WO2017145924A1 - Imprint device, operating method for same, and method for manufacturing article - Google Patents

Imprint device, operating method for same, and method for manufacturing article Download PDF

Info

Publication number
WO2017145924A1
WO2017145924A1 PCT/JP2017/005834 JP2017005834W WO2017145924A1 WO 2017145924 A1 WO2017145924 A1 WO 2017145924A1 JP 2017005834 W JP2017005834 W JP 2017005834W WO 2017145924 A1 WO2017145924 A1 WO 2017145924A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
imprint apparatus
imprint
mold
cleaning
Prior art date
Application number
PCT/JP2017/005834
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 松岡
磨人 山本
東 尚史
茂 寺島
敏宏 前田
雅見 米川
江本 圭司
一樹 中川
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017018915A external-priority patent/JP6603678B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020187026500A priority Critical patent/KR102115879B1/en
Priority to CN201780012426.0A priority patent/CN108701585B/en
Priority to SG11201807161RA priority patent/SG11201807161RA/en
Publication of WO2017145924A1 publication Critical patent/WO2017145924A1/en
Priority to US16/105,341 priority patent/US11036149B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to an imprint apparatus, an operation method thereof, and an article manufacturing method.
  • An imprint technique in which a pattern is formed on a substrate by curing the imprint material in a state where a mold (mold) is in contact with the imprint material arranged on the substrate has attracted attention.
  • the mold is formed with a pattern of concave portions.
  • the concave portions are filled with the imprint material by capillary action.
  • a purge gas is supplied to the space between the substrate and the mold in order to promote the filling of the imprint material into the recess and to prevent the imprint material from being inhibited from being hardened by air (oxygen).
  • energy such as light or heat is applied to the imprint material.
  • the imprint material is cured, and the pattern formed of the recesses formed in the mold is transferred to the imprint material on the substrate. After the imprint material is cured, the mold is pulled away from the imprint material.
  • the mold When the mold is pulled away from the cured imprint material on the substrate, the mold can be charged.
  • An electrostatic force (Coulomb force) acts on the particles by the electric field formed by the charging, and thereby the particles can be attracted to the mold and attached to the mold.
  • the particles may enter from the outside of the chamber of the imprint apparatus, or may be generated in the chamber due to friction between the machine elements, friction between the machine elements and the substrate or the original plate, or the like.
  • a mist of the imprint material is generated when the imprint material is discharged from the discharge port, and particles are generated as the imprint material solidifies. It is possible that
  • Japanese Patent Application Laid-Open No. 2014-175340 provides a foreign matter trapping area in a mold and charges the foreign matter catching area to remove foreign matter existing in the atmosphere and / or on the substrate when the substrate is transported to the transfer position. It is described to do.
  • a pattern portion and a first conductive film are provided on a first surface of a mold, a second conductive film is provided on a second surface, and charges are applied to the first conductive film and the second conductive film. It describes that particles near the pattern portion are attracted to the first conductive film by storing them.
  • the pattern is formed by bringing the mold into contact with the imprint material on the substrate while the particles are attached to the mold, a pattern having a defect may be formed, or the substrate and / or the mold may be damaged.
  • a peripheral member so as to surround the side surface of the substrate.
  • the peripheral member when the peripheral member is disposed, the peripheral member can face the mold at a close distance when the substrate is moved after the mold is pulled away from the imprint material on the substrate. Since the electrostatic force is inversely proportional to the square of the distance, the electrostatic force acting on the particles on the peripheral member is considerably larger than the electrostatic force acting on the particles on the substrate holding part when there is no peripheral member. Can be. Particles can adhere to the peripheral member through the processing of a large number of substrates. Of these particles, particles adhering to the peripheral member with a weak adhesive force can be easily detached from the peripheral member and attached to the mold by the electrostatic force acting on the peripheral member.
  • the present invention provides an advantageous technique for reducing pattern defects and substrate and / or mold damage that may occur due to particles that are easily detached from peripheral members.
  • One aspect of the present invention relates to an imprint apparatus that forms a pattern on a substrate by curing the imprint material while the mold is in contact with the imprint material on the substrate.
  • At least one of the peripheral members using a substrate chuck having a substrate holding region for holding the substrate, a peripheral member disposed so as to surround a side surface of the substrate held by the substrate chuck, and a cleaning member including a charging unit.
  • a control unit that controls a cleaning process for cleaning a part of the area, wherein the cleaning process places the cleaning member in the state in which the charging unit is opposed to at least a part of the peripheral member. Movement of causing the particles in the region to be attracted to the charging unit by being moved relative to each other.
  • the figure which illustrates the cleaning sequence of a substrate chuck The figure which shows typically the structure of the imprint apparatus of 2nd Embodiment of this invention.
  • the figure explaining the cleaning of the peripheral member by the cleaning member shown by FIG. The figure explaining the cleaning of the peripheral member by the cleaning member shown by FIG.
  • FIG. 2 illustrates the configuration of the imprint apparatus IMP according to one embodiment of the present invention.
  • the imprint apparatus IMP transfers the pattern of the mold 100 to the substrate 101 by imprinting.
  • the imprint apparatus IMP transfers the pattern of the mold 100 onto the imprint material (transfer material) on the substrate 101 by imprinting.
  • the imprint means that the imprint material is cured by bringing the mold into contact with the imprint material.
  • the mold 100 has a pattern composed of recesses.
  • the pattern 100 is filled with the imprint material by bringing the mold 100 into contact with the imprint material (uncured resin) on the substrate 101. In this state, the imprint material is cured by applying energy for curing the imprint material.
  • the pattern of the mold 100 is transferred to the imprint material, and a pattern made of the cured imprint material is formed on the substrate 101.
  • the imprint material is a curable composition that is cured by applying energy for curing the imprint material.
  • the imprint material may mean a cured state or an uncured state.
  • the energy for curing for example, electromagnetic waves, heat, or the like can be used.
  • the electromagnetic wave can be, for example, light (for example, infrared rays, visible rays, ultraviolet rays) having a wavelength selected from a range of 10 nm to 1 mm.
  • the curable composition is typically a composition that is cured by light irradiation or by heating.
  • the photocurable composition that is cured by light can contain at least a polymerizable compound and a photopolymerization initiator.
  • the photocurable composition may additionally contain a non-polymerizable compound or a solvent.
  • the non-polymerizable compound may be at least one selected from the group of, for example, a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, and a polymer component.
  • directions are shown in an XYZ coordinate system in which a direction parallel to the surface of the substrate 101 is an XY plane.
  • the directions parallel to the X, Y, and Z axes are the X, Y, and Z directions, respectively, and rotation around the X axis, rotation around the Y axis, and rotation around the Z axis are ⁇ X and ⁇ Y, respectively.
  • ⁇ Z The control or drive related to the X axis, Y axis, and Z axis means control or drive related to the direction parallel to the X axis, the direction parallel to the Y axis, and the direction parallel to the Z axis, respectively.
  • the control or drive related to the ⁇ X axis, ⁇ Y axis, and ⁇ Z axis relates to rotation around an axis parallel to the X axis, rotation around an axis parallel to the Y axis, and rotation around an axis parallel to the Z axis.
  • the position is information that can be specified based on the coordinates of the X axis, Y axis, and Z axis
  • the posture is information that can be specified by relative rotation with respect to the ⁇ X axis, ⁇ Y axis, and ⁇ Z axis.
  • Positioning means controlling position and / or attitude.
  • the imprint apparatus IMP includes a substrate driving mechanism SDM that positions the substrate 101.
  • the substrate driving mechanism SDM can include, for example, a substrate chuck 102, a peripheral member 113, a fine movement mechanism 114, a coarse movement mechanism 115, and a base structure 116.
  • the substrate chuck 102 has a substrate holding region for holding the substrate 101, and can hold the substrate 101 by suction (for example, vacuum suction or electrostatic suction).
  • the fine movement mechanism 114 can include a fine movement stage that supports the substrate chuck 102 and the peripheral member 113 and a drive mechanism that drives the fine movement stage.
  • the peripheral member 113 is disposed around a region where the substrate 101 is disposed so as to surround the side surface of the substrate 101.
  • the peripheral member 113 can have an upper surface having a height equal to the upper surface of the substrate 101.
  • the peripheral member 113 may be divided into a plurality of members. Further, all or a part of the plurality of members may be arranged apart from each other or may be arranged so as to contact each other.
  • the fine movement mechanism 114 is a mechanism that finely drives the substrate 101 by finely driving the substrate chuck 102.
  • the coarse movement mechanism 115 is a mechanism that coarsely drives the substrate 101 by roughly driving the fine movement mechanism 114.
  • the base structure 116 supports the coarse movement mechanism 115, the fine movement mechanism 114, the substrate chuck 102, and the peripheral member 113.
  • the substrate drive mechanism SDM can be configured to drive the substrate 101 with respect to a plurality of axes (for example, three axes of the X axis, the Y axis, and the ⁇ Z axis), for example.
  • the position of the part (fine movement stage) integrated with the substrate chuck 102 in the fine movement mechanism 114 is monitored by a measuring instrument 117 such as an interferometer.
  • the imprint apparatus IMP includes a mold drive mechanism MDM that positions the mold 100, and the mold drive mechanism MDM may include a mold chuck 110, a drive mechanism 109, and a peripheral member 151.
  • the peripheral member 151 is disposed around a region where the mold 100 is disposed so as to surround the side surface of the mold 100.
  • the mold driving mechanism MDM and the peripheral member 151 can be supported by the support structure 108.
  • the mold chuck 110 can hold the mold 100 by suction (for example, vacuum suction or electrostatic suction).
  • the drive mechanism 109 drives the mold 100 by driving the mold chuck 110.
  • the mold driving mechanism MDM can be configured to drive the mold 100 about a plurality of axes (for example, six axes of X axis, Y axis, Z axis, ⁇ X axis, ⁇ Y axis, and ⁇ Z axis).
  • axes for example, six axes of X axis, Y axis, Z axis, ⁇ X axis, ⁇ Y axis, and ⁇ Z axis.
  • the substrate drive mechanism SDM and the mold drive mechanism MDM constitute a drive unit that performs relative positioning between the substrate 101 and the mold 100.
  • the drive unit adjusts the relative position between the substrate 101 and the mold 100 with respect to the X axis, the Y axis, the ⁇ X axis, the ⁇ Y axis, and the ⁇ Z axis, and also adjusts the relative position between the substrate 101 and the mold 100 with respect to the Z axis.
  • the adjustment of the relative position between the substrate 101 and the mold 100 with respect to the Z-axis includes operations of contact and separation between the imprint material on the substrate 101 and the mold 100.
  • the imprint apparatus IMP may include a dispenser (supply unit) 111 that applies, disposes, or supplies an uncured imprint material on the substrate 101.
  • the dispenser 111 can be configured to arrange an imprint material on the substrate 101 in the form of a plurality of droplets, for example.
  • the dispenser 111 can be supported by the support structure 108.
  • the imprint apparatus IMP may include a curing unit 104 that cures the imprint material by irradiating the imprint material on the substrate 101 with light such as UV light.
  • the imprint apparatus IMP may also include a camera 103 for observing the imprint state.
  • the light emitted from the curing unit 104 is reflected by the mirror 105, passes through the mold 100, and can be applied to the imprint material.
  • the camera 103 can be configured to observe an imprint state, for example, a contact state between the imprint material and the mold 100 via the mold 100 and the mirror 105.
  • the imprint apparatus IMP may include alignment scopes 107a and 107b for detecting a relative position between the mark on the substrate 101 and the mark on the mold 100.
  • the alignment scopes 107 a and 107 b can be disposed on the upper structure 106 supported by the support structure 108.
  • the imprint apparatus IMP may include an off-axis scope 112 for detecting the positions of a plurality of marks on the substrate 101.
  • the off-axis scope 112 can be supported by the support structure 108.
  • the imprint apparatus IMP may include one or a plurality of purge gas supply units 118a and 118b.
  • the purge gas supply units 118 a and 118 b may be disposed around the mold chuck 110 so as to surround the mold chuck 110.
  • the purge gas supply units 118 a and 118 b supply the purge gas to the space between the substrate 101 and the mold 100.
  • the purge gas supply units 118a and 118b can be supported by the support structure 108, for example.
  • As the purge gas a gas that does not inhibit the curing of the imprint material, for example, a gas including at least one of helium gas, nitrogen gas, and a condensable gas (for example, pentafluoropropane (PFP)) may be used.
  • PFP pentafluoropropane
  • the configuration in which the peripheral members 113 and 151 are provided is advantageous for efficiently filling the space between the substrate 101 and the mold 100 with the purge gas.
  • the imprint apparatus IMP includes a chamber 190, and each of the above components can be disposed in the chamber 190.
  • the imprint apparatus IMP may include a main control unit (control unit) 126, an imprint control unit 120, an irradiation control unit 121, a scope control unit 122, a dispenser control unit 123, a purge gas control unit 124, and a substrate control unit 125.
  • the main controller 126 controls the imprint controller 120, the irradiation controller 121, the scope controller 122, the dispenser controller 123, the purge gas controller 124, and the substrate controller 125.
  • the imprint control unit 120 controls the mold driving mechanism MDM.
  • the irradiation control unit 121 controls the curing unit 104.
  • the scope control unit 122, the alignment scopes 107a and 107b, and the off-axis scope 112 are controlled.
  • the dispenser control unit 123 controls the dispenser 111.
  • the purge gas control unit 124 controls the purge gas supply units 118a and 118b.
  • the substrate controller 125 controls the substrate drive mechanism SDM.
  • FIG. 1 schematically shows a part of the imprint apparatus IMP shown in FIG.
  • Particles 150 can enter the internal space of the chamber 190. Further, in the chamber 190, the particles 150 may be generated due to mutual friction between the machine elements, friction between the machine elements and the substrate or the original plate, or the like. Alternatively, when the imprint material is discharged from the discharge port in order for the dispenser 111 to place the uncured imprint material on the substrate 101, a mist of the imprint material is generated and the imprint material is solidified. Particles 150 can be generated.
  • the particles 150 can adhere to the upper surface of the peripheral member 113 and the like.
  • the adhesion strength of the particles 150 that adhere to the peripheral member 113 varies.
  • the particles 150 adhering to the peripheral member 113 do not leave the peripheral member 113, pattern defects and substrate and / or mold damage due to the particles 150 adhering to the substrate 101 or the mold 100 do not occur.
  • the particles 150 attached to the peripheral member 113 are detached from the peripheral member 113, the particles 150 may adhere to the substrate 101 or the mold 100, or may be sandwiched between the substrate 101 and the mold 100.
  • the mold 100 When the mold 100 is pulled away from the cured imprint material on the substrate 101, the mold 100 can be charged.
  • An electrostatic force (Coulomb force) acts on the particles 150 by the electric field formed by the charging, and thereby the particles 150 can be attracted to the mold 100 and attached to the mold 100.
  • the upper surface of the peripheral member 113 can have the same height as the upper surface of the substrate 101, the distance between the mold 100 and the upper surface of the peripheral member 113 is considerably small. Since the electrostatic force is inversely proportional to the square of the distance, the electrostatic force acting on the particles on the peripheral member 113 is more than the electrostatic force acting on the substrate chuck 102 and the members existing in the vicinity thereof when there is no peripheral member 113. Can be quite large. A large number of particles 150 may adhere to the peripheral member 113 through the processing of the large number of substrates 101.
  • a cleaning process for cleaning at least a part of the peripheral member 113 using the cleaning member 170 including the charging unit is executed.
  • the cleaning process can be performed by the main control unit (control unit) 126 controlling the driving of the cleaning member 170 including the charging unit.
  • the cleaning member 170 is moved relative to the region with the charged portion of the cleaning member 170 facing at least a part of the peripheral member 113 to charge the particles 150 in the region.
  • the operation of adsorbing to the part may be included.
  • the particles 150 adhering to the peripheral member 113 with a weak adhesive force can be separated from the peripheral member 113 by the electrostatic force when the cleaning member 170 including the charging unit faces and adhere to the charging unit.
  • the cleaning process is performed in a state where there is no imprint material on the substrate 101, and the dispenser 111 does not supply the imprint material on the substrate 101 during the cleaning process.
  • FIG. 1 shows a state where the cleaning process is performed in a state where the substrate 101 exists on the substrate holding area 1021 of the substrate chuck 102, but the state where the substrate 101 does not exist on the substrate holding area 1021.
  • a cleaning process may be performed.
  • the substrate holding region 1021 may be a region that entirely contacts the substrate 101, or may be a region that partially contacts the substrate 101. In the latter, the portion in contact with the substrate 101 can have pins and / or rings.
  • the mold 100 is charged to ⁇ 3 KV by pulling the mold 100 away from the cured imprint material on the substrate 101. It is assumed that the peripheral member 113 is grounded and has a ground potential. It is assumed that the gap between the peripheral member 113 and the mold 100 is 1 mm. In this case, the direction of the electric field is upward (positive direction of the Z axis), and the intensity of the electric field is 3 kV / mm. In this example, it is desirable to charge the charging portion so that the potential V of the charging portion of the cleaning member 170 is lower than ⁇ 3 kV (V ⁇ 3 kV).
  • the charging portion of the cleaning member 170 is charged, and the cleaning member 170 is moved relative to the region in a state where the charging portion is opposed to at least a partial region of the peripheral member 113.
  • the particles 150 attached to the region with a weak adhesion force are pulled away from the region, attracted to the charging unit, and captured by the charging unit.
  • the electric field between the peripheral member 113 and the charging part can be increased, and the effect of the cleaning process can be enhanced.
  • the gap between the mold 100 and the peripheral member 113 when the substrate 101 is moved to supply the imprint material onto the substrate 101 by the dispenser 111 is GN, and the gap between the peripheral member 113 and the charging unit in the cleaning process is set. If GC, then GN> GC.
  • the gap between the peripheral member 113 and the charging portion of the cleaning member 170 in the cleaning process can be set to 0.8 mm or less, for example.
  • the cleaning member 170 can be held by the holding unit 119.
  • the holding unit 119 may have any structure that can hold the cleaning member 170.
  • the holding unit 119 may be a movable member such as a robot arm, a fixed member, or the mold chuck 110. May be substituted.
  • FIGS. 3A to 3C show an example of the cleaning member 170.
  • the cleaning member 170 includes a support 131 and a charging unit 132 supported by the support 131.
  • the charging unit 132 can be prepared by, for example, charging a dielectric member made of quartz or the like. The dielectric member is charged by bringing the dielectric member into contact with the imprint material disposed on the dummy substrate, and curing the imprint material by the curing unit 104, and then separating the dielectric member from the imprint material. Can be made by.
  • the dummy substrate is a substrate that can be placed on the substrate chuck 102 instead of the substrate 101.
  • the support 131 and the charging unit 132 may be made of the same material.
  • the charging unit 132 may have a pattern (unevenness) on the surface.
  • the cleaning member 170 including the support body 131 and the charging unit 132 may be, for example, a waste of the mold 100 (for example, a used or non-standard mold).
  • the cleaning member 170 including the support 131 and the charging unit 132 has a pattern density higher than that of the mold 100 for manufacturing an article and is advantageous in increasing the charge amount (for example, for inspection of the imprint apparatus IMP). It may be the type of waste used).
  • a non-use means an article that is not used for its original purpose.
  • the cleaning member 170 includes a support 131 and an electret 133 supported by the support 131.
  • An electret is a substance that continues to form an electric field, and can be formed by, for example, injecting and fixing a charge in a dielectric such as a polymer material.
  • Methods for injecting charges into electrets include a method of solidifying the polymer material while applying a high voltage between electrodes sandwiching the polymer material in a molten state, a method using corona discharge, and a method using ion implantation. .
  • the electret is charged with positive and negative polarities on the surface that is in contact with each electrode.
  • the electret is charged with negative polarity.
  • electrets are charged with a positive polarity.
  • the electret employed in the second example can hold the charge semi-permanently because the charge is injected into the dielectric material.
  • the electret 133 is provided on the entire lower surface of the support 131, but the electret 133 may be provided only on a part of the lower surface. Further, as described in the first example, an electret may be arranged on the lower surface of the mold waste.
  • Examples of the material for the electret include (a) a polymer material such as acrylic resin, nylon, and fluororesin, and (b) an inorganic film such as SiO 2 , SiO 2 / Si x N y laminated film.
  • Fluorocarbon resins include Teflon AF (registered trademark, manufactured by DuPont) and CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.) as organic electret films that can be formed by spin coating.
  • CYTOP is characterized by a high surface charge density.
  • the electrode is covered with a dielectric as the charging portion. If the charged part is composed of an exposed electrode and the particles are metal, the particles attached to the charged part will have the same polarity as the electrode due to charge exchange and will be separated by repulsive force. I can't. Therefore, by covering the electrode with a dielectric, even metal particles can be captured by the charging unit while preventing charge exchange.
  • the cleaning member 170 includes a support 131, a negative charging unit 134 and a positive charging unit 135 supported by the support 131.
  • the negative charging unit 134 and the positive charging unit 135 the electret described in the second example can be employed.
  • the negative charging unit 134 charged negatively and the positive charging unit 135 charged positive particles adhering to the peripheral member 113 can be removed regardless of the polarity of the particles.
  • the holding unit 119 that holds the cleaning member 170 will be supplemented. As described above, the holding unit 119 only needs to be able to hold the cleaning member 170.
  • the holding unit 119 may be a movable member such as a robot arm, a fixed member, or the mold chuck 110. May be substituted.
  • the holding unit 119 may be a component of the maintenance unit 136.
  • the maintenance unit 136 may be a unit for removing and attaching the substrate chuck 102, for example. Since the substrate chuck 102 can be contaminated or worn by contact with the substrate 101, it can be replaced using the maintenance unit 136.
  • the maintenance unit 136 has a holding mechanism for holding the substrate chuck 102, and the holding mechanism can be used as the holding unit 119.
  • the substrate chuck 102 is not replaced simultaneously with the cleaning process of the peripheral member 113. Therefore, there is no special disadvantage caused by holding the cleaning member 170 by the maintenance unit 136 and performing the cleaning process. Also, holding the cleaning member 170 by the maintenance unit 136 and performing the cleaning process contributes to simplification of the configuration of the imprint apparatus IMP.
  • the cleaning member 170 can be transported to the mold chuck 110 using a transport mechanism that transports the mold 100 to the mold chuck 110.
  • FIG. 5 is a top view of the peripheral member 113, and FIG. 5 illustrates the shape of the peripheral member 113.
  • the outer shape of the peripheral member 113 is a square, but this is an example, and the peripheral member 113 can have various outer shapes.
  • the peripheral member 113 has an opening surrounding the side surface of the substrate 101, and the shape of the opening conforms to the outer shape of the substrate 101.
  • the peripheral member 113 may have a continuous part with a smooth surface and a discontinuous part with a non-smooth surface.
  • a reference mark for measuring a relative position between the mold 100 and the reference of the imprint apparatus IMP can be arranged on the peripheral member 113.
  • the peripheral member 113 can be provided with an illuminometer for measuring the illuminance of light. Therefore, a groove or a step may exist between the member or unit represented by the reference mark and the illuminometer and the peripheral member 113. Further, when the peripheral member 113 is constituted by a plurality of divided parts, there may be a groove or a step between the parts.
  • a groove or a step can be formed by a fastening portion for fastening the peripheral member 113 to the fine movement mechanism 114.
  • Such grooves and steps are examples of discontinuous portions whose surfaces are not smooth.
  • a flat upper surface is an example of a continuous portion having a smooth surface.
  • the main control unit 126 performs cleaning so that the total time for which the charged portion of the cleaning member 170 is opposed to the discontinuous portion per unit area is longer than the total time for which the charged portion of the cleaning member 170 is opposed to the continuous portion per unit area. The process can be controlled.
  • an imprint sequence configured by a plurality of imprint cycles can be executed in order to form a pattern with an imprint material on a plurality of shot areas of the substrate 101.
  • Each imprint cycle includes a step of placing the imprint material on the substrate 101 by the dispenser 111, a step of bringing the mold 100 into contact with the imprint material, a step of curing the imprint material, and the mold 100 from the cured imprint material. The step of separating may be included.
  • FIG. 5 illustrates the positional relationship among the peripheral member 113, the mold 100, and the dispenser 111 when the imprint material is arranged by the dispenser 111 with respect to a certain shot area of the substrate 101.
  • a pattern area of the mold 100 (area having a pattern to be transferred to the substrate 101) is located on the peripheral member 113.
  • the area 140 is an area that can face the pattern area of the mold 100.
  • the region 140 is a region that easily serves as a particle supply source for the pattern region of the mold 100 in the imprint sequence in the entire upper surface of the peripheral member 113. Therefore, when the target of the cleaning process is limited to a part of the area rather than the entire upper surface of the peripheral member 113, the cleaning process should be performed on at least the area including the area 140.
  • the mold drive mechanism MDM that drives the mold 100 is located in the first direction (minus direction of the X axis) when viewed from the dispenser 111.
  • the region 140 is a region located on the first azimuth side of the upper surface of the peripheral member 113 with respect to the side surface on the first azimuth side of the substrate 101 held by the substrate chuck 102.
  • FIGS. 6A to 6D illustrate a cleaning process in which the cleaning member 170 is moved relative to the region with the charging unit of the cleaning member 170 facing at least a part of the region of the peripheral member 113.
  • the main control unit 126 controls the cleaning process so that the region 140 of the peripheral member 113 is selectively cleaned. Such a cleaning process is advantageous for shortening the time required for the cleaning process.
  • the main control unit 126 controls the cleaning process so that the entire area of the peripheral member 113 is cleaned.
  • the relative movement of the charging portion of the cleaning member 170 with respect to the peripheral member 113 in the cleaning process can be a continuous repetition of a predetermined operation unit as illustrated in FIGS.
  • the motion unit is, for example, relative movement in a direction parallel to a first direction (for example, the X-axis direction) and relative to a second direction (for example, the Y-axis direction) that intersects the first direction. Movement.
  • the relative movement path of the charging unit of the cleaning member 170 with respect to the peripheral member 113 includes a plurality of loops surrounding the substrate holding region 1021.
  • the plurality of loops have different distances from the substrate holding region 1021.
  • the path does not pass through the substrate holding area 1021, but the path may pass through the substrate holding area 1021.
  • the peripheral member 113 has discontinuous portions 141, 142, 143 such as grooves and / or steps, and other continuous portions. Since particles are more easily captured by the discontinuous portions 141, 142, and 143 than the continuous portions, a larger number of particles can exist in the discontinuous portions 141, 142, and 143 than the continuous portions.
  • the main controller 126 determines that the total time for which the charging portion of the cleaning member 170 is opposed to the discontinuous portions 141, 142, 143 per unit area is the total time for which the charging portion of the cleaning member 170 is opposed to the continuous portion per unit area. The cleaning process can be controlled to be longer.
  • the main control unit 126 can execute the cleaning process after executing an imprint process for forming a pattern on the substrate by imprinting and executing the imprint process in response to the command, for example.
  • the main control unit 126 may be performed at an idle time when the article is not manufactured.
  • the main control unit 126 may perform the cleaning process every time a set number of substrates are processed, or may perform the cleaning process every time one substrate is processed.
  • the main control unit 126 may perform a cleaning process each time a pattern is formed on a shot area, for example.
  • an evaluation for confirming the necessity of executing the cleaning process may be performed, and the cleaning process may be executed based on the result.
  • a pattern first sample is formed by imprinting one or a plurality of shot areas using an evaluation mold, and then the mold is charged and then the mold is opposed to the peripheral member 113. The member 113 is moved. Then, using the mold, a pattern (second sample) is formed by imprinting on one or a plurality of shot regions. The state of the peripheral member 113 can be evaluated by comparing the number of defects of the first sample and the second sample.
  • FIG. 7 illustrates a cleaning sequence for the peripheral member 113.
  • This cleaning sequence is controlled by the main controller 126.
  • the main control unit 126 instructs a transport mechanism (not shown) to hold the cleaning member 170 in the holding unit 119.
  • the main control unit 126 determines the type of the cleaning member 170.
  • the type of the cleaning member 170 can be determined by, for example, an identifier given to the cleaning member 170. Alternatively, the type of the cleaning member 170 can be determined based on the result of measuring the charge amount of the charging portion of the cleaning member 170 using a measuring instrument that measures the surface potential.
  • a type that causes charging through contact and separation of the dielectric member with respect to the imprint material is referred to as a non-persistent type.
  • a type using an electret as illustrated in FIGS. 3B and 3C is referred to as a continuous type. If it is determined in step S202 that the cleaning member 170 is a non-sustainable type, the process proceeds to step S203, and if the cleaning member 170 is determined to be a continuous type, the process proceeds to step S206.
  • step S203 the main control unit 126 instructs a transfer mechanism (not shown) to transfer the dummy substrate onto the substrate chuck 102.
  • step S204 the main control unit 126 controls the substrate driving mechanism SDM and the dispenser 111 so that the imprint material is disposed on the dummy substrate.
  • step S205 the main control unit 126 makes the dielectric member of the cleaning member 170 contact the imprint material on the dummy substrate, cures the imprint material by the curing unit 104, and pulls the dielectric member away from the cured imprint material. Control dummy imprint. By this dummy imprint, the dielectric member is charged to prepare a charging portion. For the continuous type cleaning member 170, the charging process as in steps S203 to S205 is not required.
  • step S206 the main control unit 126 performs a cleaning process for the peripheral member 113. Specifically, the main control unit 126 moves (scans) the cleaning member 170 relative to the region with the charging unit of the cleaning member 170 facing at least a part of the region of the peripheral member 113. . As a result, the particles 150 in the region are separated from the region and are attracted to the charging unit, whereby the region is cleaned.
  • step S207 the main control unit 126 instructs a transport mechanism (not shown) to carry out the cleaning member 170.
  • the steps S201 and S207 are unnecessary, and the state where the cleaning member 170 is held by the holding unit 119 can be maintained.
  • the above-described cleaning process may be applied to a cleaning process for removing particles from the substrate chuck 102 (substrate holding region 1021) as illustrated in FIG.
  • the substrate holding region 1021 of the substrate chuck 102 can have pins and / or rings for supporting the substrate 101. When particles adhere to the pins and / or rings, the substrate 101 is deformed, and a defect may occur in the formed pattern.
  • the main control unit 126 can be configured to control the cleaning process of the substrate chuck 102 (substrate holding region 1021).
  • the cleaning member 170 is moved relative to the substrate chuck 102 with the charging portion of the cleaning member 170 facing the substrate chuck 102, whereby the particles 150 of the substrate chuck 102 are attracted to the charging portion. Is done.
  • FIG. 9 illustrates a cleaning sequence for the substrate chuck 102.
  • This cleaning sequence is controlled by the main controller 126.
  • step S ⁇ b> 211 when the substrate 101 is on the substrate chuck 102, the main control unit 126 instructs a transfer mechanism (not shown) to carry out the substrate 101.
  • step S212 the main control unit 126 instructs a transport mechanism (not shown) to hold the cleaning member 170 in the holding unit 119.
  • the main control unit 126 determines the type of the cleaning member 170. If it is determined in step S213 that the cleaning member 170 is a non-sustained type, the process proceeds to step S214, and if the cleaning member 170 is determined to be a continuous type, the process proceeds to step S218.
  • step S214 the main control unit 126 instructs a transfer mechanism (not shown) to transfer the dummy substrate onto the substrate chuck 102.
  • step S215 the main control unit 126 controls the substrate driving mechanism SDM and the dispenser 111 so that the imprint material is disposed on the dummy substrate.
  • step S216 the main control unit 126 causes the dielectric member of the cleaning member 170 to contact the imprint material on the dummy substrate, cures the imprint material by the curing unit 104, and pulls the dielectric member away from the cured imprint material. Control dummy imprint. By this dummy imprint, the dielectric member is charged to prepare a charging portion.
  • step S217 the main control unit 126 instructs a transfer mechanism (not shown) to carry out the dummy substrate from the substrate chuck 102. For the continuous type cleaning member 170, the process for charging as in steps S214 to S217 is unnecessary.
  • step S218, the main control unit 126 executes a cleaning process for the substrate chuck 102. Specifically, the main control unit 126 moves (scans) the cleaning member 170 relative to the substrate chuck 102 with the charging unit of the cleaning member 170 facing at least a part of the region of the substrate chuck 102. Let Accordingly, the particles 150 in the region of the substrate chuck 102 are detached from the substrate chuck 102 and are attracted to the charging unit, whereby the region of the substrate chuck 102 is cleaned.
  • step S219 the main control unit 126 instructs a transport mechanism (not shown) to carry out the cleaning member 170.
  • a transport mechanism not shown
  • the main control unit 126 is, for example, a PLD (abbreviation of Programmable Logic Device) such as an FPGA (abbreviation of Field Programmable Gate Array), or an ASIC (Abbreviation of Application Specific Integrated or Program). It can be constituted by a general-purpose computer or a combination of all or part of them. Similarly, the other control units 120 to 125 may be configured by a PLD such as an FPGA, an ASIC, a general-purpose computer incorporating a program, or a combination of all or a part thereof.
  • a PLD abbreviation of Programmable Logic Device
  • FPGA abbreviation of Field Programmable Gate Array
  • ASIC Application Specific Integrated or Program
  • the article manufacturing method includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) using the above-described imprint apparatus. Further, the manufacturing method may include a step of processing (for example, etching) the substrate on which the pattern is formed. In the case of manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching.
  • the article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
  • the cleaning process can be performed (a) before executing the imprint process, (b) when the imprint apparatus is in an idle state, or (c) after processing a set number of substrates.
  • the cleaning process is performed in parallel with a series of imprint operations without specially providing time for the cleaning process by arranging the charging unit at a specific position of the imprint apparatus IMP. To do.
  • FIG. 10 illustrates the configuration of the imprint apparatus IMP according to the second embodiment of the present invention.
  • the cleaning member 170 is disposed so that the mold 100 is positioned between the cleaning member 170 and the dispenser 111.
  • the cleaning member 170 can be held by a peripheral member 151 disposed around the mold chuck 110.
  • the cleaning member 170 includes a charging unit 171.
  • the cleaning member 170 is disposed so that the mold 100 is positioned between the cleaning member 170 and the dispenser 111.
  • a sequence in which the shot area to be imprinted is moved below the dispenser 111 and then moved below the mold 100, a part of the area 140 shown in FIG.
  • the Such a sequence is sequentially performed on a plurality of shot areas, so that the entire area 140 can be cleaned by the cleaning member 170. Therefore, the time required for cleaning the peripheral member 113 is reduced. This contributes to an improvement in throughput related to pattern formation by imprint.
  • the width L2 of the charging portion 171 in the direction orthogonal to the direction in which the cleaning member 170, the mold 100, and the dispenser 111 are arranged is preferably larger than the width L1 of the pattern portion 160 of the mold 100 from the viewpoint of efficiency of cleaning. .
  • FIG. 12 exemplarily shows the operation of the imprint apparatus IMP of the second embodiment.
  • the charging unit 171 of the cleaning member 170 is in a charged state when an operation for charging is performed, and is uncharged by an operation for discharging.
  • the charging unit 171 that does not require such an operation may be used, and in this case, steps S201 and S205 described below are unnecessary.
  • the charging unit 171 is made of a conductor, and a charged state can be obtained by supplying a charge to the charging unit 171, and a non-charged state can be obtained by extracting the charge from the charging unit 171.
  • step S221 the main control unit 126 puts the charging unit 171 into a charged state.
  • step S222 the main control unit 126 controls the dispenser 111 and the substrate driving mechanism SDM so that the imprint material is disposed in the shot area to be imprinted. At this time, the shot area to be imprinted is arranged below the dispenser 111.
  • step S223 the main control unit 126 controls the substrate drive mechanism SDM so that the shot area to be imprinted is disposed under the mold 100. In steps S222 and S223, a region of the surface of the peripheral member 113 that faces the charging unit 171 of the cleaning member 170 is cleaned.
  • step S224 the main controller 126 first controls the mold drive mechanism MDM so that the imprint material on the shot area to be imprinted and the mold 100 come into contact with each other.
  • step S024 the main control unit 126 controls the curing unit 104 to cure the imprint material, and then controls the mold driving mechanism MDM to separate the cured imprint material and the mold 100 from each other.
  • step S225 the main control unit 126 puts the charging unit 171 into an uncharged state.
  • step S226 the main control unit 126 determines whether imprinting has been completed for all shot areas on the substrate. If there is a shot area that has not yet been imprinted, the process returns to step S221 to execute another shot. Repeat the process for the region. On the other hand, when the imprint for all the shot regions is completed, in step S227, the main control unit 126 determines whether the imprint for all the substrates is completed. If there is a shot area that has not yet been imprinted, the main control unit 126 returns to step S201 and repeats the process for another substrate.
  • the cleaning member 170 illustrated in FIG. 13 has a shape surrounding the mold 100 in all directions.
  • various mechanisms can be arranged around the mold 100. In this case, it may be difficult to employ the cleaning member 170 that surrounds the mold 100 in all directions.
  • a mechanism that can be arranged around the mold 100 for example, a mechanism that deforms the mold 100 by applying a force to the side surface of the mold 100, a mechanism that adjusts the inclination of the mold 100, and a part of the mold drive mechanism MDM are configured. A mechanism etc. can be mentioned.
  • FIG. 14 shows an example in which additional cleaning members 180 and 181 are provided in addition to the cleaning member 170. That is, FIG. 14 shows an example in which a plurality of cleaning members 170, 180, and 181 are provided.
  • the cleaning member 180 cleans a part of the region 300 in the peripheral member 113
  • the cleaning member 181 includes the other member in the peripheral member 113.
  • the region 310 is cleaned.
  • the cleaning member 170 can be used to clean the peripheral member 113 in parallel with the imprint for a plurality of shot regions of the substrate 101.
  • the cleaning members 180 and 181 can be used in a dedicated cleaning sequence that can be executed during a period when imprinting on the substrate 101 is not performed, for example, during maintenance or idling.
  • the imprint apparatus IMP desirably includes a static elimination mechanism that neutralizes the charged mold 100 when the mold 100 is pulled away from the cured imprint material.
  • the neutralization of the mold 100 can be performed using an ionizer.
  • ionizers such as a corona discharge method and an energy ray irradiation method (for example, an X-ray irradiation method and an ⁇ -ray irradiation method).
  • the corona discharge method may cause generation of particles. Therefore, the X-ray irradiation method or the ⁇ -ray irradiation method is suitable for removing the mold 100 while maintaining the cleanliness.
  • the space between the mold 100 and the substrate 101 is a very narrow space, it is difficult to arrange an ionizer around the space and directly irradiate the mold 100 with X-rays or ⁇ rays. .
  • the gas is ionized by irradiating the gas with X-rays or ⁇ -rays, and the ionized gas is supplied to the space below the mold 100 There is a method to do.
  • the ionized gas has a reduced ion concentration while passing through a pipe and a nozzle, and further a path from the nozzle to the space between the mold 100 and the substrate 101. In some cases, a sufficient ion concentration cannot be maintained. In such a case, the mold 100 cannot be discharged efficiently.
  • the charge removal gas is supplied from the purge gas supply unit 118.
  • the neutralizing gas may be supplied from a gas supply unit different from the purge gas supply unit 118.
  • the charge-removing gas is preferably filled in the space around the mold 100 before the pattern portion 160 of the mold 100 is separated from the cured imprint material.
  • the purge gas supply by the purge gas supply unit 118 may be stopped before the pattern unit 160 is separated if the space around the mold 100 is sufficiently filled with the neutralization gas, or the supply may be continued during the separation. It may be.
  • FIG. 16B in the step of separating the pattern portion 160 from the cured imprint material, the surrounding neutralizing gas is drawn into the gap between the pattern portion 160 and the substrate 101 and replaced.
  • the neutralizing gas needs to contain a gas whose mean free path for electrons is longer than that of air.
  • a rare gas that is a monoatomic molecule is preferable as the static elimination gas, but in particular, helium having the longest mean free path among the rare gases is preferable.
  • Electrons existing in the electric field are carried to the anode side by the electric field and collide with gas molecules in the middle. At this time, if the electrons are sufficiently accelerated and collide with gas molecules in a state where the energy is higher than the ionization energy of the gas, ionization occurs and an electron-cation pair is generated. The generated electrons are also accelerated by the electric field and ionize the gas molecules.
  • an electron avalanche a phenomenon in which a large amount of electron-cation pairs is generated by successive ionization.
  • the accelerating electrons do not collide with gas molecules on the way and are accelerated to a high energy state. Therefore, a gas having a long mean free path for electrons is more likely to cause an electron avalanche even in a low electric field than air, and can be discharged before a large voltage is accumulated in the mold 100.
  • the gas for discharging is generally highly diffusive, it can also be used as a purge gas for the imprint space when the imprint material is filled in the pattern portion 160.
  • the voltage of the charging unit 171 when an electric field is generated between the charging unit 171 of the cleaning member 170 and the peripheral member 113 to perform the cleaning process on the peripheral member 113 will be described.
  • a neutralizing gas enters the gap between the charging unit 171 to which the voltage is applied and the peripheral member 113 and an electron avalanche occurs, a large amount of electrons or cations are supplied to the surface of the charging unit 171 and the voltage of the charging unit 171 decreases. And the cleaning effect is reduced.
  • the voltage of the charging unit 171 needs to be set so that the electric field strength generated between the charging unit 171 and the peripheral member 113 is equal to or lower than the electric field strength at which discharge occurs through the charge removal gas. Therefore, a voltage control unit 172 that controls the voltage applied to the charging unit 171 can be provided. The voltage control unit 172 sets the voltage applied to the charging unit 171 so that the electric field strength generated between the charging unit 171 and the peripheral member 113 is equal to or lower than the electric field strength at which discharge occurs through the charge removal gas.
  • the value of the voltage applied to the charging unit 171 may be determined. That is, the value of the voltage applied to the charging unit 171 varies depending on the type of the charge eliminating gas and the distance between the charging unit 171 and the peripheral member 113.
  • the voltage of the mold 100 is maintained below the voltage at which discharge occurs through the static elimination gas after the step of separating from the cured imprint material by the static elimination gas. Therefore, the cleaning of the peripheral member 113 with the cleaning member 170 having the charging unit 171 set to the above voltage can prevent the particles 150 from adhering to the mold 100.
  • the voltage applied to the charging unit 171 is such that the electric field strength generated between the charging unit 171 and the peripheral member 113 is discharged through the discharge gas. It may be set to a value higher than the electric field strength.
  • the charging unit 171 may be set to a higher voltage than during the imprint process, and the cleaning process may be performed. Even during the imprint process, while the neutralizing gas is not supplied, the voltage of the charging unit 171 may be increased to improve the cleaning effect.
  • IMP imprint apparatus
  • 100 mold
  • 101 substrate
  • 102 substrate chuck
  • 113 peripheral member
  • 132-135 charging unit
  • 150 particle
  • 170 cleaning member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

Provided is an imprint device that forms a pattern on a substrate (101) by curing imprint material in a state in which the imprint material on the substrate is in contact with a mold, wherein the imprint device is provided with: a substrate chuck (102) having a substrate holding area for holding the substrate; a peripheral member (113) disposed so as to surround the side surfaces of the substrate held by the substrate chuck; and a control unit for controlling a cleaning process for cleaning at least part of an area of the peripheral member using a cleaning member (170) that includes a charged unit. The cleaning process includes an operation for moving the cleaning member relative to the peripheral member in a state in which the charged unit faces the at least part of the area of the peripheral member so that particles in the area are adsorbed by the charged unit.

Description

インプリント装置およびその動作方法ならびに物品製造方法Imprint apparatus, operation method thereof, and article manufacturing method
 本発明は、インプリント装置およびその動作方法ならびに物品製造方法に関する。 The present invention relates to an imprint apparatus, an operation method thereof, and an article manufacturing method.
 基板の上に配置されたインプリント材に型(モールド)を接触させた状態でインプリント材を硬化させることによって基板の上にパターンを形成するインプリント技術が注目されている。型には、凹部からなるパターンが形成されていて、基板の上のインプリント材に型を接触させると、毛細管現象によって凹部にインプリント材が充填される。凹部へのインプリント材の充填を促進したり、空気(酸素)によるインプリント材の硬化阻害を防いだりするために、基板と型との間の空間には、パージガスが供給される。凹部に対して十分にインプリント材が充填された時点で、インプリント材に光または熱などのエネルギーが与えられる。これによりインプリント材が硬化し、型に形成された凹部からなるパターンが基板の上のインプリント材に転写される。インプリント材が硬化した後にインプリント材から型が引き離される。 An imprint technique in which a pattern is formed on a substrate by curing the imprint material in a state where a mold (mold) is in contact with the imprint material arranged on the substrate has attracted attention. The mold is formed with a pattern of concave portions. When the mold is brought into contact with the imprint material on the substrate, the concave portions are filled with the imprint material by capillary action. A purge gas is supplied to the space between the substrate and the mold in order to promote the filling of the imprint material into the recess and to prevent the imprint material from being inhibited from being hardened by air (oxygen). When the imprint material is sufficiently filled in the recess, energy such as light or heat is applied to the imprint material. As a result, the imprint material is cured, and the pattern formed of the recesses formed in the mold is transferred to the imprint material on the substrate. After the imprint material is cured, the mold is pulled away from the imprint material.
 基板の上の硬化したインプリント材から型を引き離す際に型が帯電しうる。この帯電によって形成される電界によってパーティクルに対して静電気力(クーロン力)が作用し、これによりパーティクルが型に引き付けられて型に付着しうる。パーティクルは、インプリント装置のチャンバの外部から侵入する場合もあるし、チャンバの中において、機械要素の相互の摩擦、機械要素と基板または原版との摩擦などによって発生する場合もある。あるいは、基板の上に未硬化のインプリント材を配置するために吐出口からインプリント材が吐出された際にインプリント材のミストが発生し、このインプリント材が固化することによってパーティクルが発生する場合もありうる。 When the mold is pulled away from the cured imprint material on the substrate, the mold can be charged. An electrostatic force (Coulomb force) acts on the particles by the electric field formed by the charging, and thereby the particles can be attracted to the mold and attached to the mold. The particles may enter from the outside of the chamber of the imprint apparatus, or may be generated in the chamber due to friction between the machine elements, friction between the machine elements and the substrate or the original plate, or the like. Alternatively, in order to place an uncured imprint material on the substrate, a mist of the imprint material is generated when the imprint material is discharged from the discharge port, and particles are generated as the imprint material solidifies. It is possible that
 特開2014-175340号公報には、モールドに異物捕捉領域を設け、その異物捕捉領域を帯電させることによって、転写位置への基板の搬送時に、雰囲気中および/または基板上に存在する異物を除去することが記載されている。特開2015-149390号公報には、モールドの第1面にパターン部と第1導電膜とを設け、第2面に第2導電膜を設け、第1導電膜および第2導電膜に電荷を蓄えさせることによってパターン部の近傍のパーティクルを第1導電膜に引き付けることが記載されている。 Japanese Patent Application Laid-Open No. 2014-175340 provides a foreign matter trapping area in a mold and charges the foreign matter catching area to remove foreign matter existing in the atmosphere and / or on the substrate when the substrate is transported to the transfer position. It is described to do. In JP-A-2015-149390, a pattern portion and a first conductive film are provided on a first surface of a mold, a second conductive film is provided on a second surface, and charges are applied to the first conductive film and the second conductive film. It describes that particles near the pattern portion are attracted to the first conductive film by storing them.
 型にパーティクルが付着した状態で、型を基板の上のインプリント材に接触させてパターンの形成を行うと、欠陥を有するパターンが形成されたり、基板および/または型が破損したりしうる。一方、パージガスを基板と型との間の空間に効率的に供給するために、基板の側面を取り囲むように周辺部材を配置することが検討されている。周辺部材を設けることによって、型の下の空間の体積を小さくし、効率的にパージガスを該空間に維持することができる。 If the pattern is formed by bringing the mold into contact with the imprint material on the substrate while the particles are attached to the mold, a pattern having a defect may be formed, or the substrate and / or the mold may be damaged. On the other hand, in order to efficiently supply the purge gas to the space between the substrate and the mold, it has been studied to arrange a peripheral member so as to surround the side surface of the substrate. By providing the peripheral member, the volume of the space under the mold can be reduced, and the purge gas can be efficiently maintained in the space.
 しかしながら、周辺部材を配置すると、基板の上のインプリント材から型を引き離した後に基板を移動させる際に、周辺部材が型に対して、近い距離で対向しうる。静電気力は、距離の二乗に逆比例するので、周辺部材の上のパーティクルに作用する静電気力は、周辺部材がない場合における基板保持部の上のパーティクルに作用する静電気力よりも相当に大きなものになりうる。周辺部材には、多数の基板の処理を通じてパーティクルが付着しうる。このようなパーティクルのうち周辺部材に対して弱い付着力で付着しているパーティクルは、それに作用する静電気力によって容易に周辺部材から離脱して型に付着しうる。 However, when the peripheral member is disposed, the peripheral member can face the mold at a close distance when the substrate is moved after the mold is pulled away from the imprint material on the substrate. Since the electrostatic force is inversely proportional to the square of the distance, the electrostatic force acting on the particles on the peripheral member is considerably larger than the electrostatic force acting on the particles on the substrate holding part when there is no peripheral member. Can be. Particles can adhere to the peripheral member through the processing of a large number of substrates. Of these particles, particles adhering to the peripheral member with a weak adhesive force can be easily detached from the peripheral member and attached to the mold by the electrostatic force acting on the peripheral member.
 本発明は、周辺部材から離脱しやすいパーティクルに起因して発生しうるパターン欠陥や基板および/または型の破損を低減するために有利な技術を提供する。 The present invention provides an advantageous technique for reducing pattern defects and substrate and / or mold damage that may occur due to particles that are easily detached from peripheral members.
 本発明の1つの側面は、基板の上のインプリント材に型を接触させた状態で該インプリント材を硬化させることによって該基板の上にパターンを形成するインプリント装置に係り、インプリント装置は、基板を保持する基板保持領域を有する基板チャックと、前記基板チャックによって保持される基板の側面を取り囲むように配置された周辺部材と、帯電部を含むクリーニング部材を使って前記周辺部材の少なくとも一部の領域をクリーニングするクリーニング処理を制御する制御部と、を備え、前記クリーニング処理は、前記帯電部を前記周辺部材の少なくとも一部の領域に対向させた状態で前記クリーニング部材を前記周辺部材に対して相対的に移動させることによって前記領域のパーティクルを前記帯電部に吸着させる動作を含む。 One aspect of the present invention relates to an imprint apparatus that forms a pattern on a substrate by curing the imprint material while the mold is in contact with the imprint material on the substrate. At least one of the peripheral members using a substrate chuck having a substrate holding region for holding the substrate, a peripheral member disposed so as to surround a side surface of the substrate held by the substrate chuck, and a cleaning member including a charging unit. A control unit that controls a cleaning process for cleaning a part of the area, wherein the cleaning process places the cleaning member in the state in which the charging unit is opposed to at least a part of the peripheral member. Movement of causing the particles in the region to be attracted to the charging unit by being moved relative to each other.
本発明の1つの実施形態のインプリント装置の一部の構成を模式的に示す図。The figure which shows typically the structure of a part of imprint apparatus of one Embodiment of this invention. 本発明の1つの実施形態のインプリント装置の構成を模式的に示す図。The figure which shows typically the structure of the imprint apparatus of one Embodiment of this invention. クリーニング部材を例示する図。The figure which illustrates a cleaning member. クリーニング部材を例示する図。The figure which illustrates a cleaning member. クリーニング部材を例示する図。The figure which illustrates a cleaning member. クリーニング部材を保持する保持部を説明する図。The figure explaining the holding | maintenance part holding a cleaning member. 周辺部材を例示する図。The figure which illustrates a peripheral member. 周辺部材のクリーニング処理を例示する図。The figure which illustrates the cleaning process of a peripheral member. 周辺部材のクリーニング処理を例示する図。The figure which illustrates the cleaning process of a peripheral member. 周辺部材のクリーニング処理を例示する図。The figure which illustrates the cleaning process of a peripheral member. 周辺部材のクリーニング処理を例示する図。The figure which illustrates the cleaning process of a peripheral member. 周辺部のクリーニングシーケンスを例示する図。The figure which illustrates the cleaning sequence of a peripheral part. 基板チャックのクリーニング処理を例示する図。The figure which illustrates the cleaning process of a substrate chuck. 基板チャックのクリーニングシーケンスを例示する図。The figure which illustrates the cleaning sequence of a substrate chuck. 本発明の第2実施形態のインプリント装置の構成を模式的に示す図。The figure which shows typically the structure of the imprint apparatus of 2nd Embodiment of this invention. クリーニング部材の構成例を示す図。The figure which shows the structural example of a cleaning member. 本発明の第2実施形態のインプリント装置の動作を例示する図。The figure which illustrates operation | movement of the imprint apparatus of 2nd Embodiment of this invention. 他のクリーニング部材の構成を例示する図。The figure which illustrates the structure of another cleaning member. 更に他のクリーニング部材の構成を例示する図。Furthermore, the figure which illustrates the structure of another cleaning member. 図14に示されたクリーニング部材による周辺部材のクリーニングを説明する図。The figure explaining the cleaning of the peripheral member by the cleaning member shown by FIG. 図14に示されたクリーニング部材による周辺部材のクリーリングを説明する図。The figure explaining the cleaning of the peripheral member by the cleaning member shown by FIG. 本発明の第3実施形態の型の除電を示す図。The figure which shows the static elimination of the type | mold of 3rd Embodiment of this invention. 本発明の第3実施形態の型の除電を示す図。The figure which shows the static elimination of the type | mold of 3rd Embodiment of this invention.
 以下、添付図面を参照しながら本発明のインプリント装置およびその動作方法をその例示的な実施形態を通して説明する。 Hereinafter, an imprint apparatus and an operation method thereof according to the present invention will be described through exemplary embodiments with reference to the accompanying drawings.
 図2には、本発明の1つの実施形態のインプリント装置IMPの構成が例示されている。インプリント装置IMPは、型100のパターンをインプリントによって基板101に転写する。別の表現をすると、インプリント装置IMPは、型100のパターンを基板101の上のインプリント材(被転写材)にインプリントによって転写する。インプリントとは、インプリント材に型を接触させて該インプリント材を硬化させることを意味する。型100は、凹部で構成されたパターンを有する。基板101の上のインプリント材(未硬化樹脂)に型100を接触させることによってパターンの凹部にインプリント材が充填される。この状態で、インプリント材に対してそれを硬化させるエネルギーを与えることによって、インプリント材が硬化する。これによって型100のパターンがインプリント材に転写され、硬化したインプリント材からなるパターンが基板101の上に形成される。 FIG. 2 illustrates the configuration of the imprint apparatus IMP according to one embodiment of the present invention. The imprint apparatus IMP transfers the pattern of the mold 100 to the substrate 101 by imprinting. In other words, the imprint apparatus IMP transfers the pattern of the mold 100 onto the imprint material (transfer material) on the substrate 101 by imprinting. The imprint means that the imprint material is cured by bringing the mold into contact with the imprint material. The mold 100 has a pattern composed of recesses. The pattern 100 is filled with the imprint material by bringing the mold 100 into contact with the imprint material (uncured resin) on the substrate 101. In this state, the imprint material is cured by applying energy for curing the imprint material. As a result, the pattern of the mold 100 is transferred to the imprint material, and a pattern made of the cured imprint material is formed on the substrate 101.
 インプリント材は、それを硬化させるエネルギーが与えられることによって硬化する硬化性組成物である。インプリント材は、硬化した状態を意味する場合もあるし、未硬化の状態を意味する場合もある。硬化用のエネルギーとしては、例えば、電磁波、熱等が用いられうる。電磁波は、例えば、その波長が10nm以上1mm以下の範囲から選択される光(例えば、赤外線、可視光線、紫外線)でありうる。 The imprint material is a curable composition that is cured by applying energy for curing the imprint material. The imprint material may mean a cured state or an uncured state. As the energy for curing, for example, electromagnetic waves, heat, or the like can be used. The electromagnetic wave can be, for example, light (for example, infrared rays, visible rays, ultraviolet rays) having a wavelength selected from a range of 10 nm to 1 mm.
 硬化性組成物は、典型的には、光の照射により、あるいは、加熱により硬化する組成物である。これらのうち光により硬化する光硬化性組成物は、少なくとも重合性化合物および光重合開始剤を含有しうる。また、光硬化性組成物は、付加的に非重合性化合物または溶剤を含有しうる。非重合性化合物は、例えば、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種でありうる。 The curable composition is typically a composition that is cured by light irradiation or by heating. Among these, the photocurable composition that is cured by light can contain at least a polymerizable compound and a photopolymerization initiator. Further, the photocurable composition may additionally contain a non-polymerizable compound or a solvent. The non-polymerizable compound may be at least one selected from the group of, for example, a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, and a polymer component.
 本明細書および添付図面では、基板101の表面に平行な方向をXY平面とするXYZ座標系において方向を示す。XYZ座標系におけるX軸、Y軸、Z軸にそれぞれ平行な方向をX方向、Y方向、Z方向とし、X軸周りの回転、Y軸周りの回転、Z軸周りの回転をそれぞれθX、θY、θZとする。X軸、Y軸、Z軸に関する制御または駆動は、それぞれX軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向に関する制御または駆動を意味する。また、θX軸、θY軸、θZ軸に関する制御または駆動は、それぞれX軸に平行な軸の周りの回転、Y軸に平行な軸の周りの回転、Z軸に平行な軸の周りの回転に関する制御または駆動を意味する。また、位置は、X軸、Y軸、Z軸の座標に基づいて特定されうる情報であり、姿勢は、θX軸、θY軸、θZ軸に対する相対的な回転で特定されうる情報である。位置決めは、位置および/または姿勢を制御することを意味する。 In this specification and the accompanying drawings, directions are shown in an XYZ coordinate system in which a direction parallel to the surface of the substrate 101 is an XY plane. In the XYZ coordinate system, the directions parallel to the X, Y, and Z axes are the X, Y, and Z directions, respectively, and rotation around the X axis, rotation around the Y axis, and rotation around the Z axis are θX and θY, respectively. , ΘZ. The control or drive related to the X axis, Y axis, and Z axis means control or drive related to the direction parallel to the X axis, the direction parallel to the Y axis, and the direction parallel to the Z axis, respectively. The control or drive related to the θX axis, θY axis, and θZ axis relates to rotation around an axis parallel to the X axis, rotation around an axis parallel to the Y axis, and rotation around an axis parallel to the Z axis. Means control or drive. The position is information that can be specified based on the coordinates of the X axis, Y axis, and Z axis, and the posture is information that can be specified by relative rotation with respect to the θX axis, θY axis, and θZ axis. Positioning means controlling position and / or attitude.
 インプリント装置IMPは、基板101を位置決めする基板駆動機構SDMを備え、基板駆動機構SDMは、例えば、基板チャック102、周辺部材113、微動機構114、粗動機構115およびベース構造体116を含みうる。基板チャック102は、基板101を保持する基板保持領域を有し、基板101を吸着(例えば、真空吸着、静電吸着)によって保持しうる。微動機構114は、基板チャック102および周辺部材113を支持する微動ステージおよび該微動ステージを駆動する駆動機構を含みうる。周辺部材113は、基板101の側面を取り囲むように、基板101が配置される領域の周辺に配置されている。周辺部材113は、基板101の上面と等しい高さの上面を有しうる。周辺部材113は、複数の部材に分割されていてもよい。また、該複数の部材の全部または一部は、互いに離隔して配置さてもよいし、互いに接触するように配置されてもよい。 The imprint apparatus IMP includes a substrate driving mechanism SDM that positions the substrate 101. The substrate driving mechanism SDM can include, for example, a substrate chuck 102, a peripheral member 113, a fine movement mechanism 114, a coarse movement mechanism 115, and a base structure 116. . The substrate chuck 102 has a substrate holding region for holding the substrate 101, and can hold the substrate 101 by suction (for example, vacuum suction or electrostatic suction). The fine movement mechanism 114 can include a fine movement stage that supports the substrate chuck 102 and the peripheral member 113 and a drive mechanism that drives the fine movement stage. The peripheral member 113 is disposed around a region where the substrate 101 is disposed so as to surround the side surface of the substrate 101. The peripheral member 113 can have an upper surface having a height equal to the upper surface of the substrate 101. The peripheral member 113 may be divided into a plurality of members. Further, all or a part of the plurality of members may be arranged apart from each other or may be arranged so as to contact each other.
 微動機構114は、基板チャック102を微駆動することによって基板101を微駆動する機構である。粗動機構115は、微動機構114を粗駆動することによって基板101を粗駆動する機構である。ベース構造体116は、粗動機構115、微動機構114、基板チャック102および周辺部材113を支持する。基板駆動機構SDMは、例えば、基板101を複数の軸(例えば、X軸、Y軸、θZ軸の3軸)について駆動するように構成されうる。微動機構114における基板チャック102と一体化された部分(微動ステージ)の位置は、干渉計などの計測器117によってモニタされる。 The fine movement mechanism 114 is a mechanism that finely drives the substrate 101 by finely driving the substrate chuck 102. The coarse movement mechanism 115 is a mechanism that coarsely drives the substrate 101 by roughly driving the fine movement mechanism 114. The base structure 116 supports the coarse movement mechanism 115, the fine movement mechanism 114, the substrate chuck 102, and the peripheral member 113. The substrate drive mechanism SDM can be configured to drive the substrate 101 with respect to a plurality of axes (for example, three axes of the X axis, the Y axis, and the θZ axis), for example. The position of the part (fine movement stage) integrated with the substrate chuck 102 in the fine movement mechanism 114 is monitored by a measuring instrument 117 such as an interferometer.
 インプリント装置IMPは、型100を位置決めする型駆動機構MDMを備え、型駆動機構MDMは、型チャック110、駆動機構109および周辺部材151を含みうる。周辺部材151は、型100の側面を取り囲むように、型100が配置される領域の周辺に配置されている。型駆動機構MDMおよび周辺部材151は、支持構造体108によって支持されうる。型チャック110は、型100を吸着(例えば、真空吸着、静電吸着)によって保持しうる。駆動機構109は、型チャック110を駆動することによって型100を駆動する。型駆動機構MDMは、例えば、型100を複数の軸(例えば、X軸、Y軸、Z軸、θX軸、θY軸、θZ軸の6軸)について駆動するように構成されうる。 The imprint apparatus IMP includes a mold drive mechanism MDM that positions the mold 100, and the mold drive mechanism MDM may include a mold chuck 110, a drive mechanism 109, and a peripheral member 151. The peripheral member 151 is disposed around a region where the mold 100 is disposed so as to surround the side surface of the mold 100. The mold driving mechanism MDM and the peripheral member 151 can be supported by the support structure 108. The mold chuck 110 can hold the mold 100 by suction (for example, vacuum suction or electrostatic suction). The drive mechanism 109 drives the mold 100 by driving the mold chuck 110. For example, the mold driving mechanism MDM can be configured to drive the mold 100 about a plurality of axes (for example, six axes of X axis, Y axis, Z axis, θX axis, θY axis, and θZ axis).
 基板駆動機構SDMおよび型駆動機構MDMは、基板101と型100との相対的な位置決めを行う駆動部を構成する。駆動部は、X軸、Y軸、θX軸、θY軸およびθZ軸に関して基板101と型100との相対位置を調整するほか、Z軸に関しても基板101と型100との相対位置を調整する。Z軸に関する基板101と型100との相対位置の調整は、基板101の上のインプリント材と型100との接触および分離の動作を含む。 The substrate drive mechanism SDM and the mold drive mechanism MDM constitute a drive unit that performs relative positioning between the substrate 101 and the mold 100. The drive unit adjusts the relative position between the substrate 101 and the mold 100 with respect to the X axis, the Y axis, the θX axis, the θY axis, and the θZ axis, and also adjusts the relative position between the substrate 101 and the mold 100 with respect to the Z axis. The adjustment of the relative position between the substrate 101 and the mold 100 with respect to the Z-axis includes operations of contact and separation between the imprint material on the substrate 101 and the mold 100.
 インプリント装置IMPは、基板101の上に未硬化のインプリント材を塗布、配置あるいは供給するディスペンサ(供給部)111を備えうる。ディスペンサ111は、例えば、基板101の上にインプリント材を複数のドロップレットの形態で配置するように構成されうる。ディスペンサ111は、支持構造体108によって支持されうる。 The imprint apparatus IMP may include a dispenser (supply unit) 111 that applies, disposes, or supplies an uncured imprint material on the substrate 101. The dispenser 111 can be configured to arrange an imprint material on the substrate 101 in the form of a plurality of droplets, for example. The dispenser 111 can be supported by the support structure 108.
 インプリント装置IMPは、基板101の上のインプリント材にUV光などの光を照射することによって該インプリント材を硬化させる硬化部104を備えうる。インプリント装置IMPはまた、インプリントの様子を観察するためのカメラ103を備えうる。硬化部104から射出された光は、ミラー105で反射され、型100を透過してインプリント材に照射されうる。カメラ103は、型100およびミラー105を介してインプリントの様子、例えば、インプリント材と型100との接触状態などを観察するように構成されうる。 The imprint apparatus IMP may include a curing unit 104 that cures the imprint material by irradiating the imprint material on the substrate 101 with light such as UV light. The imprint apparatus IMP may also include a camera 103 for observing the imprint state. The light emitted from the curing unit 104 is reflected by the mirror 105, passes through the mold 100, and can be applied to the imprint material. The camera 103 can be configured to observe an imprint state, for example, a contact state between the imprint material and the mold 100 via the mold 100 and the mirror 105.
 インプリント装置IMPは、基板101のマークと型100のマークとの相対位置を検出するためのアライメントスコープ107a、107bを備えうる。アライメントスコープ107a、107bは、支持構造体108によって支持された上部構造体106に配置されうる。インプリント装置IMPは、基板101の複数のマークの位置を検出するためのオフアクシススコープ112を備えうる。オフアクシススコープ112は、支持構造体108によって支持されうる。 The imprint apparatus IMP may include alignment scopes 107a and 107b for detecting a relative position between the mark on the substrate 101 and the mark on the mold 100. The alignment scopes 107 a and 107 b can be disposed on the upper structure 106 supported by the support structure 108. The imprint apparatus IMP may include an off-axis scope 112 for detecting the positions of a plurality of marks on the substrate 101. The off-axis scope 112 can be supported by the support structure 108.
 インプリント装置IMPは、1又は複数のパージガス供給部118a、118bを備えうる。パージガス供給部118a、118bは、型チャック110を取り囲むように型チャック110の周囲に配置されうる。パージガス供給部118a、118bは、基板101と型100との間の空間にパージガスを供給する。パージガス供給部118a、118bは、例えば、支持構造体108によって支持されうる。パージガスとしては、インプリント材の硬化を阻害しないガス、例えば、ヘリウムガス、窒素ガスおよび凝縮性ガス(例えば、ペンタフルオロプロパン(PFP))の少なくとも1つを含むガスが使用されうる。周辺部材113、151が設けられた構成は、基板101と型100との間の空間を効率的にパージガスで満たすために有利である。 The imprint apparatus IMP may include one or a plurality of purge gas supply units 118a and 118b. The purge gas supply units 118 a and 118 b may be disposed around the mold chuck 110 so as to surround the mold chuck 110. The purge gas supply units 118 a and 118 b supply the purge gas to the space between the substrate 101 and the mold 100. The purge gas supply units 118a and 118b can be supported by the support structure 108, for example. As the purge gas, a gas that does not inhibit the curing of the imprint material, for example, a gas including at least one of helium gas, nitrogen gas, and a condensable gas (for example, pentafluoropropane (PFP)) may be used. The configuration in which the peripheral members 113 and 151 are provided is advantageous for efficiently filling the space between the substrate 101 and the mold 100 with the purge gas.
 インプリント装置IMPは、チャンバ190を備え、上記の各構成要素はチャンバ190の中に配置されうる。インプリント装置IMPは、その他、主制御部(制御部)126、インプリント制御部120、照射制御部121、スコープ制御部122、ディスペンサ制御部123、パージガス制御部124、基板制御部125を備えうる。主制御部126は、インプリント制御部120、照射制御部121、スコープ制御部122、ディスペンサ制御部123、パージガス制御部124、基板制御部125を制御する。インプリント制御部120は、型駆動機構MDMを制御する。照射制御部121は、硬化部104を制御する。スコープ制御部122、アライメントスコープ107a、107bおよびオフアクシススコープ112を制御する。ディスペンサ制御部123は、ディスペンサ111を制御する。パージガス制御部124は、パージガス供給部118a、118bを制御する。基板制御部125は、基板駆動機構SDMを制御する。 The imprint apparatus IMP includes a chamber 190, and each of the above components can be disposed in the chamber 190. In addition, the imprint apparatus IMP may include a main control unit (control unit) 126, an imprint control unit 120, an irradiation control unit 121, a scope control unit 122, a dispenser control unit 123, a purge gas control unit 124, and a substrate control unit 125. . The main controller 126 controls the imprint controller 120, the irradiation controller 121, the scope controller 122, the dispenser controller 123, the purge gas controller 124, and the substrate controller 125. The imprint control unit 120 controls the mold driving mechanism MDM. The irradiation control unit 121 controls the curing unit 104. The scope control unit 122, the alignment scopes 107a and 107b, and the off-axis scope 112 are controlled. The dispenser control unit 123 controls the dispenser 111. The purge gas control unit 124 controls the purge gas supply units 118a and 118b. The substrate controller 125 controls the substrate drive mechanism SDM.
 図1には、図2のインプリント装置IMPの一部が模式的に示されている。チャンバ190の内部空間には、パーティクル150が侵入しうる。また、チャンバ190の中では、機械要素の相互の摩擦、機械要素と基板または原版との摩擦などによってパーティクル150が発生しうる。あるいは、ディスペンサ111が基板101の上に未硬化のインプリント材を配置するために吐出口からインプリント材を吐出した際にインプリント材のミストが発生し、このインプリント材が固化することによってパーティクル150が発生しうる。 FIG. 1 schematically shows a part of the imprint apparatus IMP shown in FIG. Particles 150 can enter the internal space of the chamber 190. Further, in the chamber 190, the particles 150 may be generated due to mutual friction between the machine elements, friction between the machine elements and the substrate or the original plate, or the like. Alternatively, when the imprint material is discharged from the discharge port in order for the dispenser 111 to place the uncured imprint material on the substrate 101, a mist of the imprint material is generated and the imprint material is solidified. Particles 150 can be generated.
 パーティクル150は、周辺部材113の上面などに付着しうる。周辺部材113に対して付着するパーティクル150の付着の強度は様々である。周辺部材113に付着したパーティクル150が周辺部材113から離脱しない場合、パーティクル150が基板101または型100に付着することに起因するパターン欠陥や基板および/または型の破損は起こらない。一方、周辺部材113に付着したパーティクル150が周辺部材113から離脱すると、基板101または型100に付着したり、基板101と型100との間に挟まったりしうる。 The particles 150 can adhere to the upper surface of the peripheral member 113 and the like. The adhesion strength of the particles 150 that adhere to the peripheral member 113 varies. When the particles 150 adhering to the peripheral member 113 do not leave the peripheral member 113, pattern defects and substrate and / or mold damage due to the particles 150 adhering to the substrate 101 or the mold 100 do not occur. On the other hand, when the particles 150 attached to the peripheral member 113 are detached from the peripheral member 113, the particles 150 may adhere to the substrate 101 or the mold 100, or may be sandwiched between the substrate 101 and the mold 100.
 基板101の上の硬化したインプリント材から型100を引き離す際に型100が帯電しうる。この帯電によって形成される電界によってパーティクル150に対して静電気力(クーロン力)が作用し、これによりパーティクル150が型100に引き付けられて型100に付着しうる。周辺部材113の上面は、基板101の上面と同じ高さを有しうるので、型100と周辺部材113の上面との距離はかなり小さい。静電気力は、距離の二乗に逆比例するので、周辺部材113の上のパーティクルに作用する静電気力は、周辺部材113がない場合における基板チャック102およびその周辺に存在する部材に作用する静電気力よりも相当に大きなものになりうる。周辺部材113には、多数の基板101の処理を通じて多数のパーティクル150が付着しうる。 When the mold 100 is pulled away from the cured imprint material on the substrate 101, the mold 100 can be charged. An electrostatic force (Coulomb force) acts on the particles 150 by the electric field formed by the charging, and thereby the particles 150 can be attracted to the mold 100 and attached to the mold 100. Since the upper surface of the peripheral member 113 can have the same height as the upper surface of the substrate 101, the distance between the mold 100 and the upper surface of the peripheral member 113 is considerably small. Since the electrostatic force is inversely proportional to the square of the distance, the electrostatic force acting on the particles on the peripheral member 113 is more than the electrostatic force acting on the substrate chuck 102 and the members existing in the vicinity thereof when there is no peripheral member 113. Can be quite large. A large number of particles 150 may adhere to the peripheral member 113 through the processing of the large number of substrates 101.
 そこで、インプリント装置IMPでは、帯電部を含むクリーニング部材170を使って周辺部材113の少なくとも一部の領域をクリーニングするクリーニング処理が実行される。クリーニング処理は、主制御部(制御部)126が帯電部を含むクリーニング部材170の駆動を制御することによってなされうる。クリーニング処理は、クリーニング部材170の帯電部を周辺部材113の少なくとも一部の領域に対向させた状態でクリーニング部材170を該領域に対して相対的に移動させることによって該領域のパーティクル150を該帯電部に吸着させる動作を含みうる。ここで、周辺部材113に対して弱い付着力で付着しているパーティクル150は、帯電部を含むクリーニング部材170が対面することによって静電気力によって周辺部材113から離脱して該帯電部に付着しうる。典型的には、クリーニング処理は、基板101の上にインプリント材が存在しない状態で実施され、ディスペンサ111は、クリーニング処理の期間中は基板101の上にインプリント材を供給しない。 Therefore, in the imprint apparatus IMP, a cleaning process for cleaning at least a part of the peripheral member 113 using the cleaning member 170 including the charging unit is executed. The cleaning process can be performed by the main control unit (control unit) 126 controlling the driving of the cleaning member 170 including the charging unit. In the cleaning process, the cleaning member 170 is moved relative to the region with the charged portion of the cleaning member 170 facing at least a part of the peripheral member 113 to charge the particles 150 in the region. The operation of adsorbing to the part may be included. Here, the particles 150 adhering to the peripheral member 113 with a weak adhesive force can be separated from the peripheral member 113 by the electrostatic force when the cleaning member 170 including the charging unit faces and adhere to the charging unit. . Typically, the cleaning process is performed in a state where there is no imprint material on the substrate 101, and the dispenser 111 does not supply the imprint material on the substrate 101 during the cleaning process.
 図1には、基板チャック102の基板保持領域1021の上に基板101が存在する状態でクリーニング処理が実施される様子が示されているが、基板保持領域1021の上に基板101が存在しない状態でクリーニング処理が行われてもよい。基板保持領域1021は、その全体が基板101と接触する領域であってもよいし、その一部分が基板101と接触する領域であってもよい。後者において、基板101と接触する一部分は、ピンおよび/またはリングを有しうる。 FIG. 1 shows a state where the cleaning process is performed in a state where the substrate 101 exists on the substrate holding area 1021 of the substrate chuck 102, but the state where the substrate 101 does not exist on the substrate holding area 1021. A cleaning process may be performed. The substrate holding region 1021 may be a region that entirely contacts the substrate 101, or may be a region that partially contacts the substrate 101. In the latter, the portion in contact with the substrate 101 can have pins and / or rings.
 ここで、一例として、基板101の上の硬化したインプリント材から型100を引き離すことによって、型100を-3KVに帯電する場合を考える。周辺部材113は、接地されていて、接地電位であるものとする。周辺部材113と型100との間隙は、1mmであるものとする。この場合の電界の方向は上向き(Z軸の正の方向)で、電界の強度は3kV/mmである。この例では、クリーニング部材170の帯電部の電位Vが-3kVより低い電位(V<-3kV)になるように該帯電部を帯電させることが望ましい。クリーニング処理では、クリーニング部材170の帯電部を帯電させ、該帯電部を周辺部材113の少なくとも一部の領域に対向させた状態でクリーニング部材170が該領域に対して相対的に移動される。このクリーニング処理によって該領域に対して弱い付着力で付着していたパーティクル150が該領域から引き離され、該帯電部に引き寄せられ、該帯電部によって捕獲される。 Here, as an example, consider the case where the mold 100 is charged to −3 KV by pulling the mold 100 away from the cured imprint material on the substrate 101. It is assumed that the peripheral member 113 is grounded and has a ground potential. It is assumed that the gap between the peripheral member 113 and the mold 100 is 1 mm. In this case, the direction of the electric field is upward (positive direction of the Z axis), and the intensity of the electric field is 3 kV / mm. In this example, it is desirable to charge the charging portion so that the potential V of the charging portion of the cleaning member 170 is lower than −3 kV (V <−3 kV). In the cleaning process, the charging portion of the cleaning member 170 is charged, and the cleaning member 170 is moved relative to the region in a state where the charging portion is opposed to at least a partial region of the peripheral member 113. As a result of this cleaning process, the particles 150 attached to the region with a weak adhesion force are pulled away from the region, attracted to the charging unit, and captured by the charging unit.
 クリーニング処理における周辺部材113とクリーニング部材170の帯電部との間隙を小さくすることによって、周辺部材113と帯電部との間の電界を大きくすることができ、クリーニング処理の効果を高めることができる。例えば、ディスペンサ111によって基板101の上にインプリント材を供給するために基板101を移動させる際の型100と周辺部材113との間隙をGN、クリーニング処理における周辺部材113と帯電部との間隙をGCとすると、GN>GCとされうる。クリーニング処理における周辺部材113とクリーニング部材170の帯電部との間隙は、例えば、0.8mm以下にされうる。 By reducing the gap between the peripheral member 113 and the charging part of the cleaning member 170 in the cleaning process, the electric field between the peripheral member 113 and the charging part can be increased, and the effect of the cleaning process can be enhanced. For example, the gap between the mold 100 and the peripheral member 113 when the substrate 101 is moved to supply the imprint material onto the substrate 101 by the dispenser 111 is GN, and the gap between the peripheral member 113 and the charging unit in the cleaning process is set. If GC, then GN> GC. The gap between the peripheral member 113 and the charging portion of the cleaning member 170 in the cleaning process can be set to 0.8 mm or less, for example.
 クリーニング部材170は、保持部119によって保持されうる。保持部119は、クリーニング部材170を保持することが可能な構造を有するものであればよく、例えば、ロボットアーム等の可動部材でもよいし、固定された部材であってもよいし、型チャック110が代用されてもよい。 The cleaning member 170 can be held by the holding unit 119. The holding unit 119 may have any structure that can hold the cleaning member 170. For example, the holding unit 119 may be a movable member such as a robot arm, a fixed member, or the mold chuck 110. May be substituted.
 図3A-3Cには、クリーニング部材170の例が示されている。図3Aに示された第1の例では、クリーニング部材170は、支持体131と、支持体131によって支持された帯電部132とを含む。帯電部132は、例えば、石英などで構成された誘電部材を帯電させることによって準備されうる。誘電部材の帯電は、ダミー基板の上に配置されたインプリント材に該誘電部材を接触させ、硬化部104によって該インプリント材を硬化させた後に該インプリント材から該誘電部材を分離することによってなされうる。ダミー基板は、基板101の代わりに基板チャック102の上に置かれうる基板である。支持体131と帯電部132とは同一材料で構成されてもよい。 FIGS. 3A to 3C show an example of the cleaning member 170. FIG. In the first example shown in FIG. 3A, the cleaning member 170 includes a support 131 and a charging unit 132 supported by the support 131. The charging unit 132 can be prepared by, for example, charging a dielectric member made of quartz or the like. The dielectric member is charged by bringing the dielectric member into contact with the imprint material disposed on the dummy substrate, and curing the imprint material by the curing unit 104, and then separating the dielectric member from the imprint material. Can be made by. The dummy substrate is a substrate that can be placed on the substrate chuck 102 instead of the substrate 101. The support 131 and the charging unit 132 may be made of the same material.
 インプリント材と接触する表面積が大きい方が帯電量を大きくすることができるので、帯電部132は、表面にパターン(凹凸)を有していてもよい。支持体131および帯電部132を含むクリーニング部材170は、例えば、型100の不用品(例えば、使用済み、または、規格外の型)であってもよい。あるいは、支持体131および帯電部132を含むクリーニング部材170は、物品を製造するための型100よりもパターンの密度が高く帯電量の増加に有利な部材(例えば、インプリント装置IMPの検査用に使用される型の不用品)であってもよい。なお、不用品とは、本来の目的のために使用されない物品を意味する。 Since the charge amount can be increased when the surface area in contact with the imprint material is larger, the charging unit 132 may have a pattern (unevenness) on the surface. The cleaning member 170 including the support body 131 and the charging unit 132 may be, for example, a waste of the mold 100 (for example, a used or non-standard mold). Alternatively, the cleaning member 170 including the support 131 and the charging unit 132 has a pattern density higher than that of the mold 100 for manufacturing an article and is advantageous in increasing the charge amount (for example, for inspection of the imprint apparatus IMP). It may be the type of waste used). In addition, a non-use means an article that is not used for its original purpose.
 図3Bに示された第2の例では、クリーニング部材170は、支持体131と、支持体131によって支持されたエレクトレット133とを含む。エレクトレットとは、電界を形成し続ける物質であり、例えば、高分子材料等の誘電体に電荷を注入して固定することによって形成されうる。エレクトレットへの電荷の注入方法としては、溶融状態の高分子材料を挟んだ電極間に高電圧を印加しながら該高分子材料を固化する方法や、コロナ放電による方法、イオン注入による方法などがある。電極間に電圧を印加する方法では、エレクトレットはそれぞれの電極に接していた面がそれぞれ正、負の極性に帯電し、コロナ放電による方法ではエレクトレットは負の極性に帯電し、イオン注入による方法では概してエレクトレットは正の極性に帯電する。 In the second example shown in FIG. 3B, the cleaning member 170 includes a support 131 and an electret 133 supported by the support 131. An electret is a substance that continues to form an electric field, and can be formed by, for example, injecting and fixing a charge in a dielectric such as a polymer material. Methods for injecting charges into electrets include a method of solidifying the polymer material while applying a high voltage between electrodes sandwiching the polymer material in a molten state, a method using corona discharge, and a method using ion implantation. . In the method of applying a voltage between the electrodes, the electret is charged with positive and negative polarities on the surface that is in contact with each electrode. In the method using corona discharge, the electret is charged with negative polarity. Generally, electrets are charged with a positive polarity.
 第1の例では、帯電部132を構成する誘電部材の表面に過剰電荷が分布しているので、環境によっては帯電量が減少してしまう。一方、第2の例で採用されるエレクトレットは、電荷が誘電体材料中に注入されているため、半永久的に電荷を保持することが可能である。図3Bに示された例では、エレクトレット133が支持体131の下面の全域に設けられているが、該下面の一部分にのみエレクトレット133が設けられてもよい。また、第1の例で説明されたように、型の不用品の下面にエレクトレットを配置してもよい。 In the first example, since the excessive charge is distributed on the surface of the dielectric member constituting the charging unit 132, the charge amount is reduced depending on the environment. On the other hand, the electret employed in the second example can hold the charge semi-permanently because the charge is injected into the dielectric material. In the example shown in FIG. 3B, the electret 133 is provided on the entire lower surface of the support 131, but the electret 133 may be provided only on a part of the lower surface. Further, as described in the first example, an electret may be arranged on the lower surface of the mold waste.
 エレクトレットの材料としては、例えば、(a)アクリル樹脂、ナイロン、フッ素樹脂などの高分子材料や、(b)SiO、SiO/Si積層膜などの無機膜を挙げることができる。フッ素樹脂には、スピンコートによる成膜が可能な有機エレクトレット膜として、Teflon AF(登録商標、DuPon社製)やCYTOP(登録商標、旭硝子株式会社製)がある。特に、CYTOPは、表面電荷密度が高いという特徴がある。 Examples of the material for the electret include (a) a polymer material such as acrylic resin, nylon, and fluororesin, and (b) an inorganic film such as SiO 2 , SiO 2 / Si x N y laminated film. Fluorocarbon resins include Teflon AF (registered trademark, manufactured by DuPont) and CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.) as organic electret films that can be formed by spin coating. In particular, CYTOP is characterized by a high surface charge density.
 帯電部として、電極を誘電体で覆った構成のものを用いることも可能である。帯電部が露出した電極で構成され、パーティクルが金属であった場合、帯電部に付着したパーティクルは、電荷交換により電極と同じ極性となってしまい、斥力によって離脱するため、帯電部によって捕獲することができない。そこで、電極を誘電体で覆うことによって、金属パーティクルであっても電荷交換を防いで帯電部によって捕獲することができる。 It is also possible to use a structure in which the electrode is covered with a dielectric as the charging portion. If the charged part is composed of an exposed electrode and the particles are metal, the particles attached to the charged part will have the same polarity as the electrode due to charge exchange and will be separated by repulsive force. I can't. Therefore, by covering the electrode with a dielectric, even metal particles can be captured by the charging unit while preventing charge exchange.
 図3Cに示された第3の例では、クリーニング部材170は、支持体131と、支持体131によって支持された負極性帯電部134および正極性帯電部135とを含む。負極性帯電部134および正極性帯電部135としては、第2の例で説明したエレクトレットを採用することができる。負極性に帯電した負極性帯電部134と正極性に帯電した正極性帯電部135とを設けることによって周辺部材113に付着したパーティクルをパーティクルの極性に関係なく除去することができる。 In the third example shown in FIG. 3C, the cleaning member 170 includes a support 131, a negative charging unit 134 and a positive charging unit 135 supported by the support 131. As the negative charging unit 134 and the positive charging unit 135, the electret described in the second example can be employed. By providing the negative charging unit 134 charged negatively and the positive charging unit 135 charged positive, particles adhering to the peripheral member 113 can be removed regardless of the polarity of the particles.
 図4を参照しながらクリーニング部材170を保持する保持部119について補足する。保持部119は、前述のように、クリーニング部材170を保持することが可能であればよく、例えば、ロボットアーム等の可動部材でもよいし、固定された部材であってもよいし、型チャック110が代用されてもよい。 Referring to FIG. 4, the holding unit 119 that holds the cleaning member 170 will be supplemented. As described above, the holding unit 119 only needs to be able to hold the cleaning member 170. For example, the holding unit 119 may be a movable member such as a robot arm, a fixed member, or the mold chuck 110. May be substituted.
 一例において、保持部119は、メンテナンスユニット136の構成要素でありうる。メンテナンスユニット136は、例えば、基板チャック102の取り外し、取り付けを行うためのユニットでありうる。基板チャック102は、基板101との接触によって汚染されたり、摩耗したりしうるので、メンテナンスユニット136を使って交換されうる。メンテナンスユニット136は、基板チャック102を保持するための保持機構を有し、該保持機構が保持部119として使用されうる。周辺部材113のクリーニング処理と同時に基板チャック102が交換されることはない。したがって、メンテナンスユニット136によってクリーニング部材170を保持してクリーニング処理を行うことによる特別な不利益はない。また、メンテナンスユニット136によってクリーニング部材170を保持してクリーニング処理を行うことは、インプリント装置IMPの構成の単純化に寄与する。 In one example, the holding unit 119 may be a component of the maintenance unit 136. The maintenance unit 136 may be a unit for removing and attaching the substrate chuck 102, for example. Since the substrate chuck 102 can be contaminated or worn by contact with the substrate 101, it can be replaced using the maintenance unit 136. The maintenance unit 136 has a holding mechanism for holding the substrate chuck 102, and the holding mechanism can be used as the holding unit 119. The substrate chuck 102 is not replaced simultaneously with the cleaning process of the peripheral member 113. Therefore, there is no special disadvantage caused by holding the cleaning member 170 by the maintenance unit 136 and performing the cleaning process. Also, holding the cleaning member 170 by the maintenance unit 136 and performing the cleaning process contributes to simplification of the configuration of the imprint apparatus IMP.
 クリーニング部材170を型チャック110によって保持してクリーニング処理を行う場合は、型100を型チャック110に搬送する搬送機構を用いてクリーニング部材170が型チャック110に搬送されうる。 When the cleaning process is performed with the cleaning member 170 held by the mold chuck 110, the cleaning member 170 can be transported to the mold chuck 110 using a transport mechanism that transports the mold 100 to the mold chuck 110.
 図5は、周辺部材113の上面図であり、図5には、周辺部材113の形状が例示されている。図5に示された例では、周辺部材113の外形が四角形であるが、これは一例であり、周辺部材113は、種々の外形形状を有しうる。周辺部材113は、基板101の側面を取り囲む開口部を有し、該開口部の形状は、基板101の外形にならっている。 FIG. 5 is a top view of the peripheral member 113, and FIG. 5 illustrates the shape of the peripheral member 113. In the example shown in FIG. 5, the outer shape of the peripheral member 113 is a square, but this is an example, and the peripheral member 113 can have various outer shapes. The peripheral member 113 has an opening surrounding the side surface of the substrate 101, and the shape of the opening conforms to the outer shape of the substrate 101.
 周辺部材113は、表面が滑らかな連続部と、表面が滑らかではない不連続部とを有しうる。周辺部材113には、例えば、型100とインプリント装置IMPの基準との間の相対位置を計測するための基準マークが配置されうる。また、硬化用のエネルギーとして光を使用する場合、周辺部材113には、光の照度を計測するための照度計が配置されうる。よって、基準マークおよび照度計によって代表されるような部材またはユニットと周辺部材113との間には、溝や段差が存在しうる。また、周辺部材113が分割された複数の部品によって構成される場合、部品同士の間に溝や段差が存在しうる。また、周辺部材113を微動機構114に締結するための締結部によっても溝や段差が形成されうる。このような溝や段差は、表面が滑らかではない不連続部の一例である。一方、平坦な上面は、表面が滑らかな連続部の一例である。主制御部126は、単位面積当たりの不連続部にクリーニング部材170の帯電部を対向させる総時間が単位面積当たりの連続部にクリーニング部材170の帯電部を対向させる総時間より長くなるようにクリーニング処理を制御しうる。 The peripheral member 113 may have a continuous part with a smooth surface and a discontinuous part with a non-smooth surface. For example, a reference mark for measuring a relative position between the mold 100 and the reference of the imprint apparatus IMP can be arranged on the peripheral member 113. When light is used as the energy for curing, the peripheral member 113 can be provided with an illuminometer for measuring the illuminance of light. Therefore, a groove or a step may exist between the member or unit represented by the reference mark and the illuminometer and the peripheral member 113. Further, when the peripheral member 113 is constituted by a plurality of divided parts, there may be a groove or a step between the parts. Also, a groove or a step can be formed by a fastening portion for fastening the peripheral member 113 to the fine movement mechanism 114. Such grooves and steps are examples of discontinuous portions whose surfaces are not smooth. On the other hand, a flat upper surface is an example of a continuous portion having a smooth surface. The main control unit 126 performs cleaning so that the total time for which the charged portion of the cleaning member 170 is opposed to the discontinuous portion per unit area is longer than the total time for which the charged portion of the cleaning member 170 is opposed to the continuous portion per unit area. The process can be controlled.
 インプリント装置IMPにおいて、基板101の複数のショット領域に対してインプリント材でパターンを形成するために、複数のインプリントサイクルで構成されるインプリントシーケンス(パターン形成方法)が実行されうる。各インプリントサイクルは、基板101の上にディスペンサ111によってインプリント材を配置する工程、インプリント材に型100を接触させる工程、インプリント材を硬化させる工程、硬化したインプリント材から型100を引き離す工程を含みうる。 In the imprint apparatus IMP, an imprint sequence (pattern formation method) configured by a plurality of imprint cycles can be executed in order to form a pattern with an imprint material on a plurality of shot areas of the substrate 101. Each imprint cycle includes a step of placing the imprint material on the substrate 101 by the dispenser 111, a step of bringing the mold 100 into contact with the imprint material, a step of curing the imprint material, and the mold 100 from the cured imprint material. The step of separating may be included.
 図5には、基板101のあるショット領域に対してディスペンサ111によってインプリント材を配置する場合における周辺部材113、型100、ディスペンサ111の位置関係が例示されている。型100のパターン領域(基板101に転写すべきパターンを有する領域)は、周辺部材113の上に位置する。 FIG. 5 illustrates the positional relationship among the peripheral member 113, the mold 100, and the dispenser 111 when the imprint material is arranged by the dispenser 111 with respect to a certain shot area of the substrate 101. A pattern area of the mold 100 (area having a pattern to be transferred to the substrate 101) is located on the peripheral member 113.
 インプリントシーケンスが実行される期間、即ち、基板の複数のショット領域のそれぞれにパターンを形成する期間において、領域140は、型100のパターン領域と対向しうる領域である。領域140は、周辺部材113の上面の全域のうちインプリントシーケンスにおいて型100のパターン領域に対するパーティクルの供給源となりやすい領域である。よって、クリーニング処理の対象を周辺部材113の上面の全域ではなく、一部の領域に限定する場合には、少なくとも領域140を含む領域に対してクリーニング処理を実行するべきである。 In the period during which the imprint sequence is executed, that is, in the period in which the pattern is formed in each of the plurality of shot areas of the substrate, the area 140 is an area that can face the pattern area of the mold 100. The region 140 is a region that easily serves as a particle supply source for the pattern region of the mold 100 in the imprint sequence in the entire upper surface of the peripheral member 113. Therefore, when the target of the cleaning process is limited to a part of the area rather than the entire upper surface of the peripheral member 113, the cleaning process should be performed on at least the area including the area 140.
 一例において、型100を駆動する型駆動機構MDMは、ディスペンサ111から見て第1方位(X軸のマイナス方向)に位置する。また、領域140は、周辺部材113の上面のうち基板チャック102によって保持される基板101の該第1方位の側の側面よりも該第1方位の側に位置する領域である。 In one example, the mold drive mechanism MDM that drives the mold 100 is located in the first direction (minus direction of the X axis) when viewed from the dispenser 111. The region 140 is a region located on the first azimuth side of the upper surface of the peripheral member 113 with respect to the side surface on the first azimuth side of the substrate 101 held by the substrate chuck 102.
 図6A-6Dには、クリーニング部材170の帯電部を周辺部材113の少なくとも一部の領域に対向させた状態でクリーニング部材170を該領域に対して相対的に移動させるクリーニング処理が例示されている。図6Aに示された例では、主制御部126は、周辺部材113のうち領域140が選択的にクリーニングされるようにクリーニング処理を制御する。このようなクリーニング処理は、それに要する時間を短縮するために有利である。図6Bに示された例では、主制御部126は、周辺部材113の全域がクリーニングされるようにクリーニング処理を制御する。クリーニング処理における周辺部材113に対するクリーニング部材170の帯電部の相対的な移動は、図6A、6Bに例示されるように、所定の動作単位の連続的な繰り返しでありうる。該動作単位は、例えば、第1方向(例えば、X軸方向)に平行な方向への相対的な移動と、該第1方向に交差する第2方向(例えば、Y軸方向)への相対的な移動とを含みうる。 FIGS. 6A to 6D illustrate a cleaning process in which the cleaning member 170 is moved relative to the region with the charging unit of the cleaning member 170 facing at least a part of the region of the peripheral member 113. . In the example shown in FIG. 6A, the main control unit 126 controls the cleaning process so that the region 140 of the peripheral member 113 is selectively cleaned. Such a cleaning process is advantageous for shortening the time required for the cleaning process. In the example shown in FIG. 6B, the main control unit 126 controls the cleaning process so that the entire area of the peripheral member 113 is cleaned. The relative movement of the charging portion of the cleaning member 170 with respect to the peripheral member 113 in the cleaning process can be a continuous repetition of a predetermined operation unit as illustrated in FIGS. 6A and 6B. The motion unit is, for example, relative movement in a direction parallel to a first direction (for example, the X-axis direction) and relative to a second direction (for example, the Y-axis direction) that intersects the first direction. Movement.
 図6Cに示された例では、周辺部材113に対するクリーニング部材170の帯電部の相対的な移動の経路は、基板保持領域1021を取り囲む複数のループを含む。ここで、該複数のループは、基板保持領域1021からの距離が互いに異なる。図6Cに示された例では、該経路が基板保持領域1021を通らないが、該経路が基板保持領域1021を通ってもよい。 In the example shown in FIG. 6C, the relative movement path of the charging unit of the cleaning member 170 with respect to the peripheral member 113 includes a plurality of loops surrounding the substrate holding region 1021. Here, the plurality of loops have different distances from the substrate holding region 1021. In the example shown in FIG. 6C, the path does not pass through the substrate holding area 1021, but the path may pass through the substrate holding area 1021.
 図6Dに示された例では、周辺部材113が溝および/または段差などの不連続部141、142、143と、それ以外の連続部とを有する。パーティクルは、連続部よりも不連続部141、142、143によって捕獲されやすいので、連続部よりも不連続部141、142、143に多数のパーティクルが存在しうる。主制御部126は、単位面積当たりの不連続部141、142、143にクリーニング部材170の帯電部を対向させる総時間が単位面積当たりの連続部にクリーニング部材170の帯電部を対向させる総時間より長くなるようにクリーニング処理を制御しうる。 6D, the peripheral member 113 has discontinuous portions 141, 142, 143 such as grooves and / or steps, and other continuous portions. Since particles are more easily captured by the discontinuous portions 141, 142, and 143 than the continuous portions, a larger number of particles can exist in the discontinuous portions 141, 142, and 143 than the continuous portions. The main controller 126 determines that the total time for which the charging portion of the cleaning member 170 is opposed to the discontinuous portions 141, 142, 143 per unit area is the total time for which the charging portion of the cleaning member 170 is opposed to the continuous portion per unit area. The cleaning process can be controlled to be longer.
 主制御部126は、例えば、基板にインプリントによってパターンを形成するインプリント処理の実行が指令された後に、該指令に応答してインプリント処理を実行する前に、クリーニング処理を実行しうる。あるいは、主制御部126が、物品を製造しないアイドル時に行ってもよい。あるいは、主制御部126は、設定された枚数の基板を処理する度にクリーニング処理を行ってもよいし、1枚の基板の処理の度にクリーニング処理を行ってもよい。また、主制御部126は、例えば、ショット領域へのパターンの形成の度にクリーニング処理を行ってもよい。 The main control unit 126 can execute the cleaning process after executing an imprint process for forming a pattern on the substrate by imprinting and executing the imprint process in response to the command, for example. Alternatively, the main control unit 126 may be performed at an idle time when the article is not manufactured. Alternatively, the main control unit 126 may perform the cleaning process every time a set number of substrates are processed, or may perform the cleaning process every time one substrate is processed. In addition, the main control unit 126 may perform a cleaning process each time a pattern is formed on a shot area, for example.
 また、クリーニング処理を実行する必要性を確認するための評価を行い、その結果に基づいてクリーニング処理を実行してもよい。例えば、評価用の型を使って1又は複数のショット領域に対してインプリントによってパターン(第1サンプル)を形成することによって型を帯電させた後に型を周辺部材113に対向させた状態で周辺部材113を移動させる。そして、その型を使って1又は複数のショット領域に対してインプリントによってパターン(第2サンプル)を形成する。第1サンプルおよび第2サンプルの欠陥数を比較することによって、周辺部材113の状態を評価することができる。 Also, an evaluation for confirming the necessity of executing the cleaning process may be performed, and the cleaning process may be executed based on the result. For example, a pattern (first sample) is formed by imprinting one or a plurality of shot areas using an evaluation mold, and then the mold is charged and then the mold is opposed to the peripheral member 113. The member 113 is moved. Then, using the mold, a pattern (second sample) is formed by imprinting on one or a plurality of shot regions. The state of the peripheral member 113 can be evaluated by comparing the number of defects of the first sample and the second sample.
 図7には、周辺部材113のクリーニングシーケンスが例示されている。このクリーニングシーケンスは、主制御部126によって制御される。工程S201では、主制御部126は、不図示の搬送機構に命じて、クリーニング部材170を保持部119に保持させる。工程S202では、主制御部126は、クリーニング部材170の種類を判別する。クリーニング部材170の種類は、例えば、クリーニング部材170に与えられた識別子によって判別されうる。あるいは、クリーニング部材170の種類は、表面電位を計測する計測器を用いてクリーニング部材170の帯電部の帯電量を計測し、その結果に基づいて判別されうる。 FIG. 7 illustrates a cleaning sequence for the peripheral member 113. This cleaning sequence is controlled by the main controller 126. In step S <b> 201, the main control unit 126 instructs a transport mechanism (not shown) to hold the cleaning member 170 in the holding unit 119. In step S202, the main control unit 126 determines the type of the cleaning member 170. The type of the cleaning member 170 can be determined by, for example, an identifier given to the cleaning member 170. Alternatively, the type of the cleaning member 170 can be determined based on the result of measuring the charge amount of the charging portion of the cleaning member 170 using a measuring instrument that measures the surface potential.
 図3Aに例示されたようにインプリント材に対する誘電部材の接触および引き離しを通して帯電を生じさせるタイプを非持続タイプと呼ぶことにする。また、図3B、3Cに例示されたようにエレクトレットを用いたタイプを持続タイプと呼ぶことにする。工程S202において、クリーニング部材170が非持続タイプと判断された場合には工程S203に進み、クリーニング部材170が持続タイプと判断された場合には工程S206に進む。 As shown in FIG. 3A, a type that causes charging through contact and separation of the dielectric member with respect to the imprint material is referred to as a non-persistent type. In addition, a type using an electret as illustrated in FIGS. 3B and 3C is referred to as a continuous type. If it is determined in step S202 that the cleaning member 170 is a non-sustainable type, the process proceeds to step S203, and if the cleaning member 170 is determined to be a continuous type, the process proceeds to step S206.
 工程S203では、主制御部126は、不図示の搬送機構に命じて、ダミー基板を基板チャック102の上に搬送させる。工程S204では、主制御部126は、ダミー基板の上にインプリント材が配置されるように基板駆動機構SDMおよびディスペンサ111を制御する。工程S205では、主制御部126は、ダミー基板の上のインプリント材にクリーニング部材170の誘電部材を接触させ、硬化部104によってインプリント材を硬化させ、硬化したインプリント材から誘電部材を引き離すダミーインプリントを制御する。このダミーインプリントによって誘電部材が帯電し帯電部が準備される。持続タイプのクリーニング部材170については、工程S203~S205のような帯電のための処理は不要である。 In step S203, the main control unit 126 instructs a transfer mechanism (not shown) to transfer the dummy substrate onto the substrate chuck 102. In step S204, the main control unit 126 controls the substrate driving mechanism SDM and the dispenser 111 so that the imprint material is disposed on the dummy substrate. In step S205, the main control unit 126 makes the dielectric member of the cleaning member 170 contact the imprint material on the dummy substrate, cures the imprint material by the curing unit 104, and pulls the dielectric member away from the cured imprint material. Control dummy imprint. By this dummy imprint, the dielectric member is charged to prepare a charging portion. For the continuous type cleaning member 170, the charging process as in steps S203 to S205 is not required.
 工程S206では、主制御部126は、周辺部材113のクリーニング処理を実行する。具体的には、主制御部126は、クリーニング部材170の帯電部を周辺部材113の少なくとも一部の領域に対向させた状態でクリーニング部材170を該領域に対して相対的に移動(走査)させる。これによって、該領域のパーティクル150が該領域から離脱して該帯電部に吸着されることによって、該領域がクリーニングされる。 In step S206, the main control unit 126 performs a cleaning process for the peripheral member 113. Specifically, the main control unit 126 moves (scans) the cleaning member 170 relative to the region with the charging unit of the cleaning member 170 facing at least a part of the region of the peripheral member 113. . As a result, the particles 150 in the region are separated from the region and are attracted to the charging unit, whereby the region is cleaned.
 工程S207では、主制御部126は、不図示の搬送機構に命じて、クリーニング部材170を搬出させる。ここで、クリーニング部材170を保持する専用の保持部119が設けられている場合には、工程S201、S207は不要であり、クリーニング部材170が保持部119によって保持された状態が維持されうる。 In step S207, the main control unit 126 instructs a transport mechanism (not shown) to carry out the cleaning member 170. Here, when the dedicated holding unit 119 for holding the cleaning member 170 is provided, the steps S201 and S207 are unnecessary, and the state where the cleaning member 170 is held by the holding unit 119 can be maintained.
 上記のクリーニング処理は、図8に例示されるように、基板チャック102(基板保持領域1021)からパーティクルを除去するためのクリーニング処理に対して応用されてもよい。基板チャック102の基板保持領域1021は、基板101を支持するためのピンおよび/またはリングを有しうる。ピンおよび/またはリングの上にパーティクルが付着すると、基板101が変形し、形成されるパターンに欠陥が生じうる。 The above-described cleaning process may be applied to a cleaning process for removing particles from the substrate chuck 102 (substrate holding region 1021) as illustrated in FIG. The substrate holding region 1021 of the substrate chuck 102 can have pins and / or rings for supporting the substrate 101. When particles adhere to the pins and / or rings, the substrate 101 is deformed, and a defect may occur in the formed pattern.
 そこで、主制御部126は、基板チャック102(基板保持領域1021)のクリーニング処理を制御するように構成されうる。このクリーニング処理では、クリーニング部材170の帯電部を基板チャック102に対向させた状態でクリーニング部材170を基板チャック102に対して相対的に移動させることによって基板チャック102のパーティクル150が該帯電部に吸着される。 Therefore, the main control unit 126 can be configured to control the cleaning process of the substrate chuck 102 (substrate holding region 1021). In this cleaning process, the cleaning member 170 is moved relative to the substrate chuck 102 with the charging portion of the cleaning member 170 facing the substrate chuck 102, whereby the particles 150 of the substrate chuck 102 are attracted to the charging portion. Is done.
 図9には、基板チャック102のクリーニングシーケンスが例示されている。このクリーニングシーケンスは、主制御部126によって制御される。工程S211では、基板チャック102の上に基板101がある場合には、主制御部126は、不図示の搬送機構に命じて、基板101を搬出させる。工程S212では、主制御部126は、不図示の搬送機構に命じて、クリーニング部材170を保持部119に保持させる。工程S213では、主制御部126は、クリーニング部材170の種類を判別する。工程S213において、クリーニング部材170が非持続タイプと判断された場合には工程S214に進み、クリーニング部材170が持続タイプと判断された場合には工程S218に進む。 FIG. 9 illustrates a cleaning sequence for the substrate chuck 102. This cleaning sequence is controlled by the main controller 126. In step S <b> 211, when the substrate 101 is on the substrate chuck 102, the main control unit 126 instructs a transfer mechanism (not shown) to carry out the substrate 101. In step S212, the main control unit 126 instructs a transport mechanism (not shown) to hold the cleaning member 170 in the holding unit 119. In step S213, the main control unit 126 determines the type of the cleaning member 170. If it is determined in step S213 that the cleaning member 170 is a non-sustained type, the process proceeds to step S214, and if the cleaning member 170 is determined to be a continuous type, the process proceeds to step S218.
 工程S214では、主制御部126は、不図示の搬送機構に命じて、ダミー基板を基板チャック102の上に搬送させる。工程S215では、主制御部126は、ダミー基板の上にインプリント材が配置されるように基板駆動機構SDMおよびディスペンサ111を制御する。工程S216では、主制御部126は、ダミー基板の上のインプリント材にクリーニング部材170の誘電部材を接触させ、硬化部104によってインプリント材を硬化させ、硬化したインプリント材から誘電部材を引き離すダミーインプリントを制御する。このダミーインプリントによって誘電部材が帯電し帯電部が準備される。工程S217は、主制御部126は、不図示の搬送機構に命じて、ダミー基板を基板チャック102から搬出させる。持続タイプのクリーニング部材170については、工程S214~S217のような帯電のための処理は不要である。 In step S214, the main control unit 126 instructs a transfer mechanism (not shown) to transfer the dummy substrate onto the substrate chuck 102. In step S215, the main control unit 126 controls the substrate driving mechanism SDM and the dispenser 111 so that the imprint material is disposed on the dummy substrate. In step S216, the main control unit 126 causes the dielectric member of the cleaning member 170 to contact the imprint material on the dummy substrate, cures the imprint material by the curing unit 104, and pulls the dielectric member away from the cured imprint material. Control dummy imprint. By this dummy imprint, the dielectric member is charged to prepare a charging portion. In step S217, the main control unit 126 instructs a transfer mechanism (not shown) to carry out the dummy substrate from the substrate chuck 102. For the continuous type cleaning member 170, the process for charging as in steps S214 to S217 is unnecessary.
 工程S218では、主制御部126は、基板チャック102のクリーニング処理を実行する。具体的には、主制御部126は、クリーニング部材170の帯電部を基板チャック102の少なくとも一部の領域に対向させた状態でクリーニング部材170を基板チャック102に対して相対的に移動(走査)させる。これによって、基板チャック102の該領域のパーティクル150が基板チャック102から離脱して該帯電部に吸着されることによって、基板チャック102の該領域がクリーニングされる。 In step S218, the main control unit 126 executes a cleaning process for the substrate chuck 102. Specifically, the main control unit 126 moves (scans) the cleaning member 170 relative to the substrate chuck 102 with the charging unit of the cleaning member 170 facing at least a part of the region of the substrate chuck 102. Let Accordingly, the particles 150 in the region of the substrate chuck 102 are detached from the substrate chuck 102 and are attracted to the charging unit, whereby the region of the substrate chuck 102 is cleaned.
 工程S219では、主制御部126は、不図示の搬送機構に命じて、クリーニング部材170を搬出させる。ここで、クリーニング部材170を保持する専用の保持部119が設けられている場合には、工程S212、S219は不要であり、クリーニング部材170が保持部119によって保持された状態が維持されうる。 In step S219, the main control unit 126 instructs a transport mechanism (not shown) to carry out the cleaning member 170. Here, when the dedicated holding unit 119 that holds the cleaning member 170 is provided, the steps S212 and S219 are unnecessary, and the state where the cleaning member 170 is held by the holding unit 119 can be maintained.
 主制御部126は、例えば、FPGA(Field Programmable Gate Arrayの略。)などのPLD(Programmable Logic Deviceの略。)、又は、ASIC(Application Specific Integrated Circuitの略。)、又は、プログラムが組み込まれた汎用コンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。他の制御部120~125も同様に、FPGAなどのPLD、又は、ASIC、又は、プログラムが組み込まれた汎用コンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。 The main control unit 126 is, for example, a PLD (abbreviation of Programmable Logic Device) such as an FPGA (abbreviation of Field Programmable Gate Array), or an ASIC (Abbreviation of Application Specific Integrated or Program). It can be constituted by a general-purpose computer or a combination of all or part of them. Similarly, the other control units 120 to 125 may be configured by a PLD such as an FPGA, an ASIC, a general-purpose computer incorporating a program, or a combination of all or a part thereof.
 以下、物品製造方法について説明する。ここでは、一例として、物品としてデバイス(半導体集積回路素子、液晶表示素子等)を製造する物品製造方法を説明する。物品製造方法は、上述したインプリント装置を用いて基板(ウエハ、ガラスプレート、フィルム状基板)にパターンを形成する工程を含む。さらに、該製造方法は、パターンが形成された基板を処理(例えば、エッチング)する工程を含みうる。なお、パターンドメディア(記録媒体)や光学素子などの他の物品を製造する場合には、該製造方法は、エッチングの代わりに、パターンを形成された基板を加工する他の処理を含みうる。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも一つにおいて有利である。 Hereinafter, an article manufacturing method will be described. Here, as an example, an article manufacturing method for manufacturing devices (semiconductor integrated circuit elements, liquid crystal display elements, etc.) as articles will be described. The article manufacturing method includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) using the above-described imprint apparatus. Further, the manufacturing method may include a step of processing (for example, etching) the substrate on which the pattern is formed. In the case of manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching. The article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
(第2実施形態)
 上記のクリーニング処理は、(a)インプリント処理を実行する前、又は、(b)インプリント装置がアイドル状態である時、又は、(c)設定枚数の基板の処理後に行われうる。以下では、インプリント装置IMPの特定位置に帯電部を配置することで、クリーニング処理のための時間を特別に設けることなく、一連のインプリント動作と並行してクリーニング処理が実施される例を説明する。
(Second Embodiment)
The cleaning process can be performed (a) before executing the imprint process, (b) when the imprint apparatus is in an idle state, or (c) after processing a set number of substrates. Hereinafter, an example will be described in which the cleaning process is performed in parallel with a series of imprint operations without specially providing time for the cleaning process by arranging the charging unit at a specific position of the imprint apparatus IMP. To do.
 図10には、本発明の第2実施形態のインプリント装置IMPの構成が例示されている。クリーニング部材170は、クリーニング部材170とディスペンサ111との間に型100が位置するように配置されている。クリーニング部材170は、例えば、型チャック110の周辺に配置された周辺部材151によって保持されうる。図11に例示されるように、クリーニング部材170は、帯電部171を有する。 FIG. 10 illustrates the configuration of the imprint apparatus IMP according to the second embodiment of the present invention. The cleaning member 170 is disposed so that the mold 100 is positioned between the cleaning member 170 and the dispenser 111. For example, the cleaning member 170 can be held by a peripheral member 151 disposed around the mold chuck 110. As illustrated in FIG. 11, the cleaning member 170 includes a charging unit 171.
 第2実施形態では、クリーニング部材170とディスペンサ111との間に型100が位置するようにクリーニング部材170が配置される。これによって、インプリント対象のショット領域をディスペンサ111の下に移動させ、その後に型100の下に移動させるシーケンスにおいて、図5に示された領域140の一部がクリーニング部材170に対向しクリーニングされる。このようなシーケンスが複数のショット領域に対して順に実行されることによって領域140の全域がクリーニング部材170によってクリーニングされうる。よって、周辺部材113のクリーニングに要する時間が削減される。これは、インプリントによるパターン形成に関するスループットの向上に寄与する。 In the second embodiment, the cleaning member 170 is disposed so that the mold 100 is positioned between the cleaning member 170 and the dispenser 111. As a result, in a sequence in which the shot area to be imprinted is moved below the dispenser 111 and then moved below the mold 100, a part of the area 140 shown in FIG. The Such a sequence is sequentially performed on a plurality of shot areas, so that the entire area 140 can be cleaned by the cleaning member 170. Therefore, the time required for cleaning the peripheral member 113 is reduced. This contributes to an improvement in throughput related to pattern formation by imprint.
 ここで、クリーニング部材170、型100およびディスペンサ111が並んだ方向に直交する方向における帯電部171の幅L2は、型100のパターン部160の幅L1より大きいことがクリーニングの効率化の観点で好ましい。 Here, the width L2 of the charging portion 171 in the direction orthogonal to the direction in which the cleaning member 170, the mold 100, and the dispenser 111 are arranged is preferably larger than the width L1 of the pattern portion 160 of the mold 100 from the viewpoint of efficiency of cleaning. .
 図12には、第2実施形態のインプリント装置IMPの動作が例示的に示されている。ここで、クリーニング部材170の帯電部171は、帯電のための操作がなされることによって帯電状態となり、除電のための操作がなされることによって非帯電状態にされるものとする。ただし、このような動作が不要な帯電部171が使用されてもよく、その場合には、以下で説明する工程S201、S205は不要である。単純な例では、帯電部171を導電体で構成し、帯電部171に電荷を供給することによって帯電状態とし、帯電部171から電荷を引き抜くことによって非帯電状態にすることができる。 FIG. 12 exemplarily shows the operation of the imprint apparatus IMP of the second embodiment. Here, the charging unit 171 of the cleaning member 170 is in a charged state when an operation for charging is performed, and is uncharged by an operation for discharging. However, the charging unit 171 that does not require such an operation may be used, and in this case, steps S201 and S205 described below are unnecessary. In a simple example, the charging unit 171 is made of a conductor, and a charged state can be obtained by supplying a charge to the charging unit 171, and a non-charged state can be obtained by extracting the charge from the charging unit 171.
 まず、工程S221では、主制御部126は、帯電部171を帯電状態にする。次いで、工程S222では、主制御部126は、インプリント対象のショット領域にインプリント材が配置されるように、ディスペンサ111および基板駆動機構SDMを制御する。この際に、インプリント対象のショット領域がディスペンサ111の下に配置される。次いで、工程S223では、主制御部126は、インプリント対象のショット領域が型100の下に配置されるように基板駆動機構SDMを制御する。工程S222、S223において、周辺部材113の表面のうちクリーニング部材170の帯電部171に対向する領域がクリーニングされる。 First, in step S221, the main control unit 126 puts the charging unit 171 into a charged state. Next, in step S222, the main control unit 126 controls the dispenser 111 and the substrate driving mechanism SDM so that the imprint material is disposed in the shot area to be imprinted. At this time, the shot area to be imprinted is arranged below the dispenser 111. Next, in step S223, the main control unit 126 controls the substrate drive mechanism SDM so that the shot area to be imprinted is disposed under the mold 100. In steps S222 and S223, a region of the surface of the peripheral member 113 that faces the charging unit 171 of the cleaning member 170 is cleaned.
 次いで、工程S224では、主制御部126は、まず、インプリント対象のショット領域の上のインプリント材と型100とが接触するように型駆動機構MDMを制御する。工程S024では、次いで、主制御部126は、インプリント材を硬化させるように硬化部104を制御し、その後、硬化したインプリント材と型100とを分離させるように型駆動機構MDMを制御する。次いで、工程S225では、主制御部126は、帯電部171を非帯電状態にする。 Next, in step S224, the main controller 126 first controls the mold drive mechanism MDM so that the imprint material on the shot area to be imprinted and the mold 100 come into contact with each other. Next, in step S024, the main control unit 126 controls the curing unit 104 to cure the imprint material, and then controls the mold driving mechanism MDM to separate the cured imprint material and the mold 100 from each other. . Next, in step S225, the main control unit 126 puts the charging unit 171 into an uncharged state.
 次いで、工程S226では、主制御部126は、基板の全ショット領域に対するインプリントが終了したかどうかを判断し、まだインプリントがなされていないショット領域があれば、工程S221に戻り、他のショット領域について処理を繰り返す。一方、全ショット領域に対するインプリントが終了した場合は、工程S227において、主制御部126は、全基板に対するインプリントが終了したかどうかを判断する。そして、まだインプリントがなされていないショット領域があれば、主制御部126は、工程S201に戻り、他の基板について処理を繰り返す。 Next, in step S226, the main control unit 126 determines whether imprinting has been completed for all shot areas on the substrate. If there is a shot area that has not yet been imprinted, the process returns to step S221 to execute another shot. Repeat the process for the region. On the other hand, when the imprint for all the shot regions is completed, in step S227, the main control unit 126 determines whether the imprint for all the substrates is completed. If there is a shot area that has not yet been imprinted, the main control unit 126 returns to step S201 and repeats the process for another substrate.
 周辺部材113のより広い領域をクリーニング部材170によってクリーニングするためには、図13に例示されるように、より広い面積を有するクリーニング部材170の採用が有用である。図13に例示されたクリーニング部材170は、型100をその全方位にわたって取り囲む形状を有する。 In order to clean a wider region of the peripheral member 113 with the cleaning member 170, it is useful to employ a cleaning member 170 having a wider area as illustrated in FIG. The cleaning member 170 illustrated in FIG. 13 has a shape surrounding the mold 100 in all directions.
 しかしながら、型100の周りには、各種の機構が配置されうる。この場合、型100を全方位にわたって取り囲むようなクリーニング部材170の採用は困難かもしれない。型100の周りに配置されうる機構としては、例えば、型100の側面に力を加えることによって型100を変形させる機構、型100の傾きを調整する機構、型駆動機構MDMの一部を構成する機構等を挙げることができる。 However, various mechanisms can be arranged around the mold 100. In this case, it may be difficult to employ the cleaning member 170 that surrounds the mold 100 in all directions. As a mechanism that can be arranged around the mold 100, for example, a mechanism that deforms the mold 100 by applying a force to the side surface of the mold 100, a mechanism that adjusts the inclination of the mold 100, and a part of the mold drive mechanism MDM are configured. A mechanism etc. can be mentioned.
 図14には、クリーニング部材170の他に、追加のクリーニング部材180、181が設けられた例が示されている。つまり、図14には、複数のクリーニング部材170、180、181が設けられた例が示されている。図15Aに例示されるように、クリーニング部材180は、周辺部材113のうちの一部の領域300をクリーニングし、図15Bに例示されるように、クリーニング部材181は、周辺部材113のうちの他の領域310をクリーニングする。このように複数のクリーニング部材を設けて、該複数のクリーニング部材によってクリーニングする領域を分担することによってインプリント装置IMPの大型化を抑えることができる。ここで、クリーニング部材170は、基板101の複数のショット領域に対するインプリントと並行して周囲部材113をクリーニングするために使用されうる。一方、クリーニング部材180、181は、基板101へのインプリントを行わない期間、例えば、メンテナンス時やアイドル時に実行されうる専用のクリーニングシーケンスにおいて使用されうる。 FIG. 14 shows an example in which additional cleaning members 180 and 181 are provided in addition to the cleaning member 170. That is, FIG. 14 shows an example in which a plurality of cleaning members 170, 180, and 181 are provided. As illustrated in FIG. 15A, the cleaning member 180 cleans a part of the region 300 in the peripheral member 113, and as illustrated in FIG. 15B, the cleaning member 181 includes the other member in the peripheral member 113. The region 310 is cleaned. As described above, by providing a plurality of cleaning members and sharing a region to be cleaned by the plurality of cleaning members, it is possible to suppress an increase in size of the imprint apparatus IMP. Here, the cleaning member 170 can be used to clean the peripheral member 113 in parallel with the imprint for a plurality of shot regions of the substrate 101. On the other hand, the cleaning members 180 and 181 can be used in a dedicated cleaning sequence that can be executed during a period when imprinting on the substrate 101 is not performed, for example, during maintenance or idling.
(第3実施形態)
 インプリント装置IMPは、硬化したインプリント材から型100を引き離した際に帯電した型100を除電する除電機構を備えることが望ましい。例えば、イオナイザーを用いて型100の除電が行われうる。イオナイザーには、コロナ放電方式、エネルギー線照射方式(例えば、X線照射方式やα線照射方式)などの多様な種類が存在する。コロナ放電方式は、一般的に、パーティクルの発生要因になる可能性がある。したがって、清浄度を維持しながら型100を除電するためには、X線照射方式またはα線照射方式が好適である。型100と基板101との間の空間は非常に狭い空間であるため、該空間の周囲にイオナイザーを配置し、型100に対して、直接にX線またはα線を照射することは困難である。型100に対して、直接にX線またはα線を照射する方式を除くと、X線またはα線をガスに照射してガスをイオン化させ、イオン化されたガスを型100の下の空間に供給する方式がある。但し、イオン化されたガスは、管路及びノズル、更には該ノズルから型100と基板101との間の空間までの経路を通過する間にイオン濃度が低下するため、型100の下の空間において十分なイオン濃度を維持することができない場合がある。このような場合には、型100を効率的に除電することができなくなる。
(Third embodiment)
The imprint apparatus IMP desirably includes a static elimination mechanism that neutralizes the charged mold 100 when the mold 100 is pulled away from the cured imprint material. For example, the neutralization of the mold 100 can be performed using an ionizer. There are various types of ionizers such as a corona discharge method and an energy ray irradiation method (for example, an X-ray irradiation method and an α-ray irradiation method). In general, the corona discharge method may cause generation of particles. Therefore, the X-ray irradiation method or the α-ray irradiation method is suitable for removing the mold 100 while maintaining the cleanliness. Since the space between the mold 100 and the substrate 101 is a very narrow space, it is difficult to arrange an ionizer around the space and directly irradiate the mold 100 with X-rays or α rays. . Except for the method of directly irradiating the mold 100 with X-rays or α-rays, the gas is ionized by irradiating the gas with X-rays or α-rays, and the ionized gas is supplied to the space below the mold 100 There is a method to do. However, the ionized gas has a reduced ion concentration while passing through a pipe and a nozzle, and further a path from the nozzle to the space between the mold 100 and the substrate 101. In some cases, a sufficient ion concentration cannot be maintained. In such a case, the mold 100 cannot be discharged efficiently.
 そこで、本実施形態では、パージガス供給部118から除電用ガスを供給する。除電用ガスは、パージガス供給部118とは別のガス供給部から供給するのでもよい。図16Aに示すように、除電用ガスは、硬化したインプリント材から型100のパターン部160を引き離す前に、型100の周囲の空間に充満させておくのがよい。パージガス供給部118による除電用ガスの供給は、型100の周囲の空間が除電用ガスで充分に満たされていれば、パターン部160を引き離す前に止めてもよいし、引き離し中に供給を続けていてもよい。その結果、図16Bに示すように、硬化したインプリント材からパターン部160を引き離す工程で周囲の除電用ガスがパターン部160と基板101との間隙に引き込まれ置換される。 Therefore, in this embodiment, the charge removal gas is supplied from the purge gas supply unit 118. The neutralizing gas may be supplied from a gas supply unit different from the purge gas supply unit 118. As shown in FIG. 16A, the charge-removing gas is preferably filled in the space around the mold 100 before the pattern portion 160 of the mold 100 is separated from the cured imprint material. The purge gas supply by the purge gas supply unit 118 may be stopped before the pattern unit 160 is separated if the space around the mold 100 is sufficiently filled with the neutralization gas, or the supply may be continued during the separation. It may be. As a result, as shown in FIG. 16B, in the step of separating the pattern portion 160 from the cured imprint material, the surrounding neutralizing gas is drawn into the gap between the pattern portion 160 and the substrate 101 and replaced.
 除電用ガスは、電子に対する平均自由行程が空気よりも長い気体を含む必要がある。除電用ガスとしては、具体的には、単原子分子である希ガスがよいが、特に、希ガスのうちでも最も長い平均自由工程を有するヘリウムがよい。電界中に存在する電子は、電界によって陽極側に運ばれ、その途中でガス分子に衝突する。この際、電子が十分に加速されてガスの電離エネルギー以上のエネルギーを有した状態でガス分子に衝突すると電離が起こり、電子-陽イオン対が生成される。生成された電子も電界で加速され、ガス分子を電離させる。このように、電離が次々に起こることで大量の電子-陽イオン対が生成される現象を電子雪崩と呼ぶ。電子に対する平均自由工程が長いガスでは、加速中の電子が途中でガス分子に衝突せず、高エネルギー状態まで加速される。したがって、電子に対する平均自由工程が長いガスは、空気と比べて、低い電界中でも電子雪崩が起こりやすく、型100に大きな電圧が蓄積される前に除電することができる。 The neutralizing gas needs to contain a gas whose mean free path for electrons is longer than that of air. Specifically, a rare gas that is a monoatomic molecule is preferable as the static elimination gas, but in particular, helium having the longest mean free path among the rare gases is preferable. Electrons existing in the electric field are carried to the anode side by the electric field and collide with gas molecules in the middle. At this time, if the electrons are sufficiently accelerated and collide with gas molecules in a state where the energy is higher than the ionization energy of the gas, ionization occurs and an electron-cation pair is generated. The generated electrons are also accelerated by the electric field and ionize the gas molecules. In this way, a phenomenon in which a large amount of electron-cation pairs is generated by successive ionization is called an electron avalanche. In a gas with a long mean free path for electrons, the accelerating electrons do not collide with gas molecules on the way and are accelerated to a high energy state. Therefore, a gas having a long mean free path for electrons is more likely to cause an electron avalanche even in a low electric field than air, and can be discharged before a large voltage is accumulated in the mold 100.
 また、除電用ガスは、一般的に拡散性が高いので、インプリント材をパターン部160に充填させる際、インプリント空間のパージガスとして使用することもできる。ここで、クリーニング部材170の帯電部171により周辺部材113との間に電界を発生させ、周辺部材113上のクリーニング処理を行う場合の帯電部171の電圧について述べる。電圧を印加した帯電部171と周辺部材113との間隙に除電用ガスが進入し、電子雪崩が起こると、大量の電子もしくは陽イオンが帯電部171の表面に供給され帯電部171の電圧が低下し、クリーニング効果が減少する。よって、帯電部171の電圧は、帯電部171と周辺部材113との間に発生する電界強度が除電用ガスを通して放電が起こる電界強度以下になるように設定する必要がある。そこで、帯電部171に印加される電圧を制御する電圧制御部172が設けられうる。電圧制御部172は、帯電部171に印加される電圧を、帯電部171と周辺部材113との間に発生する電界強度が除電用ガスを通して放電が起こる電界強度以下になるように設定する。帯電部171と周辺部材113との間で電子雪崩が起こるかどうかは、電界強度と除電用ガスの種類に依存するので、帯電部171と周辺部材113との間の距離と除電用ガスの種類によって、帯電部171に印加される電圧の値を決定すればよい。つまり、帯電部171に印加される電圧の値は、除電用ガスの種類や帯電部171と周辺部材113との間の距離によって異なる。 Further, since the gas for discharging is generally highly diffusive, it can also be used as a purge gas for the imprint space when the imprint material is filled in the pattern portion 160. Here, the voltage of the charging unit 171 when an electric field is generated between the charging unit 171 of the cleaning member 170 and the peripheral member 113 to perform the cleaning process on the peripheral member 113 will be described. When a neutralizing gas enters the gap between the charging unit 171 to which the voltage is applied and the peripheral member 113 and an electron avalanche occurs, a large amount of electrons or cations are supplied to the surface of the charging unit 171 and the voltage of the charging unit 171 decreases. And the cleaning effect is reduced. Therefore, the voltage of the charging unit 171 needs to be set so that the electric field strength generated between the charging unit 171 and the peripheral member 113 is equal to or lower than the electric field strength at which discharge occurs through the charge removal gas. Therefore, a voltage control unit 172 that controls the voltage applied to the charging unit 171 can be provided. The voltage control unit 172 sets the voltage applied to the charging unit 171 so that the electric field strength generated between the charging unit 171 and the peripheral member 113 is equal to or lower than the electric field strength at which discharge occurs through the charge removal gas. Whether or not an electronic avalanche occurs between the charging unit 171 and the peripheral member 113 depends on the electric field strength and the type of the neutralizing gas, and therefore the distance between the charging unit 171 and the peripheral member 113 and the type of the neutralizing gas. Thus, the value of the voltage applied to the charging unit 171 may be determined. That is, the value of the voltage applied to the charging unit 171 varies depending on the type of the charge eliminating gas and the distance between the charging unit 171 and the peripheral member 113.
 除電用ガスによって、型100の電圧は、硬化したインプリント材から引き離す工程後は、除電用ガスを通して放電が起こる電圧以下に維持される。よって、帯電部171を上述の電圧に設定したクリーニング部材170で周辺部材113のクリーニング処理することで、型100に対するパーティクル150の付着を防止できる。 The voltage of the mold 100 is maintained below the voltage at which discharge occurs through the static elimination gas after the step of separating from the cured imprint material by the static elimination gas. Therefore, the cleaning of the peripheral member 113 with the cleaning member 170 having the charging unit 171 set to the above voltage can prevent the particles 150 from adhering to the mold 100.
 また、パージガス供給部118から除電用ガスを供給しない間は、帯電部171に印加される電圧は、帯電部171と周辺部材113との間に発生する電界強度が、除電用ガスを通して放電が起こる電界強度より高くなる値に設定されてもよい。例えば、インプリント工程を行っていない間は、帯電部171にインプリント工程中より高い電圧を設定し、クリーニング処理を行ってもよい。インプリント工程中においても、除電用ガスが供給されない間は、帯電部171の電圧を上げてクリーニング効果を向上させてもよい。 In addition, while the discharge gas is not supplied from the purge gas supply unit 118, the voltage applied to the charging unit 171 is such that the electric field strength generated between the charging unit 171 and the peripheral member 113 is discharged through the discharge gas. It may be set to a value higher than the electric field strength. For example, while the imprint process is not performed, the charging unit 171 may be set to a higher voltage than during the imprint process, and the cleaning process may be performed. Even during the imprint process, while the neutralizing gas is not supplied, the voltage of the charging unit 171 may be increased to improve the cleaning effect.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年2月26日提出の日本国特許出願特願2016-036315、2016年11月18日提出の日本国特許出願特願2016-225379、2017年2月3日提出の日本国特許出願特願2017-018915を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 The present application is Japanese Patent Application No. 2016-036315 filed on Feb. 26, 2016, Japanese Patent Application No. 2016-225379 filed on Nov. 18, 2016, and Japanese Patent Application filed on Feb. 3, 2017. The priority is claimed on the basis of Japanese Patent Application No. 2017-018915, the entire contents of which are incorporated herein by reference.
IMP:インプリント装置、100:型、101:基板、102:基板チャック、113:周辺部材、131:支持体、132-135:帯電部、150:パーティクル、170:クリーニング部材 IMP: imprint apparatus, 100: mold, 101: substrate, 102: substrate chuck, 113: peripheral member, 131: support, 132-135: charging unit, 150: particle, 170: cleaning member

Claims (29)

  1. 基板の上のインプリント材に型を接触させた状態で該インプリント材を硬化させることによって該基板の上にパターンを形成するインプリント装置であって、
    基板を保持する基板保持領域を有する基板チャックと、
    前記基板チャックによって保持される基板の側面を取り囲むように配置された周辺部材と、
    帯電部を含むクリーニング部材を使って前記周辺部材の少なくとも一部の領域をクリーニングするクリーニング処理を制御する制御部と、を備え、
    前記クリーニング処理は、前記帯電部を前記周辺部材の少なくとも一部の領域に対向させた状態で前記クリーニング部材を前記周辺部材に対して相対的に移動させることによって前記領域のパーティクルを前記帯電部に吸着させる動作を含む、
    ことを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern on a substrate by curing the imprint material in a state where a mold is in contact with the imprint material on the substrate,
    A substrate chuck having a substrate holding region for holding the substrate;
    A peripheral member arranged to surround a side surface of the substrate held by the substrate chuck;
    A control unit for controlling a cleaning process for cleaning at least a part of the peripheral member using a cleaning member including a charging unit, and
    In the cleaning process, particles in the region are moved to the charging unit by moving the cleaning member relative to the peripheral member in a state where the charging unit is opposed to at least a part of the peripheral member. Including the action of adsorbing,
    An imprint apparatus characterized by that.
  2. 前記周辺部材に対する前記帯電部の相対的な移動は、第1方向に平行な方向への相対的な移動と、前記第1方向に交差する第2方向への相対的な移動とを含む動作単位の繰り返しを含む、
    ことを特徴とする請求項1に記載のインプリント装置。
    The relative movement of the charging unit with respect to the peripheral member includes a relative movement in a direction parallel to a first direction and a relative movement in a second direction intersecting the first direction. Including repetition of
    The imprint apparatus according to claim 1.
  3. 前記周辺部材に対する前記帯電部の相対的な移動の経路は、前記基板保持領域を取り囲む複数のループを含み、前記複数のループは、前記基板保持領域からの距離が互いに異なる、
    ことを特徴とする請求項1に記載のインプリント装置。
    A path of relative movement of the charging unit with respect to the peripheral member includes a plurality of loops surrounding the substrate holding region, and the plurality of loops have different distances from the substrate holding region.
    The imprint apparatus according to claim 1.
  4. 基板の上にインプリント材を供給する供給部と、型を駆動する型駆動機構と、を更に備え、
    前記型駆動機構は、前記供給部から見て第1方位に位置し、
    前記領域は、前記周辺部材の上面のうち前記基板チャックによって保持される基板の前記第1方位の側の側面よりも前記第1方位の側に位置する領域を含む、
    ことを特徴とする請求項1乃至3のいずれか1項に記載のインプリント装置。
    A supply unit for supplying the imprint material on the substrate, and a mold drive mechanism for driving the mold,
    The mold drive mechanism is located in the first direction as viewed from the supply unit,
    The region includes a region located on the first azimuth side of a side surface on the first azimuth side of the substrate held by the substrate chuck in the upper surface of the peripheral member.
    The imprint apparatus according to any one of claims 1 to 3, wherein:
  5. 前記クリーニング処理は、基板の上にインプリント材が存在しない状態で実施され、
    前記供給部は、前記クリーニング処理の期間中は基板の上にインプリント材を供給しない、
    ことを特徴とする請求項4に記載のインプリント装置。
    The cleaning process is performed in a state where there is no imprint material on the substrate,
    The supply unit does not supply an imprint material on the substrate during the cleaning process.
    The imprint apparatus according to claim 4.
  6. 前記制御部は、基板にインプリントによってパターンを形成するインプリント処理の実行が指令された後、前記指令に応答して前記インプリント処理を実行する前に、前記クリーニング処理を実行する、
    請求項1乃至5のいずれか1項に記載のインプリント装置。
    The control unit executes the cleaning process after executing an imprint process for forming a pattern on the substrate by imprinting and before executing the imprint process in response to the command.
    The imprint apparatus according to claim 1.
  7. 前記周辺部材は、表面が滑らかな連続部と、表面が滑らかではない不連続部とを有し、前記制御部は、単位面積当たりの前記不連続部に前記帯電部を対向させる総時間を単位面積当たりの前記連続部に前記帯電部を対向させる総時間より長くする、
    ことを特徴とする請求項1乃至6のいずれか1項に記載のインプリント装置。
    The peripheral member has a continuous part with a smooth surface and a discontinuous part with a non-smooth surface, and the control unit is a unit of a total time in which the charging part is opposed to the discontinuous part per unit area. Longer than the total time of facing the charging part to the continuous part per area,
    The imprint apparatus according to claim 1, wherein the apparatus is an imprint apparatus.
  8. 型を保持する型チャックと、前記クリーニング部材を保持する保持部とを更に備え、前記制御部は、前記保持部によって前記クリーニング部材が保持された状態で前記クリーニング処理を実行する、
    ことを特徴とする請求項1乃至7のいずれか1項に記載のインプリント装置。
    A mold chuck that holds a mold; and a holding unit that holds the cleaning member; and the control unit executes the cleaning process in a state where the cleaning member is held by the holding unit.
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 7.
  9. 型を保持する型チャックによって前記クリーニング部材が保持された状態で前記クリーニング処理が実行される、
    ことを特徴とする請求項1乃至7のいずれか1項に記載のインプリント装置。
    The cleaning process is performed in a state where the cleaning member is held by a mold chuck that holds a mold.
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 7.
  10. 前記クリーニング処理における前記帯電部と前記周辺部材との間隙は、基板の上にインプリント材を供給するために該基板を移動させるときの該型と前記周辺部材との間隙より小さい、
    ことを特徴とする請求項1乃至9のいずれか1項に記載のインプリント装置。
    The gap between the charging unit and the peripheral member in the cleaning process is smaller than the gap between the mold and the peripheral member when the substrate is moved to supply the imprint material onto the substrate.
    The imprint apparatus according to claim 1, wherein the apparatus is an imprint apparatus.
  11. 前記クリーニング処理は、前記帯電部と前記周辺部材との間隙を0.8mm以下にして実行される、
    ことを特徴とする請求項1乃至10のいずれか1項に記載のインプリント装置。
    The cleaning process is performed with a gap between the charging unit and the peripheral member of 0.8 mm or less.
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 10.
  12. 前記帯電部は、帯電した誘電部材を含む、
    ことを特徴とする請求項1乃至11のいずれか1項に記載のインプリント装置。
    The charging unit includes a charged dielectric member,
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 11.
  13. 前記帯電部は、エレクトレットを含む、
    ことを特徴とする請求項1乃至11のいずれか1項に記載のインプリント装置。
    The charging unit includes an electret,
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 11.
  14. 前記帯電部は、正の電荷を保持したエレクトレットと、負の電荷を保持したエレクトレットとを含む、
    ことを特徴とする請求項1乃至11のいずれか1項に記載のインプリント装置。
    The charging unit includes an electret that holds a positive charge and an electret that holds a negative charge.
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 11.
  15. 前記制御部は、前記基板チャックによって基板が保持されていない状態で前記帯電部を前記基板チャックに対して相対的に移動させることによって前記基板チャックのパーティクルを前記帯電部に吸着させる動作を制御する、
    ことを特徴とする請求項1乃至14のいずれか1項に記載のインプリント装置。
    The control unit controls an operation of attracting particles of the substrate chuck to the charging unit by moving the charging unit relative to the substrate chuck in a state where the substrate is not held by the substrate chuck. ,
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 14.
  16. インプリント装置を動作させる動作方法であって、前記インプリント装置は、基板を保持する基板チャックと、前記基板チャックによって保持される基板の側面を取り囲むように配置された周辺部材を備え、
    前記動作方法は、
    帯電部を含むクリーニング部材を使って前記周辺部材の少なくとも一部の領域をクリーニングするクリーニング処理を行う工程と、
    前記基板チャックによって保持された基板の上にインプリント材を供給し、該インプリント材に型を接触させた状態で該インプリント材を硬化させることによって該基板の上にパターンを形成する工程と、を含み、
    前記クリーニング処理は、前記帯電部を前記周辺部材の少なくとも一部の領域に対向させた状態で前記クリーニング部材を前記周辺部材に対して相対的に移動させることによって前記領域のパーティクルを前記帯電部に吸着させる動作を含む、
    ことを特徴とするインプリント装置の動作方法。
    An operation method for operating an imprint apparatus, the imprint apparatus comprising: a substrate chuck for holding a substrate; and a peripheral member disposed so as to surround a side surface of the substrate held by the substrate chuck;
    The operation method is as follows:
    Performing a cleaning process for cleaning at least a partial region of the peripheral member using a cleaning member including a charging unit;
    Supplying an imprint material onto the substrate held by the substrate chuck, and forming a pattern on the substrate by curing the imprint material in a state where a mold is in contact with the imprint material; Including,
    In the cleaning process, particles in the region are moved to the charging unit by moving the cleaning member relative to the peripheral member in a state where the charging unit is opposed to at least a part of the peripheral member. Including the action of adsorbing,
    A method of operating an imprint apparatus.
  17. 物品製造方法であって、
    請求項1乃至15のいずれか1項に記載のインプリント装置を使って基板の上にパターンを形成する工程と、
    前記パターンが形成された基板を処理する工程と、
    を含むことを特徴とする物品製造方法。
    An article manufacturing method comprising:
    Forming a pattern on a substrate using the imprint apparatus according to any one of claims 1 to 15,
    Processing the substrate on which the pattern is formed;
    An article manufacturing method comprising:
  18. 物品製造方法であって、
    請求項16に記載の動作方法によってインプリント装置を動作させ、前記インプリント装置を用いて基板の上にパターンを形成する工程と、
    前記パターンが形成された基板を処理する工程と、
    を含むことを特徴とする物品製造方法。
    An article manufacturing method comprising:
    Operating the imprint apparatus by the operation method according to claim 16, and forming a pattern on a substrate using the imprint apparatus;
    Processing the substrate on which the pattern is formed;
    An article manufacturing method comprising:
  19. 前記クリーニング部材は、基板の上にインプリント材を供給するディスペンサと前記クリーニング部材との間に型が位置するように配置されている、
    ことを特徴とする請求項1乃至15のいずれか1項に記載のインプリント装置。
    The cleaning member is disposed such that a mold is positioned between a dispenser that supplies an imprint material on the substrate and the cleaning member.
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 15.
  20. 前記制御部は、前記クリーニング部材の前記帯電部を帯電状態または非帯電状態にするための制御を行う、
    ことを特徴とする請求項19に記載のインプリント装置。
    The control unit performs control for bringing the charging unit of the cleaning member into a charged state or an uncharged state.
    The imprint apparatus according to claim 19.
  21. 前記制御部は、前記ディスペンサによる基板へのインプリント材の供給の前に前記帯電部を帯電状態にする、
    ことを特徴とする請求項20に記載のインプリント装置。
    The controller is configured to charge the charging unit before supplying the imprint material to the substrate by the dispenser.
    The imprint apparatus according to claim 20.
  22. 前記クリーニング部材および前記ディスペンサが並んだ方向に直交する方向における前記帯電部の幅が型のパターン領域の幅より大きい、
    ことを特徴とする請求項19乃至21のいずれか1項に記載のインプリント装置。
    The width of the charging portion in the direction orthogonal to the direction in which the cleaning member and the dispenser are arranged is larger than the width of the pattern area of the mold,
    The imprint apparatus according to any one of claims 19 to 21, wherein the imprint apparatus according to any one of claims 19 to 21 is provided.
  23. 前記型を除電するためのガスを供給するガス供給部と、
    前記帯電部に印加する電圧を制御する電圧制御部と、
    を更に備えることを特徴とする請求項1に記載のインプリント装置。
    A gas supply unit for supplying a gas for discharging the mold;
    A voltage control unit for controlling a voltage applied to the charging unit;
    The imprint apparatus according to claim 1, further comprising:
  24. 前記電圧制御部は、前記帯電部に印加される電圧を、前記帯電部と前記周辺部材との間に発生する電界強度が前記ガスを通して放電が起こる電界強度以下となるように設定する、
    ことを特徴とする請求項23に記載のインプリント装置。
    The voltage control unit sets a voltage applied to the charging unit such that an electric field strength generated between the charging unit and the peripheral member is equal to or lower than an electric field strength at which discharge occurs through the gas;
    The imprint apparatus according to claim 23.
  25. 前記帯電部に印加される電圧は、前記ガスの種類又は前記帯電部と前記周辺部材との間の距離によって異なる、
    ことを特徴とする請求項24に記載のインプリント装置。
    The voltage applied to the charging unit varies depending on the type of gas or the distance between the charging unit and the peripheral member.
    The imprint apparatus according to claim 24, wherein:
  26. 硬化したインプリント材から引き離された前記型と前記インプリント材との間隙を前記ガスで置換することで前記型の除電が行われる、
    ことを特徴とする請求項23乃至25のいずれか1項に記載のインプリント装置。
    The static elimination of the mold is performed by replacing the gap between the mold and the imprint material separated from the cured imprint material with the gas.
    The imprint apparatus according to any one of claims 23 to 25, wherein:
  27. 前記ガスは、電子に対する平均自由行程が空気よりも長い気体を含む、
    ことを特徴とする請求項23乃至26のいずれか1項に記載のインプリント装置。
    The gas includes a gas whose mean free path for electrons is longer than air.
    The imprint apparatus according to any one of claims 23 to 26, wherein:
  28. 前記ガスは、ヘリウムを含む、
    ことを特徴とする請求項23乃至26のいずれか1項に記載のインプリント装置。
    The gas includes helium;
    The imprint apparatus according to any one of claims 23 to 26, wherein:
  29. 前記電圧制御部は、前記ガス供給部が前記ガスを供給しない間は、前記帯電部に印加される電圧を、前記帯電部が前記周辺部材との間に発生する電界強度が前記ガスを通して放電が起こる電界強度より高くなるように設定する、
    ことを特徴とする請求項23に記載のインプリント装置。
    The voltage control unit discharges the voltage applied to the charging unit while the gas supply unit does not supply the gas and the electric field strength generated between the charging unit and the peripheral member through the gas. Set to be higher than the electric field strength that occurs,
    The imprint apparatus according to claim 23.
PCT/JP2017/005834 2016-02-26 2017-02-17 Imprint device, operating method for same, and method for manufacturing article WO2017145924A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187026500A KR102115879B1 (en) 2016-02-26 2017-02-17 Imprint apparatus, method of operation thereof, and method of manufacturing article
CN201780012426.0A CN108701585B (en) 2016-02-26 2017-02-17 Imprint apparatus, method of operating imprint apparatus, and method of manufacturing article
SG11201807161RA SG11201807161RA (en) 2016-02-26 2017-02-17 Imprint apparatus, method of operating the same, and method of manufacturing article
US16/105,341 US11036149B2 (en) 2016-02-26 2018-08-20 Imprint apparatus, method of operating the same, and method of manufacturing article

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016036315 2016-02-26
JP2016-036315 2016-02-26
JP2016225379 2016-11-18
JP2016-225379 2016-11-18
JP2017018915A JP6603678B2 (en) 2016-02-26 2017-02-03 Imprint apparatus, operation method thereof, and article manufacturing method
JP2017-018915 2017-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/105,341 Continuation US11036149B2 (en) 2016-02-26 2018-08-20 Imprint apparatus, method of operating the same, and method of manufacturing article

Publications (1)

Publication Number Publication Date
WO2017145924A1 true WO2017145924A1 (en) 2017-08-31

Family

ID=59686349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005834 WO2017145924A1 (en) 2016-02-26 2017-02-17 Imprint device, operating method for same, and method for manufacturing article

Country Status (2)

Country Link
TW (1) TWI680050B (en)
WO (1) WO2017145924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210354363A1 (en) * 2020-05-13 2021-11-18 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
US11747722B2 (en) * 2019-02-14 2023-09-05 Canon Kabushiki Kaisha Imprint method, imprint apparatus, and method of manufacturing article

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219432A (en) * 1996-02-14 1997-08-19 Hitachi Ltd Air stream transport apparatus
JP2000252309A (en) * 1999-02-26 2000-09-14 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2002353086A (en) * 2001-05-30 2002-12-06 Sony Corp Apparatus and method for manufacturing semiconductor
JP2007017895A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Exposure apparatus
JP2007329493A (en) * 2007-07-30 2007-12-20 Renesas Technology Corp Method of fabricating semiconductor integrated circuit device
JP2008260273A (en) * 2007-03-16 2008-10-30 Canon Inc Imprinting method, manufacturing method for chip, and imprinting apparatus
JP2009117440A (en) * 2007-11-02 2009-05-28 Creative Technology:Kk Cleaning wafer
JP2009286085A (en) * 2008-06-02 2009-12-10 Canon Inc Pattern transfer apparatus and device manufacturing process
JP2012084654A (en) * 2010-10-08 2012-04-26 Panasonic Corp Dry etching device and neutralization method of substrate
JP2013069732A (en) * 2011-09-21 2013-04-18 Canon Inc Imprint device, and method for manufacturing article by using the same
JP2014183069A (en) * 2013-03-18 2014-09-29 Dainippon Printing Co Ltd Imprint method and imprint device
JP2015122373A (en) * 2013-12-20 2015-07-02 キヤノン株式会社 Imprint device, foreign substance removal method and manufacturing method of article
JP2015149390A (en) * 2014-02-06 2015-08-20 キヤノン株式会社 Imprint device, die, and method of manufacturing article
JP2016208006A (en) * 2015-04-22 2016-12-08 キヤノン株式会社 Imprint device, imprint method, and manufacturing method of article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067167B2 (en) * 2003-01-31 2006-06-27 General Mills Marketing, Inc. Method for making sweet cookie dough having an imprinted surface
JP4844729B2 (en) * 2005-08-17 2011-12-28 独立行政法人産業技術総合研究所 Nanoimprint method and apparatus
DE112013002561T5 (en) * 2012-05-18 2015-02-19 Rave N.P., Inc. Apparatus and method for removing contaminants
JP6400090B2 (en) * 2014-05-29 2018-10-03 キヤノン株式会社 Coating apparatus, imprint apparatus, and article manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219432A (en) * 1996-02-14 1997-08-19 Hitachi Ltd Air stream transport apparatus
JP2000252309A (en) * 1999-02-26 2000-09-14 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2002353086A (en) * 2001-05-30 2002-12-06 Sony Corp Apparatus and method for manufacturing semiconductor
JP2007017895A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Exposure apparatus
JP2008260273A (en) * 2007-03-16 2008-10-30 Canon Inc Imprinting method, manufacturing method for chip, and imprinting apparatus
JP2007329493A (en) * 2007-07-30 2007-12-20 Renesas Technology Corp Method of fabricating semiconductor integrated circuit device
JP2009117440A (en) * 2007-11-02 2009-05-28 Creative Technology:Kk Cleaning wafer
JP2009286085A (en) * 2008-06-02 2009-12-10 Canon Inc Pattern transfer apparatus and device manufacturing process
JP2012084654A (en) * 2010-10-08 2012-04-26 Panasonic Corp Dry etching device and neutralization method of substrate
JP2013069732A (en) * 2011-09-21 2013-04-18 Canon Inc Imprint device, and method for manufacturing article by using the same
JP2014183069A (en) * 2013-03-18 2014-09-29 Dainippon Printing Co Ltd Imprint method and imprint device
JP2015122373A (en) * 2013-12-20 2015-07-02 キヤノン株式会社 Imprint device, foreign substance removal method and manufacturing method of article
JP2015149390A (en) * 2014-02-06 2015-08-20 キヤノン株式会社 Imprint device, die, and method of manufacturing article
JP2016208006A (en) * 2015-04-22 2016-12-08 キヤノン株式会社 Imprint device, imprint method, and manufacturing method of article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747722B2 (en) * 2019-02-14 2023-09-05 Canon Kabushiki Kaisha Imprint method, imprint apparatus, and method of manufacturing article
US20210354363A1 (en) * 2020-05-13 2021-11-18 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
JP7495814B2 (en) 2020-05-13 2024-06-05 キヤノン株式会社 Imprinting apparatus and method for manufacturing article
US12032283B2 (en) * 2020-05-13 2024-07-09 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article

Also Published As

Publication number Publication date
TW201729979A (en) 2017-09-01
TWI680050B (en) 2019-12-21

Similar Documents

Publication Publication Date Title
US11036149B2 (en) Imprint apparatus, method of operating the same, and method of manufacturing article
JP6661397B2 (en) Imprint apparatus, imprint method, and article manufacturing method
US11333971B2 (en) Imprint apparatus, imprint method, and method of manufacturing article
KR102540626B1 (en) Container, processing apparatus, particle removing method, and method of manufacturing article
JP6789772B2 (en) Imprint equipment, imprint method and article manufacturing method
WO2017145924A1 (en) Imprint device, operating method for same, and method for manufacturing article
KR102206846B1 (en) Imprint apparatus and article manufacturing method
US10777443B2 (en) Imprint apparatus, imprinting method, and method for manufacturing article
JP2017139452A (en) Imprint apparatus and method of manufacturing article
JP2019067916A (en) Lithography apparatus and method of manufacturing article
JP6884048B2 (en) Imprint equipment and article manufacturing method
WO2017149992A1 (en) Imprinting device, imprinting method and article production method
US20220364972A1 (en) Evaluation method, substrate processing apparatus, manufacturing method of substrate processing apparatus and article manufacturing method
WO2017134989A1 (en) Imprinting device, and article production method
JP2021002626A (en) Imprint device and manufacturing method for article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201780012426.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11201807161R

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026500

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026500

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756363

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756363

Country of ref document: EP

Kind code of ref document: A1