及其制备方法
CN109935725B (zh) * 2017-12-15 2020-08-14 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法和应用
CN108660508A (zh) * 2018-04-25 2018-10-16 复旦大学 一种利用分子束外延设备生长大尺度砷化镉薄膜的方法
CN108646327B (zh) * 2018-05-08 2020-05-26 厦门佰亨源量子光电科技有限公司 一种水性量子点微晶扩散板及其制备方法
CN114975560A (zh) * 2018-05-09 2022-08-30 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN110838550B (zh) * 2018-08-15 2021-03-26 Tcl科技集团股份有限公司 混合型发光二极管及其制备方法
CN111354856A (zh) * 2018-12-24 2020-06-30 Tcl集团股份有限公司 一种量子点发光二极管
KR20200100899A (ko) * 2019-02-18 2020-08-27 삼성디스플레이 주식회사 표시 장치
CN110112327A (zh) * 2019-04-08 2019-08-09 深圳市华星光电半导体显示技术有限公司 有机发光二极管显示器及其制造方法
KR20210013459A (ko) * 2019-07-25 2021-02-04 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN111290162B (zh) 2020-03-27 2021-05-28 Tcl华星光电技术有限公司 液晶显示装置、电子设备
CN111613731A (zh) * 2020-05-18 2020-09-01 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法
CN112143938B (zh) * 2020-09-25 2021-11-19 先导薄膜材料(广东)有限公司 砷化镉的制备方法
WO2022261941A1 (zh) * 2021-06-18 2022-12-22 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制作方法
WO2024053088A1 (ja) * 2022-09-09 2024-03-14 シャープディスプレイテクノロジー株式会社 発光素子および表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937975A (zh) * 2010-08-20 2011-01-05 电子科技大学 一种有机/无机复合发光二极管及其制备方法
CN102255019A (zh) * 2010-05-20 2011-11-23 乐金显示有限公司 量子点发光元件及其制造方法
CN103500803A (zh) * 2013-10-21 2014-01-08 京东方科技集团股份有限公司 一种复合发光层及其制作方法、白光有机电致发光器件
CN104362255A (zh) * 2014-10-21 2015-02-18 深圳市华星光电技术有限公司 白光oled器件结构
CN105514295A (zh) * 2016-02-29 2016-04-20 京东方科技集团股份有限公司 发光装置和形成发光装置的方法以及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101530A1 (en) * 2004-04-19 2005-10-27 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
KR20080069085A (ko) * 2007-01-22 2008-07-25 삼성전자주식회사 탠덤 구조의 나노점 발광 다이오드 및 그 제조 방법
TWI422088B (zh) * 2008-10-23 2014-01-01 Nat Univ Tsing Hua 具有奈米點之有機發光二極體及其製造方法
KR101652789B1 (ko) * 2009-02-23 2016-09-01 삼성전자주식회사 다중 양자점층을 가지는 양자점 발광소자
CN102907176B (zh) * 2010-05-24 2015-10-07 株式会社村田制作所 发光元件、发光元件的制造方法以及显示装置
KR101878172B1 (ko) * 2011-08-04 2018-08-20 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
WO2014088667A2 (en) * 2012-09-14 2014-06-12 Qd Vision, Inc. Light emitting device including tandem structure
WO2015002565A1 (en) 2013-07-01 2015-01-08 Optogan Organic Lighting Solutions, Llc (Optogan - Osr, Llc) Hybrid quantum dot/metal-organic led white light source
CN103956432A (zh) * 2014-04-14 2014-07-30 京东方科技集团股份有限公司 一种发光二极管及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255019A (zh) * 2010-05-20 2011-11-23 乐金显示有限公司 量子点发光元件及其制造方法
CN101937975A (zh) * 2010-08-20 2011-01-05 电子科技大学 一种有机/无机复合发光二极管及其制备方法
CN103500803A (zh) * 2013-10-21 2014-01-08 京东方科技集团股份有限公司 一种复合发光层及其制作方法、白光有机电致发光器件
CN104362255A (zh) * 2014-10-21 2015-02-18 深圳市华星光电技术有限公司 白光oled器件结构
CN105514295A (zh) * 2016-02-29 2016-04-20 京东方科技集团股份有限公司 发光装置和形成发光装置的方法以及显示装置

Also Published As

Publication number Publication date
CN105514295A (zh) 2016-04-20
US10163988B2 (en) 2018-12-25
US20180061911A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2017148022A1 (zh) 发光装置和形成发光装置的方法以及显示装置
Manders et al. High efficiency and ultra‐wide color gamut quantum dot LEDs for next generation displays
Li et al. Quantum‐dot light‐emitting diodes for outdoor displays with high stability at high brightness
JP7335710B2 (ja) 電界発光素子及びこれを含む表示装置
JP6061112B2 (ja) 発光デバイス
CA2480518C (en) Light emitting device including semiconductor nanocrystals
US7615800B2 (en) Quantum dot light emitting layer
US9093657B2 (en) White light emitting devices
JP5370702B2 (ja) 薄膜形成方法
JP2009087760A (ja) エレクトロルミネッセンス素子の製造方法
JP2006066395A (ja) 半導体ナノ結晶を含有する白色発光有機/無機ハイブリッド電界発光素子
KR20190110046A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
Kim et al. High-resolution colloidal quantum dot film photolithography via atomic layer deposition of ZnO
US9859497B2 (en) Method for manufacturing a thin film consisting of a colloidal crystal infiltrated with the luminescent MDMO-PPV polymer made of silica (SiO2) spheres, having a face-centered cubic system (FCC)
JP2024014954A (ja) 表示装置
TW201926740A (zh) 顯示裝置
JP2019033005A (ja) 発光素子
Srivastava et al. Freestanding high-resolution quantum dot color converters with small pixel sizes
CN110098343B (zh) 量子点复合物及其制备方法、发光器件及其制备方法
Manders et al. 8.3: Distinguished Paper: Next‐Generation Display Technology: Quantum‐Dot LEDs
WO2014097878A1 (ja) 発光デバイス、及び該発光デバイスの製造方法
US20200328325A1 (en) Light emitting device and illumination device
KR101428790B1 (ko) 투명 전극층을 습식 식각하여 광추출 효율을 향상시킨 유기 발광 소자 및 이의 제조방법
KR102459639B1 (ko) 간소화된 다층박막 형성방법 및 이를 이용하여 제조된 디스플레이 소자
정희영 White quantum dot light-emtting diodes based on inverted device structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15528422

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892210

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892210

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16892210

Country of ref document: EP

Kind code of ref document: A1