WO2017145748A1 - 光反射フィルム及び液晶表示装置用バックライトユニット - Google Patents

光反射フィルム及び液晶表示装置用バックライトユニット Download PDF

Info

Publication number
WO2017145748A1
WO2017145748A1 PCT/JP2017/004466 JP2017004466W WO2017145748A1 WO 2017145748 A1 WO2017145748 A1 WO 2017145748A1 JP 2017004466 W JP2017004466 W JP 2017004466W WO 2017145748 A1 WO2017145748 A1 WO 2017145748A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
layer
light
low refractive
Prior art date
Application number
PCT/JP2017/004466
Other languages
English (en)
French (fr)
Inventor
美佳 本田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017145748A1 publication Critical patent/WO2017145748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0883Mirrors with a refractive index gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a light reflecting film and a backlight unit for a liquid crystal display device.
  • a reflection member having a metal reflection layer has been used in applications such as a light reflection film of a backlight unit for a liquid crystal display device, a reflection mirror of a projection television or an optical device, and a reflection member for LED illumination.
  • a reflective film including a silver layer is known as such a reflective member.
  • the silver layer has a problem of low durability compared to aluminum.
  • it has been studied to further laminate a low refractive index layer and a high refractive index layer on the silver layer (for example, Patent Document 1).
  • the chromaticity XY in the CIE 1931 color system is made closer to blue (to reduce XY), specifically, the reflectance in the blue light region (wavelength 430 to 470 nm) is increased, and the visible light region (wavelength It has been studied to reduce the reflectance of 560 to 600 nm.
  • the silver layer has an average reflectance of 96.6% in the blue light region (wavelength of 430 to 470 nm) and an average reflectance of 98.3% in the visible light region (wavelength of 560 to 600 nm).
  • the rate is lower than the average reflectance in the visible light region. Therefore, in order to make the average reflectance in the blue light region (wavelength 430 to 470 nm) higher than the average reflectance in the visible light region, the film thickness of the low refractive index layer and the film of the high refractive index layer laminated on the silver layer It has been studied to set the thickness within a specific range (for example, Patent Document 2).
  • JP 2006-10930 A Japanese Patent No. 4498273
  • the method of providing several low refractive index layers and high refractive index layers in this order on a silver layer can be considered.
  • the optical film thickness of the low refractive index layer is 0.7 ⁇ / 8 n L ⁇ 1.
  • the optical film thickness of the high refractive index layer is 0.7 ⁇ / 4n H to 1.3 ⁇ / 8n H (where ⁇ is the set wavelength of visible light, n L is the refractive index of the low refractive index layer, Even when nH is the refractive index of the high refractive index layer, the balance between luminance and chromaticity was poor.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a light reflecting film that has an excellent balance between luminance and chromaticity and can have high light utilization efficiency.
  • a metal reflective layer (A), a low refractive index layer (B 1 ), and a high refractive index layer (C 1 ) are included in this order, and further on the high refractive index layer (C 1 ).
  • a light reflecting film comprising at least one low refractive index layer (B m ) and a high refractive index layer (C m ) alternately,
  • the optical film thickness d L1 of the low refractive index layer (B 1 ) is a light reflecting film that satisfies the following formula (1).
  • is the set wavelength of visible light
  • ⁇ n is n H ⁇ n L
  • n L is the refractive index of the low refractive index layer (B 1 ) at the wavelength ⁇
  • n H is the refractive index of the high refractive index layer (C 1 ) at the wavelength ⁇ )
  • [2] The light reflecting film according to [1], wherein a refractive index difference ⁇ n between the high refractive index layer (C 1 ) and the low refractive index layer (B 1 ) is 0.4 to 1.10.
  • the optical film thickness d H1 of the high refractive index layer (C 1 ) satisfies ⁇ / 4 ⁇ d H1 ⁇ 1.2 ⁇ / 4 (where ⁇ is a set wavelength of visible light).
  • the light reflecting film according to any one of [5].
  • a backlight unit for a liquid crystal display device comprising a light source and the light reflecting film according to any one of [1] to [6].
  • the present invention can provide a light reflecting film that has an excellent balance between luminance and chromaticity and can have high light utilization efficiency.
  • the light reflective film of the present invention is a light reflective film comprising a metal reflective layer (A), a low refractive index layer (B 1 ), and a high refractive index layer (C 1 ) in this order, On the high refractive index layer (C 1 ), at least one low refractive index layer (B m ) and a high refractive index layer (C m ) are included in this order (that is, above the metal reflective layer (A)). And a low refractive index layer (B) and a high refractive index layer (C) alternately laminated at least twice).
  • the light reflecting film 10 includes a base material layer 11, a metal reflective layer (A) 12, a low refractive index layer (B 1 ) 13, a high refractive index layer (C 1 ) 15, a low refractive index layer (B 2 ) 17, and a high A refractive index layer (C 2 ) 19 is included in this order.
  • the light reflecting film of the present invention has a low refractive index layer (B m ) and a high refractive index. It includes at least one layer (C m ) in this order.
  • the repetition number m of the low refractive index layer (B m ) / high refractive index layer (C m ) is, for example, 1 to 10, although it depends on the required reflectance.
  • the reflectance can be improved and the luminance can be increased, but the low-refractive index layer (B m ) /
  • the number of low refractive index layers (B m ) / high refractive index layers (C m ) is preferably 1 to 5, and more preferably 1 or 2.
  • the optical thickness d L1 of the low refractive index layer in contact with the metal reflective layer (A) (B 1), the refractive index of the low refractive index layer (B 1) and the high refractive index layer (C 1) By setting the difference ⁇ n within the range in which ⁇ n is taken into consideration, the wavelength at which the reflectance decreases can be adjusted to around 575 nm at which the human visual sensitivity decreases (see Example 1 in FIG. 4). Accordingly, the present invention provides a light reflecting film that has an excellent balance between luminance and chromaticity and can have high light utilization efficiency.
  • Metal reflective layer (A) The metal reflective layer (A) has a function of reflecting light.
  • the metal reflective layer (A) contains, as a main component, one or more selected from the group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, Au, and alloys thereof.
  • the metal reflective layer (A) preferably contains Al, Ag, or an alloy thereof as a main component, and more preferably contains Ag or an alloy thereof as a main component in that it has a high reflectance.
  • “Containing Ag or an alloy thereof as a main component” means that the content of the metal reflective layer (A) is 90 atomic% or more. Therefore, the content of Ag or its alloy is preferably 90 atomic% or more, more preferably 99.9 atomic% or more with respect to the metal reflective layer (A).
  • the metal reflective layer (A) may further contain other metal other than Ag or an alloy thereof.
  • other metals include Au, Pd, Sn, Ga, In, Cu, Ti, Bi and alloys thereof, preferably Au and Ag alloys.
  • the metal reflective layer (A) is preferably a thin film formed by a vacuum film forming method as described later, and more preferably a vapor deposition film.
  • the thickness of the metal reflective layer (A) is preferably 100 nm to 200 nm from the viewpoint of reflectivity. When the thickness of the metal reflective layer (A) is 100 nm or more, it is possible to suppress a decrease in reflectance due to an increase in the ratio of transmitted light. When the thickness of the metal reflective layer (A) is 200 nm or less, an increase in production cost can be suppressed.
  • the thickness of the metal reflective layer (A) is more preferably from 80 to 150 nm, still more preferably from 90 to 150 nm.
  • the surface reflectance of the metal reflective layer (A) is preferably 80% or more, and more preferably 90% or more.
  • the surface reflectance of the metal reflective layer (A) can be measured with a spectrophotometer U-4100 manufactured by Hitachi High-Technologies Corporation.
  • Low refractive index layer (B) / High refractive index layer (C) The low refractive index layer (B) and the high refractive index layer (C) can function as an increased reflection layer that increases the reflectance of the metal reflection layer (A).
  • the low refractive index layer (B) refers to a layer having a refractive index of light having a measurement wavelength of 450 nm lower than that of the adjacent high refractive index layer (C).
  • the high refractive index layer (C) refers to a layer having a higher refractive index of light having a measurement wavelength of 450 nm than the adjacent low refractive index layer (B).
  • Low refractive index layer (B 1 ) The refractive index n L of light having a wavelength of 450 nm of the low refractive index layer (B 1 ) is set in consideration of the refractive index difference from the high refractive index layer (C 1 ). The following is preferable, and 1.4 to 1.5 is more preferable.
  • Refractive index n L of the low refractive index layer (B 1) is mainly the refractive index and the material contained in the low refractive index layer (B 1), it is adjusted by the density of the low refractive index layer (B 1).
  • the refractive index n L of the low refractive index layer (B 1 ) can be measured by the following method. That is, a low refractive index layer (single layer) having a thickness of 100 nm is applied and formed on a polyethylene terephthalate substrate to obtain a sample for refractive index measurement. The refractive index of light having a wavelength of 450 nm of the obtained sample is measured using a spectroscopic ellipsometer UVSEL manufactured by Horiba.
  • the present inventor has the following order: metal reflective layer (A) / low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B m ) / high refractive index layer (C m ).
  • the film laminated in step 1 is simulated for the change in the wavelength spectrum of the reflected light when the refractive index and optical film thickness of the low refractive index layer (B 1 ) and the high refractive index layer (C 1 ) are changed. It was.
  • a certain range optical thickness d L1 is, which changes according to the refractive index difference ⁇ n between the low refractive index layer (B 1) and the high refractive index layer (C 1) of the low refractive index layer (B 1) It was found that, in the wavelength spectrum of reflected light, a film in which the depression due to the decrease in reflectance is not near 450 nm but near 575 nm where human visual sensitivity decreases is obtained.
  • This specific range is a range satisfying the following formula (1).
  • is the set wavelength of visible light
  • ⁇ n is n H ⁇ n L
  • n L is the refractive index of the low refractive index layer (B 1 ) at the wavelength ⁇
  • n H is the refractive index of the high refractive index layer (C 1 ) at the wavelength ⁇ )
  • the optical film thickness is a value represented by the product of the refractive index n and the physical film thickness d.
  • the physical film thickness represents an actually measured film thickness.
  • FIG. 2 is a graph showing the relationship between the coefficients ⁇ and ⁇ and the refractive index difference ⁇ n that determines the range of the optical film thickness d L1 of the low refractive index layer (B 1 ).
  • the dotted line below shows the ⁇ factor to determine the lower limit value of the optical thickness d L1
  • dotted above shows ⁇ coefficient determining the upper limit value of the optical thickness d L1.
  • the coefficient ⁇ decreases as the refractive index difference ⁇ n increases, and the coefficient ⁇ increases slightly as the refractive index difference ⁇ n increases.
  • the optical film thickness d L1 of the low refractive index layer (B 1 ) for obtaining a film having an excellent balance between luminance and chromaticity increases the allowable range as the refractive index difference ⁇ n increases. Indicates that it may be thin.
  • the range of the physical film thickness of the low refractive index layer (B 1 ) varies depending on the set wavelength, but is generally preferably 40 nm to 80 nm.
  • the optical film thickness d L1 of the low refractive index layer (B 1 ) within the range of ⁇ / 8 ⁇ d L1 ⁇ ⁇ / 8, the luminance and chromaticity are well balanced and light is used with high efficiency.
  • the reason why a film that can be obtained is obtained is not necessarily clear, but is considered as follows.
  • light enters the metal reflection layer (A) and part of it is absorbed.
  • the remaining light that has not been absorbed is shaken by the free electrons of the metal, its phase is shifted by ⁇ , and is emitted as reflected light.
  • the reflected light having a phase shifted by ⁇ is low refractive index layer (B 1 ) / high refractive index. It is thought that the luminance is improved because the phase is strengthened by matching the phase with the reflected light at the interface of the rate layer (C 1 ).
  • the optical film thickness d L1 of the low refractive index layer (B 1 ) is less than ⁇ / 8, the depression due to the decrease in reflection is in the vicinity of 450 nm in the wavelength spectrum of the reflected light, so that the chromaticity tends to decrease. It is in.
  • the optical film thickness d L1 of the low refractive index layer (B 1 ) exceeds ⁇ / 8
  • the peak wavelength of the reflectance shifts to the long wavelength side, so that the reflectance on the short wavelength side is lowered and sufficient It becomes difficult to obtain brightness.
  • the difference in the refractive index of light having a wavelength of 450 nm between the low refractive index layer (B 1 ) and the high refractive index layer (C 1 ) is preferably 0.5 to 1.10, preferably 0.4 to It is more preferable that it is 1.10.
  • the low refractive index layer (B 1 ) may be an inorganic layer (preferably a vapor deposition film) containing an inorganic material as a main component or a resin layer containing a resin as a main component.
  • the “main component” refers to a component having a content of 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more based on the entire layer.
  • Examples of the inorganic material constituting the low refractive index layer (B 1 ) include Si oxide (for example, SiO 2 ), Si nitride (for example, Si 3 N 4 ), Si oxynitride (SiOxNy), metal Fluorides (for example, magnesium fluoride, lithium fluoride, cryolite, sodium fluoride, calcium fluoride, lanthanum fluoride, neodymium fluoride, cesium fluoride, lead fluoride) and the like are included.
  • Examples of Si oxynitrides include polysilazane.
  • the polysilazane is a polymer having a silicon-nitrogen bond and can be represented by the following general formula (I).
  • R 1 , R 2 and R 3 in formula (I) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group (preferably a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms). Group), an aryl group (preferably an aryl group having 6 to 30 carbon atoms), a vinyl group, or a trialkoxysilyl (preferably silyl substituted with an alkoxy group having 1 to 8 carbon atoms) alkyl group.
  • R 1 , R 2 and R 3 may be the same or different.
  • N in the general formula (I) is an integer of 1 or more.
  • the number average molecular weight of the compound having the structure represented by the general formula (I) is preferably 150 to 150,000.
  • Examples of the compound having a structure represented by the general formula (I) include perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • PHPS perhydropolysilazane
  • the content of the inorganic material is preferably 90 atomic% or more, and 95 atomic% or more with respect to the low refractive index layer (B 1 ). Is more preferable.
  • the resin constituting the low refractive index layer (B 1) may be any resin having a refractive index suitable for the low refractive index layer (B 1), examples of which include polyethylene terephthalate (PET), copolymers of polyethylene terephthalate Polyester resins such as (coPET) and terephthalic acid-cyclohexanedimethanol-ethylene glycol copolymer (PETG); acrylic resins such as poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate) copolymers (coPMMA); Water-soluble resins such as polyvinyl alcohol resins, gelatin, celluloses, thickening polysaccharides and polymers having reactive functional groups; and melamine resins are included.
  • PET polyethylene terephthalate
  • Polyester resins such as (coPET) and terephthalic acid-cyclohexanedimethanol-ethylene glycol copolymer (PETG)
  • acrylic resins such as poly (methyl methacrylate) (P
  • acrylic resins are preferable because the refractive index can be easily adjusted.
  • a curable resin having a functional group that reacts with a curing agent for example, an acrylic resin having a hydroxyl group
  • the weight average molecular weight of the resin is not limited as long as it can be applied, and can be, for example, 1,000 to 500,000.
  • High refractive index layer (C 1 ) The refractive index n H of light having a wavelength of 450 nm of the high refractive index layer (C 1 ) can be set in consideration of the refractive index difference from the low refractive index layer (B 1 ). Or less, more preferably 2.0 or more and 2.4 or less.
  • Refractive index of the high refractive index layer (C 1) is mainly the refractive index and the material contained in the high refractive index layer (C 1), it is adjusted by the density of the high refractive index layer (C 1).
  • the refractive index n H of the high refractive index layer (C 1 ) is such that a high refractive index layer (single layer) having a thickness of 100 nm is vacuum deposited or formed on a polyethylene terephthalate substrate to obtain a sample for refractive index measurement.
  • the measurement can be performed in the same manner as described above.
  • the optical film thickness of the high refractive index layer (C 1 ) depends on the wavelength range of the light to be increased and reflected, but is, for example, ⁇ / 4 to 1.2 ⁇ / 4 in order to enhance the effect of increasing the reflection of light having a wavelength of 430 to 470 nm. Preferably there is.
  • the physical film thickness varies depending on the set wavelength, but is preferably 40 nm to 70 nm.
  • the high refractive index layer (C 1 ) may be an inorganic layer (preferably a vapor deposition film) containing an inorganic material as a main component or a resin layer containing a resin as a main component.
  • the resin constituting the resin layer the same resin as that constituting the low refractive index layer (B 1 ) is used.
  • the high refractive index layer (C 1) from the viewpoint of high refractive index can be easily obtained, it is preferable that an inorganic layer of an inorganic material as a main component.
  • Examples of the inorganic material constituting the high refractive index layer (C 1 ) include metal oxides or metal sulfides.
  • Examples of the metal constituting the metal oxide or metal sulfide include Zn, Ti, Zr, Nb, Ta and In.
  • Examples of metal oxides include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 and TiO. Is included.
  • Examples of the metal sulfide include ZnS, MnS, and the like.
  • metal sulfides are preferable, and zinc sulfide (ZnS) is more preferable because it has a high refractive index and transparency.
  • the content of the metal oxide or metal sulfide is preferably 90 atomic% or more, and more preferably 95 atomic% or more with respect to the high refractive index layer (C 1 ).
  • Low refractive index layer (B m ) The refractive index n L of light having a wavelength of 450 nm of the low refractive index layer (B m ) is set in consideration of the refractive index difference from the adjacent high refractive index layer (C m ). Is preferably 6 or less, more preferably 1.4 to 1.5.
  • Refractive index n L of the low refractive index layer (B 1), the refractive index and mainly the material contained in the low refractive index layer (B m), is adjusted by the density of the low refractive index layer (B m).
  • the refractive index n L of the low refractive index layer (B m ) can also be measured in the same manner as the low refractive index layer (B 1 ).
  • the optical film thickness d L1 of the low refractive index layer (B m ) may be the same as or different from that of the low refractive index layer (B 1 ).
  • a preferable optical film thickness d L1 of the low refractive index layer (B m ) is ⁇ / 8 to 2.2 ⁇ / 8 (where ⁇ is ⁇ 0.13 ⁇ ⁇ n + 1.47, and ⁇ is a set wavelength of visible light)
  • ⁇ n is preferably within the range of the refractive index of the low refractive index layer (B m ) and the high refractive index layer (C m ), and more preferably ⁇ / 4.
  • the optical film thickness d L1 of the low refractive index layer (B m ) is within the above range, a light reflecting film excellent in the balance between luminance and chromaticity can be obtained.
  • Examples of the material constituting the low refractive index layer (B m ) include the same materials as exemplified for the low refractive index layer (B 1 ).
  • the low refractive index layer (B m ) contained in the light reflecting film of the present invention may be the same as or different from the low refractive index layer (B 1 ) described above. Further, when a plurality of low refractive index layers (B m ) are present, they may be the same as or different from each other.
  • High refractive index layer (C m ) The refractive index n H of light having a wavelength of 450 nm of the high refractive index layer (C m ) can be set in consideration of the refractive index difference from the low refractive index layer (B m ), for example, 1.8 to 2.5. The following is preferable, and 2.0 to 2.4 is more preferable.
  • Refractive index of the high refractive index layer (C m) is mainly the refractive index and the material contained in the high refractive index layer (C m), it is adjusted by the density of the high refractive index layer (C m).
  • the refractive index n H of the high refractive index layer (C m ) can also be measured in the same manner as the high refractive index layer (C 1 ).
  • the optical film thickness d H1 of the high refractive index layer (C m ) depends on the wavelength range of the light to be increased and reflected, for example, in order to enhance the effect of increasing the reflection of light having a wavelength of 430 to 470 nm, ⁇ / 4 to 1.2 ⁇ / 4 is preferable and 0.8 ⁇ / 4 to 1.2 ⁇ / 4 is more preferable.
  • Examples of the material constituting the high refractive index layer (C m ) include the same materials as exemplified for the high refractive index layer (C 1 ).
  • the high refractive index layer (C m ) contained in the light reflecting film of the present invention may be the same as or different from the high refractive index layer (C 1 ) described above. Further, when a plurality of high refractive index layers (C m ) are present, they may be the same as or different from each other.
  • the light reflecting film of the present invention may further include other layers as long as the effects of the present invention are not impaired.
  • Examples of other layers include a base material layer disposed under the metal reflective layer (A), an anchor layer (G) disposed between the base material layer and the metal reflective layer (A), and the like. .
  • Base material layer The base material layer has a function of supporting the metal reflective layer (A).
  • the base material layer is preferably a resin film.
  • the resin film examples include polyester films such as polyethylene terephthalate film and polyethylene naphthalate film, polypropylene film, acrylic film, polycarbonate film, polyimide film, polysulfone film, polyether ether ketone film, fluororesin film, cellulose ester film, Polycycloolefin-based films and the like are included.
  • polyester films such as polyethylene terephthalate film and polyethylene naphthalate film, polypropylene film, acrylic film, polycarbonate film, polyimide film, polysulfone film, polyether ether ketone film, fluororesin film, cellulose ester film, Polycycloolefin-based films and the like are included.
  • a polyethylene terephthalate film and a polypropylene film are preferable from the viewpoint of high heat resistance, strength, and transparency.
  • the thickness of the base material layer can be, for example, 10 to 300 ⁇ m. When the thickness of the base material layer is 10 ⁇ m or more, the base material layer has sufficient strength and is easy to handle. The surface smoothness of a base material layer is hard to be impaired as the thickness of a base material layer is 300 micrometers or less.
  • the thickness of the base material layer is preferably 20 to 200 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the base material layer contains as little impurities as possible.
  • the base material layer is preferably a transparent base material layer.
  • the average transmittance of the transparent substrate layer at a wavelength of 360 to 400 nm is preferably 80% or more, and more preferably 85% or more.
  • the average transmittance of the transparent substrate layer can be measured in the same manner as described above.
  • Anchor layer An anchor layer is arrange
  • the anchor layer contains a resin as a main component.
  • resins include polyester resins, acrylic resins, melamine resins, epoxy resins, polyamide resins, vinyl chloride resins, and vinyl chloride vinyl acetate copolymer resins.
  • a composition containing an acrylic resin and a melamine resin is preferable from the viewpoint of good durability.
  • This composition may be a thermosetting composition further containing a curing agent such as isocyanate.
  • the thickness of the anchor layer can be set to 0.01 to 3 ⁇ m, for example.
  • the thickness of the anchor layer is 0.01 ⁇ m or more, the adhesion between the base material layer and the metal reflective layer (A) can be sufficiently enhanced.
  • the thickness of the anchor layer is 3 ⁇ m or less, the film thickness uniformity of the anchor layer is hardly impaired.
  • the thickness of the anchor layer is preferably 0.1 to 1 ⁇ m.
  • the light reflecting film of the present invention may be produced by any method, for example, a metal reflective layer (A), a low refractive index layer (B 1 ), a high refractive index layer (C 1 ), a low
  • the refractive index layer (B m ) and the high refractive index layer (C m ) may be sequentially stacked.
  • the metal reflective layer (A), the low refractive index layer (B 1 ), the high refractive index layer (C 1 ), the low refractive index layer (B m ) and the high refractive index are formed on one surface of the base material layer.
  • the rate layers (C m ) are sequentially laminated to obtain a laminate.
  • the metal reflective layer (A) can be formed by a wet method or a dry method.
  • the wet method is a plating method in which a film is formed by depositing a metal from a solution, and specific examples thereof include a silver mirror reaction method.
  • the dry method is a vacuum film forming method, and specific examples thereof include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method. Of these, the dry method is preferable from the viewpoint of production efficiency, and the vacuum evaporation method is more preferable from the viewpoint that film formation by a roll-to-roll method, which is a continuous film formation method, is possible.
  • the surface of the base material layer is subjected to a surface treatment such as corona treatment or ion coating treatment before forming the metal reflective layer (A). Also good.
  • An anchor layer may be further formed on the surface of the base material layer (E).
  • the low refractive index layer (B 1 ), the low refractive index layer (B m ), the high refractive index layer (C 1 ), and the high refractive index layer (C m ) can be formed by a dry method or a wet method. .
  • the low refractive index layer (B) and the high refractive index layer (C) mainly composed of a resin are preferably formed by a wet method; the low refractive index layer (B) mainly composed of an inorganic material and a high refractive index.
  • the rate layer (C) is preferably formed by a dry method.
  • the material constituting the low refractive index layer (B) or the high refractive index layer (C) is formed by the same vacuum film forming method as described above, and the low refractive index layer (B) or A high refractive index layer (C) is formed.
  • the vacuum film forming method is preferably a vacuum vapor deposition method from the viewpoint that continuous film forming is possible.
  • the resin composition constituting the low refractive index layer (B) or the high refractive index layer (C) described above, the resin composition is cured and then the low refractive index layer made of a cured product of the resin composition. (B) or a high refractive index layer (C) is formed.
  • the resin composition includes the above-described curable resin and a curing agent, and may further include a solvent as necessary.
  • the curing agent include polyisocyanate and epoxy compound.
  • the content of the curing agent can be about 0.1 to 15% by mass with respect to the above-described curable resin. Any solvent may be used as long as it can disperse the above-mentioned resin satisfactorily.
  • aprotic solvents examples include hydrocarbon solvents such as pentane, hexane, cyclohexane and toluene; halogen hydrocarbon solvents such as methylene chloride and trichloroethane; esters such as ethyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone And ethers such as dibutyl ether, dioxane, and tetrahydrofuran are included.
  • hydrocarbon solvents such as pentane, hexane, cyclohexane and toluene
  • halogen hydrocarbon solvents such as methylene chloride and trichloroethane
  • esters such as ethyl acetate and butyl acetate
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as dibutyl ether, dioxane, and te
  • the resin composition can be applied by, for example, a gravure coating method, a spin coating method, a bar coating method, or the like. Curing is photocuring or thermal curing, and thermal curing is preferable in that sufficient curing is possible.
  • the light reflecting film of the present invention can be used as a reflecting member for various uses, for example, a light reflecting film of a backlight unit for a liquid crystal display device, a reflecting mirror of a projection television, a lamp reflector and the like.
  • the light reflection film of this invention is preferably used as a light reflection film of the backlight unit for liquid crystal display devices from the point which has a favorable reflectance and durability.
  • the backlight unit for liquid crystal display devices includes a light source and the light reflecting film of the present invention.
  • the light reflecting film of the present invention is disposed such that the outermost high refractive index layer (C m ) faces the back surface of the light source or the light guide plate (the surface not facing the liquid crystal display panel).
  • Examples of the light source include a cold cathode tube (CCFL), a hot cathode tube (HCFL), an external electrode fluorescent tube (EEFL), a flat fluorescent tube (FFL), a light emitting diode element (LED), and an organic electroluminescence element (OLED). Etc. are included. Among these, a cold cathode tube (CCFL) and a light emitting diode element (LED) are preferable.
  • CCFL cold cathode tube
  • HCFL hot cathode tube
  • EFL external electrode fluorescent tube
  • FTL flat fluorescent tube
  • LED light emitting diode element
  • OLED organic electroluminescence element
  • the backlight unit for a liquid crystal display device may further include another optical film.
  • other optical films include light diffusion films and prism films.
  • the light diffusion film include a diffusion film coated with a filler or a bead-containing binder.
  • the backlight unit for a liquid crystal display device may be a direct type backlight unit or a side edge type backlight unit.
  • a side-edge type backlight unit is preferable because it is suitable for a medium / small-sized liquid crystal display device.
  • the side-edge type backlight unit includes a light source, a light guide plate disposed adjacent to the light source, and a light reflection film disposed on the back side of the light guide plate, and further includes other optical films as necessary. But you can.
  • An example of the aspect of the side edge type backlight unit includes a backlight unit 50 shown in FIG. 3 to be described later.
  • the liquid crystal display device of the present invention includes a liquid crystal display panel and a backlight unit.
  • FIG. 2 is a cross-sectional view showing an example of the liquid crystal display device of the present invention. The figure shows an example in which a side edge type backlight unit is used.
  • the liquid crystal display device 30 includes a liquid crystal display panel 40 and a side edge type backlight unit 50.
  • the liquid crystal display panel 40 includes a liquid crystal cell 41 and a pair of polarizing plates 43 and 45 sandwiching the liquid crystal cell 41.
  • the display method of the liquid crystal cell 41 is not particularly limited, and may be various display modes such as VA (MVA, PVA) and IPS.
  • Each of the polarizing plates 43 and 45 includes a polarizer and a protective film disposed on at least one surface thereof.
  • the side-edge type backlight unit 50 includes a rod-shaped light source 51, a light guide plate 53 disposed so that the side end portion is adjacent to the light source 51, and the light reflecting film 10 disposed on the back side of the light guide plate 53. And a plurality of optical films 55 disposed on the surface side of the light guide plate 53.
  • the light source 51 is covered with a lamp reflector 52.
  • the plurality of optical films 55 are not limited to the embodiment shown in FIG. 3, and the optical film 55 may not be provided, and the combination and number of optical films may be changed.
  • the side edge type backlight unit 50 In the side edge type backlight unit 50, light emitted from the light source 51 propagates inside the light guide plate 53. A part of the light emitted from the light guide plate 53 is reflected by the light reflecting film 10 and emitted to the front surface side (liquid crystal display panel 40 side) of the light guide plate 53. The light emitted to the surface side of the light guide plate 53 is diffused by the light diffusion film 57, refracted by the prism film 59, and incident on the entire surface of the liquid crystal display panel 40.
  • the liquid crystal display device 30 including the light reflecting film 10 can have high light utilization efficiency.
  • low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B 2 ) / high refractive index layer (C 2 ) A light reflecting film was produced.
  • the low refractive index layer (B 1 ) and the low refractive index layer (B 2 ) are made of the same material, and the high refractive index layer (C 1 ) and the high refractive index layer (C 2 ) are the same. It consists of material.
  • a low refractive index layer (B) having a thickness of 50 nm was vacuum deposited or formed on a polyethylene terephthalate (PET) substrate having a thickness of 100 ⁇ m to obtain a sample 1 for refractive index measurement.
  • a high refractive index layer (C) having a thickness of 50 nm was vacuum-deposited or applied on a PET substrate having a thickness of 100 ⁇ m to obtain a sample 2 for refractive index measurement.
  • the refractive indices of light having a wavelength of 450 nm of Samples 1 and 2 were measured using a spectroscopic ellipsometer UVSEL manufactured by Horiba.
  • An anchor layer composition was prepared by adding 1-phenyl-5-mercapto-1H-tetrazole (PMT, manufactured by Toyobo Co., Ltd.) so as to be 1.5% by mass with respect to the solid content of the dialnal.
  • PMT 1-phenyl-5-mercapto-1H-tetrazole
  • HB3 polyethylene terephthalate film
  • silver (Ag) was vacuum-deposited to form a metal reflective layer (A) having a thickness of 100 nm. Formed in the order of “low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B 2 ) / high refractive index layer (C 2 )” on the metal reflective layer (A). did.
  • magnesium fluoride (MgF 2 ) is vacuum-deposited on the metal reflective layer (A) formed above to form a 57 nm-thick low refractive index layer (B 1 ) (Film Formation 1 ), A high refractive index layer (C 1 ) was further formed on the surface by vacuum evaporation so that the film thickness of zirconium oxide (ZrO 2 ) became 54 nm (film formation 2). Further, on the high refractive index layer (C 1 ), the film formation 1 is carried out to a thickness of 57 nm to further form the low refractive index layer (B 2 ). A refractive index layer (C 2 ) was further formed to obtain a light reflecting film.
  • Examples 2 and 3 In the same manner as in Example 1, an anchor layer and a metal reflective layer (A) were formed on a polyethylene terephthalate film. Formed in the order of “low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B 2 ) / high refractive index layer (C 2 )” on the metal reflective layer (A). did. Specifically, a light reflecting film was obtained in the same manner as in Example 1 except that the thickness of the low refractive index layer (B 1 ) was changed as described in Table 1.
  • Examples 4 to 7 In the same manner as in Example 1, an anchor layer and a metal reflective layer (A) were formed on a polyethylene terephthalate film. Formed in the order of “low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B 2 ) / high refractive index layer (C 2 )” on the metal reflective layer (A). did. Specifically, a low refractive index layer (B 1 ) was formed in the same manner as in Example 1 except that the thickness of the low refractive index layer (B 1 ) was changed as described in Table 1 (Film Formation 1 ).
  • ZnS zinc sulfide
  • Table 1 film formation 2
  • B 2 low refractive index layer
  • C 2 high refractive index layer
  • Example 8 to 13> In the same manner as in Example 1, an anchor layer and a metal reflective layer (A) were formed on a polyethylene terephthalate film. Formed in the order of “low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B 2 ) / high refractive index layer (C 2 )” on the metal reflective layer (A). did. Specifically, an acrylic resin (Acridic A-452, manufactured by DIC Corporation) is laminated on the metal reflective layer (A) formed as described above by a wet coating method, and the thicknesses shown in Table 1 are reduced. A refractive index layer (B 1 ) was formed (Film Production 1).
  • zinc sulfide (ZnS) as a high refractive index layer was laminated on the surface by a vacuum vapor deposition method so as to have a film thickness shown in Table 1 (film formation 2). Further, the film formation 1 and the film formation 2 were repeated to form a low refractive index layer (B 2 ) and a high refractive index layer (C 2 ), thereby obtaining a light reflecting film. In Examples 11 to 13, the film formation 1 was performed so that the thickness of the low refractive index layer (B 2 ) was a value described in Table 1.
  • Example 14 and 15 In the same manner as in Example 1, an anchor layer and a metal reflective layer (A) were formed on a polyethylene terephthalate film. Formed in the order of “low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B 2 ) / high refractive index layer (C 2 )” on the metal reflective layer (A). did. Specifically, silicon oxide (SiO 2 ) was vacuum-deposited on the metal reflective layer (A) formed above to form a low refractive index layer (B 1 ) having the thickness shown in Table 1 ( Film formation 1).
  • a titanium oxide-containing resin (UV curable functional hard coating agent Lioduras, manufactured by TYT Toyo Ink) was laminated by the wet coating method, and the high refractive index with the thickness shown in Table 1 was obtained.
  • the film production 1 was carried out so that the low refractive index layer (B 2 ) had a thickness of 77 nm.
  • Example 12 In the same manner as in Example 1, an anchor layer and a metal reflective layer (A) were formed on a polyethylene terephthalate film. On the metal reflective layer (A), it was formed in the order of “low refractive index layer (B 1 ) / high refractive index layer (C 1 )”. Specifically, silicon oxide (SiO 2 ) was vacuum-deposited on the metal reflective layer (A) formed above to form a low refractive index layer (B 1 ) having the thickness shown in Table 1. Then, on the low-refractive index layer (B 1), titanium oxide (TiO 2) was vacuum deposited thickness 55nm of the high refractive index layer (C 1) was formed thereon to obtain a light reflection film.
  • silicon oxide (SiO 2 ) silicon oxide (SiO 2 ) was vacuum-deposited on the metal reflective layer (A) formed above to form a low refractive index layer (B 1 ) having the thickness shown in Table 1.
  • titanium oxide (TiO 2) was vacuum deposited thickness 55nm of the
  • a titanium oxide-containing resin (UV curable functional hard coating agent Lioduras, manufactured by TYT Toyo Ink) is laminated by a wet coating method, and a high refractive index layer (C 1 ) was laminated (film formation 2). Further casting 1 and the film 2 is repeated so that the thickness shown in Table 1 to form a low refractive index layer (B 2) and the high refractive index layer (C 2), to obtain a light reflection film.
  • the film production 1 was performed so that the thickness of the low refractive index layer (B 2 ) was 74 nm.
  • Tables 1 and 2 show the materials used for forming the low refractive index layer (B 1 ) / high refractive index layer (C 1 ) / low refractive index layer (B 2 ) / high refractive index layer (C 2 ).
  • the refractive index ( nL and nH ) and the optical film thickness and physical film thickness of each layer were described.
  • the refractive index difference ( ⁇ n) is obtained from the refractive index of the used material, and the coefficients ⁇ and ⁇ are calculated based on the following formulas. And listed in Table 1 and Table 2.
  • Luminance / Chromaticity The backlight unit was taken out from the liquid crystal display device (trade name: LC-37GX1W, manufactured by Sharp), and the light reflecting film of the backlight unit was replaced with the light reflecting film produced above.
  • a luminance meter (manufactured by Konica Minolta, product name “CS-2000”) is located on the side opposite to the surface where the light reflecting film of the obtained backlight unit is disposed and at a height of 200 mm from the light reflecting film.
  • tristimulus value Y (luminance) [cd / m 2 ] at intervals of 0.6 mm from end to end in the form of crossing the center of the surface light source device in the vertical direction of the light sources arranged in parallel, and Chromaticity X and Y in the CIE 1931 color system were measured. These values were measured at 25 ° C.
  • the brightness and chromaticity X and Y were also measured in the same manner as described above for a reflective film (reflective film ESR, manufactured by 3M) having a multilayer structure using a polyester resin and an acrylic resin.
  • the percentage of the brightness of the film of the example and the comparative example with respect to the brightness of the reference sample was determined and used as the relative brightness.
  • a relative luminance of 97.00% or more is suitable for practical use.
  • chromaticity X and Y the chromaticity difference ( ⁇ x and ⁇ y) with respect to the chromaticity of the reference sample was obtained.
  • the chromaticity difference is suitable for practical use when both ⁇ x and ⁇ y are 0.0040 or less.
  • Table 3 The results are shown in Table 3.
  • the optical film thickness d L1 of the metal reflective layer (A) and the low refractive index layer (B 1 ) is ⁇ / 8 to ⁇ / 8 (where ⁇ is ⁇ 0.13 ⁇ ⁇ n + 1.47). And ⁇ is 0.08 ⁇ ⁇ n + 1.86, ⁇ is a set wavelength of visible light, and ⁇ n is n H ⁇ n L ), and low refractive index of at least two layers
  • ⁇ ⁇ ⁇ n + 1.86 a set wavelength of visible light
  • ⁇ n is n H ⁇ n L
  • low refractive index of at least two layers Each of the light reflecting films of Examples 1 to 15 having a layer and at least two high refractive index layers exhibited a high relative luminance exceeding 97.00% and a low chromaticity change of less than 0.0040.
  • the optical film thickness d L2 of the second low refractive index layer (B 2 ) (that is, the low refractive index layer not in contact with the silver layer) is ⁇ / 8 to ⁇ described above. Although it was out of the range of / 8, it was excellent in relative luminance and chromaticity change as in the other examples.
  • the relative luminance was 97.00% or less.
  • the light reflection films of Comparative Examples 12 and 13 each having only one low refractive index layer and one high refractive index layer also have a chromaticity change of 0.0040 or more, although the relative luminance exceeds 100%. It was big.
  • Example 1 a reflectance spectrum was simulated by an Essential Maker manufactured by Thin Film Center Inc. The results are shown in FIG. In FIG. 4, the solid line shows the spectrum of the light reflecting film of Example 3, the broken line shows the spectrum of the light reflecting film of Comparative Example 1, the long broken line shows the spectrum of the light reflecting film of Comparative Example 3, and the dotted line shows the comparison. The spectrum of the light reflection film of Example 13 is shown.
  • the light emission peak wavelength of the LED is around 450 nm, when the reflectance decreases in this region, a person watching the liquid crystal display device when using it as a light reflecting film for a backlight unit of a liquid crystal display device has the wavelength of It is not desirable because it recognizes a decrease in light.
  • the light reflecting film of Comparative Example 3 in which the film thickness of the low refractive index layer (B 1 ) exceeds ⁇ / 8, similarly to the light reflecting film of Comparative Example 13, the light of a low wavelength (360 nm to 400 nm) is transmitted. The reflectance is low, and the reflectance peak is around 430 nm. Such a decrease in the chromaticity of the film is considered to be due to a decrease in the reflectance with respect to light having a low wavelength.
  • Example 1 In the light reflecting film of Example 1 in which the film thickness of the low refractive index layer (B 1 ) is in the range of ⁇ / 8 to ⁇ / 8, there is a dent in which the reflectance drops as in Comparative Examples 1 and 3. However, the position is shifted to a region of 570 nm to 670 nm. Since the human visual sensitivity decreases near 575 nm, even if the reflectance decreases in this region, it is difficult for humans to recognize. Further, since the reflectance of light having a low wavelength (360 nm to 400 nm) is high, it is considered that the balance between luminance and chromaticity is excellent.
  • the light reflecting film of the present invention includes a metal reflective layer (A), a low refractive index layer (B 1 ), and a high refractive index layer (C 1 ) in this order, and further includes the high refractive index layer (C 1).
  • the optical film thickness d L1 of the low refractive index layer (B 1 ) is in the range of ⁇ / 8 to ⁇ / 8 (provided that ⁇ Is ⁇ 0.13 ⁇ ⁇ n + 1.47, ⁇ is 0.08 ⁇ ⁇ n + 1.86, ⁇ is the set wavelength of visible light, and ⁇ n is n H ⁇ n L ), which is a light reflecting film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本発明は、輝度と色度のバランスに優れ、高い光利用効率を有しうる、光反射フィルムに関する。本発明の光反射フィルムは、金属反射層(A)と、低屈折率層(B)と、高屈折率層(C)とをこの順に含み、且つ前記高屈折率層(C)の上に、さらに低屈折率層(B)と高屈折率層(C)を交互に少なくとも1層ずつ含む光反射フィルムであって、前記低屈折率層(B)の光学膜厚dL1は、次の式(1):αλ/8≦dL1≦βλ/8、α=-0.13×Δn+1.47、β=0.08×Δn+1.86(式(1)において、λは、可視光線の設定波長であり、Δnは、n-nであり、nは、波長λにおける低屈折率層(B)の屈折率であり、nは、波長λにおける高屈折率層(C)の屈折率である)を満たす、光反射フィルムである。

Description

光反射フィルム及び液晶表示装置用バックライトユニット
 本発明は、光反射フィルム及び液晶表示装置用バックライトユニットに関する。
 従来、液晶表示装置用バックライトユニットの光反射フィルム、プロジェクションテレビや光学系装置の反射鏡、及びLED照明用反射部材等の用途において、金属反射層を有する反射部材が用いられている。
 そのような反射部材として、銀層を含む反射フィルムが知られている。銀層は、アルミニウムと比べて耐久性が低いという問題があった。この問題を克服するために、銀層に、低屈折率層と高屈折率層とをさらに積層することが検討されている(例えば特許文献1)。
 また、液晶表示装置のバックライトユニット用光反射フィルムにおいては、表示装置の輝度と色度の両方の改善が検討されている。即ち、CIE1931表色系における色度XYを青寄りにすること(XYを小さくすること)、具体的には青色光領域(波長430~470nm)の反射率を高くし、且つ可視光領域(波長560~600nm)の反射率を低くすることが検討されている。銀層は、青色光領域(波長430~470nm)の平均反射率が96.6%、可視光領域(波長560~600nm)の平均反射率が98.3%であり、青色光領域の平均反射率が、可視光領域の平均反射率よりも低い。そのため、青色光領域(波長430~470nm)の平均反射率を可視光領域の平均反射率よりも高くするために、銀層上に積層する低屈折率層の膜厚と高屈折率層の膜厚をそれぞれ特定の範囲内にとすることが検討されている(例えば特許文献2)。
特開2006-10930号公報 特許第4498273号公報
 特許文献1に示されるような基材層/銀層/低屈折率層/高屈折率層を含むフィルムにおいては、アルミニウムを反射層として用いたフィルムと比べて耐久性は向上したものの、光学輝度や色度は、近年、液晶表示装置等に求められる水準を満たすものではなかった。
 また、光反射フィルムの反射率を向上させるために、銀層の上に低屈折率層と高屈折率層とをこの順に複数設ける手法が考えられる。しかしながら、このように複数の低屈折率層と高屈折率層とを有する光反射フィルムにおいて、特許文献2に示されるように、低屈折率層の光学膜厚が0.7λ/8n~1.3λ/8n、高屈折率層の光学膜厚が0.7λ/4n~1.3λ/8n(但し、λは可視光線の設定波長、nは低屈折率層の屈折率、nは高屈折率層の屈折率)としても、輝度と色度のバランスが悪かった。
 本発明は上記事情に鑑みてなされたものであり、輝度と色度のバランスに優れ、高い光利用効率を有しうる、光反射フィルムを提供することを目的とする。
 [1] 金属反射層(A)と、低屈折率層(B)と、高屈折率層(C)とをこの順に含み、且つ前記高屈折率層(C)の上に、さらに低屈折率層(B)と高屈折率層(C)を交互に少なくとも1層ずつ含む光反射フィルムであって、
 前記低屈折率層(B)の光学膜厚dL1は、下記式(1)を満たす、光反射フィルム。
 式(1):αλ/8≦dL1≦βλ/8
      α=-0.13×Δn+1.47
      β=0.08×Δn+1.86
 (式(1)において、
 λは、可視光線の設定波長であり、
 Δnは、n-nであり、
 nは、波長λにおける低屈折率層(B)の屈折率であり、
 nは、波長λにおける高屈折率層(C)の屈折率である)
 [2] 前記高屈折率層(C)と前記低屈折率層(B)との屈折率差Δnが0.4~1.10である、[1]に記載の光反射フィルム。
 [3] 前記低屈折率層(B)の波長450nmにおける屈折率nが1.3~1.6である、[1]または[2]に記載の光反射フィルム。
 [4] 前記高屈折率層(C)の波長450nmにおける屈折率nが1.8~2.5である、[1]~[3]のいずれか一項に記載の光反射フィルム。
 [5] 前記金属反射層(A)の物理膜厚が100nm以上である、[1]~[4]のいずれか一項に記載の光反射フィルム。
 [6] 前記高屈折率層(C)の光学膜厚dH1が、λ/4≦dH1≦1.2λ/4(但し、λは可視光線の設定波長)を満たす、[1]~[5]のいずれか一項に記載の光反射フィルム。
 [7] 光源と、[1]~[6]のいずれか一項に記載の光反射フィルムとを含む、液晶表示装置用バックライトユニット。
 本発明は、輝度と色度のバランスに優れ、高い光利用効率を有しうる、光反射フィルムを提供することができる。
本発明の光反射フィルムの一例を示す模式図である。 本発明における低屈折率層(B)の光学膜厚の範囲を決定するための係数αと屈折率差Δnとの関係を示すグラフである。 本発明の液晶表示装置の一例を示す断面図である。 本願の実施例および比較例で作成した光反射フィルムの反射率スペクトルのシミュレーション結果を示すグラフである。
 1.光反射フィルム
 本発明の光反射フィルムは、金属反射層(A)と、低屈折率層(B)と、高屈折率層(C)とをこの順番で含む光反射フィルムであって、前記高屈折率層(C)の上に、低屈折率層(B)と高屈折率層(C)をこの順番で少なくとも1層ずつ含む(即ち、金属反射層(A)の上に低屈折率層(B)と高屈折率層(C)を交互に少なくとも2回積層した)光反射フィルムである。図1は、本発明の光反射フィルムの一例を示す模式図であり、低屈折率層(B)と高屈折率層(C)をそれぞれ2層有するフィルムである。光反射フィルム10は、基材層11、金属反射層(A)12、低屈折率層(B)13、高屈折率層(C)15、低屈折率層(B)17、高屈折率層(C)19をこの順に含む。
 本発明の光反射フィルムは、金属反射層(A)の上の低屈折率層(B)と高屈折率層(C)に加えて、低屈折率層(B)と高屈折率層(C)をこの順番で少なくとも1層ずつ含んでいる。低屈折率層(B)/高屈折率層(C)の繰り返し数mは、求められる反射率にもよるが、例えば1~10である。本発明においては、複数の低屈折率層と高屈折率層とをこの順で積層することにより、反射率を向上し、輝度を高めることが可能となるが、低屈折率層(B)/高屈折率層(C)が多いと、反射する光の波長域が狭くなり、色度が低下する傾向にある。よって、低屈折率層(B)/高屈折率層(C)の数は、1~5であることが好ましく、1又は2であることがより好ましい。
 このような複数の低屈折率層と高屈折率層とを積層した光反射フィルムにおいては、反射光の波長スペクトルにおいて、反射率のくぼみが発生すること、即ち、特定の波長について、位相が逆転して互いに弱め合い、反射率が低下する現象が生じることが知られている(図4の比較例1と比較例3を参照)。このような現象は、低屈折率層と高屈折率層とを1層ずつ積層した光反射フィルム(図4の比較例13を参照)においては見られない現象である。特にLEDの発光ピーク波長である450nm近傍で反射率が低下すると、液晶表示装置のバックライトユニット用光反射フィルムとして使用した際に、液晶表示装置を見ている人が当該波長の光の低下を認識するため望ましくない。本発明においては、金属反射層(A)に接する低屈折率層(B)の光学膜厚dL1を、低屈折率層(B)と高屈折率層(C)の屈折率との差であるΔnを考慮した範囲内とすることによって、反射率の低下する波長を、人の視感感度の低下する575nm近傍に調整することができる(図4の実施例1を参照)。それにより、輝度と色度のバランスに優れ、高い光利用効率を有しうる、光反射フィルムを提供するものである。
 1-1.金属反射層(A)
 金属反射層(A)は、光を反射する機能を有する。金属反射層(A)は、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt、Au及びそれらの合金からなる群より選ばれる一以上を主成分として含む。中でも、高い反射率を有する点では、金属反射層(A)はAl、Ag又はそれらの合金を主成分として含むことが好ましく、Ag又はその合金を主成分として含むことがより好ましい。
 Ag又はその合金を主成分として含むとは、金属反射層(A)に対する含有量が90原子%以上であることをいう。従って、Ag又はその合金の含有量は、金属反射層(A)に対して90原子%以上であることが好ましく、99.9原子%以上であることがより好ましい。
 金属反射層(A)は、Ag又はその合金以外の他の金属をさらに含んでもよい。他の金属の例には、Au、Pd、Sn、Ga、In、Cu、Ti、Bi及びそれらの合金が含まれ、好ましくはAuとAg合金でありうる。金属反射層(A)は、後述するように真空製膜法で形成された薄膜であることが好ましく、蒸着膜であることがより好ましい。
 金属反射層(A)の厚みは、反射率の点から、100nm~200nmであることが好ましい。金属反射層(A)の厚みが100nm以上であると、透過光の割合が増大することによる反射率の低下を抑制できる。金属反射層(A)の厚みが200nm以下であると、製造コストの増大を抑制しうる。金属反射層(A)の厚みが80~150nmであることがより好ましく、90~150nmであることがさらに好ましい。
 金属反射層(A)の表面反射率は、80%以上であることが好ましく、90%以上であることがより好ましい。金属反射層(A)の表面反射率は、日立ハイテクノロジーズ社製の分光光度計U-4100により測定することができる。
 1-2.低屈折率層(B)/高屈折率層(C)
 低屈折率層(B)と高屈折率層(C)は、金属反射層(A)の反射率を高める増反射層として機能しうる。低屈折率層(B)は、隣接する高屈折率層(C)よりも測定波長450nmの光の屈折率が低い層をいう。高屈折率層(C)は、隣接する低屈折率層(B)よりも測定波長450nmの光の屈折率が高い層をいう。
 1-2-1.低屈折率層(B
 低屈折率層(B)の波長450nmの光の屈折率nは、高屈折率層(C)との屈折率差を考慮して設定されるが、例えば1.3以上1.6以下であることが好ましく、1.4~1.5であることがより好ましい。低屈折率層(B)の屈折率nは、主に低屈折率層(B)に含まれる材料の屈折率や、低屈折率層(B)の密度で調整される。
 低屈折率層(B)の屈折率nは、以下の方法で測定することができる。即ち、ポリエチレンテレフタレート基材上に、厚み100nmの低屈折率層(単層)を塗布形成して、屈折率測定用サンプルを得る。得られたサンプルの波長450nmの光の屈折率を、堀場製分光エリプソメーターUVSELを用いて測定する。
 本発明者は、金属反射層(A)/低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)をこの順番で積層したフィルムについて、低屈折率層(B)および高屈折率層(C)のそれぞれの屈折率や光学膜厚を変化させたときの、反射光の波長スペクトルの変化についてシミュレーションを行った。その結果、低屈折率層(B)の光学膜厚dL1が、低屈折率層(B)と高屈折率層(C)との屈折率差Δnに応じて変化する特定の範囲内であると、反射光の波長スペクトルにおいて、反射率の低下によるくぼみが450nm近傍ではなく、人の視感感度の低下する575nm近傍に位置するフィルムが得られることを見いだした。この特定の範囲とは、下記式(1)を満たす範囲である。
 式(1):αλ/8≦dL1≦βλ/8
      α=-0.13×Δn+1.47
      β=0.08×Δn+1.86
 (式(1)において、
 λは、可視光線の設定波長であり、
 Δnは、n-nであり、
 nは、波長λにおける低屈折率層(B)の屈折率であり、
 nは、波長λにおける高屈折率層(C)の屈折率である)
 尚、本発明において、光学膜厚とは、屈折率nと物理膜厚dとの積で表される値である。物理膜厚とは、実測される膜厚を表す。
 図2は、低屈折率層(B)の光学膜厚dL1の範囲を決定する、係数αおよびβと屈折率差Δnとの関係を示すグラフである。同図において、下の点線は光学膜厚dL1の下限値を決定する係数αを示し、上の点線は光学膜厚dL1の上限値を決定する係数β示す。図2から明らかなように、係数αは、屈折率差Δnの増加に伴い低下し、係数βは、屈折率差Δnの増加に伴いわずかであるが上昇する。即ち、輝度と色度のバランスに優れたフィルムを得るための低屈折率層(B)の光学膜厚dL1は、屈折率差Δnの増加に伴い、許容される範囲が広がる、特により薄くてもよいことを表している。この関係を数値化したものが係数α、即ち、α=-0.13×Δn+1.47、と係数β、即ち、0.08×Δn+1.86である。低屈折率層(B)の物理膜厚の範囲は設定波長によって変化するが、一般的に40nm~80nmであることが好ましい。
 低屈折率層(B)の光学膜厚dL1をαλ/8≦dL1≦βλ/8の範囲内とすることによって、輝度と色度のバランスに優れ、光を高効率で利用することができるフィルムが得られる理由は必ずしも明らかではないが、以下のように考えられる。金属反射層(A)/低屈折率層(B)の界面反射においては、光が金属反射層(A)の内部に入り込み、一部は吸収される。吸収されなかった残りの光は、金属の自由電子に揺さぶられて、その位相がπ近くずれて、反射光として出射される。この時、低屈折率層(B)の光学膜厚dL1が式(1)の範囲内であると、π近くずれた位相の反射光は、低屈折率層(B)/高屈折率層(C)の界面の反射光と位相を合わせて強めあうため、輝度が向上すると考えられる。
 また、低屈折率層(B)の光学膜厚dL1がαλ/8未満であると、反射光の波長スペクトルにおいて、反射の低下によるくぼみが450nm近傍となるため、色度が低下する傾向にある。一方、低屈折率層(B)の光学膜厚dL1がβλ/8を超えると、反射率のピーク波長が長波長側にずれるため、短波長側での反射率が低下し、十分な輝度を得ることが難しくなる。
 本発明の光反射フィルムにおいては、低屈折率層(B)と高屈折率層(C)との屈折率差Δnが大きければ、高屈折率層(C)の光学膜厚dH1が低くとも、反射率の低下する波長を長波長側にずらすことができるため、輝度と色度とのバランスが向上すると考えられる。本発明において低屈折率層(B)と高屈折率層(C)との、波長450nmの光の屈折率の差は0.5~1.10であることが好ましく、0.4~1.10であることがより好ましい。
 低屈折率層(B)は、無機材料を主成分とする無機物層(好ましくは蒸着膜)であってもよいし、樹脂を主成分とする樹脂層であってもよい。以下、「主成分」とは、層全体に対する含有量が50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上である成分をいう。
 低屈折率層(B)を構成する無機材料の例には、Siの酸化物(例えばSiO)、Siの窒化物(例えばSi)、Siの酸窒化物(SiOxNy)、金属フッ化物(例えばフッ化マグネシウム、フッ化リチウム、クリオライト、フッ化ナトリウム、フッ化カルシウム、フッ化ランタン、フッ化ネオジム、フッ化セシウム、フッ化鉛)等が含まれる。Siの酸窒化物の例には、ポリシラザンが含まれる。ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、下記一般式(I)で表されうる。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)のR、R及びRは、それぞれ独立して水素原子、置換又は非置換の、アルキル基(好ましくは炭素原子数1~8の直鎖、分岐状又は環状のアルキル基)、アリール基(好ましくは炭素原子数6~30のアリール基)、ビニル基、又はトリアルコキシシリル(好ましくは炭素原子数1~8のアルコキシ基で置換されたシリル)アルキル基である。R、R及びRは、それぞれ同じであってもよいし、異なってもよい。
 一般式(I)のnは、1以上の整数である。一般式(I)で表される構造を有する化合物の数平均分子量は、150~150000であることが好ましい。
 一般式(I)で表される構造を有する化合物の例には、R、R及びRの全てが水素原子であるパーヒドロポリシラザン(PHPS)が含まれる。
 低屈折率層(B)が無機物層である場合、無機材料の含有量は、低屈折率層(B)に対して90原子%以上であることが好ましく、95原子%以上であることがより好ましい。
 低屈折率層(B)を構成する樹脂は、低屈折率層(B)に適した屈折率を有する樹脂であればよく、その例には、ポリエチレンテレフタレート(PET)、ポリエチレンテレフタレートのコポリマー(coPET)、テレフタル酸-シクロヘキサンジメタノール-エチレングリコール共重合体(PETG)等のポリエステル系樹脂;ポリ(メチルメタクリレート)(PMMA)、ポリ(メチルメタクリレート)のコポリマー(coPMMA)等のアクリル系樹脂;ポリビニルアルコール系樹脂、ゼラチン、セルロース類、増粘多糖類及び反応性官能基を有するポリマー等の水溶性樹脂;及びメラミン系樹脂等が含まれる。中でも、屈折率を調整しやすい点から、アクリル系樹脂が好ましい。これらの樹脂のうち、硬化剤と反応する官能基を有する硬化性樹脂(例えば水酸基を有するアクリル系樹脂等)は、硬化物であってもよい。樹脂の重量平均分子量は、塗布可能な程度であればよく、例えば1000~50万でありうる。
 1-2-2.高屈折率層(C
 高屈折率層(C)の波長450nmの光の屈折率nは、低屈折率層(B)との屈折率差を考慮して設定されうるが、例えば1.8以上2.5以下であることが好ましく、2.0以上2.4以下であることがより好ましい。高屈折率層(C)の屈折率は、主に高屈折率層(C)に含まれる材料の屈折率や、高屈折率層(C)の密度で調整される。
 高屈折率層(C)の屈折率nは、ポリエチレンテレフタレート基材上に、厚み100nmの高屈折率層(単層)を真空蒸着又は塗布形成して屈折率測定用サンプルを得る以外は前述と同様にして測定することができる。
 高屈折率層(C)の光学膜厚は、増反射させる光の波長域によるが、例えば波長430~470nmの光の増反射効果を高める点では、λ/4~1.2λ/4であることが好ましい。物理膜厚は設定波長によって変化するが、40nm~70nmであることが好ましい。
 高屈折率層(C)は、無機材料を主成分とする無機物層(好ましくは蒸着膜)であってもよいし、樹脂を主成分とする樹脂層であってもよい。樹脂層を構成する樹脂は、低屈折率層(B)を構成する樹脂と同様のものが用いられる。中でも、高屈折率層(C)は、高い屈折率が得られやすい点から、無機材料を主成分とする無機物層であることが好ましい。
 高屈折率層(C)を構成する無機材料の例には、金属酸化物又は金属硫化物が含まれる。金属酸化物又は金属硫化物を構成する金属の例には、Zn、Ti、Zr、Nb、Ta及びIn等が含まれる。金属酸化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、Ta、Ti、Ti、Ti及びTiO等が含まれる。金属硫化物の例には、ZnS、MnS等が含まれる。
 中でも、金属硫化物が好ましく、高い屈折率と透明性とを有する点から、硫化亜鉛(ZnS)がより好ましい。
 金属酸化物又は金属硫化物の含有量は、高屈折率層(C)に対して90原子%以上であることが好ましく、95原子%以上であることがより好ましい。
 1-3.低屈折率層(B)/高屈折率層(C
 1-3-1.低屈折率層(B
 低屈折率層(B)の波長450nmの光の屈折率nは、隣接する高屈折率層(C)との屈折率差を考慮して設定されるが、例えば1.3以上1.6以下であることが好ましく、1.4~1.5であることがより好ましい。低屈折率層(B)の屈折率nは、主に低屈折率層(B)に含まれる材料の屈折率や、低屈折率層(B)の密度で調整される。
 低屈折率層(B)の屈折率nも、低屈折率層(B)と同様に測定することができる。
 低屈折率層(B)の光学膜厚dL1は、低屈折率層(B)と同じでも異なっていてもよい。低屈折率層(B)の好ましい光学膜厚dL1は、αλ/8~2.2λ/8(但し、αは-0.13×Δn+1.47であり、λは可視光線の設定波長であり、Δnは低屈折率層(B)の屈折率と高屈折率層(C)との差である)の範囲内であることが好ましく、λ/4がより好ましい。低屈折率層(B)の光学膜厚dL1が上記範囲内であれば、輝度と色度のバランスに優れた光反射フィルムを得ることができる。
 低屈折率層(B)を構成する材料としては、低屈折率層(B)について例示したのと同じものが挙げられる。
 本発明の光反射フィルムに含まれる低屈折率層(B)は、上述した低屈折率層(B)と同一でも異なっていてもよい。更に複数の低屈折率層(B)が存在する場合には、それらは互い同一であっても異なっていていもよい。
 1-3-2.高屈折率層(C
 高屈折率層(C)の波長450nmの光の屈折率nは、低屈折率層(B)との屈折率差を考慮して設定されうるが、例えば1.8~2.5以下であることが好ましく、2.0~2.4であることがより好ましい。高屈折率層(C)の屈折率は、主に高屈折率層(C)に含まれる材料の屈折率や、高屈折率層(C)の密度で調整される。
 高屈折率層(C)の屈折率nも、高屈折率層(C)と同様に測定することができる。
 高屈折率層(C)の光学膜厚dH1は、増反射させる光の波長域によるが、例えば波長430~470nmの光の増反射効果を高める点では、λ/4~1.2λ/4であることが好ましく、0.8λ/4~1.2λ/4であることがより好ましい。
 高屈折率層(C)を構成する材料としては、高屈折率層(C)について例示したのと同じものが挙げられる。
 本発明の光反射フィルムに含まれる高屈折率層(C)は、上述した高屈折率層(C)と同一でも異なっていてもよい。更に複数の高屈折率層(C)が存在する場合には、それらは互い同一であっても異なっていてもよい。
 1-4.その他の層
 本発明の光反射フィルムは、本発明の効果を損なわない範囲で、他の層をさらに含んでもよい。他の層の例には、金属反射層(A)の下に配置される基材層、基材層と金属反射層(A)との間に配置されるアンカー層(G)等が含まれる。
 1-4-1.基材層
 基材層は、金属反射層(A)を支持する機能を有する。基材層は、樹脂フィルムであることが好ましい。
 樹脂フィルムの例には、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等のポリエステルフィルム、ポリプロピレンフィルム、アクリルフィルム、ポリカーボネートフィルム、ポリイミドフィルム、ポリスルホンフィルム、ポリエーテルエーテルケトンフィルム、フッ素樹脂フィルム、セルロースエステル系フィルム、ポリシクロオレフィン系フィルム等が含まれる。中でも、耐熱性や強度、透明性が高い点から、ポリエチレンテレフタレートフィルムやポリプロピレンフィルムが好ましい。
 基材層の厚みは、例えば10~300μmとすることができる。基材層の厚みが10μm以上であると、基材層が十分な強度を有するので、取り扱いやすい。基材層の厚みが300μm以下であると、基材層の表面平滑性が損なわれにくい。基材層の厚みは、20~200μmであることが好ましく、20~100μmであることがより好ましい。
 基材層上に、金属反射層(A)を真空蒸着法等で均一に形成するためには、基材層が不純物をできるだけ含まないことが好ましい。そのような観点から、基材層は、透明基材層であることが好ましい。透明基材層の波長360~400nmでの平均透過率は、80%以上であることが好ましく、85%以上であることがより好ましい。透明基材層の平均透過率は、前述と同様にして測定されうる。
 1-4-2.アンカー層
 アンカー層は、例えば基材層と金属反射層(A)との間に配置され、基材層と金属反射層(A)との密着性を高め、且つ金属反射層(A)の反射性能を損なわない程度の表面平滑性を付与しうる。
 アンカー層は、樹脂を主成分として含む。そのような樹脂の例には、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、及び塩化ビニル酢酸ビニル共重合体系樹脂等が含まれる。中でも、耐久性が良好である点から、アクリル系樹脂とメラミン系樹脂とを含む組成物が好ましい。この組成物は、さらにイソシアネート等の硬化剤を含む熱硬化型組成物であってもよい。
 アンカー層の厚みは、例えば0.01~3μmとすることができる。アンカー層の厚みが0.01μm以上であると、基材層と金属反射層(A)との密着性を十分に高めやすい。アンカー層の厚みが3μm以下であると、アンカー層の膜厚均一性が損なわれにくい。アンカー層の厚みは、0.1~1μmであることが好ましい。
 2.光反射フィルムの製造方法
 本発明の光反射フィルムは、任意の方法で製造されてよく、例えば金属反射層(A)、低屈折率層(B)、高屈折率層(C)、低屈折率層(B)及び高屈折率層(C)を順次積層して製造されてもよい。具体的には、基材層の一方の面に、金属反射層(A)、低屈折率層(B)、高屈折率層(C)、低屈折率層(B)及び高屈折率層(C)を順次積層して、積層物を得る。
 金属反射層(A)の形成は、湿式法又は乾式法により行うことができる。湿式法は、溶液から金属を析出させて膜を形成するめっき法であり、その具体例には銀鏡反応法が含まれる。乾式法は、真空製膜法であり、その具体例には抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法及びスパッタ法が含まれる。中でも、製造効率の点から乾式法が好ましく、連続的な製膜方式であるロール・トゥ・ロールでの製膜が可能である点から、真空蒸着法がより好ましい。
 基材層と金属反射層(A)との密着性を高めるために、金属反射層(A)を形成する前に、基材層の表面にコロナ処理やイオンコート処理等の表面処理を施してもよい。基材層(E)の表面に、アンカー層をさらに形成してもよい。
 低屈折率層(B)や低屈折率層(B)及び、高屈折率層(C)や高屈折率層(C)の形成は、乾式法又は湿式法により行うことができる。樹脂を主成分とする低屈折率層(B)や高屈折率層(C)は、湿式法で形成されることが好ましく;無機材料を主成分とする低屈折率層(B)や高屈折率層(C)は、乾式法で形成されることが好ましい。
 乾式法では、前述の低屈折率層(B)や高屈折率層(C)を構成する材料を、前述と同様の真空製膜法にて製膜して、低屈折率層(B)又は高屈折率層(C)を形成する。真空製膜法は、連続的な製膜が可能である点から、真空蒸着法であることが好ましい。
 湿式法では、例えば前述の低屈折率層(B)や高屈折率層(C)を構成する樹脂組成物を塗布した後、硬化させて、当該樹脂組成物の硬化物からなる低屈折率層(B)又は高屈折率層(C)を形成する。
 樹脂組成物は、前述の硬化性樹脂と、硬化剤とを含み、必要に応じて溶剤をさらに含んでもよい。硬化剤の例には、ポリイソシアネートやエポキシ化合物等が含まれる。硬化剤の含有量は、前述の硬化性樹脂に対して0.1~15質量%程度としうる。溶剤は、前述の樹脂を良好に分散できるものであればよく、例えば非プロトン性溶剤であることが好ましい。非プロトン性溶剤の例には、ペンタン、ヘキサン、シクロヘキサン、トルエン等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が含まれる。
 樹脂組成物の塗布は、例えばグラビアコート法、スピンコート法及びバーコート法等により行うことができる。硬化は、光硬化又は熱硬化であり、十分な硬化が可能である点では熱硬化が好ましい。
 3.光反射フィルムの用途
 本発明の光反射フィルムは、各種用途の反射部材、例えば液晶表示装置用バックライトユニットの光反射フィルム、プロジェクションテレビの反射鏡及びランプリフレクター等として用いることができる。中でも、本発明の光反射フィルムは、良好な反射率と耐久性を有する点から、液晶表示装置用バックライトユニットの光反射フィルムとして好ましく用いられる。
 (液晶表示装置用バックライトユニット)
 液晶表示装置用バックライトユニットは、光源と、本発明の光反射フィルムとを含む。本発明の光反射フィルムは、その最外層の高屈折率層(C)が、光源又は導光板の裏面(液晶表示パネルと対向しない面)と対向するように配置される。
 光源の例には、冷陰極管(CCFL)、熱陰極管(HCFL)、外部電極蛍光管(EEFL)、平面蛍光管(FFL)、発光ダイオード素子(LED)、及び有機エレクトロルミネッセンス素子(OLED)等が含まれる。中でも、冷陰極管(CCFL)や発光ダイオード素子(LED)が好ましい。
 液晶表示装置用バックライトユニットは、他の光学フィルムをさらに含んでもよい。他の光学フィルムの例には、光拡散フィルムやプリズムフィルムが含まれる。光拡散フィルムの例には、フィラーやビーズ含有のバインダーを塗装した拡散フィルムが含まれる。
 液晶表示装置用バックライトユニットは、直下型のバックライトユニットであってもよいし、サイドエッジ型のバックライトユニットであってもよい。中・小型の液晶表示装置に適することから、サイドエッジ型のバックライトユニットが好ましい。
 サイドエッジ型のバックライトユニットは、光源と、それと隣接して配置される導光板と、導光板の裏面側に配置される光反射フィルムとを含み、必要に応じて他の光学フィルムをさらに含んでもよい。サイドエッジ型のバックライトユニットの態様の一例には、後述する図3に示されるバックライトユニット50が含まれる。
 (液晶表示装置)
 本発明の液晶表示装置は、液晶表示パネルと、バックライトユニットとを含む。図2は、本発明の液晶表示装置の一例を示す断面図である。同図は、サイドエッジ型のバックライトユニットを用いた場合の一例である。図3に示されるように、液晶表示装置30は、液晶表示パネル40と、サイドエッジ型のバックライトユニット50とを含む。
 液晶表示パネル40は、液晶セル41と、それを挟持する一対の偏光板43及び45とを含む。液晶セル41の表示方式は、特に制限されず、VA(MVA、PVA)やIPS等の種々の表示モードでありうる。偏光板43及び45は、それぞれ偏光子と、その少なくとも一方の面に配置された保護フィルムとを含む。
 サイドエッジ型のバックライトユニット50は、棒状の光源51と、側端部が光源51と隣接するように配置された導光板53と、導光板53の裏面側に配置された光反射フィルム10と、導光板53の表面側に配置された複数の光学フィルム55とを含む。
 光源51は、ランプリフレクター52で覆われている。複数の光学フィルム55は、図3の態様に限定されず、光学フィルム55がなくてもよいし、光学フィルムの組み合わせや枚数を変更してもよい。
 サイドエッジ型のバックライトユニット50では、光源51から発せられた光が導光板53の内部を伝播する。導光板53から出た光の一部は、光反射フィルム10で反射され、導光板53の表面側(液晶表示パネル40側)に出射される。導光板53の表面側に出射した光は、光拡散フィルム57で拡散され、プリズムフィルム59で屈折されて、液晶表示パネル40の全面に入射される。
 光反射フィルム10は、高い反射率を有することから、それを含む液晶表示装置30は、高い光利用効率を有しうる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 表1および表2に示した材料を使用して、低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)からなる光反射フィルムを作製した。尚、特に断りがない限り、低屈折率層(B)と低屈折率層(B)は同じ材質からなり、高屈折率層(C)と高屈折率層(C)も同じ材質からなるものである。
(低屈折率層(B)及び高屈折率層(C)の屈折率)
 厚み100μmのポリエチレンテレフタレート(PET)基材上に、厚み50nmの低屈折率層(B)を真空蒸着又は塗布形成して、屈折率測定用サンプル1を得た。同様にして、厚み100μmのPET基材上に、厚み50nmの高屈折率層(C)を真空蒸着又は塗布形成して、屈折率測定用サンプル2を得た。これらのサンプル1及び2の波長450nmの光の屈折率を、堀場製分光エリプソメーターUVSELを用いてそれぞれ測定した。
 <実施例1>
 (積層フィルムの作製)
 1-フェニル-5-メルカプト-1H-テトラゾール(PMT、東洋紡社製)をダイヤナール固形分に対して1.5質量%となるように添加して、アンカー層用組成物を調製した。
 次に、基材層として、厚み25μmのポリエチレンテレフタレートフィルム(帝人株式会社製、製品名「HB3」)を準備した。このポリエチレンテレフタレートフィルムの一方の面に、上記で調製したアンカー層用組成物を塗布し、乾燥させて、厚み0.1μmのアンカー層を形成した。このアンカー層上に、銀(Ag)を真空蒸着して、厚み100nmの金属反射層(A)を形成した。
 金属反射層(A)上に、「低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)」の順で形成した。具体的には、上記で形成した金属反射層(A)の上に、フッ化マグネシウム(MgF)を真空蒸着して、厚み57nmの低屈折率層(B)を形成し(製膜1)、その表面に、酸化ジルコニウム(ZrO)を膜厚が54nmとなるように真空蒸着法により高屈折率層(C)をさらに形成した(製膜2)。更に、高屈折率層(C)上に、厚み57nmとなるように製膜1を実施して低屈折率層(B)をさらに形成し、その表面に製膜2を実施して高屈折率層(C)をさらに形成し、光反射フィルムを得た。
 <実施例2と3>
 実施例1と同様に、ポリエチレンテレフタレートフィルム上にアンカー層と金属反射層(A)を形成した。
 金属反射層(A)上に、「低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)」の順で形成した。具体的には、表1に記載したように低屈折率層(B)の厚みを変更した以外は、実施例1と同様にして光反射フィルムを得た。
 <実施例4~7>
 実施例1と同様に、ポリエチレンテレフタレートフィルム上にアンカー層と金属反射層(A)を形成した。
 金属反射層(A)上に、「低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)」の順で形成した。具体的には、表1に記載したように低屈折率層(B)の厚みを変更した以外は、実施例1と同様にして低屈折率層(B)を形成した(製膜1)。次にその表面に、高屈折率層として硫化亜鉛(ZnS)を表1に示した膜厚となるように真空蒸着法により積層した(製膜2)。更に製膜1と製膜2を繰り返して低屈折率層(B)と高屈折率層(C)を形成し、光反射フィルムを得た。
 <実施例8~13>
 実施例1と同様に、ポリエチレンテレフタレートフィルム上にアンカー層と金属反射層(A)を形成した。
 金属反射層(A)上に、「低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)」の順で形成した。具体的には、上記で形成した金属反射層(A)の上に、アクリル系樹脂(アクリディックA-452、DIC株式会社製)をウェットコーティング法により積層し、表1に示した厚みの低屈折率層(B)を形成した(製膜1)。次にその表面に、高屈折率層として硫化亜鉛(ZnS)を表1に示した膜厚となるように真空蒸着法により積層した(製膜2)。更に製膜1と製膜2を繰り返して低屈折率層(B)と高屈折率層(C)を形成し、光反射フィルムを得た。
 尚、実施例11~13においては、低屈折率層(B)の厚みを表1に記載した値となるように、製膜1を実施した。
 <実施例14と15>
 実施例1と同様に、ポリエチレンテレフタレートフィルム上にアンカー層と金属反射層(A)を形成した。
 金属反射層(A)上に、「低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)」の順で形成した。具体的には、上記で形成した金属反射層(A)の上に、酸化ケイ素(SiO)を真空蒸着して、表1に示した厚みの低屈折率層(B)を形成した(製膜1)。そして、低屈折率層(B)上に、酸化チタン含有樹脂(UV硬化型機能性ハードコート剤Lioduras、TYT 東洋インキ製)をウェットコーティング法により積層し、表1に示した厚みの高屈折率層(C)を積層した(製膜2)。更に製膜1と製膜2を繰り返して低屈折率層(B)と高屈折率層(C)を形成し、光反射フィルムを得た。
 尚、製膜1は、低屈折率層(B)は厚みが77nmとなるように実施した。
 <比較例1~4>
 低屈折率層(B)および低屈折率層(B)の厚みを表2に記載したように変更した以外は、実施例1と同様に、光反射フィルムを得た。
 <比較例5~7、15>
 低屈折率層(B)および低屈折率層(B)の厚みを表2に記載したように変更した以外は、実施例4と同様に、光反射フィルムを得た。
 <比較例8~11>
 低屈折率層(B)および低屈折率層(B)の厚みを表2に記載したように変更した以外は、実施例8と同様に、光反射フィルムを得た。
 <比較例12と13>
 実施例1と同様に、ポリエチレンテレフタレートフィルム上にアンカー層と金属反射層(A)を形成した。
 金属反射層(A)上に、「低屈折率層(B)/高屈折率層(C)」の順で形成した。具体的には、上記で形成した金属反射層(A)の上に、酸化ケイ素(SiO)を真空蒸着して、表1に示した厚みの低屈折率層(B)を形成した。そして、低屈折率層(B)上に、酸化チタン(TiO)を真空蒸着して、厚み55nmの高屈折率層(C)を形成し、光反射フィルムを得た。
 <比較例14>
 実施例1と同様に、ポリエチレンテレフタレートフィルム上にアンカー層と金属反射層(A)を形成した。
 金属反射層(A)上に、「低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)」の順で形成した。具体的には、上記で形成した金属反射層(A)の上に、アクリル系樹脂(アクリディックA-452、DIC株式会社製)をウェットコーティング法により積層し、厚み52nmの低屈折率層(B)を形成した(製膜1)。そして、低屈折率層(B)上に、酸化チタン含有樹脂(UV硬化型機能性ハードコート剤Lioduras、TYT 東洋インキ製)をウェットコーティング法により積層し、厚み59nmの高屈折率層(C)を積層した(製膜2)。更に製膜1と製膜2を表1に示した厚みとなるように繰り返して低屈折率層(B)と高屈折率層(C)を形成し、光反射フィルムを得た。
 尚、製膜1は、低屈折率層(B)の厚みが74nmとなるように実施した。
 表1および表2には、低屈折率層(B)/高屈折率層(C)/低屈折率層(B)/高屈折率層(C)の形成に用いた材料とその屈折率(nとn)、並びに、各層の光学膜厚と物理膜厚を記載した。
 また、低屈折率層(B)と高屈折率層(C)については、使用した材料の屈折率から屈折率差(Δn)を求め、更に下記式に基づき、係数αとβを計算し、表1および表2に記載した。
          Δn=n-n
          α=-0.13×Δn+1.47
          β=0.08×Δn+1.86
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 各実施例および比較例で得られた光反射フィルムの、輝度及び色度を、それぞれ以下の方法で評価した。
 輝度・色度
 液晶表示装置(商品名:LC-37GX1W、シャープ製)からバックライトユニットを取り出し、当該バックライトユニットの光反射フィルムを、上記で作製した光反射フィルムに取り換えた。得られたバックライトユニットの光反射フィルムが配置された面とは反対側で、且つ光反射フィルムからの高さが200mmの位置に、輝度計(コニカミノルタ社製、製品名「CS-2000」)を設置し、面光源装置中央部を平行に配列された光源の垂直方向に横断する形で、端から端まで0.6mm間隔で三刺激値Y(輝度)[cd/m]、及びCIE1931表色系における色度XとYを測定した。これらの値の測定は、25℃で行った。
 また、基準サンプルとして、ポリエステル系樹脂とアクリル樹脂を用いた多層膜構造の反射フィルム(反射フィルムESR、3M製)についても上記と同様に輝度と色度XとYを測定した。
 基準サンプルの輝度に対する実施例および比較例のフィルムの輝度の百分率を求め、相対輝度とした。相対輝度は97.00%以上であれば、実用に適している。
 色度XとYについては、それぞれ基準サンプルの色度に対する色度差(ΔxとΔy)を求めた。色度差は、ΔxとΔyの両方が0.0040以下であれば、実用に適している。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示されるように、金属反射層(A)と低屈折率層(B)の光学膜厚dL1がαλ/8~βλ/8(但し、αは-0.13×Δn+1.47であり、βは0.08×Δn+1.86であり、λは可視光線の設定波長であり、Δnはn-nである)の範囲内であり、且つ、少なくとも2層の低屈折率層と少なくとも2層の高屈折率層を有する実施例1~15の光反射フィルムは、いずれも97.00%を超える高い相対輝度と、0.0040未満の低い色度変化を示していた。
 また、実施例11~15においては、2層目の低屈折率層(B)(即ち、銀層に接していない低屈折率層)の光学膜厚dL2が上述したαλ/8~βλ/8の範囲から外れていたが、他の実施例と同様に、相対輝度と色度変化に優れていた。
 光学膜厚dL1がαλ/8~βλ/8の範囲から外れた低屈折率層(B)を使用した比較例の光反射フィルムでは、相対輝度と色度変化の両方を同時に満足する光反射フィルムを得ることはできなかった。具体的には、光学膜厚dL1がαλ/8よりも低い比較例1、2、5、8、9と14では、相対輝度が97.00%以下であった。また、光学膜厚dL1がβλ/8を超える比較例3、4、6、7、10、11と15では、相対輝度は100%を超えたものの、色度変化が0.0040以上で大きかった。また、低屈折率層と高屈折率層をそれぞれ1層ずつしか有していない比較例12や13の光反射フィルムも、相対輝度は100%を超えたものの、色度変化が0.0040以上で大きかった。
 更に実施例1、比較例1、比較例3と比較例13で製造した光反射フィルムについて、Thin Film Center Inc製のEssential Macleodによる反射率スペクトルのシミュレーションを行った。結果を図4に示す。
 図4において、実線は実施例3の光反射フィルムのスペクトルを示し、破線は比較例1の光反射フィルムのスペクトルを示し、長破線は比較例3の光反射フィルムのスペクトルを示し、点線は比較例13の光反射フィルムのスペクトルを示す。
 図4から明らかなように、1層の低屈折率層と1層の高屈折率層とを積層した比較例13の光反射フィルムでは、反射率のくぼみは発生していないが、低波長(360nm~400nm)の光の反射率が低く、反射率のピークは430nm近傍である。このようなフィルムにおける色度の低下は、低波長の光に対する反射率の低下によるものと考えられる。
 一方、2層の低屈折率層と2層の高屈折率層とを積層した実施例1および比較例1と3のそれぞれの光反射フィルムでは、反射率が落ち込むくぼみが発生している。このくぼみは、複数の低屈折率層と高屈折率層を積層することによって、特定の波長について、位相が逆転して互いに弱め合い、反射率が低下する現象によるものと考えられる。特に低屈折率層(B)の膜厚がαλ/8未満である比較例1の光反射フィルムにおいては、反射率のくぼみが450nm~550nmの領域に存在する。LEDの発光ピーク波長が450nm近傍であるため、この領域で反射率が低下すると、液晶表示装置のバックライトユニット用光反射フィルムとして使用した際に、液晶表示装置を見ている人が当該波長の光の低下を認識するため望ましくない。
 また、低屈折率層(B)の膜厚がβλ/8を超える比較例3の光反射フィルムにおいては、比較例13の光反射フィルムと同様に、低波長(360nm~400nm)の光の反射率が低く、反射率のピークは430nm近傍である。このようなフィルムの色度の低下は、低波長の光に対する反射率の低下によるものと考えられる。
 低屈折率層(B)の膜厚がαλ/8~βλ/8の範囲内である実施例1の光反射フィルムにおいては、比較例1や3と同様に反射率が落ち込むくぼみが存在するものの、その位置は570nm~670nmの領域にずれている。人の視感感度は575nm近傍で低下するため、反射率がこの領域で低下しても、人には認識されにくい。更に、低波長(360nm~400nm)の光の反射率も高いため、輝度と色度とのバランスにも優れると考えられる。
 本出願は、2016年2月26日出願の特願2016-035839に基づく優先権を主張する。当該出願明細書に記載された内容は、全て本願明細書に援用される。
 本発明の光反射フィルムは、金属反射層(A)と、低屈折率層(B)と、高屈折率層(C)とをこの順番で含み、更に前記高屈折率層(C)の上に、低屈折率層(B)と高屈折率層(C)をこの順番で少なくとも1層ずつ含み、前記低屈折率層(B)の屈折率をn、前記高屈折率層(C)の屈折率をnとしたとき、前記低屈折率層(B)の光学膜厚dL1は、αλ/8~βλ/8の範囲内である(但し、αは-0.13×Δn+1.47であり、βは0.08×Δn+1.86、λは可視光線の設定波長であり、Δnはn-nである)、光反射フィルムである。このような光反射フィルムは、輝度と色度のバランスに優れ、高い光利用効率の達成も可能となる。
 10 光反射フィルム
 11 基材層
 12 金属反射層(A)
 13 低屈折率層(B
 15 高屈折率層(C
 17 低屈折率層(B
 19 高屈折率層(C
 30 液晶表示装置
 40 液晶表示パネル
 41 液晶セル
 43、45 偏光板
 50 サイドエッジ型のバックライトユニット
 51 光源
 52 ランプリフレクター
 53 導光板
 55 光学フィルム
 57 光拡散フィルム
 59 プリズムフィルム

Claims (7)

  1.  金属反射層(A)と、低屈折率層(B)と、高屈折率層(C)とをこの順に含み、且つ前記高屈折率層(C)の上に、さらに低屈折率層(B)と高屈折率層(C)を交互に少なくとも1層ずつ含む光反射フィルムであって、
     前記低屈折率層(B)の光学膜厚dL1は、下記式(1)を満たす、光反射フィルム。
     式(1):αλ/8≦dL1≦βλ/8
          α=-0.13×Δn+1.47
          β=0.08×Δn+1.86
     (式(1)において、
     λは、可視光線の設定波長であり、
     Δnは、n-nであり、
     nは、波長λにおける低屈折率層(B)の屈折率であり、
     nは、波長λにおける高屈折率層(C)の屈折率である。)
  2.  前記高屈折率層(C)と前記低屈折率層(B)との屈折率差Δnが0.4~1.10である、請求項1に記載の光反射フィルム。
  3.  前記低屈折率層(B)の波長450nmにおける屈折率nが1.3~1.6である、請求項1または2に記載の光反射フィルム。
  4.  前記高屈折率層(C)の波長450nmにおける屈折率nが1.8~2.5である、請求項1~3のいずれか一項に記載の光反射フィルム。
  5.  前記金属反射層(A)の物理膜厚が100nm以上である、請求項1~4のいずれか一項に記載の光反射フィルム。
  6.  前記高屈折率層(C)の光学膜厚dH1が、λ/4≦dH1≦1.2λ/4(但し、λは可視光線の設定波長)を満たす、請求項1~5のいずれか一項に記載の光反射フィルム。
  7.  光源と、請求項1~6のいずれか一項に記載の光反射フィルムとを含む、液晶表示装置用バックライトユニット。
PCT/JP2017/004466 2016-02-26 2017-02-08 光反射フィルム及び液晶表示装置用バックライトユニット WO2017145748A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016035839 2016-02-26
JP2016-035839 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017145748A1 true WO2017145748A1 (ja) 2017-08-31

Family

ID=59685010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004466 WO2017145748A1 (ja) 2016-02-26 2017-02-08 光反射フィルム及び液晶表示装置用バックライトユニット

Country Status (1)

Country Link
WO (1) WO2017145748A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370588A (zh) * 2018-12-26 2020-07-03 广东聚华印刷显示技术有限公司 增反膜光栅结构、电致发光器件及其制作方法
CN114035374A (zh) * 2021-11-24 2022-02-11 惠州视维新技术有限公司 光学膜片和显示模组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135700A (ja) * 2003-10-29 2005-05-26 Sony Corp バックライト装置
JP4498273B2 (ja) * 2003-02-21 2010-07-07 三井化学株式会社 反射体及びその用途
JP2015014701A (ja) * 2013-07-05 2015-01-22 日東光学株式会社 反射膜、反射鏡、及び投射光学系
JP2015145936A (ja) * 2014-02-03 2015-08-13 ジオマテック株式会社 高反射膜、高反射膜付き基板及び高反射膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498273B2 (ja) * 2003-02-21 2010-07-07 三井化学株式会社 反射体及びその用途
JP2005135700A (ja) * 2003-10-29 2005-05-26 Sony Corp バックライト装置
JP2015014701A (ja) * 2013-07-05 2015-01-22 日東光学株式会社 反射膜、反射鏡、及び投射光学系
JP2015145936A (ja) * 2014-02-03 2015-08-13 ジオマテック株式会社 高反射膜、高反射膜付き基板及び高反射膜の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370588A (zh) * 2018-12-26 2020-07-03 广东聚华印刷显示技术有限公司 增反膜光栅结构、电致发光器件及其制作方法
CN114035374A (zh) * 2021-11-24 2022-02-11 惠州视维新技术有限公司 光学膜片和显示模组

Similar Documents

Publication Publication Date Title
CN103885100B (zh) 包括在紫外区和可见光区中具有低反射的抗反射涂层的光学制品
US10527760B2 (en) Ophthalmic lens comprising a thin antireflective coating with a very low reflection in the visible region
KR102232170B1 (ko) 광학 제품 및 안경 렌즈 및 안경
JPH07287102A (ja) 反射防止フィルム、その製造方法、偏光板及び液晶表示装置
CN107703568B (zh) 光反射膜及液晶显示装置用背光单元
KR100770514B1 (ko) 액정 표시 소자용 기판
AU2014223560A1 (en) Anti-reflective coating
WO2017164226A1 (ja) 光反射フィルム及び液晶表示装置用バックライトユニット
US10816707B2 (en) Gold color tone multilayer coat and reflector including the same
JP2000214302A (ja) 反射防止フィルム及びその製造方法
JP5523066B2 (ja) 光学物品の製造方法
JP2007144926A (ja) 導電性反射防止積層体およびディスプレイ
WO2017145748A1 (ja) 光反射フィルム及び液晶表示装置用バックライトユニット
KR101618449B1 (ko) 유기발광장치
JP2013205805A (ja) 光学部材
WO2017002814A1 (ja) 光反射フィルム、光反射フィルムの製造方法及び液晶表示装置用バックライトユニット
WO2017047649A1 (ja) 光反射フィルム及び液晶表示装置用バックライトユニット
JP2012226056A (ja) 反射防止部材
JP2015143778A (ja) 偏光子保護フィルム、偏光板、それを用いた液晶表示装置
JP2006010930A (ja) 高反射鏡
JP3965732B2 (ja) 反射防止フィルム
JP2018025740A (ja) 光反射フィルム及び液晶表示装置用バックライトユニット
JP3012712B2 (ja) 反射防止膜を有する光学部材
JP6727454B2 (ja) 反射防止膜、光学素子および光学系
JP2013174787A (ja) 光学部材

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756189

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP