CN108660508A - 一种利用分子束外延设备生长大尺度砷化镉薄膜的方法 - Google Patents
一种利用分子束外延设备生长大尺度砷化镉薄膜的方法 Download PDFInfo
- Publication number
- CN108660508A CN108660508A CN201810377140.9A CN201810377140A CN108660508A CN 108660508 A CN108660508 A CN 108660508A CN 201810377140 A CN201810377140 A CN 201810377140A CN 108660508 A CN108660508 A CN 108660508A
- Authority
- CN
- China
- Prior art keywords
- cadmium
- film
- cadmium arsenide
- substrate
- arsenide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02469—Group 12/16 materials
- H01L21/0248—Tellurides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
本发明属于薄膜制备技术领域,具体一种利用分子束外延设备生长大尺寸砷化镉薄膜的方法。本发明方法,利用云母作为衬底,首先生长碲化镉作为缓冲层,利用砷化镉非晶块体材作为热蒸发源,以较低温度生长砷化镉低温缓冲层,随后在较高温度生长砷化镉薄膜至所需厚度。本发明与现有技术相比,使用经济的云母作为衬底,衬底处理工艺简单,采用非晶砷化镉蒸发源对设备要求低,工艺简单可获得晶圆级单晶薄膜,样品尺寸可达两英寸;薄膜单晶质量好,迁移率高。薄膜单晶质量好,迁移率高。
Description
技术领域
本发明属于薄膜制备技术领域,具体是涉及分子束外延生长砷化镉薄膜的方法。
背景技术
砷化镉是一种新型拓扑狄拉克材料,其相关拓扑理论获得2016年诺贝尔物理学奖。其能带结构具有无能隙、电子有效质量为零的线性色散关系,具有新的光、电、磁等特性。与传统半导体相比,砷化镉具有强自旋耦合,量子特性、超高迁移率及宽光谱吸收特性,因而在自旋电子、量子信息和光电探测等领域有重大应用前景。
通常生长砷化镉薄膜,可采用热蒸发的方式,在石英或氯化钠衬底上形成薄膜,所得薄膜为非晶;用分子束外延生长砷化镉单晶薄膜,采用碲化镉作为衬底,尺寸小,应用发展受限;采用砷化镓或碲化镓衬底,价格昂贵,衬底预处理工艺复杂;在大尺寸衬底上直接以较高温度生长砷化镉薄膜,薄膜难以在衬底上均匀生长;采用分别蒸发镉、砷源,调节束流比以获得符合化学计量比的砷化镉薄膜的方法中,需要高温裂解砷源,对设备要求高,工艺难度大。
发明内容
为了克服上述技术难题,本发明的目的在于提供一种设备要求低、工艺简单的生长大尺寸高质量砷化镉薄膜的方法。
本发明提供的生长大尺寸高质量砷化镉薄膜的方法,采用分子束外延设备,具体步骤为:
(1)采用云母作为衬底,对衬底采用机械剥离方式处理,以得到平整清洁的解理面;
(2)采用分子束外延技术,在衬底上生长碲化镉作薄膜作为缓冲层;生长碲化镉缓冲层以解决晶格失配问题;
(3)采用分子束外延技术,在碲化镉上生长砷化镉薄膜,分两步进行:首先以较低温度110-120℃生长温度生长4-10纳米砷化镉薄膜,使得砷化镉在缓冲层上大面积成核外延,随后,提高生长温度至150-170℃生长所需厚度的砷化镉单晶薄膜。
本发明可实现晶圆级高质量单晶砷化镉薄膜的可控生长。
本发明中,步骤(2)中,生长碲化镉薄膜时,衬底温度为180-200℃,碲化镉薄膜厚度为10-20纳米。
本发明中,生长砷化镉薄膜时,以非晶砷化镉块材作为蒸发源。
本发明中,作为衬底的云母大小为1-2英寸,优选为2英寸。相应的砷化镉薄膜大小可达2英寸。
与现有技术相比,本发明的显著优点为,采用云母作为衬底,衬底预处理方式简单,价格较为经济;采用非晶砷化镉蒸发源制备高质量薄膜,对设备要求低,工艺简单,可获得晶圆级单晶薄膜;薄膜单晶质量好,迁移率高。
附图说明
图1为云母上的生长的砷化镉薄膜。
图2为砷化镉薄膜高能电子束衍射图。表明薄膜为平整的高质量单晶。
图3为云母上砷化镉薄膜的X射线衍射图。其中,虚线为砷化镉薄膜(112)方向衍射峰位,其余衍射峰来自云母衬底。
图4为砷化镉薄膜载流子浓度和迁移率。
具体实施方式
以两英寸云母作为衬底,衬底处理方式为机械剥离,得到平整清洁的解理面;以衬底温度180-200℃生长10-20纳米碲化镉作为缓冲层以解决晶格失配问题,随后以非晶砷化镉块材作为热蒸发源,在碲化镉上以衬底温度110-120℃生长5纳米砷化镉薄膜作为低温缓冲层,使砷化镉薄膜在较低温度下大面积成核外延;随后提高生长温度至150-170℃,继续生长砷化镉薄膜至所需厚度,实现晶圆级高质量单晶砷化镉薄膜的可控生长。
图1为云母上的生长的砷化镉薄膜。
图2为砷化镉薄膜高能电子束衍射图。表明薄膜为平整的高质量单晶。
图4为砷化镉薄膜载流子浓度和迁移率。其中,采用Quantum Design 公司生产的综合物性测试系统(EC-II)在2-300K,±9T磁场条件下通过测量霍尔信号获得的载流子浓度和迁移率数据,薄膜样品在低温迁移率超过10000cm2V-1s-1 ,室温迁移率大于9000cm2V- 1s-1,载流子浓度为1011cm-2量级。
以上对本发明及其实施方式进行了描述,该描述没有限制性。如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的实施例,均应属于本发明的保护范围。
Claims (4)
1.一种利用分子束外延设备生长大尺度砷化镉薄膜的方法,其特征在于,具体步骤为:
(1)采用云母作为衬底,对衬底采用机械剥离方式处理,以得到平整清洁的解理面;
(2)采用分子束外延技术,在衬底上生长碲化镉作薄膜作为缓冲层;生长碲化镉缓冲层以解决晶格失配问题;
(3)采用分子束外延技术,在碲化镉上生长砷化镉薄膜,分两步进行:首先以较低温度110-120℃生长温度生长4-10纳米砷化镉薄膜,使得砷化镉在缓冲层上大面积成核外延,随后,提高生长温度至150-170℃生长所需厚度的砷化镉单晶薄膜。
2.根据要求权利1所述的方法,其特征在于,步骤(2)中,生长碲化镉薄膜时,衬底温度为180-200℃,碲化镉薄膜厚度为10-20纳米。
3.根据要求权利1所述的方法,其特征在于,生长砷化镉薄膜时,以非晶砷化镉块材作为蒸发源。
4.根据要求权利1所述的方法,其特征在于,作为衬底的云母大小为1-2英寸。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810377140.9A CN108660508A (zh) | 2018-04-25 | 2018-04-25 | 一种利用分子束外延设备生长大尺度砷化镉薄膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810377140.9A CN108660508A (zh) | 2018-04-25 | 2018-04-25 | 一种利用分子束外延设备生长大尺度砷化镉薄膜的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108660508A true CN108660508A (zh) | 2018-10-16 |
Family
ID=63780902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810377140.9A Pending CN108660508A (zh) | 2018-04-25 | 2018-04-25 | 一种利用分子束外延设备生长大尺度砷化镉薄膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108660508A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111139455A (zh) * | 2019-12-18 | 2020-05-12 | 复旦大学 | 一种高质量砷化镉薄膜的制备方法 |
CN111403294A (zh) * | 2020-03-06 | 2020-07-10 | 复旦大学 | 一种砷化镉同质pn结薄膜及其制备方法 |
CN112160027A (zh) * | 2020-09-30 | 2021-01-01 | 中国科学院半导体研究所 | 一种铁磁性砷化镉单晶薄膜的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729923A (ja) * | 1993-07-14 | 1995-01-31 | Nec Corp | テルル化水銀カドミウム分子線エピタキシャル成長における組成及びドーピング濃度制御方法 |
CN101697361A (zh) * | 2009-10-29 | 2010-04-21 | 润峰电力有限公司 | 一种碲化镉薄膜太阳能电池及其制备方法 |
CN105514295A (zh) * | 2016-02-29 | 2016-04-20 | 京东方科技集团股份有限公司 | 发光装置和形成发光装置的方法以及显示装置 |
CN106785842A (zh) * | 2017-01-05 | 2017-05-31 | 南京诺派激光技术有限公司 | 基于砷化镉薄膜的被动锁模光纤激光器 |
-
2018
- 2018-04-25 CN CN201810377140.9A patent/CN108660508A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729923A (ja) * | 1993-07-14 | 1995-01-31 | Nec Corp | テルル化水銀カドミウム分子線エピタキシャル成長における組成及びドーピング濃度制御方法 |
CN101697361A (zh) * | 2009-10-29 | 2010-04-21 | 润峰电力有限公司 | 一种碲化镉薄膜太阳能电池及其制备方法 |
CN105514295A (zh) * | 2016-02-29 | 2016-04-20 | 京东方科技集团股份有限公司 | 发光装置和形成发光装置的方法以及显示装置 |
CN106785842A (zh) * | 2017-01-05 | 2017-05-31 | 南京诺派激光技术有限公司 | 基于砷化镉薄膜的被动锁模光纤激光器 |
Non-Patent Citations (4)
Title |
---|
MANIK GOYAL,ET AL.: "Thickness dependence of the quantum Hall effect in films of the three-dimensional Dirac semimetal Cd3As2", 《APL MATERIALS》 * |
XIANG YUAN, ET AL.: "Direct Observation of Landau Level Resonance and Mass Generation in Dirac Semimetal Cd3As2 Thin Films", 《NANO LETT.》 * |
YANWEN LIU, ET AL.: "Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films", 《NPG ASIA MATERIALS》 * |
张圣南: "拓扑材料ZrTe5和Cd3As2的分子束外延生长", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111139455A (zh) * | 2019-12-18 | 2020-05-12 | 复旦大学 | 一种高质量砷化镉薄膜的制备方法 |
CN111139455B (zh) * | 2019-12-18 | 2021-09-28 | 复旦大学 | 一种高质量砷化镉薄膜的制备方法 |
CN111403294A (zh) * | 2020-03-06 | 2020-07-10 | 复旦大学 | 一种砷化镉同质pn结薄膜及其制备方法 |
CN111403294B (zh) * | 2020-03-06 | 2022-12-16 | 复旦大学 | 一种砷化镉同质pn结薄膜及其制备方法 |
CN112160027A (zh) * | 2020-09-30 | 2021-01-01 | 中国科学院半导体研究所 | 一种铁磁性砷化镉单晶薄膜的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104409319B (zh) | 一种石墨烯基底上生长高质量GaN 缓冲层的制备方法 | |
Cao et al. | β-Ga2O3 epitaxial films deposited on epi-GaN/sapphire (0001) substrates by MOCVD | |
Nakamura et al. | Growth of Ge1− xSnx heteroepitaxial layers with very high Sn contents on InP (001) substrates | |
US8846504B1 (en) | GaN on Si(100) substrate using epi-twist | |
CN108660508A (zh) | 一种利用分子束外延设备生长大尺度砷化镉薄膜的方法 | |
Li et al. | Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy | |
Wei et al. | β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy | |
Mortelmans et al. | Peculiar alignment and strain of 2D WSe2 grown by van der Waals epitaxy on reconstructed sapphire surfaces | |
Zhu et al. | Growth and nitridation of β-Ga 2 O 3 thin films by Sol-Gel spin-coating epitaxy with post-annealing process | |
Mizuguchi et al. | MOCVD GaAs growth on Ge (100) and Si (100) substrates | |
CN109913945A (zh) | 一种在硅(211)衬底上生长硒化铋高指数面单晶薄膜的方法 | |
Puybaret et al. | Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask | |
CN107516630A (zh) | 一种AlN外延层及其制备方法 | |
Lu et al. | Molecular beam epitaxy growth and scanning tunneling microscopy study of 2D layered materials on epitaxial graphene/silicon carbide | |
Iwinska et al. | HVPE-GaN growth on GaN-based advanced substrates by Smart Cut™ | |
Li et al. | Epitaxial growth of Si/SiC heterostructures with different preferred orientations on 6H-SiC (0001) by LPCVD | |
Merckling et al. | Epitaxial growth of LaAlO3 on Si (0 0 1) using interface engineering | |
Zeghouane et al. | Formation of voids in selective area growth of InN nanorods in SiNx on GaN templates | |
Hong et al. | Control of polarity of heteroepitaxial ZnO films by interface engineering | |
Gao et al. | High quality GaN films on miscut (1 1 1) diamond substrates through non-c orientation suppression | |
Liu et al. | Two-dimensional material-assisted remote epitaxy and van der Waals epitaxy: A review | |
Xu et al. | Epitaxy of III-nitrides on two-dimensional materials and its applications | |
JPS63158832A (ja) | 半導体基体 | |
Fareed et al. | Surface morphology studies on sublimation grown GaN by atomic force microscopy | |
Zhu et al. | Structural characterization of InN films grown on different buffer layers by metalorganic chemical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181016 |
|
WD01 | Invention patent application deemed withdrawn after publication |