WO2017149992A1 - Imprinting device, imprinting method and article production method - Google Patents

Imprinting device, imprinting method and article production method Download PDF

Info

Publication number
WO2017149992A1
WO2017149992A1 PCT/JP2017/002097 JP2017002097W WO2017149992A1 WO 2017149992 A1 WO2017149992 A1 WO 2017149992A1 JP 2017002097 W JP2017002097 W JP 2017002097W WO 2017149992 A1 WO2017149992 A1 WO 2017149992A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
substrate
peripheral member
imprint
voltage
Prior art date
Application number
PCT/JP2017/002097
Other languages
French (fr)
Japanese (ja)
Inventor
雅見 米川
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016223348A external-priority patent/JP6789772B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020187026955A priority Critical patent/KR102134212B1/en
Publication of WO2017149992A1 publication Critical patent/WO2017149992A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to an imprint apparatus, an imprint method, and an article manufacturing method.
  • An imprint technique in which a pattern is formed on a substrate by curing the imprint material in a state where a mold (mold) is in contact with the imprint material arranged on the substrate has attracted attention.
  • the mold is formed with a pattern of concave portions.
  • the concave portions are filled with the imprint material by capillary action.
  • energy such as light or heat is applied to the imprint material.
  • the imprint material is cured, and the pattern formed of the recesses formed in the mold is transferred to the imprint material on the substrate. After the imprint material is cured, the mold is pulled away from the imprint material.
  • Patent Document 1 describes that a foreign matter capturing region is provided in a mold and the foreign matter capturing region is charged to remove foreign matter present in the atmosphere and / or on the substrate when the substrate is transported to the transfer position. Has been.
  • a defective pattern may be formed, or the substrate and / or the mold may be damaged. sell.
  • the particles that are firmly attached to the surface of the member arranged around the substrate are not easily detached from the surface due to the electrostatic force acting on the mold, but are weakly attached to the surface. Particles can be easily detached from the surface by electrostatic force. The detached particles can adhere to the mold or the substrate. Further, particles that are firmly attached to the surface of a member disposed around the mold are unlikely to be detached from the surface due to electrostatic force acting between the imprint material on the substrate. On the other hand, particles weakly adhering to the surface can be easily detached from the surface by electrostatic force. The detached particles can adhere to the substrate or the mold.
  • the present invention has been made in recognition of the above problems, and reduces pattern defects and substrate and / or mold damage that may occur due to particles that are likely to be detached from the substrate and / or members around the substrate. It is an object of the present invention to provide an advantageous technique.
  • the imprint apparatus includes: A substrate chuck for holding the substrate, a substrate peripheral member arranged around the substrate chuck, a mold chuck holding the die, a mold peripheral member arranged around the mold chuck, and the substrate peripheral member A power source for supplying a voltage including an alternating current component to the mold peripheral member.
  • an advantageous technique is provided for reducing pattern defects and substrate and / or mold damage that may be caused by particles that are easily detached from the substrate and / or members around the substrate.
  • the figure which illustrates the operating method of the imprint apparatus of one embodiment of this invention The figure which illustrates the operation
  • the figure explaining an experimental method The figure explaining experiment condition A.
  • FIG. The figure explaining the sample prepared for the experimental condition A.
  • FIG. The figure which shows the result under experiment condition A.
  • FIG. The figure which shows the result under experiment condition B.
  • the figure which shows the result under experiment condition B The figure which shows the result under experiment condition B.
  • FIG. 2 illustrates the configuration of the imprint apparatus IMP according to one embodiment of the present invention.
  • the imprint apparatus IMP transfers the pattern of the mold 100 to the substrate 101 by imprinting.
  • the imprint apparatus IMP transfers the pattern of the mold 100 onto the imprint material (transfer material) on the substrate 101 by imprinting.
  • imprint means that the imprint material and the mold are brought into contact with each other, the imprint material is cured, and then the imprint material and the mold are pulled apart.
  • the mold 100 has a pattern composed of recesses.
  • the imprint material is filled in the concave portions of the pattern by bringing the mold 100 into contact with the imprint material (uncured resin) on the substrate 101. In this state, the imprint material is cured by applying energy for curing the imprint material.
  • the pattern of the mold 100 is transferred to the imprint material, and a pattern made of the cured imprint material is formed on the substrate 101.
  • the imprint material is a curable composition that is cured by applying energy for curing the imprint material.
  • the imprint material may mean a cured state or an uncured state.
  • the energy for curing for example, electromagnetic waves, heat, or the like can be used.
  • the electromagnetic wave can be, for example, light (for example, infrared rays, visible rays, ultraviolet rays) having a wavelength selected from a range of 10 nm to 1 mm.
  • the curable composition is typically a composition that is cured by light irradiation or by heating.
  • the photocurable composition that is cured by light can contain at least a polymerizable compound and a photopolymerization initiator.
  • the photocurable composition may additionally contain a non-polymerizable compound or a solvent.
  • the non-polymerizable compound may be at least one selected from the group of, for example, a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, and a polymer component.
  • directions are shown in an XYZ coordinate system in which a direction parallel to the surface of the substrate 101 is an XY plane.
  • the directions parallel to the X, Y, and Z axes are the X, Y, and Z directions, respectively, and rotation around the X axis, rotation around the Y axis, and rotation around the Z axis are ⁇ X and ⁇ Y, respectively.
  • ⁇ Z The control or drive related to the X axis, Y axis, and Z axis means control or drive related to the direction parallel to the X axis, the direction parallel to the Y axis, and the direction parallel to the Z axis, respectively.
  • the control or drive related to the ⁇ X axis, ⁇ Y axis, and ⁇ Z axis relates to rotation around an axis parallel to the X axis, rotation around an axis parallel to the Y axis, and rotation around an axis parallel to the Z axis.
  • the position is information that can be specified based on the coordinates of the X axis, Y axis, and Z axis
  • the posture is information that can be specified by relative rotation with respect to the ⁇ X axis, ⁇ Y axis, and ⁇ Z axis.
  • Positioning means controlling position and / or attitude. In the present specification, expressions such as “A and / or B” mean “at least one of A and B”.
  • the imprint apparatus IMP includes a substrate driving mechanism SDM that positions the substrate 101.
  • the substrate driving mechanism SDM includes, for example, a substrate chuck 102, a substrate peripheral member 113, a fine movement mechanism 114, a coarse movement mechanism 115, and a base structure 116. sell.
  • the substrate chuck 102 has a substrate holding region for holding the substrate 101, and can hold the substrate 101 by suction (for example, vacuum suction, electrostatic suction) or mechanical means.
  • the fine movement mechanism 114 can include a fine movement stage that supports the substrate chuck 102 and the substrate peripheral member 113 and a drive mechanism that drives the fine movement stage.
  • the substrate peripheral member 113 is disposed around the substrate chuck 102. For example, as shown in FIG.
  • the substrate peripheral member 113 is disposed around a region where the substrate 101 is disposed so as to surround the side surface of the substrate 101.
  • the substrate peripheral member 113 may have an upper surface having a height substantially equal to the upper surface of the substrate 101.
  • the substrate peripheral member 113 may have an upper surface that is equal to or slightly lower than the upper surface of the substrate 101 (for example, an upper surface having a height difference of 1 mm or less from the upper surface of the substrate 101).
  • the substrate peripheral member 113 may not be integrated but may be divided.
  • the fine movement mechanism 114 is a mechanism that finely drives the substrate 101 by finely driving the substrate chuck 102.
  • the coarse movement mechanism 115 is a mechanism that coarsely drives the substrate 101 by roughly driving the fine movement mechanism 114.
  • the base structure 116 supports the coarse movement mechanism 115, the fine movement mechanism 114, the substrate chuck 102, and the substrate peripheral member 113.
  • the substrate drive mechanism SDM can be configured to drive the substrate 101 with respect to a plurality of axes (for example, three axes of the X axis, the Y axis, and the ⁇ Z axis), for example.
  • the position of the part (fine movement stage) integrated with the substrate chuck 102 in the fine movement mechanism 114 is monitored by a measuring instrument 117 such as an interferometer.
  • the imprint apparatus IMP includes a mold movement mechanism MDM that positions the mold 100, and the mold drive mechanism MDM may include a mold chuck 110, a drive mechanism 109, and a mold peripheral member 161.
  • the mold peripheral member 161 is disposed around a region where the mold 100 is disposed so as to surround the side surface of the mold 100.
  • the mold driving mechanism MDM and the mold peripheral member 161 can be supported by the support structure 108.
  • the mold chuck 110 can hold the mold 100 by suction (for example, vacuum suction, electrostatic suction) or mechanical means.
  • the drive mechanism 109 drives the mold 100 by driving the mold chuck 110.
  • the original plate driving mechanism MDM can be configured to drive the mold 100 with respect to a plurality of axes (for example, six axes of X axis, Y axis, Z axis, ⁇ X axis, ⁇ Y axis, and ⁇ Z axis).
  • axes for example, six axes of X axis, Y axis, Z axis, ⁇ X axis, ⁇ Y axis, and ⁇ Z axis.
  • the substrate drive mechanism SDM and the mold drive mechanism MDM constitute a drive unit that performs relative positioning between the substrate 101 and the mold 100.
  • the drive unit adjusts the relative position between the substrate 101 and the mold 100 with respect to the X axis, the Y axis, the ⁇ X axis, the ⁇ Y axis, and the ⁇ Z axis, and also adjusts the relative position between the substrate 101 and the mold 100 with respect to the Z axis.
  • the adjustment of the relative position between the substrate 101 and the mold 100 with respect to the Z-axis includes operations of contact and separation between the imprint material on the substrate 101 and the mold 100.
  • the imprint apparatus IMP may include a dispenser (supply unit) 111 that applies, disposes, or supplies an uncured imprint material on the substrate 101.
  • the dispenser 111 can be configured to arrange an imprint material on the substrate 101 in the form of a plurality of droplets, for example.
  • the dispenser 111 can be supported by the support structure 108.
  • the imprint apparatus IMP may include a curing unit 104 that cures the imprint material by irradiating the imprint material on the substrate 101 with light such as UV light.
  • the imprint apparatus IMP may also include a camera 103 for observing the imprint state.
  • the light emitted from the curing unit 104 is reflected by the mirror 105, passes through the mold 100, and can be applied to the imprint material.
  • the camera 103 can be configured to observe an imprint state, for example, a contact state between the imprint material and the mold 100 via the mold 100 and the mirror 105.
  • the imprint apparatus IMP may include alignment scopes 107a and 107b for detecting a relative position between the mark on the substrate 101 and the mark on the mold 100.
  • the alignment scopes 107 a and 107 b can be disposed on the upper structure 106 supported by the support structure 108.
  • the imprint apparatus IMP may include an off-axis scope 112 for detecting the positions of a plurality of marks on the substrate 101.
  • the off-axis scope 112 can be supported by the support structure 108.
  • the imprint apparatus IMP may include one or a plurality of gas supply units 118.
  • the gas supply unit 118 may be disposed around the mold chuck 110 so as to surround the mold chuck 110.
  • the gas supply unit 118 forms a curtain-shaped air flow 118 a by supplying gas to the space between the substrate 101 and the mold 100.
  • the gas supply unit 118 suppresses intrusion of particles into the space between the substrate 101 and the mold 100 by the air flow 118a.
  • the gas supply unit 118 can be supported by the support structure 108, for example.
  • the gas supplied by the gas supply unit 118 may be, for example, clean dry air, but may be other gas such as nitrogen or helium.
  • the gas outlet (not shown) from the gas supply unit 118 is preferably annular, but if the airflow 118a formed surrounds the space between the substrate 101 and the mold 100, the outlet itself is It does not have to be annular.
  • the imprint apparatus IMP may include a gas supply unit 130 that supplies the gas 131 toward the space so that the flow of the gas 131 along the substrate 101 is formed in the space between the substrate 101 and the mold 100. .
  • the imprint apparatus IMP includes a power supply PS that supplies a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161.
  • the substrate peripheral member 113 is grounded, and the voltage V including an AC component is supplied from the power source PS to the mold peripheral member 161.
  • the voltage V can be a negative voltage or a positive voltage.
  • An electric field is formed between the substrate peripheral member 113 and the mold peripheral member 161 by supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS. This electric field causes electrostatic force to act on the particles on the substrate peripheral member 113, so that at least a part of the particles on the substrate peripheral member 113 is removed.
  • the imprint apparatus IMP includes a chamber 190, and each of the above components can be disposed in the chamber 190.
  • the imprint apparatus IMP may include a main control unit (control unit) 126, an imprint control unit 120, an irradiation control unit 121, a scope control unit 122, a dispenser control unit 123, a curtain control unit 124, and a substrate control unit 125.
  • the main control unit 126 controls the imprint control unit 120, the irradiation control unit 121, the scope control unit 122, the dispenser control unit 123, the curtain control unit 124, the substrate control unit 125, and the power source PS.
  • the imprint control unit 120 controls the mold driving mechanism MDM.
  • the irradiation control unit 121 controls the curing unit 104.
  • the scope control unit 122, the alignment scopes 107a and 107b, and the off-axis scope 112 are controlled.
  • the dispenser control unit 123 controls the dispenser 111.
  • the curtain control unit 124 controls the gas supply unit 118.
  • the substrate controller 125 controls the substrate drive mechanism SDM.
  • FIG. 1 schematically shows a part of the imprint apparatus IMP shown in FIG.
  • the substrate peripheral member 113 can have an upper surface having a height equal to the upper surface of the substrate 101.
  • the mold peripheral member 161 may have a lower surface having a height equal to the lower surface of the mold 100.
  • the substrate peripheral member 113 and the mold peripheral member 161 can function to suppress the disturbance of the flow of the gas 131 supplied from the gas supply unit 130.
  • the substrate peripheral member 113 can have a flat upper surface.
  • the mold peripheral member 161 can have a flat lower surface.
  • the particles 150 can enter the internal space of the chamber 190. Further, in the chamber 190, the particles 150 may be generated due to mutual friction between the mechanical elements, friction between the mechanical elements and the substrate 101 or the mold 100, and the like. Alternatively, when the imprint material is discharged from the discharge port in order for the dispenser 111 to place the uncured imprint material on the substrate 101, a mist of the imprint material is generated and the imprint material is solidified. Particles 150 can be generated.
  • the particles 150 may adhere to the surfaces of members such as the substrate peripheral member 113 and the mold peripheral member 161. Of the substrate peripheral member 113 and the mold peripheral member 161, in particular, the possibility that the particles 150 fall and adhere to the substrate peripheral member 113 positioned below is high.
  • the particle 150 has various particle sizes, shapes, materials, and the like. Therefore, the adhesion force of the particles 150 to the upper surface of the substrate peripheral member 113 also varies.
  • the particles 150 having weak adhesion to the upper surface of the substrate peripheral member 113 can be easily detached from the upper surface of the substrate peripheral member 113 by an external stimulus (vibration, airflow, static electricity) or the like. Since the mold 100 is charged through imprinting, a strong electric field can be formed between the substrate peripheral member 113 and the mold 100.
  • This electric field causes an electrostatic force to act on the particles 150 on the substrate peripheral member 113. Therefore, the particles 150 adhering to the upper surface of the substrate peripheral member 113 with a weak adhesive force can be easily detached from the upper surface of the substrate peripheral member 113.
  • the particles 150 separated from the upper surface of the substrate peripheral member 113 can be attracted to the mold 100 and adhere to the mold 100 or adhere to the substrate 101. Therefore, the particles 150 may be sandwiched between the mold 100 and the substrate 101. For this reason, a pattern having a defect may be formed, or the substrate and / or the mold may be damaged.
  • the imprint apparatus IMP includes a power source PS.
  • the power source PS supplies a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161.
  • An electric field is generated between the substrate peripheral member 113 and the mold peripheral member 161 by the voltage V supplied between the substrate peripheral member 113 and the mold peripheral member 161, and electrostatic force acts on the particles 150 by this electric field.
  • the particles 150 adhering to the upper surface of the substrate peripheral member 113 are detached from the upper surface of the substrate peripheral member 113 by this electrostatic force.
  • the power supply PS supplies a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 at least before the substrate peripheral member 113 enters the space surrounded by the air flow 118a and the substrate 101. Is preferred.
  • the particles 150 separated from the upper surface of the substrate peripheral member 113 are caused to flow along the airflow 118a, and further discharged along the flow of the gas 131 in a direction away from the mold 100.
  • the substrate peripheral member 113 and the mold peripheral member 161 include a conductor to which a voltage is applied by the power source PS. Thereby, it is possible to prevent the particles 150 detached from the upper surface of the substrate peripheral member 113 from adhering to the mold 100 in an unintended timing, particularly in a space surrounded by the air flow 118a.
  • the mold 100 is charged to ⁇ 3 kV by pulling the mold 100 away from the cured imprint material on the substrate 101.
  • the substrate peripheral member 113 is grounded, and the potential thereof is the ground potential.
  • the gap between the substrate peripheral member 113 and the mold 100 is 1 mm.
  • the direction of the electric field is upward (the positive direction of the Z axis), and the electric field strength (absolute value) is 3 kV / mm.
  • the voltage V is applied between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS so that the average value of the voltage V of the mold peripheral member 161 is lower than ⁇ 3 kV (V ⁇ 3 kV).
  • the particles 150 attached to the upper surface of the substrate peripheral member 113 with a weak force are separated from the upper surface of the substrate peripheral member 113 by the electrostatic force due to the electric field between the substrate peripheral member 113 and the mold peripheral member 161. sell.
  • the particles 150 separated from the substrate peripheral member 113 can be discharged along the flow of the gas 131.
  • the voltage V supplied between the substrate peripheral member 113 and the mold peripheral member 161 is the particle 150 when the voltage V includes an AC component than when it is a constant voltage. It has been found that the effect of detaching the substrate from the substrate peripheral member 113 is high.
  • FIG. 8A shows an experimental system.
  • the wafer 301 is a wafer to which particles 300 floating in a clean room are attached, and is electrically grounded.
  • the wafer 302 is an evaluation wafer, and a voltage is applied by the power source 303.
  • the experimental condition A a constant voltage of ⁇ 1 kV is applied to the wafer 302 as shown in FIG. 8B.
  • the experimental condition B as shown in FIG. 8C, the voltage applied to the wafer 302 is turned ON / OFF every 10 seconds.
  • the experimental condition B is understood as an example in which a voltage including an AC component is supplied between the wafers 301 and 302.
  • a voltage including an AC component is supplied between the wafers 301 and 302.
  • FIG. 9 shows the positions and diameters of the particles adhering to the wafer 301 prepared for the experiment under the experiment condition A.
  • the number of particles adhering to the wafer 301 was 736.
  • the first wafer 302 was placed facing the wafer 301, and a constant voltage was applied between the wafers 301 and 302 according to the experimental condition A.
  • a second wafer 302 was placed facing the wafer 301 as shown in FIG. 8A, and a constant voltage was applied between the wafers 301 and 302 according to the experimental condition A.
  • a third wafer 302 was placed facing the wafer 301 as shown in FIG. 8A, and a constant voltage was applied between the wafers 301 and 302 according to the experimental condition A.
  • FIG. 10A shows the position and the number of particles attached to the first wafer 302, and the number was nine.
  • FIG. 10B shows the position and the number of particles attached to the second wafer 302, and the number was one.
  • FIG. 10C shows the position and number of particles adhering to the third wafer 302, and the number was zero.
  • the number of particles attached to the wafer 302 was zero.
  • the number of particles adhering to the wafer 302 is reduced in the second experiment with respect to the first experiment because the number of particles adhering to the wafer 301 is reduced with a weak adhesion force in the first experiment. It is understood.
  • FIG. 11 shows the positions and diameters of the particles adhering to the wafer 301 prepared for the experiment under the experiment condition B.
  • the number of particles adhering to the wafer 301 was 650.
  • the first wafer 302 was placed facing the wafer 301, and a voltage containing an AC component was applied between the wafers 301 and 302 according to the experimental condition B.
  • a second wafer 302 is placed facing the wafer 301 as shown in FIG. 8A, and a voltage including an AC component is applied between the wafers 301 and 302 according to the experimental condition B. Applied.
  • a third wafer 302 is placed facing the wafer 301 as shown in FIG. 8A, and a voltage including an AC component is applied between the wafers 301 and 302 according to the experimental condition B. Applied.
  • FIG. 12A shows the position and the number of particles attached to the first wafer 302, and the number was 27.
  • FIG. 12B shows the position and the number of particles attached to the second wafer 302, and the number was nine.
  • FIG. 12C shows the position and number of particles attached to the third wafer 302, and the number was twelve.
  • FIG. 4A exemplarily shows the voltage V supplied to the mold peripheral member 161 by the power source PS.
  • the voltage V is a voltage including an AC component (for example, a voltage expressed by the sum of an AC component and a constant value).
  • the voltage V may be a pulse wave (pulse voltage) composed of a plurality of pulses.
  • the waveform of the voltage V may include at least one of a rectangular wave (square wave), a triangular wave, a trapezoidal wave, a staircase wave (a waveform in which the voltage changes stepwise), and a sine wave.
  • FIG. 5A shows a sine wave for six periods as an example of the waveform of the voltage V.
  • the voltage V including the AC component may be a voltage whose magnitude varies over a plurality of periods.
  • the voltage V may typically be a voltage whose polarity does not change, but the polarity may change.
  • the polarity of the voltage V is such that the electric field in the same direction as the electric field formed by charging of the mold 100 between the substrate 101 and the mold 100 is the substrate peripheral member 113.
  • the voltage V is a voltage whose polarity changes, for example, a mold is set so that the average force acting on the particles 150 adhering to the substrate peripheral member 113 acts in a direction in which the particles 150 are detached from the substrate peripheral member 113.
  • a change in polarity of the voltage V supplied to the peripheral member 161 can be determined.
  • the mold 100 When the mold 100 is charged to a voltage in the range of ⁇ V0 to 0V (V0 is a positive value) by pulling the mold 100 away from the cured imprint material on the substrate 101, the peak value ⁇ V1 (V1 Is a voltage lower than -V0. Thereby, an electric field that generates an electrostatic force stronger than the electrostatic force acting on the particles 150 due to the charging of the mold 100 can be generated between the substrate peripheral member 113 and the mold peripheral member 161. Therefore, the particles adhering to the substrate peripheral member 113 can be removed in advance.
  • the time for the voltage V to transition from the maximum value to the minimum value and / or the time for the voltage V to transition from the minimum value to the maximum value is preferably 1 second or less.
  • the maximum absolute value of the voltage V is determined such that an electric field stronger than the maximum intensity of the electric field formed by charging the mold 100 is formed between the substrate peripheral member 113 and the mold peripheral member 161. It is advantageous. However, this is not an essential condition, and an electric field weaker than the maximum strength of the electric field formed by charging of the mold 100 may be formed between the substrate peripheral member 113 and the mold peripheral member 161. Even in this case, at least a part of particles can be removed from the substrate peripheral member 113, and the effect of removing particles from the substrate peripheral member 113 can be enhanced by increasing the rate of change of the voltage V per unit time.
  • FIG. 6 exemplarily shows an operation method of the imprint apparatus IMP.
  • This operation method is controlled by the main control unit (control unit) 216.
  • the main control unit 126 controls the substrate driving mechanism SDM so that the shot area to be imprinted on the substrate 101 moves below the dispenser 111.
  • the main control unit 126 controls the substrate driving mechanism SDM and the dispenser 111 so that the imprint material is arranged in the shot area to be imprinted on the substrate 101.
  • the placement of the imprint material in the shot area can be performed, for example, by discharging the imprint material from the dispenser 111 while moving the substrate 101 by the substrate drive mechanism SDM.
  • the form of the arrangement of the imprint material in the shot area is arbitrary.
  • the imprint material can be arranged in the shot area in the form of an array of a plurality of droplets.
  • step S203 the main controller 126 moves the substrate so that the shot area to be imprinted on the substrate 101 moves below the mold 100, more specifically, the shot area and the mold 100 are aligned.
  • Control of the drive mechanism SDM and the mold drive mechanism MDM is started.
  • step S ⁇ b> 204 the main control unit 126 starts supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 before the substrate peripheral member 113 faces the mold peripheral member 161.
  • the power supply PS is controlled as follows. By supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161, an electric field whose magnitude varies between the substrate peripheral member 113 and the mold peripheral member 161 is formed.
  • step S204 start of supply of voltage V
  • step S203 ends.
  • the dispenser (supply unit) 111 supplies the imprint material to the substrate 101 (the shot region)
  • the supply of the voltage V between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS is not performed. It is desirable not to be done. This is because the electric field formed by the voltage V can prevent the dispenser 111 from supplying the imprint material to an appropriate position on the substrate 101.
  • step S205 the main control unit 126 performs related printing such as a substrate driving mechanism SDM, a mold driving mechanism MDM, a curing unit 104, an alignment scope 107a, so that imprinting is performed on the shot area to be imprinted. 107b and the like are controlled.
  • the mold 100 is brought into contact with the imprint material on the imprint target shot area on the substrate 101, the imprint material is cured, and then the mold 100 is removed from the imprint material.
  • the imprint process to separate is performed.
  • step S205 is performed with the cleaning function turned on.
  • the mold 100 in a state where the voltage V is supplied between the substrate peripheral member 113 and the mold peripheral member 161, the mold 100 is brought into contact with the imprint material on the substrate 101, the imprint material is cured, and the imprint material An operation of pulling the mold 100 away from the material is performed.
  • step S206 the main control unit 126 controls the power source PS so that the supply of the voltage V between the substrate peripheral member 113 and the mold peripheral member 161 is stopped. That is, the main control unit 126 stops (OFF) the cleaning function in step S206.
  • step S207 the main control unit 126 determines whether imprinting for all the shot areas of the substrate 101 has been completed. If there is an unprocessed shot area, the main control unit 126 performs imprinting for the unprocessed shot area. The process returns to step S201 so that printing can be performed. On the other hand, when imprinting for all shot areas is completed, the process proceeds to step S208. In step S208, the main control unit 126 determines whether imprinting has been completed for all the substrates 101 to be processed. If unprocessed substrates 101 remain, imprinting on the unprocessed substrates 101 is performed. The process returns to step S201 so that printing can be performed. On the other hand, when imprinting for all the substrates 101 is completed, the series of processes shown in FIG. 6 is completed.
  • a part of the substrate peripheral member 113 may face the mold 100 from the middle of step S201 to the middle of S203.
  • the substrate peripheral member 113 has undergone the cleaning process in parallel with the imprint in step S205, the particles adhering to the region of the substrate peripheral member 113 with a weak adhesion force separate from the substrate peripheral member 113.
  • the airflow 118a or the airflow 113 is discharged.
  • FIG. 3 shows a modified example of the configuration shown in FIGS.
  • the mold peripheral member 161 is grounded, and the voltage V including an AC component is supplied from the power source PS to the substrate peripheral member 113.
  • the voltage V can be a negative voltage or a positive voltage.
  • An electric field is formed between the substrate peripheral member 113 and the mold peripheral member 161 by supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS. This electric field causes electrostatic force to act on the particles on the substrate peripheral member 113, whereby the particles are removed from the substrate peripheral member 113.
  • the mold 100 is charged to ⁇ 3 kV by pulling the mold 100 away from the cured imprint material on the substrate 101.
  • the mold peripheral member 161 is grounded, and the potential thereof is the ground potential.
  • the gap between the substrate peripheral member 113 and the mold 100 is 1 mm.
  • the direction of the electric field is upward (the positive direction of the Z axis), and the electric field strength (absolute value) is 3 kV / mm.
  • the particles 150 attached to the upper surface of the substrate peripheral member 113 with a weak force can be detached from the upper surface of the substrate peripheral member 113 by an electrostatic force due to an electric field between the substrate peripheral member 113 and the mold peripheral member 161.
  • the substrate peripheral member 113 can be detached.
  • the particles 150 separated from the substrate peripheral member 113 can be discharged along the flow of the gas 131.
  • the ground potential can be supplied to one of the substrate peripheral member 113 and the mold peripheral member 161, and the voltage V can be supplied to the other of the substrate peripheral member 113 and the mold peripheral member 161.
  • the power source PS is connected to the ground potential with respect to both the substrate peripheral member 113 and the mold peripheral member 161 such that the voltage V is supplied between the substrate peripheral member 113 and the mold peripheral member 161. Different potentials may be supplied.
  • FIG. 4B exemplarily shows the voltage V supplied to the substrate peripheral member 113 by the power source PS.
  • the voltage V is a voltage including an AC component (for example, a voltage expressed by the sum of an AC component and a constant value).
  • the voltage V may be a pulse wave composed of a plurality of pulses.
  • the voltage V can be a rectangular wave (square wave), a triangular wave, a trapezoidal wave, or a staircase wave.
  • the voltage V can be a sine wave as shown in FIG. 5B.
  • the voltage V supplied to the substrate peripheral member 113 by the power source PS may be a voltage whose magnitude varies over a plurality of periods.
  • the voltage V including the AC component is formed between the substrate peripheral member 113 and the mold peripheral member 161 while the voltage V is applied between the substrate peripheral member 113 and the mold peripheral member 161.
  • a voltage that changes only the magnitude of the electric field in a state where the direction of the electric field does not change can be included.
  • FIG. 7 exemplarily shows an operation method or an operation method of the imprint apparatus IMP.
  • step S211 maintenance is performed. Maintenance may be performed by an operator or may be performed by a function of the imprint apparatus IMP. Maintenance can include, for example, inspecting, repairing, cleaning, or replacing the dispenser 111, the substrate chuck 102, or the mold chuck 110. In this maintenance, particles may adhere to the substrate peripheral member 113 and / or the mold peripheral member 161.
  • a voltage V including an AC component is supplied between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS after the maintenance is completed and before the imprint process is restarted.
  • steps S212 and S213 can be performed subsequent to step S11.
  • the main control unit 126 controls the substrate driving mechanism SDM so that the substrate peripheral member 113 corresponds to the mold peripheral member 161.
  • the main control unit 126 can execute step S212 in response to the input of a signal indicating the end of maintenance.
  • step S213 the main control unit 126 controls the power supply PS so that the supply of the voltage V between the substrate peripheral member 113 and the mold peripheral member 161 is started.
  • the voltage V is supplied between the substrate peripheral member 113 and the mold peripheral member 161, and an electric field whose magnitude varies is formed between the substrate peripheral member 113 and the mold peripheral member 161. Particles adhering to the upper surface of the substrate peripheral member 113 with a weak adhesive force are removed from the substrate peripheral member 113 by this electric field.
  • particles that can adhere to the substrate peripheral member 113 and / or the mold peripheral member 161 can be immediately removed through maintenance.
  • the positive / negative or magnitude of the voltage V including the AC component supplied between the substrate peripheral member 113 and the mold peripheral member 161 is based on the result of measuring the potential of the mold 100 by an electrometer arranged in the imprint apparatus IMP. It may be determined. Alternatively, the sign of the voltage V may be determined based on the result of periodically taking out the mold 100 and measuring the potential of the mold 100.
  • the mold peripheral member 161 may have a shape surrounding the side surface of the mold 100 in all directions, as illustrated in FIG. However, as illustrated in FIG. 14, the mold peripheral member 161 may be configured by mold peripheral members 330 a, 330 b, and 330 c that are divided and arranged around the area where the mold 100 is disposed. By adopting such a configuration, the degree of freedom for arranging the mechanism around the mold 100 can be improved. Examples of a mechanism that can be arranged around the mold 100 include a mechanism that applies a force to the side surface of the mold 100 to deform the mold 100 into a target shape, and the mold 100 is used for contact and separation between the imprint material and the mold 100.
  • a drive mechanism that moves in the Z direction, a drive mechanism that adjusts the inclination of the mold 100, and the like can be given.
  • the divided mold peripheral members 330a, 330b, and 333c are employed, and the voltage V is supplied from the power source PS to the mold peripheral members 330a, 330b, and 333c, so that the substrate peripheral member 113 is not entirely disposed in the local region.
  • An electric field can be generated.
  • a reference mark used for calibration of the positions of the substrate 101 and the fine movement stage, an illuminance sensor for measuring the illuminance of exposure light for curing the imprint material, and the like are exposed to an electric field. The measurement using the mark and the measurement result of the illuminance sensor can be prevented from being affected.
  • the mold peripheral member 330 a can be arranged in the ⁇ X direction with respect to the mold 100. That is, the mold peripheral member 330a can be arranged in a direction opposite to the direction from the mold 100 toward the dispenser 111 in a plan view (a view when viewed from the + Z direction).
  • the length of the mold peripheral member 330a in the longitudinal direction is preferably longer than the length of the part 100a where the pattern of the mold 100 is formed.
  • the mold peripheral member 330a is used when executing the processing of the flowchart shown in FIG. As illustrated in FIG. 15, the mold peripheral member 330 a faces a region 320 including a region where the mold 100 faces the substrate 101 and the substrate peripheral member 113 in the imprint process.
  • V including the AC voltage By supplying the voltage V including the AC voltage to the mold peripheral member 330 a at the above-described timing, particles that are weakly adhering to the substrate peripheral member 113 can be detached from the upper surface of the substrate peripheral member 113.
  • the mold peripheral members 330b and 330c can be arranged on the + X direction side with respect to the mold 100 and on the ⁇ Y direction side with respect to the mold peripheral member 330a.
  • the mold peripheral members 330b and 330c are used in the process of the flowchart shown in FIG. Particles weakly adhering to the region 340 shown in FIG. 16 using the peripheral member 330 b and the region 350 shown in FIG. 17 using the mold peripheral member 330 c can be detached from the upper surface of the substrate peripheral member 113. .
  • the particles are attracted to the mold 100 at an unintended timing, thereby causing pattern defects. It can be prevented from occurring.
  • the article manufacturing method includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) using the above-described imprint apparatus. Further, the manufacturing method may include a step of processing (for example, etching) the substrate on which the pattern is formed. In the case of manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching.
  • the article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
  • IMP imprint apparatus
  • 100 mold
  • 101 substrate
  • 102 substrate chuck
  • 113 substrate peripheral member
  • 150 particle
  • 161 peripheral member of the mold
  • PS power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

This imprinting device (IMP) brings a mold into contact with an imprint material on a base board (101) and causes the imprint material to cure, thereby forming a pattern over the base board (101). This imprinting device (IMP) comprises a base board chuck (102) holding the base board (101), a base board periphery member (113) disposed in the periphery of the base board chuck (102), a mold chuck (110) for holding the mold (100), a mold periphery member (161) disposed in the periphery of the mold chuck (110), and a power source (PS) for supplying a voltage containing an alternating current component between the base board periphery member (113) and the mold periphery member (161).

Description

インプリント装置、インプリント方法および物品製造方法Imprint apparatus, imprint method, and article manufacturing method
本発明は、インプリント装置、インプリント方法および物品製造方法に関する。 The present invention relates to an imprint apparatus, an imprint method, and an article manufacturing method.
 基板の上に配置されたインプリント材に型(モールド)を接触させた状態でインプリント材を硬化させることによって基板の上にパターンを形成するインプリント技術が注目されている。型には、凹部からなるパターンが形成されていて、基板の上のインプリント材に型を接触させると、毛細管現象によって凹部にインプリント材が充填される。凹部に対して十分にインプリント材が充填された時点で、インプリント材に光または熱などのエネルギーが与えられる。これによりインプリント材が硬化し、型に形成された凹部からなるパターンが基板の上のインプリント材に転写される。インプリント材が硬化した後にインプリント材から型が引き離される。 An imprint technique in which a pattern is formed on a substrate by curing the imprint material in a state where a mold (mold) is in contact with the imprint material arranged on the substrate has attracted attention. The mold is formed with a pattern of concave portions. When the mold is brought into contact with the imprint material on the substrate, the concave portions are filled with the imprint material by capillary action. When the imprint material is sufficiently filled in the recess, energy such as light or heat is applied to the imprint material. As a result, the imprint material is cured, and the pattern formed of the recesses formed in the mold is transferred to the imprint material on the substrate. After the imprint material is cured, the mold is pulled away from the imprint material.
 基板の上の硬化したインプリント材から型を引き離す際に型が帯電しうる。この帯電によって形成される電界によってパーティクルに対して静電気力(クーロン力)が作用し、これによりパーティクルが型に引き付けられて型に付着しうる。パーティクルは、インプリント装置のチャンバの外部から侵入する場合もあるし、チャンバの中において、機械要素の相互の摩擦、機械要素と基板または型との摩擦などによって発生する場合もある。あるいは、基板の上に未硬化のインプリント材を配置するために吐出口からインプリント材が吐出された際にインプリント材のミストが発生し、このインプリント材が固化することによってパーティクルが発生する場合もありうる。特許文献1には、モールドに異物捕捉領域を設け、その異物捕捉領域を帯電させることによって、転写位置への基板の搬送時に、雰囲気中および/または基板上に存在する異物を除去することが記載されている。 When the mold is pulled away from the cured imprint material on the substrate, the mold can be charged. An electrostatic force (Coulomb force) acts on the particles by the electric field formed by the charging, and thereby the particles can be attracted to the mold and attached to the mold. The particles may enter from the outside of the chamber of the imprint apparatus, or may be generated in the chamber due to mutual friction between the mechanical elements, friction between the mechanical elements and the substrate or the mold. Alternatively, in order to place an uncured imprint material on the substrate, a mist of the imprint material is generated when the imprint material is discharged from the discharge port, and particles are generated as the imprint material solidifies. It is possible that Patent Document 1 describes that a foreign matter capturing region is provided in a mold and the foreign matter capturing region is charged to remove foreign matter present in the atmosphere and / or on the substrate when the substrate is transported to the transfer position. Has been.
 型または基板にパーティクルが付着した状態で、型を基板の上のインプリント材に接触させてパターンの形成を行うと、欠陥を有するパターンが形成されたり、基板および/または型が破損したりしうる。ここで、基板の周辺に配置されている部材の表面に強固に付着しているパーティクルは、型との間に働く静電気力によっては該表面から離脱しにくいが、該表面に弱く付着しているパーティクルは、静電気力によって該表面から容易に離脱しうる。離脱したパーティクルは、型また基板に付着しうる。また、型の周辺に配置されている部材の表面に強固に付着しているパーティクルは、基板の上のインプリント材との間に働く静電気力によっては該表面から離脱しにくい。一方、該表面に弱く付着しているパーティクルは、静電気力によって該表面から容易に離脱しうる。離脱したパーティクルは、基板または型に付着しうる。 If a pattern is formed by bringing the mold into contact with the imprint material on the substrate while particles are attached to the mold or the substrate, a defective pattern may be formed, or the substrate and / or the mold may be damaged. sell. Here, the particles that are firmly attached to the surface of the member arranged around the substrate are not easily detached from the surface due to the electrostatic force acting on the mold, but are weakly attached to the surface. Particles can be easily detached from the surface by electrostatic force. The detached particles can adhere to the mold or the substrate. Further, particles that are firmly attached to the surface of a member disposed around the mold are unlikely to be detached from the surface due to electrostatic force acting between the imprint material on the substrate. On the other hand, particles weakly adhering to the surface can be easily detached from the surface by electrostatic force. The detached particles can adhere to the substrate or the mold.
特開2014-175340号公報JP 2014-175340 A
 本発明は、上記の課題認識を契機としてなされたものであり、基板および/または基板の周辺の部材から離脱しやすいパーティクルに起因して発生しうるパターン欠陥や基板および/または型の破損を低減するために有利な技術を提供することを目的とする。 The present invention has been made in recognition of the above problems, and reduces pattern defects and substrate and / or mold damage that may occur due to particles that are likely to be detached from the substrate and / or members around the substrate. It is an object of the present invention to provide an advantageous technique.
 本発明の1つの側面は、基板の上のインプリント材に型を接触させて該インプリント材を硬化させることによって該基板の上にパターンを形成するインプリント装置に係り、前記インプリント装置は、基板を保持する基板チャックと、前記基板チャックの周辺に配置された基板周辺部材と、型を保持する型チャックと、前記型チャックの周辺に配置された型周辺部材と、前記基板周辺部材と前記型周辺部材との間に交流成分を含む電圧を供給する電源と、を備える。 One aspect of the present invention relates to an imprint apparatus that forms a pattern on a substrate by bringing the mold into contact with the imprint material on the substrate and curing the imprint material. The imprint apparatus includes: A substrate chuck for holding the substrate, a substrate peripheral member arranged around the substrate chuck, a mold chuck holding the die, a mold peripheral member arranged around the mold chuck, and the substrate peripheral member A power source for supplying a voltage including an alternating current component to the mold peripheral member.
 本発明によれば、基板および/または基板の周辺の部材から離脱しやすいパーティクルに起因して発生しうるパターン欠陥や基板および/または型の破損を低減するために有利な技術が提供される。 According to the present invention, an advantageous technique is provided for reducing pattern defects and substrate and / or mold damage that may be caused by particles that are easily detached from the substrate and / or members around the substrate.
本発明の1つの実施形態のインプリント装置の一部の構成を模式的に示す図。The figure which shows typically the structure of a part of imprint apparatus of one Embodiment of this invention. 本発明の1つの実施形態のインプリント装置の構成を模式的に示す図。The figure which shows typically the structure of the imprint apparatus of one Embodiment of this invention. 変形例を示す図。The figure which shows a modification. 電源によって基板周辺部材と型周辺部材との間に供給される電圧を例示する図。The figure which illustrates the voltage supplied between a board | substrate peripheral member and a type | mold peripheral member with a power supply. 電源によって基板周辺部材と型周辺部材との間に供給される電圧を例示する図。The figure which illustrates the voltage supplied between a board | substrate peripheral member and a type | mold peripheral member with a power supply. 電源によって基板周辺部材と型周辺部材との間に供給される電圧を例示する図。The figure which illustrates the voltage supplied between a board | substrate peripheral member and a type | mold peripheral member with a power supply. 電源によって基板周辺部材と型周辺部材との間に供給される電圧を例示する図。The figure which illustrates the voltage supplied between a board | substrate peripheral member and a type | mold peripheral member with a power supply. 本発明の1つの実施形態のインプリント装置の動作方法を例示する図。The figure which illustrates the operating method of the imprint apparatus of one embodiment of this invention. 本発明の1つの実施形態のインプリント装置の動作方法あるいは運用方法を例示する図。The figure which illustrates the operation | movement method or operating method of the imprint apparatus of one embodiment of this invention. 実験方法を説明する図。The figure explaining an experimental method. 実験条件Aを説明する図。The figure explaining experiment condition A. 実験条件Bを説明する図。The figure explaining experiment condition B. FIG. 実験条件Aのために準備されたサンプルを説明する図。The figure explaining the sample prepared for the experimental condition A. FIG. 実験条件Aの下での結果を示す図。The figure which shows the result under experiment condition A. 実験条件Aの下での結果を示す図。The figure which shows the result under experiment condition A. 実験条件Aの下での結果を示す図。The figure which shows the result under experiment condition A. 実験条件Bのために準備されたサンプルを説明する図。The figure explaining the sample prepared for the experimental condition B. FIG. 実験条件Bの下での結果を示す図。The figure which shows the result under experiment condition B. 実験条件Bの下での結果を示す図。The figure which shows the result under experiment condition B. 実験条件Bの下での結果を示す図。The figure which shows the result under experiment condition B. 型周辺部材の構成例を示す図。The figure which shows the structural example of a mold peripheral member. 型周辺部材の他の構成例としての分割された型周辺部材を示す図。The figure which shows the divided | segmented mold peripheral member as another structural example of a mold peripheral member. 分割された型周辺部材の利用例を説明する図。The figure explaining the usage example of the type | mold periphery member divided | segmented. 分割された型周辺部材の利用例を説明する図。The figure explaining the usage example of the type | mold periphery member divided | segmented. 分割された型周辺部材の利用例を説明する図。The figure explaining the usage example of the type | mold periphery member divided | segmented.
 以下、添付図面を参照しながら本発明のインプリント装置およびその動作方法をその例示的な実施形態を通して説明する。 Hereinafter, an imprint apparatus and an operation method thereof according to the present invention will be described through exemplary embodiments with reference to the accompanying drawings.
 図2には、本発明の1つの実施形態のインプリント装置IMPの構成が例示されている。インプリント装置IMPは、型100のパターンをインプリントによって基板101に転写する。別の表現をすると、インプリント装置IMPは、型100のパターンを基板101の上のインプリント材(被転写材)にインプリントによって転写する。この明細書では、インプリントとは、インプリント材と型とを接触させ、該インプリント材を硬化させ、その後、該インプリント材と型とを引き離すことを意味する。型100は、凹部で構成されたパターンを有する。基板101の上のインプリント材(未硬化状態の樹脂)に型100を接触させることによってパターンの凹部にインプリント材が充填される。この状態で、インプリント材に対してそれを硬化させるエネルギーを与えることによって、インプリント材が硬化する。これによって型100のパターンがインプリント材に転写され、硬化したインプリント材からなるパターンが基板101の上に形成される。 FIG. 2 illustrates the configuration of the imprint apparatus IMP according to one embodiment of the present invention. The imprint apparatus IMP transfers the pattern of the mold 100 to the substrate 101 by imprinting. In other words, the imprint apparatus IMP transfers the pattern of the mold 100 onto the imprint material (transfer material) on the substrate 101 by imprinting. In this specification, imprint means that the imprint material and the mold are brought into contact with each other, the imprint material is cured, and then the imprint material and the mold are pulled apart. The mold 100 has a pattern composed of recesses. The imprint material is filled in the concave portions of the pattern by bringing the mold 100 into contact with the imprint material (uncured resin) on the substrate 101. In this state, the imprint material is cured by applying energy for curing the imprint material. As a result, the pattern of the mold 100 is transferred to the imprint material, and a pattern made of the cured imprint material is formed on the substrate 101.
 インプリント材は、それを硬化させるエネルギーが与えられることによって硬化する硬化性組成物である。インプリント材は、硬化した状態を意味する場合もあるし、未硬化の状態を意味する場合もある。硬化用のエネルギーとしては、例えば、電磁波、熱等が用いられうる。電磁波は、例えば、その波長が10nm以上1mm以下の範囲から選択される光(例えば、赤外線、可視光線、紫外線)でありうる。 The imprint material is a curable composition that is cured by applying energy for curing the imprint material. The imprint material may mean a cured state or an uncured state. As the energy for curing, for example, electromagnetic waves, heat, or the like can be used. The electromagnetic wave can be, for example, light (for example, infrared rays, visible rays, ultraviolet rays) having a wavelength selected from a range of 10 nm to 1 mm.
 硬化性組成物は、典型的には、光の照射により、あるいは、加熱により硬化する組成物である。これらのうち光により硬化する光硬化性組成物は、少なくとも重合性化合物および光重合開始剤を含有しうる。また、光硬化性組成物は、付加的に非重合性化合物または溶剤を含有しうる。非重合性化合物は、例えば、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種でありうる。 The curable composition is typically a composition that is cured by light irradiation or by heating. Among these, the photocurable composition that is cured by light can contain at least a polymerizable compound and a photopolymerization initiator. Further, the photocurable composition may additionally contain a non-polymerizable compound or a solvent. The non-polymerizable compound may be at least one selected from the group of, for example, a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, and a polymer component.
 本明細書および添付図面では、基板101の表面に平行な方向をXY平面とするXYZ座標系において方向を示す。XYZ座標系におけるX軸、Y軸、Z軸にそれぞれ平行な方向をX方向、Y方向、Z方向とし、X軸周りの回転、Y軸周りの回転、Z軸周りの回転をそれぞれθX、θY、θZとする。X軸、Y軸、Z軸に関する制御または駆動は、それぞれX軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向に関する制御または駆動を意味する。また、θX軸、θY軸、θZ軸に関する制御または駆動は、それぞれX軸に平行な軸の周りの回転、Y軸に平行な軸の周りの回転、Z軸に平行な軸の周りの回転に関する制御または駆動を意味する。また、位置は、X軸、Y軸、Z軸の座標に基づいて特定されうる情報であり、姿勢は、θX軸、θY軸、θZ軸に対する相対的な回転で特定されうる情報である。位置決めは、位置および/または姿勢を制御することを意味する。なお、本明細書において、「Aおよび/またはB」のような表現は、「AおよびBの少なくとも一方」を意味する。 In this specification and the accompanying drawings, directions are shown in an XYZ coordinate system in which a direction parallel to the surface of the substrate 101 is an XY plane. In the XYZ coordinate system, the directions parallel to the X, Y, and Z axes are the X, Y, and Z directions, respectively, and rotation around the X axis, rotation around the Y axis, and rotation around the Z axis are θX and θY, respectively. , ΘZ. The control or drive related to the X axis, Y axis, and Z axis means control or drive related to the direction parallel to the X axis, the direction parallel to the Y axis, and the direction parallel to the Z axis, respectively. The control or drive related to the θX axis, θY axis, and θZ axis relates to rotation around an axis parallel to the X axis, rotation around an axis parallel to the Y axis, and rotation around an axis parallel to the Z axis. Means control or drive. The position is information that can be specified based on the coordinates of the X axis, Y axis, and Z axis, and the posture is information that can be specified by relative rotation with respect to the θX axis, θY axis, and θZ axis. Positioning means controlling position and / or attitude. In the present specification, expressions such as “A and / or B” mean “at least one of A and B”.
 インプリント装置IMPは、基板101を位置決めする基板駆動機構SDMを備え、基板駆動機構SDMは、例えば、基板チャック102、基板周辺部材113、微動機構114、粗動機構115およびベース構造体116を含みうる。基板チャック102は、基板101を保持する基板保持領域を有し、基板101を吸着(例えば、真空吸着、静電吸着)あるいは機械的手段によって保持しうる。微動機構114は、基板チャック102および基板周辺部材113を支持する微動ステージおよび該微動ステージを駆動する駆動機構を含みうる。基板周辺部材113は、基板チャック102の周辺に配置される。基板周辺部材113は、例えば、図1に示すように、基板101の側面を取り囲むように基板101が配置される領域の周辺に配置されている。基板周辺部材113は、基板101の上面とほぼ等しい高さの上面を有しうる。例えば、基板周辺部材113は、基板101の上面と等しいか、基板101の上面よりやや低い上面(例えば、基板101の上面との高低差が1mm以下の上面)を有しうる。なお、基板周辺部材113は一体でなく、分割されて構成されていてもよい。 The imprint apparatus IMP includes a substrate driving mechanism SDM that positions the substrate 101. The substrate driving mechanism SDM includes, for example, a substrate chuck 102, a substrate peripheral member 113, a fine movement mechanism 114, a coarse movement mechanism 115, and a base structure 116. sell. The substrate chuck 102 has a substrate holding region for holding the substrate 101, and can hold the substrate 101 by suction (for example, vacuum suction, electrostatic suction) or mechanical means. The fine movement mechanism 114 can include a fine movement stage that supports the substrate chuck 102 and the substrate peripheral member 113 and a drive mechanism that drives the fine movement stage. The substrate peripheral member 113 is disposed around the substrate chuck 102. For example, as shown in FIG. 1, the substrate peripheral member 113 is disposed around a region where the substrate 101 is disposed so as to surround the side surface of the substrate 101. The substrate peripheral member 113 may have an upper surface having a height substantially equal to the upper surface of the substrate 101. For example, the substrate peripheral member 113 may have an upper surface that is equal to or slightly lower than the upper surface of the substrate 101 (for example, an upper surface having a height difference of 1 mm or less from the upper surface of the substrate 101). The substrate peripheral member 113 may not be integrated but may be divided.
 微動機構114は、基板チャック102を微駆動することによって基板101を微駆動する機構である。粗動機構115は、微動機構114を粗駆動することによって基板101を粗駆動する機構である。ベース構造体116は、粗動機構115、微動機構114、基板チャック102および基板周辺部材113を支持する。基板駆動機構SDMは、例えば、基板101を複数の軸(例えば、X軸、Y軸、θZ軸の3軸)について駆動するように構成されうる。微動機構114における基板チャック102と一体化された部分(微動ステージ)の位置は、干渉計などの計測器117によってモニタされる。 The fine movement mechanism 114 is a mechanism that finely drives the substrate 101 by finely driving the substrate chuck 102. The coarse movement mechanism 115 is a mechanism that coarsely drives the substrate 101 by roughly driving the fine movement mechanism 114. The base structure 116 supports the coarse movement mechanism 115, the fine movement mechanism 114, the substrate chuck 102, and the substrate peripheral member 113. The substrate drive mechanism SDM can be configured to drive the substrate 101 with respect to a plurality of axes (for example, three axes of the X axis, the Y axis, and the θZ axis), for example. The position of the part (fine movement stage) integrated with the substrate chuck 102 in the fine movement mechanism 114 is monitored by a measuring instrument 117 such as an interferometer.
 インプリント装置IMPは、型100を位置決めする型動機構MDMを備え、型駆動機構MDMは、型チャック110、駆動機構109および型周辺部材161を含みうる。型周辺部材161は、型100の側面を取り囲むように、型100が配置される領域の周辺に配置されている。型駆動機構MDMおよび型周辺部材161は、支持構造体108によって支持されうる。型チャック110は、型100を吸着(例えば、真空吸着、静電吸着)あるいは機械的手段によって保持しうる。駆動機構109は、型チャック110を駆動することによって型100を駆動する。原版駆動機構MDMは、例えば、型100を複数の軸(例えば、X軸、Y軸、Z軸、θX軸、θY軸、θZ軸の6軸)について駆動するように構成されうる。 The imprint apparatus IMP includes a mold movement mechanism MDM that positions the mold 100, and the mold drive mechanism MDM may include a mold chuck 110, a drive mechanism 109, and a mold peripheral member 161. The mold peripheral member 161 is disposed around a region where the mold 100 is disposed so as to surround the side surface of the mold 100. The mold driving mechanism MDM and the mold peripheral member 161 can be supported by the support structure 108. The mold chuck 110 can hold the mold 100 by suction (for example, vacuum suction, electrostatic suction) or mechanical means. The drive mechanism 109 drives the mold 100 by driving the mold chuck 110. The original plate driving mechanism MDM can be configured to drive the mold 100 with respect to a plurality of axes (for example, six axes of X axis, Y axis, Z axis, θX axis, θY axis, and θZ axis).
 基板駆動機構SDMおよび型駆動機構MDMは、基板101と型100との相対的な位置決めを行う駆動部を構成する。駆動部は、X軸、Y軸、θX軸、θY軸およびθZ軸に関して基板101と型100との相対位置を調整するほか、Z軸に関しても基板101と型100との相対位置を調整する。Z軸に関する基板101と型100との相対位置の調整は、基板101の上のインプリント材と型100との接触および分離の動作を含む。 The substrate drive mechanism SDM and the mold drive mechanism MDM constitute a drive unit that performs relative positioning between the substrate 101 and the mold 100. The drive unit adjusts the relative position between the substrate 101 and the mold 100 with respect to the X axis, the Y axis, the θX axis, the θY axis, and the θZ axis, and also adjusts the relative position between the substrate 101 and the mold 100 with respect to the Z axis. The adjustment of the relative position between the substrate 101 and the mold 100 with respect to the Z-axis includes operations of contact and separation between the imprint material on the substrate 101 and the mold 100.
 インプリント装置IMPは、基板101の上に未硬化のインプリント材を塗布、配置あるいは供給するディスペンサ(供給部)111を備えうる。ディスペンサ111は、例えば、基板101の上にインプリント材を複数のドロップレットの形態で配置するように構成されうる。ディスペンサ111は、支持構造体108によって支持されうる。 The imprint apparatus IMP may include a dispenser (supply unit) 111 that applies, disposes, or supplies an uncured imprint material on the substrate 101. The dispenser 111 can be configured to arrange an imprint material on the substrate 101 in the form of a plurality of droplets, for example. The dispenser 111 can be supported by the support structure 108.
 インプリント装置IMPは、基板101の上のインプリント材にUV光などの光を照射することによって該インプリント材を硬化させる硬化部104を備えうる。インプリント装置IMPはまた、インプリントの様子を観察するためのカメラ103を備えうる。硬化部104から射出された光は、ミラー105で反射され、型100を透過してインプリント材に照射されうる。カメラ103は、型100およびミラー105を介してインプリントの様子、例えば、インプリント材と型100との接触状態などを観察するように構成されうる。 The imprint apparatus IMP may include a curing unit 104 that cures the imprint material by irradiating the imprint material on the substrate 101 with light such as UV light. The imprint apparatus IMP may also include a camera 103 for observing the imprint state. The light emitted from the curing unit 104 is reflected by the mirror 105, passes through the mold 100, and can be applied to the imprint material. The camera 103 can be configured to observe an imprint state, for example, a contact state between the imprint material and the mold 100 via the mold 100 and the mirror 105.
 インプリント装置IMPは、基板101のマークと型100のマークとの相対位置を検出するためのアライメントスコープ107a、107bを備えうる。アライメントスコープ107a、107bは、支持構造体108によって支持された上部構造体106に配置されうる。インプリント装置IMPは、基板101の複数のマークの位置を検出するためのオフアクシススコープ112を備えうる。オフアクシススコープ112は、支持構造体108によって支持されうる。 The imprint apparatus IMP may include alignment scopes 107a and 107b for detecting a relative position between the mark on the substrate 101 and the mark on the mold 100. The alignment scopes 107 a and 107 b can be disposed on the upper structure 106 supported by the support structure 108. The imprint apparatus IMP may include an off-axis scope 112 for detecting the positions of a plurality of marks on the substrate 101. The off-axis scope 112 can be supported by the support structure 108.
 インプリント装置IMPは、1又は複数の気体供給部118を備えうる。気体供給部118は、型チャック110を取り囲むように型チャック110の周囲に配置されうる。気体供給部118は、基板101と型100との間の空間に気体を供給することによってカーテン状の気流118aを形成する。気体供給部118は、気流118aによって、基板101と型100との間の空間に対するパーティクルの侵入を抑制する。気体供給部118は、例えば、支持構造体108によって支持されうる。気体供給部118が供給する気体は、例えばクリーンドライエアでありうるが、窒素又はヘリウム等の他の気体であってもよい。気体供給部118からの気体の吹き出し口(不図示)は環状であることが好ましいが、形成される気流118aが基板101と型100との間の空間を取り囲むようであれば、吹き出し口自体は環状でなくてもよい。インプリント装置IMPは、基板101と型100との間の空間に基板101に沿った気体131の流れが形成されるように、該空間に向けて気体131を供給する気体供給部130を備えうる。 The imprint apparatus IMP may include one or a plurality of gas supply units 118. The gas supply unit 118 may be disposed around the mold chuck 110 so as to surround the mold chuck 110. The gas supply unit 118 forms a curtain-shaped air flow 118 a by supplying gas to the space between the substrate 101 and the mold 100. The gas supply unit 118 suppresses intrusion of particles into the space between the substrate 101 and the mold 100 by the air flow 118a. The gas supply unit 118 can be supported by the support structure 108, for example. The gas supplied by the gas supply unit 118 may be, for example, clean dry air, but may be other gas such as nitrogen or helium. The gas outlet (not shown) from the gas supply unit 118 is preferably annular, but if the airflow 118a formed surrounds the space between the substrate 101 and the mold 100, the outlet itself is It does not have to be annular. The imprint apparatus IMP may include a gas supply unit 130 that supplies the gas 131 toward the space so that the flow of the gas 131 along the substrate 101 is formed in the space between the substrate 101 and the mold 100. .
 インプリント装置IMPは、基板周辺部材113と型周辺部材161との間に、交流成分を含む電圧Vを供給する電源PSを備えている。図2に示された例では、基板周辺部材113が接地され、型周辺部材161に対して電源PSから交流成分を含む電圧Vが供給される。電圧Vは、負の電圧または正の電圧でありうる。基板周辺部材113と型周辺部材161との間に電源PSによって交流成分を含む電圧Vが供給されることによって基板周辺部材113と型周辺部材161との間に電界が形成される。この電界が基板周辺部材113の上のパーティクルに対して静電力を作用させることによって基板周辺部材113の上のパーティクルの少なくとも一部が除去される。 The imprint apparatus IMP includes a power supply PS that supplies a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161. In the example shown in FIG. 2, the substrate peripheral member 113 is grounded, and the voltage V including an AC component is supplied from the power source PS to the mold peripheral member 161. The voltage V can be a negative voltage or a positive voltage. An electric field is formed between the substrate peripheral member 113 and the mold peripheral member 161 by supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS. This electric field causes electrostatic force to act on the particles on the substrate peripheral member 113, so that at least a part of the particles on the substrate peripheral member 113 is removed.
 インプリント装置IMPは、チャンバ190を備え、上記の各構成要素はチャンバ190の中に配置されうる。インプリント装置IMPは、その他、主制御部(制御部)126、インプリント制御部120、照射制御部121、スコープ制御部122、ディスペンサ制御部123、カーテン制御部124、基板制御部125を備えうる。主制御部126は、インプリント制御部120、照射制御部121、スコープ制御部122、ディスペンサ制御部123、カーテン制御部124、基板制御部125および電源PSを制御する。インプリント制御部120は、型駆動機構MDMを制御する。照射制御部121は、硬化部104を制御する。スコープ制御部122、アライメントスコープ107a、107bおよびオフアクシススコープ112を制御する。ディスペンサ制御部123は、ディスペンサ111を制御する。カーテン制御部124は、気体供給部118を制御する。基板制御部125は、基板駆動機構SDMを制御する。 The imprint apparatus IMP includes a chamber 190, and each of the above components can be disposed in the chamber 190. In addition, the imprint apparatus IMP may include a main control unit (control unit) 126, an imprint control unit 120, an irradiation control unit 121, a scope control unit 122, a dispenser control unit 123, a curtain control unit 124, and a substrate control unit 125. . The main control unit 126 controls the imprint control unit 120, the irradiation control unit 121, the scope control unit 122, the dispenser control unit 123, the curtain control unit 124, the substrate control unit 125, and the power source PS. The imprint control unit 120 controls the mold driving mechanism MDM. The irradiation control unit 121 controls the curing unit 104. The scope control unit 122, the alignment scopes 107a and 107b, and the off-axis scope 112 are controlled. The dispenser control unit 123 controls the dispenser 111. The curtain control unit 124 controls the gas supply unit 118. The substrate controller 125 controls the substrate drive mechanism SDM.
 図1には、図2のインプリント装置IMPの一部が模式的に示されている。基板周辺部材113は、基板101の上面と等しい高さの上面を有しうる。型周辺部材161は、型100の下面と等しい高さの下面を有しうる。基板周辺部材113および型周辺部材161は、気体供給部130から供給される気体131の流れの乱れを抑えるように機能しうる。基板周辺部材113は、平坦な上面を有しうる。型周辺部材161は、平坦な下面を有しうる。 FIG. 1 schematically shows a part of the imprint apparatus IMP shown in FIG. The substrate peripheral member 113 can have an upper surface having a height equal to the upper surface of the substrate 101. The mold peripheral member 161 may have a lower surface having a height equal to the lower surface of the mold 100. The substrate peripheral member 113 and the mold peripheral member 161 can function to suppress the disturbance of the flow of the gas 131 supplied from the gas supply unit 130. The substrate peripheral member 113 can have a flat upper surface. The mold peripheral member 161 can have a flat lower surface.
 チャンバ190の内部空間には、パーティクル150が侵入しうる。また、チャンバ190の中では、機械要素の相互の摩擦、機械要素と基板101または型100との摩擦などによってパーティクル150が発生しうる。あるいは、ディスペンサ111が基板101の上に未硬化のインプリント材を配置するために吐出口からインプリント材を吐出した際にインプリント材のミストが発生し、このインプリント材が固化することによってパーティクル150が発生しうる。 The particles 150 can enter the internal space of the chamber 190. Further, in the chamber 190, the particles 150 may be generated due to mutual friction between the mechanical elements, friction between the mechanical elements and the substrate 101 or the mold 100, and the like. Alternatively, when the imprint material is discharged from the discharge port in order for the dispenser 111 to place the uncured imprint material on the substrate 101, a mist of the imprint material is generated and the imprint material is solidified. Particles 150 can be generated.
 パーティクル150は、基板周辺部材113および型周辺部材161などの部材の表面に付着しうる。基板周辺部材113および型周辺部材161のうち、特に、下方に位置する基板周辺部材113に対して、パーティクル150が落下し、付着する可能性が高い。パーティクル150は、粒径、形状、材質などが様々である。したがって、基板周辺部材113の上面に対するパーティクル150の付着力も様々である。基板周辺部材113の上面に対する付着力が弱いパーティクル150は、外的刺激(振動、気流、静電気)などによって容易に基板周辺部材113の上面から離脱しうる。型100は、インプリントを通して帯電するので、基板周辺部材113と型100との間に強い電界が形成されうる。この電界によって、基板周辺部材113の上のパーティクル150に対して静電気力が作用する。よって、基板周辺部材113の上面に弱い付着力で付着しているパーティクル150は、基板周辺部材113の上面から容易に離脱しうる。基板周辺部材113の上面から離脱したパーティクル150は、型100に引き寄せられて型100に付着したり、基板101に付着したりしうる。よって、型100と基板101との間にパーティクル150が挟み込まれることが有りうる。このために、欠陥を有するパターンが形成されたり、基板および/または型が破損したりしうる。 The particles 150 may adhere to the surfaces of members such as the substrate peripheral member 113 and the mold peripheral member 161. Of the substrate peripheral member 113 and the mold peripheral member 161, in particular, the possibility that the particles 150 fall and adhere to the substrate peripheral member 113 positioned below is high. The particle 150 has various particle sizes, shapes, materials, and the like. Therefore, the adhesion force of the particles 150 to the upper surface of the substrate peripheral member 113 also varies. The particles 150 having weak adhesion to the upper surface of the substrate peripheral member 113 can be easily detached from the upper surface of the substrate peripheral member 113 by an external stimulus (vibration, airflow, static electricity) or the like. Since the mold 100 is charged through imprinting, a strong electric field can be formed between the substrate peripheral member 113 and the mold 100. This electric field causes an electrostatic force to act on the particles 150 on the substrate peripheral member 113. Therefore, the particles 150 adhering to the upper surface of the substrate peripheral member 113 with a weak adhesive force can be easily detached from the upper surface of the substrate peripheral member 113. The particles 150 separated from the upper surface of the substrate peripheral member 113 can be attracted to the mold 100 and adhere to the mold 100 or adhere to the substrate 101. Therefore, the particles 150 may be sandwiched between the mold 100 and the substrate 101. For this reason, a pattern having a defect may be formed, or the substrate and / or the mold may be damaged.
 そこで、基板周辺部材113に弱い付着力で付着しているパーティクル150が意図しないタイミングで基板周辺部材113から離脱しないように、パーティクル150を基板周辺部材113から予め強制的に除去することが望まれる。これを実現するために、インプリント装置IMPは、電源PSを備えている。電源PSは、基板周辺部材113と型周辺部材161との間に交流成分を含む電圧Vを供給する。基板周辺部材113と型周辺部材161との間に供給された電圧Vによって基板周辺部材113と型周辺部材161との間に電界が発生し、この電界によってパーティクル150に静電気力が作用する。基板周辺部材113の上面に付着しているパーティクル150のうち弱い付着力で付着しているパーティクル150は、この静電気力によって基板周辺部材113の上面から離脱する。電源PSは、少なくとも、基板周辺部材113が気流118aと基板101で囲まれる空間内に進入する前に、交流成分を含む電圧Vを基板周辺部材113と型周辺部材161との間に供給することが好ましい。基板周辺部材113の上面から離脱したパーティクル150を気流118aにのって流され、さらには気体131の流れにのって型100から遠ざかる方向に排出されうる。基板周辺部材113および型周辺部材161は、電源PSによって電圧が印加される導電体を含む。これにより、意図しないタイミング、特に気流118aで囲まれた空間内で基板周辺部材113の上面から離脱したパーティクル150が型100に付着することを抑制することができる。 Therefore, it is desirable to forcibly remove the particles 150 from the substrate peripheral member 113 in advance so that the particles 150 attached to the substrate peripheral member 113 with a weak adhesive force do not leave the substrate peripheral member 113 at an unintended timing. . In order to realize this, the imprint apparatus IMP includes a power source PS. The power source PS supplies a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161. An electric field is generated between the substrate peripheral member 113 and the mold peripheral member 161 by the voltage V supplied between the substrate peripheral member 113 and the mold peripheral member 161, and electrostatic force acts on the particles 150 by this electric field. Among the particles 150 adhering to the upper surface of the substrate peripheral member 113, the particles 150 adhering with a weak adhesive force are detached from the upper surface of the substrate peripheral member 113 by this electrostatic force. The power supply PS supplies a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 at least before the substrate peripheral member 113 enters the space surrounded by the air flow 118a and the substrate 101. Is preferred. The particles 150 separated from the upper surface of the substrate peripheral member 113 are caused to flow along the airflow 118a, and further discharged along the flow of the gas 131 in a direction away from the mold 100. The substrate peripheral member 113 and the mold peripheral member 161 include a conductor to which a voltage is applied by the power source PS. Thereby, it is possible to prevent the particles 150 detached from the upper surface of the substrate peripheral member 113 from adhering to the mold 100 in an unintended timing, particularly in a space surrounded by the air flow 118a.
 ここで、一例として、基板101の上の硬化したインプリント材から型100を引き離すことによって、型100が-3kVに帯電する場合を考える。基板周辺部材113は、接地されていて、その電位が接地電位であるものとする。基板周辺部材113と型100との間隙は、1mmであるものとする。この場合の電界の方向は上向き(Z軸の正の方向)で、電界の強度(絶対値)は3kV/mmである。この例では、型周辺部材161の電圧Vの平均値が-3kVより低い電位(V<-3kV)になるように、電源PSによって基板周辺部材113と型周辺部材161との間に電圧Vを供給することが望ましい。これにより、基板周辺部材113の上面に対して弱い力で付着していたパーティクル150は、基板周辺部材113と型周辺部材161との間の電界による静電気力によって基板周辺部材113の上面から離脱しうる。基板周辺部材113から離脱したパーティクル150は、パーティクル150は、気体131の流れにのって排出されうる。 Here, as an example, consider a case where the mold 100 is charged to −3 kV by pulling the mold 100 away from the cured imprint material on the substrate 101. The substrate peripheral member 113 is grounded, and the potential thereof is the ground potential. It is assumed that the gap between the substrate peripheral member 113 and the mold 100 is 1 mm. In this case, the direction of the electric field is upward (the positive direction of the Z axis), and the electric field strength (absolute value) is 3 kV / mm. In this example, the voltage V is applied between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS so that the average value of the voltage V of the mold peripheral member 161 is lower than −3 kV (V <−3 kV). It is desirable to supply. Thereby, the particles 150 attached to the upper surface of the substrate peripheral member 113 with a weak force are separated from the upper surface of the substrate peripheral member 113 by the electrostatic force due to the electric field between the substrate peripheral member 113 and the mold peripheral member 161. sell. The particles 150 separated from the substrate peripheral member 113 can be discharged along the flow of the gas 131.
 基板周辺部材113と型周辺部材161との間に供給される電圧Vは、本発明者による実験の結果、交流成分を含む電圧である場合の方が、一定電圧である場合よりも、パーティクル150を基板周辺部材113から離脱させる効果が高いことが分かった。 As a result of experiments by the present inventors, the voltage V supplied between the substrate peripheral member 113 and the mold peripheral member 161 is the particle 150 when the voltage V includes an AC component than when it is a constant voltage. It has been found that the effect of detaching the substrate from the substrate peripheral member 113 is high.
 以下、図8A~図12Cを参照しながら上記の実験について説明する。図8Aには、実験系が示されている。この実験系では、2枚のウエハ301、302が離間させて互いに平行に配置されている。ウエハ301は、クリーンルーム中に浮遊しているパーティクル300が付着したウエハであり、電気的に接地されている。ウエハ302は、評価用のウエハであり、電源303によって電圧が印加されている。 Hereinafter, the above experiment will be described with reference to FIGS. 8A to 12C. FIG. 8A shows an experimental system. In this experimental system, two wafers 301 and 302 are spaced apart and arranged in parallel. The wafer 301 is a wafer to which particles 300 floating in a clean room are attached, and is electrically grounded. The wafer 302 is an evaluation wafer, and a voltage is applied by the power source 303.
 実験条件Aでは、図8Bに示されているように、-1kVの一定の電圧がウエハ302に印加される。実験条件Bでは、図8Cに示されているように、ウエハ302に印加される電圧が10secごとにON/OFFされる。実験条件Bは、交流成分を含む電圧をウエハ301、302間に供給する例として理解される。実験条件A、Bの双方において、ウエハ301に付着していたパーティクル300がウエハ301から離脱してウエハ302に付着することが確認された。実験条件A、Bの結果の評価は、ウエハ302に付着するパーティクル300の個数をカウントすることによって行われた。 In the experimental condition A, a constant voltage of −1 kV is applied to the wafer 302 as shown in FIG. 8B. Under the experimental condition B, as shown in FIG. 8C, the voltage applied to the wafer 302 is turned ON / OFF every 10 seconds. The experimental condition B is understood as an example in which a voltage including an AC component is supplied between the wafers 301 and 302. In both experimental conditions A and B, it was confirmed that the particles 300 attached to the wafer 301 were detached from the wafer 301 and attached to the wafer 302. Evaluation of the results of the experimental conditions A and B was performed by counting the number of particles 300 attached to the wafer 302.
 図9には、実験条件Aによる実験のために準備されたウエハ301に付着していたパーティクルの位置および直径が示されている。ウエハ301に付着していたパーティクルの数は、736個であった。1枚目のウエハ302を図8Aに示されるようにウエハ301に対向させて配置し、実験条件Aに従ってウエハ301、302間に一定電圧を印加した。次いで、1枚目のウエハ302に代えて2枚目のウエハ302を図8Aに示されるようにウエハ301に対向させて配置し、実験条件Aに従ってウエハ301、302間に一定電圧を印加した。次いで、2枚目のウエハ302に代えて3枚目のウエハ302を図8Aに示されるようにウエハ301に対向させて配置し、実験条件Aに従ってウエハ301、302間に一定電圧を印加した。 FIG. 9 shows the positions and diameters of the particles adhering to the wafer 301 prepared for the experiment under the experiment condition A. The number of particles adhering to the wafer 301 was 736. As shown in FIG. 8A, the first wafer 302 was placed facing the wafer 301, and a constant voltage was applied between the wafers 301 and 302 according to the experimental condition A. Next, instead of the first wafer 302, a second wafer 302 was placed facing the wafer 301 as shown in FIG. 8A, and a constant voltage was applied between the wafers 301 and 302 according to the experimental condition A. Next, instead of the second wafer 302, a third wafer 302 was placed facing the wafer 301 as shown in FIG. 8A, and a constant voltage was applied between the wafers 301 and 302 according to the experimental condition A.
 その後、1枚目、2枚目、3枚目のウエハ302に付着したパーティクルの個数をカウントした。図10Aは、1枚目のウエハ302に付着したパーティクルの位置および個数を示していて、個数は9個であった。図10Bは、2枚目のウエハ302に付着したパーティクルの位置および個数を示していて、個数は1個であった。図10Cは、3枚目のウエハ302に付着したパーティクルの位置および個数を示していて、個数は0個であった。 Thereafter, the number of particles adhering to the first, second, and third wafers 302 was counted. FIG. 10A shows the position and the number of particles attached to the first wafer 302, and the number was nine. FIG. 10B shows the position and the number of particles attached to the second wafer 302, and the number was one. FIG. 10C shows the position and number of particles adhering to the third wafer 302, and the number was zero.
 つまり、1枚目のウエハ302を使った1回目の実験において、ウエハ301に対する付着力が弱い9個のパーティクルがウエハ301から離脱してウエハ302に付着した。2枚目のウエハ302を使った2回目の実験において、ウエハ301に対する付着力が弱い1個のパーティクルがウエハ301から離脱してウエハ302に付着した。3枚目のウエハ302を使った3回目の実験においては、ウエハ302に付着したパーティクルが0個であった。ウエハ302に付着したパーティクルの数が1回目の実験に対して2回目の実験で減っているのは、1回目の実験によって、弱い付着力でウエハ301に付着しているパーティクルが減ったためであると理解される。3回目の実験においてウエハ302に付着したパーティクルが0個であったことは、2回目までの実験において、弱い吸着力でウエハ301に付着しているパーティクルが全て除去されたためであると理解される。1回目、2回目および3回目の実験を通して、736個のパーティクルのうちの10個(736個に対して1.4%)がウエハ301から除去された。 That is, in the first experiment using the first wafer 302, nine particles having weak adhesion to the wafer 301 were detached from the wafer 301 and adhered to the wafer 302. In the second experiment using the second wafer 302, one particle having weak adhesion to the wafer 301 was detached from the wafer 301 and adhered to the wafer 302. In the third experiment using the third wafer 302, the number of particles attached to the wafer 302 was zero. The number of particles adhering to the wafer 302 is reduced in the second experiment with respect to the first experiment because the number of particles adhering to the wafer 301 is reduced with a weak adhesion force in the first experiment. It is understood. The fact that the number of particles adhering to the wafer 302 in the third experiment was zero is understood to be because all the particles adhering to the wafer 301 were removed with a weak adsorption force in the second experiment. . Through the first, second, and third experiments, 10 out of 736 particles (1.4% with respect to 736) were removed from the wafer 301.
 図11には、実験条件Bによる実験のために準備されたウエハ301に付着していたパーティクルの位置および直径が示されている。ウエハ301に付着していたパーティクルの数は、650個であった。1枚目のウエハ302を図8Aに示されるようにウエハ301に対向させて配置し、実験条件Bに従ってウエハ301、302間に交流成分を含む電圧を印加した。次いで、1枚目のウエハ302に代えて2枚目のウエハ302を図8Aに示されるようにウエハ301に対向させて配置し、実験条件Bに従ってウエハ301、302間に交流成分を含む電圧を印加した。次いで、3枚目のウエハ302に代えて3枚目のウエハ302を図8Aに示されるようにウエハ301に対向させて配置し、実験条件Bに従ってウエハ301、302間に交流成分を含む電圧を印加した。 FIG. 11 shows the positions and diameters of the particles adhering to the wafer 301 prepared for the experiment under the experiment condition B. The number of particles adhering to the wafer 301 was 650. As shown in FIG. 8A, the first wafer 302 was placed facing the wafer 301, and a voltage containing an AC component was applied between the wafers 301 and 302 according to the experimental condition B. Next, in place of the first wafer 302, a second wafer 302 is placed facing the wafer 301 as shown in FIG. 8A, and a voltage including an AC component is applied between the wafers 301 and 302 according to the experimental condition B. Applied. Next, in place of the third wafer 302, a third wafer 302 is placed facing the wafer 301 as shown in FIG. 8A, and a voltage including an AC component is applied between the wafers 301 and 302 according to the experimental condition B. Applied.
 その後、1枚目、2枚目、3枚目のウエハ302に付着したパーティクルの個数をカウントした。図12Aは、1枚目のウエハ302に付着したパーティクルの位置および個数を示していて、個数は27個であった。図12Bは、2枚目のウエハ302に付着したパーティクルの位置および個数を示していて、個数は9個であった。図12Cは、3枚目のウエハ302に付着したパーティクルの位置および個数を示していて、個数は12個であった。 Thereafter, the number of particles adhering to the first, second, and third wafers 302 was counted. FIG. 12A shows the position and the number of particles attached to the first wafer 302, and the number was 27. FIG. 12B shows the position and the number of particles attached to the second wafer 302, and the number was nine. FIG. 12C shows the position and number of particles attached to the third wafer 302, and the number was twelve.
 つまり、1枚目のウエハ302を使った1回目の実験において、ウエハ301に対する付着力が弱い27個のパーティクルがウエハ301から離脱してウエハ302に付着した。2枚目のウエハ302を使った2回目の実験において、ウエハ301に対する付着力が弱い9個のパーティクルがウエハ301から離脱してウエハ302に付着した。3枚目のウエハ302を使った2回目の実験において、ウエハ301に対する付着力が弱い12個のパーティクルがウエハ301から離脱してウエハ302に付着した。 That is, in the first experiment using the first wafer 302, 27 particles having weak adhesion to the wafer 301 were detached from the wafer 301 and adhered to the wafer 302. In the second experiment using the second wafer 302, nine particles having weak adhesion to the wafer 301 were detached from the wafer 301 and adhered to the wafer 302. In the second experiment using the third wafer 302, twelve particles having weak adhesion to the wafer 301 were detached from the wafer 301 and adhered to the wafer 302.
 実験条件Bでは、1回目、2回目および3回目の実験を通して、650個のパーティクルのうちの48個(650個に対して7.4%)がウエハ301から除去された。実験条件Bでは、実験条件Aよりも、多くのパーティクルをウエハ301から除去することができている。また、実験条件Bでは、2回目、3回目の実験でも、多くのパーティクルをウエハ301から除去することができている。このように、実験Aのように一定の力をパーティクルに作用させるよりも、実験Bのように変動する力をパーティクルに作用させる方が、部材の表面へのパーティクルの付着を弱めるための効果が高い結果が得られた。 In the experimental condition B, 48 out of 650 particles (7.4% with respect to 650) were removed from the wafer 301 through the first, second, and third experiments. In the experimental condition B, more particles can be removed from the wafer 301 than in the experimental condition A. In the experiment condition B, a large number of particles can be removed from the wafer 301 in the second and third experiments. Thus, rather than applying a constant force to the particles as in Experiment A, applying a varying force to the particles as in Experiment B has the effect of weakening the adhesion of particles to the surface of the member. High results were obtained.
 図4Aには、電源PSによって型周辺部材161に供給される電圧Vが例示的に示されている。電圧Vは、交流成分を含む電圧(例えば、交流成分と一定値との和で表現される電圧)である。電圧Vは、複数のパルスで構成されるパルス波(パルス電圧)でありうる。あるいは、電圧Vの波形は、矩形波(方形波)、三角波、台形波、階段波(階段状に電圧が変化する波形)および正弦波の少なくとも1つを含みうる。図5Aには、電圧Vの波形の一例としての6周期分の正弦波が示されている。このように、交流成分を含む電圧Vは、複数の周期にわたって大きさが変動する電圧でありうる。 FIG. 4A exemplarily shows the voltage V supplied to the mold peripheral member 161 by the power source PS. The voltage V is a voltage including an AC component (for example, a voltage expressed by the sum of an AC component and a constant value). The voltage V may be a pulse wave (pulse voltage) composed of a plurality of pulses. Alternatively, the waveform of the voltage V may include at least one of a rectangular wave (square wave), a triangular wave, a trapezoidal wave, a staircase wave (a waveform in which the voltage changes stepwise), and a sine wave. FIG. 5A shows a sine wave for six periods as an example of the waveform of the voltage V. As described above, the voltage V including the AC component may be a voltage whose magnitude varies over a plurality of periods.
 電圧Vは、典型的には極性が変化しない電圧でありうるが、極性が変化してもよい。電圧Vが、極性が変化しない電圧である場合、電圧Vの極性は、基板101と型100との間に型100の帯電によって形成される電界の方向と同一の方向の電界が基板周辺部材113と型周辺部材161との間に形成される極性とされうる。この場合、交流成分を含む電圧Vが基板周辺部材113と型周辺部材161との間に与えられている期間では、基板周辺部材113と型周辺部材161との間に形成される電界の向きが変わらない状態のまま当該電界の大きさだけが変動する。電圧Vが、極性が変化する電圧である場合、例えば、基板周辺部材113に付着しているパーティクル150に作用する力の平均が基板周辺部材113からパーティクル150を離脱させる方向に作用するように型周辺部材161に供給される電圧Vの極性の変化が決定されうる。 The voltage V may typically be a voltage whose polarity does not change, but the polarity may change. When the voltage V is a voltage whose polarity does not change, the polarity of the voltage V is such that the electric field in the same direction as the electric field formed by charging of the mold 100 between the substrate 101 and the mold 100 is the substrate peripheral member 113. And the polarity formed between the mold peripheral member 161 and the mold peripheral member 161. In this case, the direction of the electric field formed between the substrate peripheral member 113 and the mold peripheral member 161 during the period in which the voltage V including the AC component is applied between the substrate peripheral member 113 and the mold peripheral member 161. Only the magnitude of the electric field fluctuates while remaining unchanged. When the voltage V is a voltage whose polarity changes, for example, a mold is set so that the average force acting on the particles 150 adhering to the substrate peripheral member 113 acts in a direction in which the particles 150 are detached from the substrate peripheral member 113. A change in polarity of the voltage V supplied to the peripheral member 161 can be determined.
 基板101の上の硬化したインプリント材から型100を引き離すことによって、型100が-V0~0V(V0は正の値)の範囲の電圧に帯電する場合、電圧Vのピーク値-V1(V1は正の値)は、-V0より低い電圧であることが望ましい。これにより、型100の帯電によってパーティクル150に作用する静電気力よりも強い静電気力を発生する電界を基板周辺部材113と型周辺部材161との間に発生させることができる。そのため、基板周辺部材113に付着しているパーティクルを予め除去することができる。電圧Vが最大値から最小値へ遷移する時間、および/または最小値から最大値へ遷移する時間は、1秒以下であることが望ましい。 When the mold 100 is charged to a voltage in the range of −V0 to 0V (V0 is a positive value) by pulling the mold 100 away from the cured imprint material on the substrate 101, the peak value −V1 (V1 Is a voltage lower than -V0. Thereby, an electric field that generates an electrostatic force stronger than the electrostatic force acting on the particles 150 due to the charging of the mold 100 can be generated between the substrate peripheral member 113 and the mold peripheral member 161. Therefore, the particles adhering to the substrate peripheral member 113 can be removed in advance. The time for the voltage V to transition from the maximum value to the minimum value and / or the time for the voltage V to transition from the minimum value to the maximum value is preferably 1 second or less.
 電圧Vの絶対値の最大値は、型100の帯電によって形成される電界の最大強度よりも強い電界が基板周辺部材113と型周辺部材161との間に形成されるように決定されることが有利である。しかしながら、これは必須条件ではなく、型100の帯電によって形成される電界の最大強度よりも弱い電界が基板周辺部材113と型周辺部材161との間に形成されてもよい。この場合においても、基板周辺部材113から少なくとも一部のパーティクルを除去しうるし、単位時間当たりの電圧Vの変化率を高くすることによって基板周辺部材113からのパーティクルの除去効果を高めることができる。 The maximum absolute value of the voltage V is determined such that an electric field stronger than the maximum intensity of the electric field formed by charging the mold 100 is formed between the substrate peripheral member 113 and the mold peripheral member 161. It is advantageous. However, this is not an essential condition, and an electric field weaker than the maximum strength of the electric field formed by charging of the mold 100 may be formed between the substrate peripheral member 113 and the mold peripheral member 161. Even in this case, at least a part of particles can be removed from the substrate peripheral member 113, and the effect of removing particles from the substrate peripheral member 113 can be enhanced by increasing the rate of change of the voltage V per unit time.
 図6には、インプリント装置IMPの動作方法が例示的に示されている。この動作方法は、主制御部(制御部)216によって制御される。工程S201では、主制御部126は、基板101上のインプリント対象のショット領域がディスペンサ111の下に移動するように基板駆動機構SDMを制御する。工程S202では、主制御部126は、基板101上のインプリント対象のショット領域にインプリント材が配置されるように基板駆動機構SDMおよびディスペンサ111を制御する。ここで、ショット領域へのインプリント材の配置は、例えば、基板駆動機構SDMによって基板101を移動させながらディスペンサ111からインプリント材を吐出することによってなされうる。ショット領域へのインプリント材の配置の形式は、任意であるが、例えば、複数のドロップレットの配列の形式でショット領域にインプリント材が配置されうる。 FIG. 6 exemplarily shows an operation method of the imprint apparatus IMP. This operation method is controlled by the main control unit (control unit) 216. In step S <b> 201, the main control unit 126 controls the substrate driving mechanism SDM so that the shot area to be imprinted on the substrate 101 moves below the dispenser 111. In step S <b> 202, the main control unit 126 controls the substrate driving mechanism SDM and the dispenser 111 so that the imprint material is arranged in the shot area to be imprinted on the substrate 101. Here, the placement of the imprint material in the shot area can be performed, for example, by discharging the imprint material from the dispenser 111 while moving the substrate 101 by the substrate drive mechanism SDM. The form of the arrangement of the imprint material in the shot area is arbitrary. For example, the imprint material can be arranged in the shot area in the form of an array of a plurality of droplets.
 工程S203では、主制御部126は、基板101上のインプリント対象のショット領域が型100の下に移動するように、より詳しくは、該ショット領域と型100とが位置合わせされるように基板駆動機構SDMおよび型駆動機構MDMの制御を開始する。工程S204では、主制御部126は、基板周辺部材113が型周辺部材161と対向する前に基板周辺部材113と型周辺部材161との間への交流成分を含む電圧Vの供給が開始されるように電源PSを制御する。基板周辺部材113と型周辺部材161との間に交流成分を含む電圧Vが供給されることによって、基板周辺部材113と型周辺部材161との間に大きさが変動する電界が形成される。この電界によって基板周辺部材113の上面に弱い付着力で付着しているパーティクルが離脱し、気流118aによって基板周辺部材113の付近から遠ざかる方向に排出される。このような機能および処理をそれぞれクリーニング機能およびクリーニング処理と呼ぶことができる。クリーニング機能が有効(ON)にされることによって、例えば、工程S201~S203において基板周辺部材113に付着したパーティクル(通常は、付着力がまだ弱いと考えられる)が直ちに離脱されうる。ここで、工程S204(電圧Vの供給の開始)は、工程S203が終了する前に実行されてもよい。ただし、ディスペンサ(供給部)111が基板101(のショット領域)にインプリント材を供給している間は、電源PSによる基板周辺部材113と型周辺部材161との間への電圧Vの供給がなされないことが望ましい。これは、電圧Vによって形成される電界がディスペンサ111による基板101上の適正位置へのインプリント材の供給を妨げうるからである。 In step S203, the main controller 126 moves the substrate so that the shot area to be imprinted on the substrate 101 moves below the mold 100, more specifically, the shot area and the mold 100 are aligned. Control of the drive mechanism SDM and the mold drive mechanism MDM is started. In step S <b> 204, the main control unit 126 starts supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 before the substrate peripheral member 113 faces the mold peripheral member 161. The power supply PS is controlled as follows. By supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161, an electric field whose magnitude varies between the substrate peripheral member 113 and the mold peripheral member 161 is formed. Due to this electric field, the particles adhering to the upper surface of the substrate peripheral member 113 with a weak adhesion force are separated and discharged in a direction away from the vicinity of the substrate peripheral member 113 by the air current 118a. Such functions and processes can be referred to as a cleaning function and a cleaning process, respectively. By enabling (ON) the cleaning function, for example, particles adhering to the substrate peripheral member 113 in steps S201 to S203 (usually considered to have a low adhesion force) can be immediately detached. Here, step S204 (start of supply of voltage V) may be performed before step S203 ends. However, while the dispenser (supply unit) 111 supplies the imprint material to the substrate 101 (the shot region), the supply of the voltage V between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS is not performed. It is desirable not to be done. This is because the electric field formed by the voltage V can prevent the dispenser 111 from supplying the imprint material to an appropriate position on the substrate 101.
 工程S205では、主制御部126は、インプリント対象のショット領域にインプリントがなされるように、関連する構成要素、例えば、基板駆動機構SDM、型駆動機構MDM、硬化部104、アライメントスコープ107a、107bなどを制御する。具体的には、工程S205では、基板101上のインプリント対象のショット領域の上のインプリント材に型100を接触させ、該インプリント材を硬化させ、その後、該インプリント材から型100を引き離すインプリント処理がなされる。図6に示された例では、工程S205は、クリーニング機能がONした状態でなされる。つまり、基板周辺部材113と型周辺部材161との間に電圧Vが供給された状態で、基板101の上のインプリント材に型100を接触させ、該インプリント材を硬化させ、該インプリント材から型100を引き離す動作がなされる。 In step S205, the main control unit 126 performs related printing such as a substrate driving mechanism SDM, a mold driving mechanism MDM, a curing unit 104, an alignment scope 107a, so that imprinting is performed on the shot area to be imprinted. 107b and the like are controlled. Specifically, in step S205, the mold 100 is brought into contact with the imprint material on the imprint target shot area on the substrate 101, the imprint material is cured, and then the mold 100 is removed from the imprint material. The imprint process to separate is performed. In the example shown in FIG. 6, step S205 is performed with the cleaning function turned on. That is, in a state where the voltage V is supplied between the substrate peripheral member 113 and the mold peripheral member 161, the mold 100 is brought into contact with the imprint material on the substrate 101, the imprint material is cured, and the imprint material An operation of pulling the mold 100 away from the material is performed.
 工程S206では、主制御部126は、基板周辺部材113と型周辺部材161との間への電圧Vの供給が停止されるように電源PSを制御する。つまり、主制御部126は、工程S206において、クリーニング機能を停止(OFF)させる。 In step S206, the main control unit 126 controls the power source PS so that the supply of the voltage V between the substrate peripheral member 113 and the mold peripheral member 161 is stopped. That is, the main control unit 126 stops (OFF) the cleaning function in step S206.
 工程S207では、主制御部126は、基板101の全てのショット領域に対するインプリントが終了したかどうかを判断し、未処理のショット領域が残っている場合には、当該未処理のショット領域に対するインプリントがなされように工程S201に戻る。一方、全てのショット領域に対するインプリントが終了した場合は、工程S208に進む。工程S208では、主制御部126は、処理すべき全ての基板101に対するインプリントが終了したかどうかを判断し、未処理の基板101が残っている場合には、当該未処理の基板101に対するインプリントがなされように工程S201に戻る。一方、全ての基板101に対するインプリントが終了した場合は、図6に示された一連の処理が終了する。 In step S207, the main control unit 126 determines whether imprinting for all the shot areas of the substrate 101 has been completed. If there is an unprocessed shot area, the main control unit 126 performs imprinting for the unprocessed shot area. The process returns to step S201 so that printing can be performed. On the other hand, when imprinting for all shot areas is completed, the process proceeds to step S208. In step S208, the main control unit 126 determines whether imprinting has been completed for all the substrates 101 to be processed. If unprocessed substrates 101 remain, imprinting on the unprocessed substrates 101 is performed. The process returns to step S201 so that printing can be performed. On the other hand, when imprinting for all the substrates 101 is completed, the series of processes shown in FIG. 6 is completed.
 上記の処理において、工程S201の途中からS203の途中までにおいて、型100に対して基板周辺部材113の一部の領域が対向しうる。しかしながら、基板周辺部材113は、工程S205におけるインプリントと並行してクリーニング処理を受けているので、弱い付着力で基板周辺部材113の当該領域に付着しているパーティクルは基板周辺部材113から離脱し、気流118aや気流113により排出されている可能性が高い。 In the above process, a part of the substrate peripheral member 113 may face the mold 100 from the middle of step S201 to the middle of S203. However, since the substrate peripheral member 113 has undergone the cleaning process in parallel with the imprint in step S205, the particles adhering to the region of the substrate peripheral member 113 with a weak adhesion force separate from the substrate peripheral member 113. There is a high possibility that the airflow 118a or the airflow 113 is discharged.
 図3には、図1、図2に示された構成の変形例が記載されている。図3に示された例では、型周辺部材161が接地され、基板周辺部材113に対して電源PSから交流成分を含む電圧Vが供給される。電圧Vは、負の電圧または正の電圧でありうる。基板周辺部材113と型周辺部材161との間に電源PSによって交流成分を含む電圧Vが供給されることによって基板周辺部材113と型周辺部材161との間に電界が形成される。この電界が基板周辺部材113の上のパーティクルに対して静電力を作用させることによって基板周辺部材113からパーティクルが除去される。 FIG. 3 shows a modified example of the configuration shown in FIGS. In the example shown in FIG. 3, the mold peripheral member 161 is grounded, and the voltage V including an AC component is supplied from the power source PS to the substrate peripheral member 113. The voltage V can be a negative voltage or a positive voltage. An electric field is formed between the substrate peripheral member 113 and the mold peripheral member 161 by supplying a voltage V including an AC component between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS. This electric field causes electrostatic force to act on the particles on the substrate peripheral member 113, whereby the particles are removed from the substrate peripheral member 113.
 ここで、前述の例と同様に、基板101の上の硬化したインプリント材から型100を引き離すことによって、型100が-3kVに帯電する場合を考える。型周辺部材161は、接地されていて、その電位が接地電位であるものとする。基板周辺部材113と型100との間隙は、1mmであるものとする。この場合の電界の方向は上向き(Z軸の正の方向)で、電界の強度(絶対値)は3kV/mmである。この例では、基板周辺部材113の電圧Vが+3kVより高い電位(V>+3kV)になるように、電源PSによって基板周辺部材113と型周辺部材161との間に電圧Vを供給することが望ましい。これにより、基板周辺部材113の上面に弱い力で付着していたパーティクル150は、基板周辺部材113と型周辺部材161との間の電界による静電気力によって基板周辺部材113の上面から離脱しうる。基板周辺部材113から離脱しうる。基板周辺部材113から離脱したパーティクル150は、パーティクル150は、気体131の流れにのって排出されうる。 Here, as in the above example, consider a case where the mold 100 is charged to −3 kV by pulling the mold 100 away from the cured imprint material on the substrate 101. The mold peripheral member 161 is grounded, and the potential thereof is the ground potential. It is assumed that the gap between the substrate peripheral member 113 and the mold 100 is 1 mm. In this case, the direction of the electric field is upward (the positive direction of the Z axis), and the electric field strength (absolute value) is 3 kV / mm. In this example, it is desirable to supply the voltage V between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS so that the voltage V of the substrate peripheral member 113 is higher than +3 kV (V> +3 kV). . Accordingly, the particles 150 attached to the upper surface of the substrate peripheral member 113 with a weak force can be detached from the upper surface of the substrate peripheral member 113 by an electrostatic force due to an electric field between the substrate peripheral member 113 and the mold peripheral member 161. The substrate peripheral member 113 can be detached. The particles 150 separated from the substrate peripheral member 113 can be discharged along the flow of the gas 131.
 以上の説明から明らかなように、基板周辺部材113および型周辺部材161の一方に接地電位が供給され、基板周辺部材113および型周辺部材161の他方に電圧Vが供給されうる。あるいは、他の形式においては、電源PSは、基板周辺部材113と型周辺部材161との間に電圧Vが供給されるように、基板周辺部材113および型周辺部材161の双方に対して接地電位とは異なる電位を供給してもよい。 As is clear from the above description, the ground potential can be supplied to one of the substrate peripheral member 113 and the mold peripheral member 161, and the voltage V can be supplied to the other of the substrate peripheral member 113 and the mold peripheral member 161. Alternatively, in another form, the power source PS is connected to the ground potential with respect to both the substrate peripheral member 113 and the mold peripheral member 161 such that the voltage V is supplied between the substrate peripheral member 113 and the mold peripheral member 161. Different potentials may be supplied.
 ここまでの説明は、基板周辺部材113に付着しているパーティクルの除去に注目してなされているが、型周辺部材161に付着しているパーティクルに対しても静電気力が作用し、型周辺部材161から除去されうる。これにより、型周辺部材161に弱い付着力で付着しているパーティクルが基板101の上に落下することが抑制されうる。 The description so far has been made paying attention to the removal of particles adhering to the substrate peripheral member 113, but electrostatic force acts on the particles adhering to the mold peripheral member 161, and the mold peripheral member 161 can be removed. As a result, the particles adhering to the mold peripheral member 161 with a weak adhesive force can be prevented from falling on the substrate 101.
 図4Bには、電源PSによって基板周辺部材113に供給される電圧Vが例示的に示されている。電圧Vは、交流成分を含む電圧(例えば、交流成分と一定値との和で表現される電圧)である。電圧Vは、複数のパルスで構成されるパルス波でありうる。あるいは、電圧Vは、矩形波(方形波)、三角波、台形波、階段波でありうる。あるいは、電圧Vは、図5Bに示されるような正弦波でありうる。電源PSによって基板周辺部材113に供給される電圧Vは、複数の周期にわたって大きさが変動する電圧でありうる。また、交流成分を含む電圧Vは、基板周辺部材113と型周辺部材161との間に該電圧Vが与えられている間に、基板周辺部材113と型周辺部材161との間に形成される電界の向きが変わらない状態で当該電界の大きさだけを変動させる電圧を含みうる。 FIG. 4B exemplarily shows the voltage V supplied to the substrate peripheral member 113 by the power source PS. The voltage V is a voltage including an AC component (for example, a voltage expressed by the sum of an AC component and a constant value). The voltage V may be a pulse wave composed of a plurality of pulses. Alternatively, the voltage V can be a rectangular wave (square wave), a triangular wave, a trapezoidal wave, or a staircase wave. Alternatively, the voltage V can be a sine wave as shown in FIG. 5B. The voltage V supplied to the substrate peripheral member 113 by the power source PS may be a voltage whose magnitude varies over a plurality of periods. Further, the voltage V including the AC component is formed between the substrate peripheral member 113 and the mold peripheral member 161 while the voltage V is applied between the substrate peripheral member 113 and the mold peripheral member 161. A voltage that changes only the magnitude of the electric field in a state where the direction of the electric field does not change can be included.
 図7には、インプリント装置IMPの動作方法あるいは運用方法が例示的に示されている。工程S211では、メンテナンスがなされる。メンテナンスは、作業者によってなされる場合もあるし、インプリント装置IMPが有する機能によってなされる場合もある。メンテナンスは、例えば、ディスペンサ111、基板チャック102または型チャック110の、点検、修理、クリーニングまたは交換を含みうる。このメンテナンスにおいて、基板周辺部材113および/または型周辺部材161にパーティクルが付着しうる。 FIG. 7 exemplarily shows an operation method or an operation method of the imprint apparatus IMP. In step S211, maintenance is performed. Maintenance may be performed by an operator or may be performed by a function of the imprint apparatus IMP. Maintenance can include, for example, inspecting, repairing, cleaning, or replacing the dispenser 111, the substrate chuck 102, or the mold chuck 110. In this maintenance, particles may adhere to the substrate peripheral member 113 and / or the mold peripheral member 161.
 そこで、メンテナンスが終了した後かつインプリント処理が再開されるまでの間に、基板周辺部材113と型周辺部材161との間に電源PSによって交流成分を含む電圧Vが供給される。具体的には、工程S11に次いで、工程S212、S213が実施されうる。工程S212では、主制御部126は、基板周辺部材113が型周辺部材161に対応するように基板駆動機構SDMを制御する。主制御部126は、メンテナンスの終了を示す信号が入力されることに応じて工程S212を実行しうる。工程S212に次いで、工程S213では、主制御部126は、基板周辺部材113と型周辺部材161との間への電圧Vの供給が開始されるように電源PSを制御する。これにより、基板周辺部材113と型周辺部材161との間に電圧Vが供給され、基板周辺部材113と型周辺部材161との間に、大きさが変動する電界が形成される。この電界によって基板周辺部材113の上面に弱い付着力で付着しているパーティクルが基板周辺部材113上から除去される。 Therefore, a voltage V including an AC component is supplied between the substrate peripheral member 113 and the mold peripheral member 161 by the power source PS after the maintenance is completed and before the imprint process is restarted. Specifically, steps S212 and S213 can be performed subsequent to step S11. In step S212, the main control unit 126 controls the substrate driving mechanism SDM so that the substrate peripheral member 113 corresponds to the mold peripheral member 161. The main control unit 126 can execute step S212 in response to the input of a signal indicating the end of maintenance. Subsequent to step S212, in step S213, the main control unit 126 controls the power supply PS so that the supply of the voltage V between the substrate peripheral member 113 and the mold peripheral member 161 is started. As a result, the voltage V is supplied between the substrate peripheral member 113 and the mold peripheral member 161, and an electric field whose magnitude varies is formed between the substrate peripheral member 113 and the mold peripheral member 161. Particles adhering to the upper surface of the substrate peripheral member 113 with a weak adhesive force are removed from the substrate peripheral member 113 by this electric field.
 このような動作方法あるいは運用方法によれば、メンテナンスを通して基板周辺部材113および/または型周辺部材161に付着しうるパーティクル(通常は、付着力がまだ弱いと考えられる)が直ちに除去されうる。 According to such an operation method or operation method, particles that can adhere to the substrate peripheral member 113 and / or the mold peripheral member 161 (usually considered to have a low adhesion force) can be immediately removed through maintenance.
 基板周辺部材113と型周辺部材161との間に供給する交流成分を含む電圧Vの正負や大小は、インプリント装置IMP内に配置された電位計により型100の電位を計測した結果に基づいて決定されもよい。あるいは、該電圧Vの正負や大小は、定期的に型100を取り出して型100の電位を計測した結果に基づいて決定されてもよい。 The positive / negative or magnitude of the voltage V including the AC component supplied between the substrate peripheral member 113 and the mold peripheral member 161 is based on the result of measuring the potential of the mold 100 by an electrometer arranged in the imprint apparatus IMP. It may be determined. Alternatively, the sign of the voltage V may be determined based on the result of periodically taking out the mold 100 and measuring the potential of the mold 100.
 型周辺部材161は、図13に例示されるように、型100の側面を全方位にわたって取り囲む形状を有しうる。しかし、型周辺部材161は、図14に例示されるように、型100が配置される領域の周辺に分割して配置された型周辺部材330a、330b、330cによって構成されてもよい。このような構成を採用することにより、型100の周辺に機構を配置するための自由度を向上させることができる。型100の周辺に配置されうる機構としては、例えば、型100の側面に力を加えて型100を目標形状に変形させる機構、インプリント材と型100との接触および引き離しのために型100をZ方向に移動させる駆動機構、型100の傾きを調整する駆動機構などを挙げることができる。また、分割された型周辺部材330a、330b、333cを採用し、型周辺部材330a、330b、333cに対して電源PSから電圧Vを供給することにより、基板周辺部材113の全体ではなく局所領域に電界を生じさせることができる。基板周辺部材113の上には基板101や微動ステージの位置のキャリブレーションに使用する基準マークや、インプリント材を硬化させるための露光光の照度を計測する照度センサ等が電界にさらされ、基準マークを用いた計測や照度センサの計測結果に影響を及ぼすことを防ぐことができる。 The mold peripheral member 161 may have a shape surrounding the side surface of the mold 100 in all directions, as illustrated in FIG. However, as illustrated in FIG. 14, the mold peripheral member 161 may be configured by mold peripheral members 330 a, 330 b, and 330 c that are divided and arranged around the area where the mold 100 is disposed. By adopting such a configuration, the degree of freedom for arranging the mechanism around the mold 100 can be improved. Examples of a mechanism that can be arranged around the mold 100 include a mechanism that applies a force to the side surface of the mold 100 to deform the mold 100 into a target shape, and the mold 100 is used for contact and separation between the imprint material and the mold 100. A drive mechanism that moves in the Z direction, a drive mechanism that adjusts the inclination of the mold 100, and the like can be given. Further, the divided mold peripheral members 330a, 330b, and 333c are employed, and the voltage V is supplied from the power source PS to the mold peripheral members 330a, 330b, and 333c, so that the substrate peripheral member 113 is not entirely disposed in the local region. An electric field can be generated. On the substrate peripheral member 113, a reference mark used for calibration of the positions of the substrate 101 and the fine movement stage, an illuminance sensor for measuring the illuminance of exposure light for curing the imprint material, and the like are exposed to an electric field. The measurement using the mark and the measurement result of the illuminance sensor can be prevented from being affected.
 型周辺部材330a、330b、330cのそれぞれの配置および役割について説明する。型周辺部材330aは、型100に対して-X方向に配置されうる。すなわち、型周辺部材330aは、平面視(+Z方向から見たときの図)において、型100からディスペンサ111に向かう方向とは反対方向に配置されうる。型周辺部材330aの長手方向の長さは、型100のパターンが形成されている部分100aの長手方向よりも長いことが好ましい。 The arrangement and roles of the mold peripheral members 330a, 330b, and 330c will be described. The mold peripheral member 330 a can be arranged in the −X direction with respect to the mold 100. That is, the mold peripheral member 330a can be arranged in a direction opposite to the direction from the mold 100 toward the dispenser 111 in a plan view (a view when viewed from the + Z direction). The length of the mold peripheral member 330a in the longitudinal direction is preferably longer than the length of the part 100a where the pattern of the mold 100 is formed.
 型周辺部材330aは、図6に示されたフローチャートの処理を実行する際に用いられる。図15に例示されるように、型周辺部材330aは、インプリント処理において型100が基板101および基板周辺部材113と対向する領域を含む領域320と対向する。型周辺部材330aに前述のタイミングで交流電圧を含む電圧Vを供給することにより、基板周辺部材113上に弱く付着しているパーティクルを基板周辺部材113の上面から離脱させることができる。 The mold peripheral member 330a is used when executing the processing of the flowchart shown in FIG. As illustrated in FIG. 15, the mold peripheral member 330 a faces a region 320 including a region where the mold 100 faces the substrate 101 and the substrate peripheral member 113 in the imprint process. By supplying the voltage V including the AC voltage to the mold peripheral member 330 a at the above-described timing, particles that are weakly adhering to the substrate peripheral member 113 can be detached from the upper surface of the substrate peripheral member 113.
 型周辺部材330b、330cは、型100に対して+X方向側、かつ型周辺部材330aよりも±Y方向側に配置されうる。型周辺部材330b、330cは、図7に示されたフローチャートの処理の際に用いられる。周辺部材330bを用いて図16に示された領域340、型周辺部材330cを用いて図17に示された領域350に弱く付着しているパーティクルを基板周辺部材113の上面から離脱させることができる。領域320、330、350を足し合わせた領域で、少なくとも基板周辺部材113の上面に付着しているパーティクルを定期的に離脱させることにより、意図しないタイミングで型100にパーティクルが引き寄せられてパターン欠陥が生じることを防ぐことができる。 The mold peripheral members 330b and 330c can be arranged on the + X direction side with respect to the mold 100 and on the ± Y direction side with respect to the mold peripheral member 330a. The mold peripheral members 330b and 330c are used in the process of the flowchart shown in FIG. Particles weakly adhering to the region 340 shown in FIG. 16 using the peripheral member 330 b and the region 350 shown in FIG. 17 using the mold peripheral member 330 c can be detached from the upper surface of the substrate peripheral member 113. . By periodically separating particles adhering to at least the upper surface of the substrate peripheral member 113 in the region obtained by adding the regions 320, 330, and 350, the particles are attracted to the mold 100 at an unintended timing, thereby causing pattern defects. It can be prevented from occurring.
 以下、物品製造方法について説明する。ここでは、一例として、物品としてデバイス(半導体集積回路素子、液晶表示素子等)を製造する物品製造方法を説明する。物品製造方法は、上述したインプリント装置を用いて基板(ウエハ、ガラスプレート、フィルム状基板)にパターンを形成する工程を含む。さらに、該製造方法は、パターンが形成された基板を処理(例えば、エッチング)する工程を含みうる。なお、パターンドメディア(記録媒体)や光学素子などの他の物品を製造する場合には、該製造方法は、エッチングの代わりに、パターンを形成された基板を加工する他の処理を含みうる。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも一つにおいて有利である。 Hereinafter, an article manufacturing method will be described. Here, as an example, an article manufacturing method for manufacturing devices (semiconductor integrated circuit elements, liquid crystal display elements, etc.) as articles will be described. The article manufacturing method includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) using the above-described imprint apparatus. Further, the manufacturing method may include a step of processing (for example, etching) the substrate on which the pattern is formed. In the case of manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching. The article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年2月29日提出の日本国特許出願特願2016-037999および2016年11月16日提出の日本国特許出願特願2016-223348を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 The present application claims priority based on Japanese Patent Application No. 2016-037999 filed on Feb. 29, 2016 and Japanese Patent Application No. 2016-223348 filed on Nov. 16, 2016. The entire contents of the description are incorporated herein.
IMP:インプリント装置、100:型、101:基板、102:基板チャック、113:基板周辺部材、150:パーティクル、161:型周辺部材、PS:電源 IMP: imprint apparatus, 100: mold, 101: substrate, 102: substrate chuck, 113: substrate peripheral member, 150: particle, 161: peripheral member of the mold, PS: power supply

Claims (15)

  1. 基板の上のインプリント材に型を接触させて該インプリント材を硬化させることによって該基板の上にパターンを形成するインプリント装置であって、
    基板を保持する基板チャックと、
    前記基板チャックの周辺に配置された基板周辺部材と、
    型を保持する型チャックと、
    前記型チャックによって保持される型の周辺に配置された型周辺部材と、
    前記基板周辺部材と前記型周辺部材との間に交流成分を含む電圧を供給する電源と、
    を備えることを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern on a substrate by bringing the mold into contact with the imprint material on the substrate and curing the imprint material,
    A substrate chuck for holding the substrate;
    A substrate peripheral member disposed around the substrate chuck;
    A mold chuck for holding the mold;
    A mold peripheral member disposed around the mold held by the mold chuck;
    A power supply for supplying a voltage including an AC component between the substrate peripheral member and the mold peripheral member;
    An imprint apparatus comprising:
  2. 前記電圧は、複数のパルス電圧を含む、
    ことを特徴とする請求項1に記載のインプリント装置。
    The voltage includes a plurality of pulse voltages,
    The imprint apparatus according to claim 1.
  3. 前記電圧の波形は、矩形波、三角波、台形波、階段波、階段波および正弦波の少なくとも1つを含む、
    ことを特徴とする請求項1に記載のインプリント装置。
    The waveform of the voltage includes at least one of a rectangular wave, a triangular wave, a trapezoidal wave, a staircase wave, a staircase wave, and a sine wave.
    The imprint apparatus according to claim 1.
  4. 前記電圧は、正および負のいずれか一方の極性を有する、
    ことを特徴とする請求項1乃至3のいずれか1項に記載のインプリント装置。
    The voltage has one of positive and negative polarity,
    The imprint apparatus according to any one of claims 1 to 3, wherein:
  5. 前記電圧の極性は、前記基板と前記型との間に前記型の帯電によって形成される電界の方向と同一の方向の電界が前記基板周辺部材と前記型周辺部材との間に形成される極性である、
    ことを特徴とする請求項4に記載のインプリント装置。
    The polarity of the voltage is such that an electric field in the same direction as the electric field formed by charging of the mold is formed between the substrate and the mold between the substrate peripheral member and the mold peripheral member. Is,
    The imprint apparatus according to claim 4.
  6. 前記電圧の絶対値の最大値は、前記型の帯電によって形成される電界の最大強度よりも強い電界が前記基板周辺部材と前記型周辺部材との間に形成される値である、
    ことを特徴とする請求項5に記載のインプリント装置。
    The maximum absolute value of the voltage is a value at which an electric field stronger than the maximum strength of the electric field formed by charging the mold is formed between the substrate peripheral member and the mold peripheral member.
    The imprint apparatus according to claim 5.
  7. 前記電源は、前記基板周辺部材および前記型周辺部材の一方を接地し、前記基板周辺部材および前記型周辺部材の他方に前記電圧を供給する、
    ことを特徴とする請求項1乃至6のいずれか1項に記載のインプリント装置。
    The power source grounds one of the substrate peripheral member and the mold peripheral member, and supplies the voltage to the other of the substrate peripheral member and the mold peripheral member.
    The imprint apparatus according to claim 1, wherein the apparatus is an imprint apparatus.
  8.  前記型の周辺に気流が形成されるように気体を供給する気体供給部を更に備え、前記電圧の供給によって前記基板周辺部材から離脱したパーティクルが前記気流によって前記型から遠ざかる方向に排出される、
     ことを特徴とする請求項1乃至7のいずれか1項に記載のインプリント装置。
    A gas supply unit that supplies gas so that an airflow is formed around the mold, and particles detached from the substrate peripheral member by the supply of the voltage are discharged in a direction away from the mold by the airflow;
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 7.
  9. 基板の上にインプリント材を供給する供給部を更に備え、
    前記電源は、前記供給部によって前記基板の上にインプリント材が供給されている間は、前記電圧を前記基板周辺部材と前記型周辺部材との間に供給しない、
    ことを特徴とする請求項1乃至8のいずれか1項に記載のインプリント装置。
    A supply unit for supplying an imprint material on the substrate;
    The power supply does not supply the voltage between the substrate peripheral member and the mold peripheral member while the imprint material is supplied onto the substrate by the supply unit.
    The imprint apparatus according to claim 1, wherein the apparatus is an imprint apparatus.
  10. 前記基板周辺部材と前記型周辺部材との間に前記電源によって前記電圧が供給された状態で、前記基板の上のインプリント材に前記型を接触させ、該インプリント材を硬化させ、該インプリント材から前記型を引き離す動作がなされる、
    ことを特徴とする請求項1乃至9のいずれか1項に記載のインプリント装置。
    In a state where the voltage is supplied by the power source between the substrate peripheral member and the mold peripheral member, the mold is brought into contact with the imprint material on the substrate, the imprint material is cured, and the imprint material is cured. The operation of pulling the mold away from the printing material is performed,
    The imprint apparatus according to claim 1, wherein the apparatus is an imprint apparatus.
  11. メンテナンスが終了した後かつインプリント処理が再開されるまでの間に、前記基板周辺部材と前記型周辺部材との間に前記電源によって前記電圧が供給される、
    ことを特徴とする請求項1乃至10のいずれか1項に記載のインプリント装置。
    The voltage is supplied by the power source between the substrate peripheral member and the mold peripheral member after the maintenance is completed and before the imprint process is restarted.
    The imprint apparatus according to claim 1, wherein the imprint apparatus is any one of claims 1 to 10.
  12. 基板の上のインプリント材に型を接触させて該インプリント材を硬化させることによって該基板の上にパターンを形成するインプリント方法であって、
    前記基板を保持する部分の周辺に配置された基板周辺部材と、前記型を保持する部分の周辺に配置された型周辺部材と、の間に交流成分を含む電圧を供給することを特徴とするインプリント方法。
    An imprint method for forming a pattern on a substrate by bringing a mold into contact with the imprint material on the substrate and curing the imprint material,
    A voltage including an alternating current component is supplied between a substrate peripheral member arranged around the portion holding the substrate and a mold peripheral member arranged around the portion holding the mold. Imprint method.
  13. 前記交流成分を含む電圧は、前記基板上にインプリント材を供給していない間に供給することを特徴とする請求項12に記載のインプリント方法。 The imprint method according to claim 12, wherein the voltage including the AC component is supplied while no imprint material is supplied onto the substrate.
  14. メンテナンスが終了した後かつインプリント処理が再開されるまでの間に、前記基板周辺部材と前記型周辺部材との間に、前記交流成分を含む電圧を供給することを特徴とする請求項に記載のインプリント方法。 The voltage including the AC component is supplied between the substrate peripheral member and the mold peripheral member after the maintenance is completed and before the imprint process is restarted. Imprint method.
  15. 物品製造方法であって、
    請求項1乃至11のいずれか1項に記載のインプリント装置を用いて基板の上にパターンを形成する工程と、
    前記パターンが形成された基板を処理する工程と、
    を含むことを特徴とする物品製造方法。
    An article manufacturing method comprising:
    Forming a pattern on a substrate using the imprint apparatus according to claim 1;
    Processing the substrate on which the pattern is formed;
    An article manufacturing method comprising:
PCT/JP2017/002097 2016-02-29 2017-01-23 Imprinting device, imprinting method and article production method WO2017149992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187026955A KR102134212B1 (en) 2016-02-29 2017-01-23 Imprint apparatus, imprint method and article manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-037999 2016-02-29
JP2016037999 2016-02-29
JP2016-223348 2016-11-16
JP2016223348A JP6789772B2 (en) 2016-02-29 2016-11-16 Imprint equipment, imprint method and article manufacturing method

Publications (1)

Publication Number Publication Date
WO2017149992A1 true WO2017149992A1 (en) 2017-09-08

Family

ID=59743771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002097 WO2017149992A1 (en) 2016-02-29 2017-01-23 Imprinting device, imprinting method and article production method

Country Status (1)

Country Link
WO (1) WO2017149992A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088369A (en) * 2007-10-02 2009-04-23 Nippon Telegr & Teleph Corp <Ntt> Imprint method and mold member manufactured with such method
JP2011040464A (en) * 2009-08-07 2011-02-24 Canon Inc Foreign body removing apparatus, exposure apparatus, and device manufacturing method
JP2014175340A (en) * 2013-03-06 2014-09-22 Dainippon Printing Co Ltd Imprint method, mold for imprint and imprint device
JP2015122373A (en) * 2013-12-20 2015-07-02 キヤノン株式会社 Imprint device, foreign substance removal method and manufacturing method of article
JP2015149390A (en) * 2014-02-06 2015-08-20 キヤノン株式会社 Imprint device, die, and method of manufacturing article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088369A (en) * 2007-10-02 2009-04-23 Nippon Telegr & Teleph Corp <Ntt> Imprint method and mold member manufactured with such method
JP2011040464A (en) * 2009-08-07 2011-02-24 Canon Inc Foreign body removing apparatus, exposure apparatus, and device manufacturing method
JP2014175340A (en) * 2013-03-06 2014-09-22 Dainippon Printing Co Ltd Imprint method, mold for imprint and imprint device
JP2015122373A (en) * 2013-12-20 2015-07-02 キヤノン株式会社 Imprint device, foreign substance removal method and manufacturing method of article
JP2015149390A (en) * 2014-02-06 2015-08-20 キヤノン株式会社 Imprint device, die, and method of manufacturing article

Similar Documents

Publication Publication Date Title
US8226392B2 (en) Transfer apparatus and method of manufacturing device
TWI649183B (en) Imprinting device, imprinting method, and method of manufacturing the article
JP6789772B2 (en) Imprint equipment, imprint method and article manufacturing method
US11798818B2 (en) Container, processing apparatus, particle removing method, and method of manufacturing article
US11036149B2 (en) Imprint apparatus, method of operating the same, and method of manufacturing article
JP2015149390A (en) Imprint device, die, and method of manufacturing article
WO2016170729A1 (en) Imprint apparatus, method of imprinting, and method of manufacturing article
KR102206846B1 (en) Imprint apparatus and article manufacturing method
US10777443B2 (en) Imprint apparatus, imprinting method, and method for manufacturing article
TWI618116B (en) Imprinting device and method of manufacturing the same
JP6643145B2 (en) Imprint apparatus, mold, imprint method, and article manufacturing method
US20230347391A1 (en) Foreign particle removing method, formation method, article manufacturing method, foreign particle removing apparatus, system, and template
TWI680050B (en) Imprint device, operation method thereof, and article manufacturing method
WO2017149992A1 (en) Imprinting device, imprinting method and article production method
JP2019067916A (en) Lithography apparatus and method of manufacturing article
JP6732475B2 (en) Imprint apparatus, article manufacturing method, holding apparatus, and exposure apparatus
JP2021002626A (en) Imprint device and manufacturing method for article
JP7089420B2 (en) Substrate processing equipment and article manufacturing method
JP6884048B2 (en) Imprint equipment and article manufacturing method
WO2017134989A1 (en) Imprinting device, and article production method
JP2019091818A (en) Imprint apparatus, and article manufacturing method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026955

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759464

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759464

Country of ref document: EP

Kind code of ref document: A1