WO2017145619A1 - 膨張弁および冷凍サイクル - Google Patents

膨張弁および冷凍サイクル Download PDF

Info

Publication number
WO2017145619A1
WO2017145619A1 PCT/JP2017/002494 JP2017002494W WO2017145619A1 WO 2017145619 A1 WO2017145619 A1 WO 2017145619A1 JP 2017002494 W JP2017002494 W JP 2017002494W WO 2017145619 A1 WO2017145619 A1 WO 2017145619A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
opening
heat exchanger
valve
passage
Prior art date
Application number
PCT/JP2017/002494
Other languages
English (en)
French (fr)
Inventor
橋村 信幸
加藤 吉毅
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017145619A1 publication Critical patent/WO2017145619A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors

Definitions

  • the present disclosure relates to an expansion valve applied to a vapor compression refrigeration cycle.
  • Patent Document 1 a mechanical expansion valve that is applied to a vapor compression refrigeration cycle and decompresses and expands high-pressure refrigerant flowing out of a condenser is known.
  • Patent Document 1 An example of this type of expansion valve is disclosed in Patent Document 1.
  • This type of expansion valve generally includes a refrigerant passage including a throttle passage that introduces a high-pressure refrigerant and decompresses and expands the inside of a body portion formed of a single metal block or the like, and a low pressure that flows out of the evaporator.
  • a refrigerant passage and the like for circulating the refrigerant are formed. More specifically, the refrigerant passage including the throttle passage is a passage through which the refrigerant passes between two openings formed in the body. In this passage, high-pressure refrigerant flows in the order of one of the two openings, the throttle passage, and the other of the two openings.
  • this type of expansion valve includes an element portion that is displaced according to the temperature and pressure of the low-pressure refrigerant that has flowed out of the evaporator, and a throttle that depressurizes and expands the high-pressure refrigerant by displacing the valve body by the element portion.
  • the channel cross-sectional area of the passage is adjusted.
  • the element portion is a pressure response that is displaced according to a pressure difference between an internal pressure of a sealed space in which a temperature-sensitive medium whose pressure changes according to temperature is sealed and a pressure of a low-pressure refrigerant that has flowed out of the evaporator. It has a diaphragm as a member.
  • the displacement of the diaphragm is transmitted to the valve body via a temperature sensing rod or the like that transmits the temperature of the low-pressure refrigerant flowing out of the evaporator to the temperature sensing medium, thereby displacing the valve body.
  • the pressure of the temperature-sensitive medium in the enclosed space is set to a pressure corresponding to the temperature of the low-pressure refrigerant that has flowed out of the evaporator, and the internal pressure in the enclosed space and the pressure of the low-pressure refrigerant that has flowed out of the evaporator
  • the diaphragm is displaced by the pressure difference between. That is, the opening degree of the throttle passage is adjusted by displacing the diaphragm by displacing the diaphragm in accordance with the temperature and pressure of the low-pressure refrigerant flowing out of the evaporator.
  • the valve body that adjusts the cross-sectional area of the throttle passage is displaced so that the degree of superheat of the low-pressure refrigerant that has flowed out of the evaporator approaches a predetermined value.
  • the degree of superheat of the low-pressure refrigerant that has flowed out of the evaporator is controlled by adjusting the opening.
  • this type of mechanical expansion valve is configured to have a desired pressure reduction characteristic by taking into account the amount of displacement of the valve body due to the high-pressure refrigerant flowing from one of the two openings and passing through the throttle passage. Is done.
  • the pressing force of the refrigerant flowing from one of the two openings and passing through the refrigerant passage including the throttle passage is the valve closing direction of the valve body, that is, the valve body. Is configured to act in the closing direction.
  • the pressing force of the refrigerant passing through the refrigerant passage including the throttle passage is the valve opening direction of the valve body, that is, the valve body. Acts in the direction of opening.
  • the pressing forces of the refrigerant passing through the refrigerant passage including the throttle passage act in opposite directions when flowing from one of the two openings and when flowing from the other.
  • the displacement amount of a valve body differs greatly with the case where it flows in from one side and the case where it flows in from the other of two openings. Therefore, in this expansion valve, the decompression characteristic of the expansion valve is deviated between two cases in which the refrigerant flows in opposite directions in the refrigerant passage including the throttle passage.
  • an expansion valve applied to a vapor compression refrigeration cycle capable of switching between the first refrigerant circuit and the second refrigerant circuit has the following configuration. That is, in the expansion valve, a regulating member that regulates the flow of the refrigerant in the refrigerant passage is provided so that both the A pushing force and the B pushing force act in the valve closing direction of the valve body.
  • the A pressing force is a pressing force that acts on the valve body by the refrigerant flowing from the first opening and passing through the throttle passage in the first refrigerant circuit.
  • the B pressing force is a pressing force that acts on the valve body by the refrigerant flowing from the second opening and passing through the throttle passage in the second refrigerant circuit.
  • this expansion valve is applied to a refrigeration cycle, the difference in the decompression characteristics of the expansion valves of the first refrigerant circuit and the second refrigerant circuit can be reduced. That is, in the refrigeration cycle, even when the refrigerant flows in the reverse direction in the first refrigerant passage including the throttle passage, the divergence of the decompression characteristics of the expansion valve can be reduced.
  • a refrigeration cycle having the following four-way valve is provided. That is, in the first refrigerant circuit, the four-way valve simultaneously connects the A connection portion and the C connection portion and the D connection portion and the B connection portion. In the second refrigerant circuit, the four-way valve simultaneously connects between the B connection portion and the C connection portion and between the A connection portion and the D connection portion.
  • the expansion valve 1 according to the first embodiment will be described with reference to FIGS.
  • the expansion valve 1 is applied to a vapor compression refrigeration cycle 100, and the refrigerant that has flowed out from one heat exchanger of a first heat exchanger 3 and a second heat exchanger 4 to be described later.
  • This is a so-called internal pressure equalizing mechanical expansion valve that expands under reduced pressure and flows out to the other heat exchanger.
  • the expansion valve 1 is applied to a refrigeration cycle 100 of a vehicle air conditioner mounted on a vehicle such as an automobile.
  • the arrows in FIGS. 1 and 2 schematically show the flow of the refrigerant in the refrigeration cycle 100.
  • the refrigeration cycle 100 includes an expansion valve 1, a compressor 2, a first heat exchanger 3, a second heat exchanger 4, a four-way valve 5, and a control unit 6. Is a vapor compression refrigeration cycle.
  • the refrigeration cycle 100 functions as a heat pump, and is configured to be switchable between a first refrigerant circuit shown in FIG. 1 and a second refrigerant circuit shown in FIG.
  • the first refrigerant circuit corresponds to the refrigerant circuit in the cooling operation mode
  • the second refrigerant circuit corresponds to the refrigerant circuit in the heating operation mode.
  • a chlorofluorocarbon refrigerant is used here as a refrigerant, but the type of refrigerant is not limited to this.
  • the expansion valve 1 decompresses and expands the refrigerant that has flowed in from the heat exchanger functioning as a radiator of the first heat exchanger 3 and the second heat exchanger 4.
  • the expansion valve 1 is based on the temperature and pressure of the refrigerant flowing out of the heat exchanger functioning as an evaporator of the first heat exchanger 3 and the second heat exchanger 4, and the superheat degree of the refrigerant is a predetermined value.
  • the valve opening of the valve body 1c shown in FIG. Thereby, the expansion valve 1 adjusts the flow rate of the refrigerant flowing out of the heat exchanger functioning as an evaporator among the first heat exchanger 3 and the second heat exchanger 4. The details of the expansion valve 1 will be described later.
  • the compressor 2 sucks and compresses the refrigerant.
  • the compressor 2 performs compression by obtaining a driving force from a vehicle travel engine (not shown) via an electromagnetic clutch or the like, or by electrically obtaining a driving force and sucking in the refrigerant.
  • the compressor 2 has an A opening 2a and a B opening 2b, and compresses the refrigerant sucked from the B opening 2b.
  • an inverter control type electric compressor may be employed.
  • An A connection portion 234 that functions as a refrigerant pipe is connected to the A opening portion 2 a of the compressor 2, and a B connection portion 243 that functions as a refrigerant pipe is connected to the B opening portion 2 b of the compressor 2.
  • the B connection portion 243 includes a second refrigerant passage 1ay of the expansion valve 1 described later as a part thereof.
  • the first heat exchanger 3 is a heat exchanger that exchanges heat between the surrounding heat exchange medium and the refrigerant.
  • the first heat exchanger 3 in the present embodiment is installed outside the passenger compartment, and heat is exchanged between the passenger compartment outside air blown by a fan (not shown) and the refrigerant.
  • the first heat exchanger 3 has a C opening 3a and a D opening 3b.
  • the first heat exchanger 3 functions as a radiator that causes heat exchange between outside air and refrigerant in the first refrigerant circuit to dissipate the refrigerant, and heat exchange is performed between outside air and refrigerant in the second refrigerant circuit. It functions as an evaporator that exerts an endothermic effect by heating and evaporating the refrigerant.
  • the first heat exchanger 3 cools and condenses the gas-phase refrigerant by exchanging heat between the vehicle exterior air and the gas-phase refrigerant in the first refrigerant circuit. Functions as a condenser.
  • the first heat exchanger 3 includes a first heat exchange unit 31, a liquid receiver 32, and a second heat exchange unit 33. .
  • the 1st heat exchange part 31 is a part which functions as a condenser in the 1st refrigerant circuit
  • the 2nd heat exchange part 33 is a function which supercools the refrigerant which flowed out from the 1st heat exchange part 31 in the 1st refrigerant circuit. It is a part that fulfills.
  • the liquid receiver 32 is provided in the middle of the refrigerant flow path inside the first heat exchanger 3, and at least in the first refrigerant circuit, the refrigerant flowing out from the first heat exchange unit 31 functioning as a condenser is a gas-phase refrigerant. And the liquid phase refrigerant are separated into the excess liquid phase refrigerant in the cycle.
  • a C connection portion 324 that functions as a refrigerant pipe is connected to the C opening 3 a of the first heat exchanger 3.
  • the D opening 3b of the first heat exchanger 3 is connected to the D opening 3b of the first heat exchanger 3 and the first opening 1aa of the expansion valve 1 to function as a refrigerant pipe. Is connected.
  • the second heat exchanger 4 is a heat exchanger that exchanges heat between the surrounding heat exchange medium and the refrigerant.
  • the 2nd heat exchanger 4 in this embodiment is installed in a vehicle interior, and heat-exchanges the vehicle interior air blown by the fan which is not illustrated, and a refrigerant.
  • the second heat exchanger 4 has an E opening 4a and an F opening 4b.
  • the second heat exchanger 4 functions as an evaporator that exhibits heat absorption by exchanging heat between the passenger compartment air and the refrigerant in the first refrigerant circuit and evaporating the refrigerant.
  • the second heat exchanger 4 It functions as a radiator that causes heat exchange with the refrigerant to dissipate the refrigerant.
  • the chlorofluorocarbon-based refrigerant is used as the refrigerant
  • the second heat exchanger 4 performs condensation in which heat is exchanged between the passenger compartment air and the gas-phase refrigerant in the second refrigerant circuit to cool and condense the gas-phase refrigerant. It functions as a vessel.
  • D connection part 423 which functions as refrigerant piping is connected to F opening part 4b of the 2nd heat exchanger 4. Further, the F opening 14a of the second heat exchanger 4 is connected to the second opening 1ab of the expansion valve 1 and the E opening 4a of the second heat exchanger 4 to function as a refrigerant pipe. Is connected.
  • connection part 234, the B connection part 243, the C connection part 324, the D connection part 423, the E connection part 13, and the F connection part 14 function as flow paths through which the refrigerant flows.
  • the configuration is not particularly limited. Therefore, for example, the A connection part 234, the B connection part 243, the C connection part 324, the D connection part 423, the E connection part 13, and the F connection part 14 are all in the flow path from the refrigerant pipe to another refrigerant pipe.
  • the gas-liquid separator may be interposed between the two.
  • the four-way valve 5 is a valve that switches a refrigerant circuit in the refrigeration cycle 100 under the control of the control unit 6. Specifically, in the first refrigerant circuit, the four-way valve 5 is refrigerated so as to simultaneously connect between the A connection portion 234 and the C connection portion 324 and between the B connection portion 243 and the D connection portion 423. The refrigerant circuit of cycle 100 is switched. In the second refrigerant circuit, the four-way valve 5 connects the A connection portion 234 and the D connection portion 423 and the B connection portion 243 and the C connection portion 324 at the same time.
  • the control unit 6 is an ECU, that is, an electronic control device, and a device that controls the four-way valve 5 and the like.
  • the expansion valve 1 includes a body portion 1a, an element portion 53, a valve body 1c, a check valve 1za, a check valve 1zb, a check valve 1zc, and a check valve 1zd.
  • a first refrigerant passage 1az including a throttle passage 1ag is formed in the body portion 1a.
  • the check valve 1za is referred to as an A check valve 1za
  • the check valve 1zb is referred to as a B check valve 1zb
  • the check valve 1zc is referred to as a C check valve 1zc
  • the check valve 1zd is referred to as D.
  • FIG. 3 schematically shows A check valves 1za,..., D check valves 1zd.
  • the body portion 1 a is a portion where an outer shell of the expansion valve 1, a first refrigerant passage 1 az in the expansion valve 1, and the like are formed.
  • the body portion 1a is formed, for example, by drilling a cylindrical or rectangular metal block.
  • the body portion 1a is formed with a first opening 1aa and a second opening 1ab, and a first refrigerant passage 1az is formed as a passage through which the refrigerant flows between the first opening 1aa and the second opening 1ab.
  • a valve seat portion 1ak that functions as a valve seat corresponding to the valve body 1c is formed in the body portion 1a.
  • 1st opening part 1aa is a part which makes the refrigerant
  • the second opening 1ab is a part that causes the refrigerant that has passed through the first refrigerant passage 1az to flow out to the E opening 4a of the second heat exchanger 4 in the first refrigerant circuit, and in the second refrigerant circuit, the second heat This is a part for allowing the refrigerant flowing out from the E opening 4a of the exchanger 4 to flow into the first refrigerant passage 1az.
  • the first refrigerant passage 1az includes a space 1ac, a space 1ad, a space 1ae, a space 1af, a throttle passage 1ag, and a valve chamber 1ah.
  • the space 1ac is referred to as A space 1ac
  • the space 1ad is referred to as B space 1ad
  • the space 1ae is referred to as C space 1ae
  • the space 1af is referred to as D space 1af.
  • the throttle passage 1ag is a passage for decompressing and expanding the refrigerant flowing in from the first opening 1aa or the second opening 1ab.
  • the throttle passage 1ag includes a throttle portion that is a space surrounded by the valve seat portion 1ak and the valve body 1c.
  • the position of the valve body 1c with respect to the valve seat portion 1ak changes, and the flow passage cross-sectional area of the throttle portion changes, whereby the flow passage cross-sectional area changes. That is, the flow passage cross-sectional area of the throttle passage 1ag is the flow passage cross-sectional area of the throttle portion.
  • the throttle passage 1ag is formed, so that the refrigerant flow upstream side of the refrigeration cycle 100 has a high pressure and the refrigerant flow downstream side has a low pressure.
  • the valve chamber 1ah is a space in which the valve body 1c is accommodated. As shown in FIG. 3, the valve chamber 1ah communicates with the throttle passage 1ag. In the first refrigerant circuit, the valve chamber 1ah functions as a passage that guides the refrigerant that flows into the body portion 1a from the first opening 1aa and flows into the B space 1ad to the throttle passage 1ag. Further, the valve chamber 1ah functions as a passage in the second refrigerant circuit that guides the refrigerant that flows into the body portion 1a from the second opening 1ab and flows into the D space 1af to the throttle passage 1ag.
  • the A space 1ac is a space formed inside the body portion 1a so as to communicate with the first opening 1aa and the throttle passage 1ag.
  • the B space 1ad is a space formed so as to communicate with the first opening 1aa and the valve chamber 1ah inside the body 1a.
  • the C space 1ae is a space formed so as to communicate with the second opening portion 1ab and the throttle passage 1ag inside the body portion 1a.
  • the D space 1af is a space formed in the body portion 1a so as to communicate with the second opening 1ab and the valve chamber 1ah.
  • D space 1af is arrange
  • the B space 1ad is disposed so as to be located on the opposite side of the second opening 1ab with the D space 1af interposed therebetween.
  • the C space 1ae is disposed so as to be located on the opposite side of the first opening 1aa with the A space 1ac interposed therebetween.
  • the A space 1ac is disposed so as to be located on the opposite side of the second opening 1ab with the C space 1ae interposed therebetween.
  • the first opening 1aa may directly communicate with both the A space 1ac and the B space 1ad, and the A space 1ac and the B space 1ad may communicate with each other via the first opening 1aa without directly communicating with each other.
  • the boundary between the first opening 1aa and the A space 1ac and the boundary between the first opening 1aa and the B space 1ad are portions indicated by broken lines in FIG.
  • the vertical width in FIG. 3 of the A space 1ac is reduced to 1 ⁇ 2 or less of the vertical width of the first opening 1aa in FIG. 3 (that is, the moving direction of the valve body 1c). ing.
  • the second opening 1ab may directly communicate with both the C space 1ae and the D space 1af, and the C space 1ae and the D space 1af may communicate with each other via the second opening 1ab without being directly communicated.
  • the boundary between the second opening 1ab and the C space 1ae and the boundary between the second opening 1ab and the D space 1af are portions indicated by broken lines in FIG.
  • the vertical width in FIG. 3 of the C space 1ae is reduced to 1 ⁇ 2 or less of the vertical width of the second opening 1ab in FIG.
  • the vertical width in FIG. 3 of the D space 1af is reduced to 1 ⁇ 2 or less of the vertical width of the second opening 1ab in FIG.
  • the element portion 53 displaces the valve body 1c by performing a displacement operation in accordance with the temperature and pressure of the refrigerant sucked into the compressor 2.
  • the element portion 53 is connected to the diaphragm 53b by a joining means such as welding or adhesion, and is connected to the temperature sensing bar 52b coaxially by means such as press fitting. And a substantially cylindrical actuating rod 52c that contacts the valve body 1c.
  • the element unit 53 includes a temperature sensing rod 52b and an operating rod depending on the temperature and pressure of the refrigerant flowing out of the first heat exchanger 3 or the second heat exchanger 4 functioning as an evaporator and passing through the second refrigerant passage 1ay. 52c is displaced, and the valve body 1c is displaced in conjunction with the displacement operation.
  • the temperature sensing rod 52b extends so as to penetrate the second refrigerant passage 1ay, and is arranged so that at least a part of the outer peripheral surface thereof is exposed to the low-pressure refrigerant flowing through the second refrigerant passage 1ay. Thereby, the temperature sensing rod 52b can transmit the temperature of the low-pressure refrigerant flowing out of the second heat exchanger 4 functioning as an evaporator and flowing through the second refrigerant passage 1ay to the element portion 53 side.
  • the temperature sensing rod 52b is preferably formed of a tough material having good heat conduction. In the present embodiment, the temperature sensitive bar 52b is made of stainless steel.
  • the element portion 53 is further configured by an element housing 53a, a diaphragm 53b which is a pressure responsive member, an element cover 53c, and a sealing plug 53e.
  • the element housing 53a is attached to the attachment hole 51j by fixing means such as screws.
  • the attachment hole 51j is a hole formed in the upper part of the body portion 1a.
  • the element cover 53c is a member that forms an outer shell of the element portion 53 by sandwiching the outer edge portion of the diaphragm 53b together with the element housing 53a.
  • the sealing plug 53e will be described later.
  • the element housing 53a and the element cover 53c are made of a metal such as stainless steel, and the outer peripheral ends of the diaphragm 53b are joined together by joining means such as welding or brazing while sandwiching the outer edge of the diaphragm 53b. . Accordingly, the internal space of the element portion 53 formed by the element housing 53a and the element cover 53c is divided into two spaces by the diaphragm 53b.
  • the space formed by the element cover 53c and the diaphragm 53b is the temperature of the low-pressure refrigerant that has flowed out of the heat exchanger functioning as an evaporator of the first heat exchanger 3 and the second heat exchanger 4. It is the enclosure space 20 in which the temperature-sensitive medium whose pressure changes according to is enclosed.
  • the space formed by the element housing 53a and the diaphragm 53b communicates with the second refrigerant passage 1ay to allow the low-pressure refrigerant flowing out from the first heat exchanger 3 or the second heat exchanger 4 functioning as an evaporator to flow.
  • This is an introduction space 30 to be introduced. Therefore, the temperature-sensitive medium enclosed in the enclosed space 20 contains the low-pressure refrigerant that has flowed out of the first heat exchanger 3 or the second heat exchanger 4 that flows through the second refrigerant passage 1ay via the temperature sensing rod 52b. Temperature is transmitted. In addition, the temperature of the low-pressure refrigerant flowing out from the first heat exchanger 3 or the second heat exchanger 4 introduced into the introduction space 30 is also transmitted to the temperature sensitive medium via the diaphragm 53b.
  • the internal pressure of the enclosed space 20 becomes a pressure corresponding to the temperature of the low-pressure refrigerant flowing out from the first heat exchanger 3 or the second heat exchanger 4.
  • the diaphragm 53b is displaced according to the differential pressure between the internal pressure of the enclosed space 20 and the pressure of the low-pressure refrigerant that has flowed out of the second heat exchanger 4 that has flowed into the introduction space 30.
  • the diaphragm 53b is displaced upward as the internal pressure of the enclosed space 20 decreases, and the diaphragm 53b is displaced downward as the internal pressure of the enclosed space 20 increases.
  • the diaphragm 53b is preferably made of a tough material that is rich in elasticity, has good heat conduction, and is made of a thin metal plate such as stainless steel.
  • the element cover 53c is formed with a filling hole 53d for filling the enclosed space 20 with the temperature sensitive medium.
  • the filling hole 53d is formed after the temperature sensitive medium is filled.
  • the tip is closed by the sealing plug 53e.
  • a mixed gas obtained by mixing a gas-phase refrigerant and an inert gas is enclosed as a temperature sensitive medium.
  • a refrigerant having the same composition as that of the refrigerant circulating in the refrigeration cycle 100 is employed as the refrigerant enclosed in the enclosure space 20.
  • the inert gas helium, nitrogen, or the like that exhibits the same temperature-pressure characteristics as the ideal gas in the operating temperature range of the expansion valve 1, for example, ⁇ 30 ° C. to 60 ° C. is adopted.
  • the valve body 1c is a valve that is disposed inside the body portion 1a and adjusts the cross-sectional area of the throttle passage 1ag. In the present embodiment, the valve body 1c is displaced in conjunction with the displacement operation of the temperature sensing rod 52b and the actuation rod 52c.
  • the expansion valve 1 includes the A check valve 1za, the B check valve 1zb, the C check valve 1zc, and the D check valve 1zd.
  • the A check valves 1za,..., D check valves 1zd function as regulating members that regulate the flow of the refrigerant in the first refrigerant passage 1az.
  • this defining member is applied to the valve body 1c by the pressing force acting on the valve body 1c by the refrigerant passing through the valve chamber 1ah in the first refrigerant circuit and by the refrigerant passing through the valve chamber 1ah in the second refrigerant circuit.
  • the refrigerant flow in the first refrigerant passage 1az is defined so that the acting pressing force acts in the valve closing direction of the valve body 1c.
  • the A space 1ac has a partition wall separating the upstream side of the refrigerant flow in the A space 1ac, that is, the throttle passage 1ag side, and the downstream side of the refrigerant flow in the A space 1ac, that is, the first opening 1aa side. 1xa is formed. Further, in the B space 1ad, a partition wall 1xb is formed to separate the refrigerant flow downstream side in the B space 1ad, that is, the throttle passage 1ag side, and the refrigerant flow upstream side in the B space 1ad, that is, the first opening 1aa side.
  • a partition wall 1xc is formed that separates the refrigerant flow upstream side in the C space 1ae, that is, the throttle passage 1ag side, and the refrigerant flow downstream side in the C space 1ae, that is, the second opening 1ab side.
  • a partition wall 1xd is formed to separate the refrigerant flow downstream side in the D space 1af, that is, the throttle passage 1ag side, and the refrigerant flow upstream side in the D space 1af, that is, the second opening 1ab side.
  • the A check valve 1za is a valve that is disposed in the A space 1ac and prevents the refrigerant from flowing from the first opening 1aa through the A space 1ac toward the throttle passage 1ag. .
  • the A check valve 1za allows the refrigerant to flow in a direction from the throttle passage 1ag to the first opening 1aa through the A space 1ac.
  • the A check valve 1za is disposed in the partition wall 1xa.
  • the B check valve 1zb is a valve that is disposed in the B space 1ad and prevents the refrigerant from flowing from the valve chamber 1ah to the first opening 1aa through the B space 1ad.
  • the B check valve 1zb allows the refrigerant to flow in the direction from the first opening 1aa to the valve chamber 1ah through the B space 1ad.
  • the B check valve 1zb is disposed in the partition wall 1xb.
  • the C check valve 1zc is a valve that is disposed in the C space 1ae and prevents the refrigerant from flowing from the second opening 1ab through the C space 1ae to the throttle passage 1ag.
  • the C check valve 1zc allows the refrigerant to flow in the direction from the throttle passage 1ag toward the second opening 1ab through the C space 1ae.
  • the C check valve 1zc is disposed in the partition wall 1xc.
  • the D check valve 1zd is a valve that is disposed in the D space 1af and prevents the refrigerant from flowing from the valve chamber 1ah to the second opening 1ab through the D space 1af.
  • the D check valve 1zd allows the refrigerant to flow in the direction from the second opening 1ab to the valve chamber 1ah through the D space 1af.
  • the D check valve 1zd is disposed in the partition wall 1xd.
  • FIG. 3 schematically shows an A check valve 1za, a B check valve 1zb, a C check valve 1zc, and a D check valve 1zd.
  • each of the A check valve 1za, the B check valve 1zb, the C check valve 1zc, and the D check valve 1zd is provided with a well-known valve body, a valve seat portion, and a valve body in the direction of the valve seat portion. It has a spring holding portion connected to an end of the spring to be energized and an end opposite to the valve element side end of the spring.
  • the expansion valve 1 includes the A check valves 1za,..., D check valves 1zd as the defining members. For this reason, even when the refrigerant flows from either the first opening 1aa or the second opening 1ab, the pressing force acting on the valve body 1c by the refrigerant passing through the valve chamber 1ah is the valve closing direction of the valve body 1c. It becomes easy to act on. That is, the expansion valve 1 according to the present embodiment includes the A check valve 1za,..., D check valve 1zd, so that the valve chamber 1ah is provided in both the first refrigerant circuit and the second refrigerant circuit. The pressing force acting on the valve body 1c by the passing refrigerant is likely to act in the valve closing direction of the valve body 1c.
  • the second refrigerant passage 1ay is configured as a part of the B connection portion 243.
  • the body portion 1a is formed with a third opening 1ai and a fourth opening 1aj, and the first refrigerant passage 1az is a passage through which the refrigerant flows between the third opening 1ai and the fourth opening 1aj. Is formed with another second refrigerant passage 1ay.
  • the high-pressure refrigerant flowing out from the first heat exchanger 3 functioning as a radiator flows in the first refrigerant circuit, and the second heat exchanger 4 functioning as a radiator in the second refrigerant circuit.
  • the low-pressure refrigerant flowing out from the second heat exchanger 4 functioning as an evaporator flows in the first refrigerant circuit, and the first heat exchanger 3 functioning as an evaporator in the second refrigerant circuit.
  • a coil spring 54 is accommodated in the valve chamber 1ah.
  • the coil spring 54 applies a load that urges the valve body 1c to close the throttle passage 1ag via the support member 54a.
  • the load by the coil spring 54 can be adjusted by the adjusting screw 54b.
  • the control unit 6 controls the four-way valve 5 so as to simultaneously connect the A connection unit 234 and the C connection unit 324 and the D connection unit 423 and the B connection unit 243. .
  • the compressor 2 When the compressor 2 is rotationally driven by the driving force or electric driving force of the vehicle engine, the refrigerant flows out of the compressor 2, and the high-temperature and high-pressure refrigerant that has flowed out flows into the A connection 234, the four-way valve 5, C It flows in the order of the connecting portion 324 and flows into the first heat exchanger 3 that functions as a radiator. Specifically, the high-temperature and high-pressure refrigerant flows out from the A opening 2 a of the compressor 2 and flows into the first heat exchanger 3 from the C opening 3 a of the first heat exchanger 3.
  • the high-temperature and high-pressure refrigerant that has flowed into the first heat exchanger 3 radiates and condenses by exchanging heat with outside air blown by the fan, and then flows out from the first heat exchanger 3.
  • the high-temperature and high-pressure refrigerant flows into the first heat exchanger 3 from the C opening 3 a of the first heat exchanger 3, condenses in the first heat exchange unit 31, and is gasified in the liquid receiver 32.
  • the liquid is separated, subcooled by the second heat exchange unit 33, and flows out from the D opening 3 b of the first heat exchanger 3.
  • the high-pressure refrigerant that has flowed out of the first heat exchanger 3 passes through the E connection portion 13 and flows into the first refrigerant passage 1az of the expansion valve 1. Specifically, the high-pressure refrigerant that has flowed out of the first heat exchanger 3 flows into the first refrigerant passage 1az of the expansion valve 1 from the first opening 1aa of the expansion valve 1.
  • the high-pressure refrigerant that has flowed into the first refrigerant passage 1az of the expansion valve 1 flows in the order of the first opening 1aa, the B space 1ad, the valve chamber 1ah, and the throttle passage 1ag in the first refrigerant passage 1az, and enters the throttle passage 1ag. Is expanded under reduced pressure.
  • the high-pressure refrigerant that has flowed into the first refrigerant passage 1az of the expansion valve 1 is disconnected so that the superheat degree of the low-pressure refrigerant that has flowed out of the second heat exchanger 4 functioning as an evaporator approaches a predetermined value.
  • the flow rate is adjusted in the throttle passage 1ag having the adjusted area.
  • the low-pressure refrigerant decompressed by the throttle passage 1ag flows in the order of the C space 1ae and the second opening 1ab, and flows out from the second opening 1ab.
  • the low-pressure refrigerant that has flowed into the first refrigerant passage 1az from the first opening 1aa does not flow into the A space 1ac because the A check valve 1za is provided in the A space 1ac. , B space 1ad and valve chamber 1ah in this order.
  • the low-pressure refrigerant that has flowed into the valve chamber 1ah flows into the throttle passage 1ag without flowing into the D space 1af because the D check valve 1zd is provided in the D space 1af.
  • the refrigerant flowing into the throttle passage 1ag flows into the C space 1ae without flowing into the A space 1ac and into the second opening 1ab due to the high pressure in the A space 1ac.
  • the arrangement of the A check valves 1za,..., D check valves 1zd, which are regulation members, causes the refrigerant to flow from the valve chamber 1ah to the throttle passage 1ag.
  • coolant which passes valve chamber 1ah acts in the valve closing direction of the valve body 1c. This pressing force corresponds to the A pressing force.
  • the low-pressure refrigerant that has flowed out of the expansion valve 1 passes through the F connection portion 14 and flows into the second heat exchanger 4 that functions as an evaporator. Specifically, the low-pressure refrigerant that has flowed out of the expansion valve 1 flows into the second heat exchanger 4 from the E opening 4 a of the second heat exchanger 4.
  • the low-pressure refrigerant that has flowed into the second heat exchanger 4 exchanges heat between the vehicle interior air blown by the fan and the refrigerant, evaporates and exhibits an endothermic effect, and then from the second heat exchanger 4. leak. Specifically, the low-pressure refrigerant flowing from the E opening 4 a of the second heat exchanger 4 flows out from the F opening 4 b of the second heat exchanger 4.
  • the low-pressure refrigerant that has flowed out of the second heat exchanger 4 passes through the D connection portion 423 and the four-way valve 5, flows into the B connection portion 243, and the first of the expansion valve 1 that is part of the B connection portion 243. 2 flows into the refrigerant passage 1ay.
  • the low-pressure refrigerant that has flowed out of the second heat exchanger 4 flows from the third opening 1ai of the expansion valve 1 into the second refrigerant passage 1ay of the expansion valve 1.
  • the low-pressure refrigerant that has flowed into the expansion valve 1 flows from the third opening 1ai to the fourth opening 1aj and out of the fourth opening 1aj in the second refrigerant passage 1ay.
  • the element unit 53 is displaced according to the temperature and pressure of the refrigerant flowing out of the second heat exchanger 4 functioning as an evaporator and passing through the second refrigerant passage 1ay, thereby causing the valve
  • the body 1c is displaced.
  • the pressure of the temperature sensitive medium enclosed in the enclosure space 20 increases.
  • path 1ay from the internal pressure of the enclosure space 20 becomes large. Therefore, in this case, the diaphragm 53b is displaced in a direction in which the valve body 1c opens the throttle passage 1ag.
  • the element part 53 displaces the valve body 1c according to the degree of superheat of the low-pressure refrigerant that has flowed out from the second heat exchanger 4, so that the low-pressure refrigerant that has flowed out from the second heat exchanger 4
  • the flow passage cross-sectional area of the throttle passage 1ag is adjusted so that the degree of superheat of the first passage approaches a predetermined value.
  • the low-pressure refrigerant that has flowed out of the fourth opening 1aj of the expansion valve 1 flows out of the B connection portion 243 and flows into the compressor 2. Specifically, the low-pressure refrigerant flowing out from the fourth opening 1aj of the expansion valve 1 flows into the B opening 2b of the compressor 2.
  • the refrigerant circulates in the order of the compressor 2, the first heat exchanger 3, the expansion valve 1, the second heat exchanger 4, and the compressor 2. Flowing.
  • the control unit 6 controls the four-way valve 5 so as to simultaneously connect the B connection unit 243 and the C connection unit 324 and the A connection unit 234 and the D connection unit 423. .
  • the refrigerant flows out of the compressor 2, and the high-temperature and high-pressure refrigerant that has flowed out flows into the A connection portion 234, the four-way valve 5, D It flows in the order of the connection part 423 and flows into the second heat exchanger 4 that functions as a radiator.
  • the high-temperature and high-pressure refrigerant flows out from the A opening 2 a of the compressor 2 and flows into the second heat exchanger 4 from the F opening 4 b of the second heat exchanger 4.
  • the high-temperature and high-pressure refrigerant that has flowed into the second heat exchanger 4 radiates and condenses by exchanging heat with the passenger compartment air blown by the fan, and then flows out of the second heat exchanger 4. Specifically, the high-temperature and high-pressure refrigerant flows into the second heat exchanger 4 from the F opening 4 b of the second heat exchanger 4, is condensed in the second heat exchanger 4, and the second heat exchanger 4. Out of the E opening 4a.
  • the high-pressure refrigerant that has flowed out of the second heat exchanger 4 passes through the F connection portion 14 and flows into the first refrigerant passage 1az of the expansion valve 1. Specifically, the high-pressure refrigerant that has flowed out of the second heat exchanger 4 flows into the first refrigerant passage 1az of the expansion valve 1 from the second opening 1ab of the expansion valve 1.
  • the high-pressure refrigerant that has flowed into the first refrigerant passage 1az of the expansion valve 1 flows in the order of the second opening 1ab, the D space 1af, the valve chamber 1ah, and the throttle passage 1ag in the first refrigerant passage 1az, and enters the throttle passage 1ag. Is expanded under reduced pressure.
  • the high-pressure refrigerant that has flowed into the first refrigerant passage 1az of the expansion valve 1 is blocked so that the degree of superheat of the low-pressure refrigerant that has flowed out of the first heat exchanger 3 functioning as an evaporator approaches a predetermined value.
  • the flow rate is adjusted in the throttle passage 1ag having the adjusted area.
  • the low-pressure refrigerant decompressed by the throttle passage 1ag flows in the order of the A space 1ac and the first opening 1aa, and flows out from the first opening 1aa.
  • the low-pressure refrigerant that has flowed into the first refrigerant passage 1az from the second opening 1ab does not flow into the C space 1ae because the C check valve 1zc is provided in the C space 1ae. , D space 1af and valve chamber 1ah in this order.
  • the low-pressure refrigerant that has flowed into the valve chamber 1ah flows into the throttle passage 1ag without flowing into the B space 1ad because the B check valve 1zb is provided in the B space 1ad.
  • the refrigerant that has flowed to the throttle passage 1ag flows to the A space 1ac and to the first opening 1aa without flowing to the C space 1ae due to the high pressure in the C space 1ae.
  • the arrangement of the A check valves 1za,..., D check valves 1zd, which are regulation members, causes the refrigerant to flow from the valve chamber 1ah to the throttle passage 1ag.
  • coolant which passes valve chamber 1ah acts in the valve closing direction of the valve body 1c. That is, the pressing force acting on the valve body 1c by the refrigerant passing through the valve chamber 1ah acts in the direction opposite to the direction of the load due to the bias of the coil spring 54, that is, the reaction force.
  • This pressing force corresponds to the B pressing force.
  • the expansion valve 1 is configured to displace the valve body 1c in accordance with the displacement of the diaphragm 53b that is a pressure responsive member.
  • any one of the first refrigerant circuit and the second refrigerant circuit is provided by arranging the A check valves 1za,... Also in this case, the refrigerant flows from the valve chamber 1ah to the throttle passage 1ag.
  • the pressing force acting on the valve body 1c by the refrigerant passing through the valve chamber 1ah acts in the valve closing direction of the valve body 1c.
  • the expansion valve 1 is applied to the refrigeration cycle 100, the difference in the decompression characteristics of the expansion valves 1 of the first refrigerant circuit and the second refrigerant circuit can be reduced.
  • the expansion valve 1 in the refrigeration cycle 100, even when the refrigerant flows in the reverse direction in the first refrigerant passage 1az including the throttle passage 1ag, the divergence of the decompression characteristics of the expansion valve 1 can be reduced. it can. Therefore, according to the expansion valve 1, even when the refrigerant flows in the reverse direction in the first refrigerant passage 1az including the throttle passage 1ag, the expansion valve 1 functions as an evaporator of the first heat exchanger 3 and the second heat exchanger 4. The degree of superheat of the refrigerant flowing out of the heat exchanger can be appropriately controlled.
  • the expansion valve 1 includes an A check valve 1za,..., D check valve 1zd inside the expansion valve 1.
  • a regulating member such as a check valve
  • the configuration becomes complicated, for example, an additional refrigerant pipe is provided.
  • the present expansion valve 1 when the present expansion valve 1 is applied, the flow of the refrigerant in the first refrigerant passage 1az can be defined without complicating the configuration.
  • the low-pressure refrigerant that has flowed out of the expansion valve 1 passes through the E connection portion 13 and flows into the first heat exchanger 3 that functions as an evaporator. Specifically, the low-pressure refrigerant that has flowed out of the expansion valve 1 flows into the first heat exchanger 3 from the D opening 3 b of the first heat exchanger 3.
  • the low-pressure refrigerant that has flowed into the first heat exchanger 3 exchanges heat between the outside air blown by the fan and the refrigerant, and is evaporated to exhibit an endothermic effect. leak. Specifically, the low-pressure refrigerant flowing from the C opening 3 a of the first heat exchanger 3 flows out from the C opening 3 a of the first heat exchanger 3.
  • the low-pressure refrigerant that has flowed out of the first heat exchanger 3 passes through the C connection portion 324 and the four-way valve 5, flows into the B connection portion 243, and the first of the expansion valve 1 that is a part of the B connection portion 243. 2 flows into the refrigerant passage 1ay. Specifically, the low-pressure refrigerant flowing out from the first heat exchanger 3 flows into the second refrigerant passage 1ay of the expansion valve 1 from the third opening 1ai of the expansion valve 1.
  • the low-pressure refrigerant that has flowed into the expansion valve 1 flows from the third opening 1ai to the fourth opening 1aj and out of the fourth opening 1aj in the second refrigerant passage 1ay.
  • the element portion flows according to the temperature and pressure of the refrigerant flowing out of the first heat exchanger 3 functioning as an evaporator and passing through the second refrigerant passage 1ay.
  • the differential pressure obtained by subtracting the pressure of the introduction space 30 which is a space communicating with the second refrigerant passage 1ay from the internal pressure of the enclosed space 20 is increased. Therefore, in this case, the diaphragm 53b is displaced in a direction in which the valve body 1c opens the throttle passage 1ag.
  • the element part 53 displaces the valve body 1c according to the superheat degree of the low pressure refrigerant
  • the flow passage cross-sectional area of the throttle passage 1ag is adjusted so that the degree of superheat of the low-pressure refrigerant flowing out of the condenser 3 or the second heat exchanger 4 approaches a predetermined value.
  • the low-pressure refrigerant that has flowed out of the fourth opening 1aj of the expansion valve 1 flows out of the B connection portion 243 and flows into the compressor 2. Specifically, the low-pressure refrigerant flowing out from the fourth opening 1aj of the expansion valve 1 flows into the B opening 2b of the compressor 2.
  • the refrigerant circulates in the order of the compressor 2, the second heat exchanger 4, the expansion valve 1, the first heat exchanger 3, and the compressor 2.
  • a refrigeration cycle that can be switched between a refrigerant circuit in a cooling operation mode and a refrigerant circuit in a heating operation mode, usually, for example, a refrigeration cycle described in JP-A-2003-56930 has three or more heat sources. An exchange is required.
  • a check valve is provided outside the expansion valve or an additional refrigerant pipe
  • the refrigerant circuit in the cooling operation mode is operated by two heat exchangers, that is, the first and second heat exchangers 3 and 4 without providing an additional refrigerant pipe or the like. And switching to the refrigerant circuit in the heating operation mode.
  • the expansion valve 1 has a pressing force acting on the valve body 1c by the refrigerant passing through the valve chamber 1ah in the valve closing direction of the valve body 1c.
  • a check valve 1za,..., D check valve 1zd that regulates the flow of the refrigerant are provided to act. That is, in the expansion valve 1, regardless of whether the refrigerant flows in from the first opening 1aa or the second opening 1ab, the pressing force that acts on the valve body 1c by the refrigerant passing through the valve chamber 1ah is the valve body 1c. Acts in the valve closing direction.
  • the expansion valve 1 is applied to the refrigeration cycle 100, the difference in the decompression characteristics of the expansion valves 1 of the first refrigerant circuit and the second refrigerant circuit can be reduced. That is, according to the expansion valve 1, even when the refrigerant flows in the reverse direction in the first refrigerant passage 1az including the throttle passage 1ag in the refrigeration cycle 100, the difference in the decompression characteristics of the expansion valve 1 can be reduced.
  • the element portion 53 has an enclosed space 20 in which a temperature-sensitive medium that changes in pressure according to temperature is enclosed.
  • the element portion 53 flows out of the internal pressure of the enclosed space 20 and the heat exchanger functioning as an evaporator among the first and second heat exchangers 3 and 4 and flows through the second refrigerant passage 1ay.
  • a diaphragm 53b is provided as a pressure responsive member that is displaced according to a pressure difference from the refrigerant pressure. And the element part 53 displaces the valve body 1c according to the displacement of the diaphragm 53b.
  • the expansion valve 1 is applied to the refrigeration cycle 100, the first heat exchanger 3 and the second heat exchanger 4 can be connected to each other even when the refrigerant flows in the reverse direction in the first refrigerant passage 1az including the throttle passage 1ag.
  • the superheat degree of the refrigerant flowing out from the heat exchanger functioning as an evaporator can be appropriately controlled.
  • a valve 1zc and a D check valve 1zd disposed in the D space 1af are provided.
  • the body part 1a is supplied with a second refrigerant for flowing a refrigerant flowing out of a heat exchanger functioning as an evaporator of the first heat exchanger 3 and the second heat exchanger 4.
  • a refrigerant passage 1ay is formed.
  • the expansion valve 1 is applied to the refrigeration cycle 100, the expansion valve 1 is provided with the A check valves 1za,..., D check valves 1zd.
  • the flow of the refrigerant in the first refrigerant passage 1az can be defined without complicating the configuration such as providing it.
  • the refrigerant circuit in the refrigeration cycle 100 is switched by the four-way valve 5.
  • the four-way valve 5 is controlled by the control unit 6 so as to connect the A connection unit 234 and the C connection unit 324 and the B connection unit 243 and the D connection unit 423 simultaneously. Is done.
  • the four-way valve 5 is connected to the control unit 6 so as to connect the A connection unit 234 and the D connection unit 423 and the B connection unit 243 and the C connection unit 324 at the same time. Controlled by.
  • the refrigerant flows into the second refrigerant passage 1ay of the expansion valve 1 from the third opening 1ai and flows out of the fourth opening 1aj.
  • the refrigerant may flow from the fourth opening 1aj into the second refrigerant passage 1ay of the expansion valve 1 and flow out from the third opening 1ai.
  • the defining member refers to the pressing force acting on the valve body 1c by the refrigerant passing through the first refrigerant passage 1az in the first refrigerant circuit, and the first refrigerant passage in the second refrigerant circuit. It is a member that regulates the flow of refrigerant in the first refrigerant passage 1az so that the pressing force acting on the valve body 1c by the refrigerant passing through 1az acts in the valve closing direction of the valve body 1c.
  • the pressing force that acts on the valve body by the refrigerant passing through the throttle passage acts in the valve closing direction of the valve body.
  • a regulating member that regulates the flow of the refrigerant.
  • an element portion that displaces the valve body according to the temperature and pressure of the refrigerant sucked into the compressor is provided.
  • this expansion valve functions as an evaporator of the first heat exchanger and the second heat exchanger even when the refrigerant flows in the reverse direction in the first refrigerant passage including the throttle passage. It is possible to appropriately control the degree of superheat of the refrigerant that has flowed out of the heat exchanger.
  • an A check valve, a B check valve, a C check valve, and a D check valve are provided.
  • the A check valve is a valve that is disposed in the A space and prevents the flow of refrigerant from the first opening toward the throttle passage.
  • the B check valve is a valve that is disposed in the B space and prevents the flow of refrigerant in the reverse direction from the valve chamber toward the first opening.
  • the C check valve is a valve that is disposed in the C space and prevents the flow of refrigerant from the second opening toward the throttle passage.
  • the D check valve is a valve that is disposed in the D space and prevents the flow of refrigerant from the valve chamber toward the second opening.
  • the first heat exchanger 3 and the second heat exchanger are evaporated separately from the first refrigerant passage.
  • a second refrigerant passage is formed for flowing the refrigerant that has flowed out of the heat exchanger functioning as a heat exchanger.
  • the element portion has an enclosed space in which a temperature-sensitive medium whose pressure changes according to temperature is enclosed.
  • the element portion has a pressure between the internal pressure of the enclosed space and the pressure of the refrigerant flowing out of the heat exchanger functioning as an evaporator out of the first heat exchanger and the second heat exchanger and flowing through the second refrigerant passage.
  • a pressure responsive member that is displaced according to the difference is provided, and the valve body is displaced according to the displacement of the pressure responsive member.
  • a specific example of the refrigeration cycle to which the expansion valve according to the first to fourth aspects of the present disclosure is applied is a refrigeration cycle provided with the following four-way valve. That is, in the first refrigerant circuit, the four-way valve simultaneously connects the A connection portion and the C connection portion and the D connection portion and the B connection portion. In the second refrigerant circuit, the four-way valve simultaneously connects between the B connection portion and the C connection portion and between the A connection portion and the D connection portion.
  • the refrigerant flows in the order of the compressor and the compressor.
  • the refrigerant flows in the order of the compressor, the second heat exchanger, the second opening of the expansion valve, the throttle passage, the first opening of the expansion valve, the first heat exchanger, and the compressor. .
  • the element portion displaces the valve body according to the temperature and pressure of the refrigerant in the B connection portion.
  • the second refrigerant passage is formed as a part of the B connection portion, and the element portion passes through the second refrigerant passage.
  • the valve body is displaced according to the temperature and pressure of the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

冷媒を第1熱交換器、第2熱交換器の順に流す第1冷媒回路と、第2熱交換器、第1熱交換器の順に流す第2冷媒回路とを切り替え可能な冷凍サイクルに膨張弁が適用される。膨張弁は、第1熱交換器または第2熱交換器から流出した冷媒を減圧膨張させて他方の熱交換器に流出させる。膨張弁には、第1開口部(1aa)および第2開口部(1ab)が形成される。膨張弁は、第1開口部もしくは第2開口部から流入した冷媒を減圧させる絞り通路(1ag)を含む冷媒通路(1az)が形成されたボデー部(1a)と、ボデー部の内部に配置されて絞り通路の流路断面積を調整する弁体(1c)と、規定部材(1za~1zd)とを備える。第1冷媒回路において冷媒が弁体に作用するA押圧力と、第2冷媒回路において冷媒が弁体に作用するB押圧力とがいずれも、弁体の閉弁方向に作用するよう、冷媒の流れを規定部材が規定する。

Description

膨張弁および冷凍サイクル 関連出願への相互参照
 本出願は、2016年2月26日に出願された日本特許出願番号2016-36018号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、蒸気圧縮式の冷凍サイクルに適用される膨張弁に関する。
 従来、蒸気圧縮式の冷凍サイクルに適用され、凝縮器から流出した高圧冷媒を減圧膨張する機械式の膨張弁が知られている。この種の膨張弁としては、例えば、特許文献1に記載のものがある。
 この種の膨張弁は、一般的に、単一の金属ブロック等で構成されるボデー部の内部において、高圧冷媒を導入して減圧膨張させる絞り通路を含む冷媒通路、および蒸発器から流出した低圧冷媒を流通させる冷媒通路等が形成されている。より具体的には、絞り通路を含む冷媒通路はボデーに形成された2つの開口部の間において冷媒を通過させる通路である。この通路内において、高圧冷媒が、2つの開口部の一方、絞り通路、2つの開口部の他方の順に流れる。
 また、この種の膨張弁は、蒸発器から流出した低圧冷媒の温度および圧力に応じて変位作動するエレメント部を備え、該エレメント部により弁体を変位させることで、高圧冷媒を減圧膨張させる絞り通路の流路断面積を調整している。より具体的には、エレメント部は、温度に応じて圧力変化する感温媒体が封入された封入空間の内圧と、蒸発器から流出した低圧冷媒の圧力との圧力差に応じて変位する圧力応動部材としてのダイヤフラムを有している。そして、このダイヤフラムの変位が、蒸発器から流出した低圧冷媒の温度を感温媒体に伝達する感温棒等を介して弁体に伝えられ、弁体を変位させる。
 これにより、この種の膨張弁では、封入空間内の感温媒体の圧力を蒸発器から流出した低圧冷媒の温度に応じた圧力とし、封入空間内の内圧と蒸発器から流出した低圧冷媒の圧力との圧力差によってダイヤフラムを変位させている。つまり、蒸発器から流出した低圧冷媒の温度および圧力に応じてダイヤフラムを変位させて弁体を変位させることで、絞り通路の開度を調整している。
 こうして、この種の膨張弁では、蒸発器から流出した低圧冷媒の過熱度が予め定めた値に近づくように、絞り通路の流路断面積を調整する弁体を変位させて該絞り通路の通路開度を調整することで、蒸発器から流出した低圧冷媒の過熱度を制御している。
特開2013-170734号公報
 上記特許文献1に記載の膨張弁のような機械式の膨張弁においては、絞り通路の流路断面積を調整する弁体が、絞り通路を通過する高圧冷媒によって押圧されることで変位する。従って、この種の機械式の膨張弁は、2つの開口部のうち一方から流入して絞り通路を通過する高圧冷媒による弁体の変位量が加味されて、所望の減圧特性となるように構成される。
 ここで、上記特許文献1に記載の膨張弁は、2つの開口部のうち一方から流入して絞り通路を含む冷媒通路において通過する冷媒の押圧力が、弁体の閉弁方向、すなわち弁体が閉じる方向に作用する構成とされている。また、この膨張弁では、仮に、冷媒が2つの開口部のうち他方から流入した場合には、絞り通路を含む冷媒通路において通過する冷媒の押圧力が、弁体の開弁方向、すなわち弁体が開く方向に作用する。つまり、この膨張弁では、2つの開口部のうち一方から流入した場合と他方から流入した場合とで、絞り通路を含む冷媒通路において通過する冷媒の押圧力が互いに逆向きに作用する。このため、2つの開口部のうち一方から流入した場合と他方から流入した場合とで、弁体の変位量が大きく異なる。従って、この膨張弁では、絞り通路を含む冷媒通路において互いに逆向きに冷媒を流した2つの場合の間で、膨張弁の減圧特性が乖離してしまう。
 本開示は上記点に鑑みて、絞り通路を含む冷媒通路において逆向きに冷媒を流した場合でも減圧特性の乖離が少ない膨張弁を提供することを目的とする。
 本開示の1つの観点によれば、第1冷媒回路と第2冷媒回路とを切り換え可能な蒸気圧縮式の冷凍サイクルに適用される膨張弁において以下の構成とする。すなわち、膨張弁において、A押圧力およびB押圧力がいずれも弁体の閉弁方向に作用するように、冷媒通路における冷媒の流れを規定する規定部材を設ける。なお、A押圧力は、第1冷媒回路において第1開口部から流入して絞り通路を通過する冷媒によって弁体に作用する押圧力である。また、B押圧力は、第2冷媒回路において第2開口部から流入して絞り通路を通過する冷媒によって弁体に作用する押圧力である。
 この膨張弁を冷凍サイクルに適用すれば、第1冷媒回路および第2冷媒回路それぞれの膨張弁の減圧特性の乖離を少なくすることできる。すなわち、冷凍サイクルにおいて、絞り通路を含む第1冷媒通路において逆向きに冷媒を流した場合でも、膨張弁の減圧特性の乖離を少なくすることができる。
 本開示の他の観点によれば、膨張弁を適用した冷凍サイクルの具体例として、以下のような四方弁を設けた冷凍サイクルとしている。すなわち、四方弁は、第1冷媒回路においては、A接続部とC接続部との間、およびD接続部とB接続部との間を同時に接続する。また、四方弁は、第2冷媒回路においては、B接続部とC接続部との間、およびA接続部とD接続部との間を同時に接続する。このような四方弁が設けられることで、第1冷媒回路においては、圧縮機、第1熱交換器、膨張弁の第1開口部、絞り通路、膨張弁の第2開口部、第2熱交換器、圧縮機の順に冷媒が流れる。また、第2冷媒回路においては、圧縮機、第2熱交換器、膨張弁の第2開口部、絞り通路、膨張弁の第1開口部、第1熱交換器、圧縮機の順に冷媒が流れる。
第1実施形態に係る冷凍サイクルにおいて第1冷媒回路としたときの全体構成を模式的に示す図である。 第1実施形態に係る冷凍サイクルにおいて第2冷媒回路としたときの全体構成を模式的に示す図である。 第1実施形態に係る膨張弁の断面構成を示す図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態に係る膨張弁1について図1~図3を参照して説明する。図1に示すように、この膨張弁1は、蒸気圧縮式の冷凍サイクル100に適用され、後述の第1熱交換器3および第2熱交換器4の一方の熱交換器から流出した冷媒を減圧膨張して他方の熱交換器に流出させる、いわゆる内部均圧式の機械式膨張弁である。本実施形態では、自動車などの車両に搭載される車両用空調装置の冷凍サイクル100に膨張弁1を適用している。なお、図1、図2中の矢印は、冷凍サイクル100における冷媒の流れを模式的に示している。
 まず、冷凍サイクル100について説明する。図1、図2に示すように、冷凍サイクル100は、膨張弁1と、圧縮機2と、第1熱交換器3と、第2熱交換器4と、四方弁5と、制御部6とを有する蒸気圧縮式の冷凍サイクルである。冷凍サイクル100は、ヒートポンプとして機能するものであり、図1に示す第1冷媒回路と図2に示す第2冷媒回路とに切り替え可能に構成されている。なお、第1冷媒回路は、冷房運転モードの冷媒回路に相当し、第2冷媒回路は、暖房運転モードの冷媒回路に相当する。
 この冷凍サイクル100では、ここでは冷媒としてフロン系冷媒が採用されているが、冷媒の種類はこれに限られない。
 膨張弁1は、第1熱交換器3および第2熱交換器4のうち放熱器として機能する熱交換器から流入した冷媒を減圧膨張させるものである。膨張弁1は、第1熱交換器3および第2熱交換器4のうち蒸発器として機能する熱交換器から流出した冷媒の温度および圧力に基づいて、該冷媒の過熱度が予め定めた値に近づくように、図3に示す弁体1cの弁開度を変化させる。これにより、膨張弁1は、第1熱交換器3および第2熱交換器4のうち蒸発器として機能する熱交換器から流出する冷媒の流量を調整する。なお、膨張弁1の詳細については後述する。
 圧縮機2は、冷媒を吸入して圧縮するものである。本実施形態では、圧縮機2は、図示しない車両走行用エンジンから電磁クラッチ等を介して駆動力を得る場合や電気的に駆動力を得て、冷媒を吸入して圧縮を行う。図1、図2に示すように、圧縮機2は、A開口部2aおよびB開口部2bを有し、B開口部2bから吸入した冷媒を圧縮する。圧縮機2としては、例えば、インバータ制御方式の電動圧縮機が採用され得る。
 圧縮機2のA開口部2aには、冷媒配管として機能するA接続部234が接続され、圧縮機2のB開口部2bには、冷媒配管として機能するB接続部243が接続されている。ここでは、図3に示すように、B接続部243は、その一部として後述の膨張弁1の第2冷媒通路1ayを含む。
 第1熱交換器3は、周囲の熱交換媒体と冷媒とで熱交換させる熱交換器である。本実施形態における第1熱交換器3は、車室外に設置され、図示しないファンにより送風された車室外空気と冷媒とで熱交換させる。第1熱交換器3は、C開口部3aおよびD開口部3bを有する。
 第1熱交換器3は、第1冷媒回路において車室外空気と冷媒とで熱交換させて冷媒を放熱させる放熱器として機能し、第2冷媒回路において車室外空気と冷媒とで熱交換させて冷媒を加熱して蒸発させることにより吸熱作用を発揮させる蒸発器として機能する。ここでは、冷媒としてフロン系冷媒を用いているため、第1熱交換器3は、第1冷媒回路において車室外空気と気相冷媒とで熱交換させることで気相冷媒を冷却して凝縮させる凝縮器として機能する。
 なお、図1、図2に示すように、本実施形態に係る冷凍サイクル100は、第1熱交換器3が、第1熱交換部31、受液器32、第2熱交換部33を備える。
 第1熱交換部31は、第1冷媒回路において凝縮器として機能する部分であり、第2熱交換部33は、第1冷媒回路において第1熱交換部31から流出した冷媒を過冷却する機能を果たす部分である。
 受液器32は、第1熱交換器3の内部の冷媒流路の途中に設けられ、少なくとも第1冷媒回路において、凝縮器として機能する第1熱交換部31から流出した冷媒を気相冷媒と液相冷媒とに分離してサイクル内の余剰液相冷媒を溜める機能を果たす。
 第1熱交換器3のC開口部3aには、冷媒配管として機能するC接続部324が接続されている。また、第1熱交換器3のD開口部3bには、第1熱交換器3のD開口部3bと膨張弁1の第1開口部1aaを接続して冷媒配管として機能するE接続部13が接続されている。
 第2熱交換器4は、周囲の熱交換媒体と冷媒とで熱交換させる熱交換器である。本実施形態における第2熱交換器4は、車室内に設置され、図示しないファンにより送風された車室内空気と冷媒とを熱交換させる。第2熱交換器4は、E開口部4aおよびF開口部4bを有する。
 第2熱交換器4は、第1冷媒回路において車室内空気と冷媒とで熱交換させて冷媒を蒸発させることにより吸熱作用を発揮させる蒸発器として機能し、第2冷媒回路において車室内空気と冷媒とで熱交換させて冷媒を放熱させる放熱器として機能する。ここでは、冷媒としてフロン系冷媒を用いているため、第2熱交換器4は、第2冷媒回路において車室内空気と気相冷媒とで熱交換させて気相冷媒を冷却して凝縮させる凝縮器として機能する。
 第2熱交換器4のF開口部4bには、冷媒配管として機能するD接続部423が接続されている。また、第2熱交換器4のE開口部4aには、膨張弁1の第2開口部1abと第2熱交換器4のE開口部4aを接続して冷媒配管として機能するF接続部14が接続されている。
 なお、A接続部234、B接続部243、C接続部324、D接続部423、E接続部13、およびF接続部14はいずれも、冷媒が流通する流路として機能する部材であれば、その構成が特に限定されない。従って、例えば、A接続部234、B接続部243、C接続部324、D接続部423、E接続部13、およびF接続部14はいずれも、冷媒配管から別の冷媒配管へ向かう流路途中に気液分離器が介在する構成であっても良い。
 四方弁5は、制御部6の制御によって、冷凍サイクル100における冷媒回路を切り替える弁である。具体的には、四方弁5は、第1冷媒回路においては、A接続部234とC接続部324との間、およびB接続部243とD接続部423との間を同時に接続するように冷凍サイクル100の冷媒回路の切り換えを行う。また、四方弁5は、第2冷媒回路においては、A接続部234とD接続部423との間、およびB接続部243とC接続部324との間を同時に接続する。
 制御部6は、ECUすなわち電子制御装置であり、四方弁5などを制御する装置である。
 次に、本実施形態に係る膨張弁1の詳細について説明する。図3に示すように、膨張弁1は、ボデー部1a、エレメント部53、弁体1c、逆止弁1za、逆止弁1zb、逆止弁1zc、および逆止弁1zdを備える。ボデー部1aには、絞り通路1agを含む第1冷媒通路1azが形成されている。なお、以下において、逆止弁1zaをA逆止弁1zaと称し、逆止弁1zbをB逆止弁1zbと称し、逆止弁1zcをC逆止弁1zcと称し、逆止弁1zdをD逆止弁1zdと称する。また、便宜上、図3ではA逆止弁1za、・・・、D逆止弁1zdを模式的に示している。
 図3に示すように、ボデー部1aは、膨張弁1の外殻および膨張弁1内の第1冷媒通路1az等が形成された部分である。ボデー部1aは、例えば円筒状あるいは角筒状の金属ブロックに穴開け加工等を施して形成される。ボデー部1aには、第1開口部1aaおよび第2開口部1abが形成され、第1開口部1aaと第2開口部1abとの間において冷媒を流す通路として第1冷媒通路1azが形成されている。また、ボデー部1aには、弁体1cに対応する弁座として機能する弁座部1akが形成されている。
 第1開口部1aaは、第1冷媒回路において、第1熱交換器3のD開口部3bから流出した冷媒を第1冷媒通路1azに流入させる部分であり、第2冷媒回路において、第1冷媒通路1azを通過した冷媒を第1熱交換器3のD開口部3bへ流出させる部分である。
 第2開口部1abは、第1冷媒回路において、第1冷媒通路1azを通過した冷媒を第2熱交換器4のE開口部4aへ流出させる部分であり、第2冷媒回路において、第2熱交換器4のE開口部4aから流出した冷媒を第1冷媒通路1azに流入させる部分である。
 図3に示すように、本実施形態に係るボデー部1aは、具体的には、第1冷媒通路1azが、空間1ac、空間1ad、空間1ae、空間1af、絞り通路1ag、弁室1ahを含む。なお、以下において、空間1acをA空間1acと称し、空間1adをB空間1adと称し、空間1aeをC空間1aeと称し、空間1afをD空間1afと称する。
 絞り通路1agは、第1開口部1aaもしくは第2開口部1abから流入した冷媒を減圧膨張させる通路である。具体的には、絞り通路1agは、弁座部1akと弁体1cによって囲まれた空間である絞り部を含む。絞り通路1agは、弁座部1akに対する弁体1cの位置が変化して絞り部の流路断面積が変化することで、その流路断面積が変化する。すなわち、絞り通路1agの流路断面積は、この絞り部の流路断面積である。そして、本実施形態に係る冷凍サイクル100では、この絞り通路1agが形成されることにより、冷凍サイクル100における絞り通路1agよりも冷媒流れ上流側が高圧、冷媒流れ下流側が低圧となる。
 弁室1ahは、弁体1cが収容される空間である。図3に示すように、弁室1ahは、絞り通路1agに連通している。弁室1ahは、第1冷媒回路において、第1開口部1aaからボデー部1aの内部に流入してB空間1adに流れた冷媒を絞り通路1agに導く通路として機能する。また、弁室1ahは、第2冷媒回路において、第2開口部1abからボデー部1aの内部に流入してD空間1afに流れた冷媒を絞り通路1agに導く通路として機能する。
 A空間1acは、ボデー部1aの内部において、第1開口部1aaおよび絞り通路1agに連通するように形成された空間である。B空間1adは、ボデー部1aの内部において、第1開口部1aaおよび弁室1ahに連通するように形成された空間である。C空間1aeは、ボデー部1aの内部において、第2開口部1abおよび絞り通路1agに連通するように形成された空間である。D空間1afは、ボデー部1aの内部において、第2開口部1abおよび弁室1ahに連通するように形成された空間である。
 なお、図3に示すように、D空間1afはB空間1adを挟んで第1開口部1aaの反対側に位置するように配置されている。また、B空間1adはD空間1afを挟んで第2開口部1abの反対側に位置するように配置されている。C空間1aeは、A空間1acを挟んで第1開口部1aaの反対側に位置するように配置されている。また、A空間1acはC空間1aeを挟んで第2開口部1abの反対側に位置するように配置されている。
 第1開口部1aaがA空間1acおよびB空間1adの両方に直接連通し、A空間1acとB空間1adとは直接連通せずに第1開口部1aaを介して連通していてもよい。この場合、第1開口部1aaとA空間1acの境界、および、第1開口部1aaとB空間1adの境界は、図3に破線で示す部分になる。この場合、第1開口部1aaの図3の上下方向(すなわち、弁体1cの移動方向)の幅に対して、A空間1acの図3の上下方向の幅は、1/2以下に縮小している。またこの場合、第1開口部1aaの図3の上下方向の幅に対して、B空間1adの図3の上下方向の幅は、1/2以下に縮小している。つまり、第1開口部1aaから、第1開口部1aaよりも図3の上下方向の幅が狭まったA空間1acと、第1開口部1aaよりも図3の上下方向の幅が狭まったB空間1adとが、絞り通路1ag側に伸びている。
 また、第2開口部1abがC空間1aeおよびD空間1afの両方に直接連通し、C空間1aeとD空間1afとは直接連通せずに第2開口部1abを介して連通していてもよい。この場合、第2開口部1abとC空間1aeの境界、および、第2開口部1abとD空間1afの境界は、図3に破線で示す部分になる。この場合、第2開口部1abの図3の上下方向の幅に対して、C空間1aeの図3の上下方向の幅は、1/2以下に縮小している。またこの場合、第2開口部1abの図3の上下方向の幅に対して、D空間1afの図3の上下方向の幅は、1/2以下に縮小している。つまり、第2開口部1abから、第2開口部1abよりも図3の上下方向の幅が狭まったC空間1aeと、第2開口部1abよりも図3の上下方向の幅が狭まったD空間1afとが、絞り通路1ag側に伸びている。
 エレメント部53は、圧縮機2に吸入される冷媒の温度および圧力に応じて、変位作動することにより弁体1cを変位させる。
 図3に示すように、エレメント部53は、ダイヤフラム53bに溶接、接着等の接合手段によって連結された略円筒状の感温棒52b、および感温棒52bに同軸状に圧入等の手段によって連結されて弁体1cに当接する略円筒状の作動棒52cを有する。エレメント部53は、蒸発器として機能する第1熱交換器3または第2熱交換器4から流出して第2冷媒通路1ayを通る冷媒の温度および圧力に応じて、感温棒52bおよび作動棒52cが変位作動し、この変位作動に連動して弁体1cを変位させる。
 感温棒52bは、第2冷媒通路1ayを貫通するように延びており、その外周面の少なくとも一部が、第2冷媒通路1ayを流通する低圧冷媒に晒されるように配置されている。これにより、感温棒52bは、蒸発器として機能する第2熱交換器4から流出して第2冷媒通路1ayを流通する低圧冷媒の温度をエレメント部53側へ伝達することができる。感温棒52bとしては、熱伝導が良好で、強靱な材質にて形成することが好ましい。また、本実施形態では、感温棒52bをステンレスにて形成している。
 エレメント部53は、さらに、エレメントハウジング53a、圧力応動部材であるダイヤフラム53b、エレメントカバー53c、封止プラグ53eによって構成される。なお、エレメントハウジング53aは、取付穴51jにネジ止め等の固定手段によって取り付けられる。取付穴51jは、ボデー部1aの上部に形成された穴である。また、エレメントカバー53cは、エレメントハウジング53aとともにダイヤフラム53bの外縁部を狭持してエレメント部53の外殻を形成する部材である。封止プラグ53eについては後述する。
 エレメントハウジング53aおよびエレメントカバー53cは、ステンレス等の金属で構成され、ダイヤフラム53bの外縁部を狭持した状態で、その外周端部同士が溶接、ろう付け等の接合手段によって一体に接合されている。従って、エレメントハウジング53aおよびエレメントカバー53cによって形成されるエレメント部53の内部空間は、ダイヤフラム53bによって2つの空間に区画される。
 この2つの空間のうち、エレメントカバー53cとダイヤフラム53bによって形成される空間は、第1熱交換器3および第2熱交換器4のうち蒸発器として機能する熱交換器から流出した低圧冷媒の温度に応じて圧力変化する感温媒体が封入される封入空間20である。
 一方、エレメントハウジング53aとダイヤフラム53bとによって形成される空間は、第2冷媒通路1ayと連通して、蒸発器として機能する第1熱交換器3または第2熱交換器4から流出した低圧冷媒を導入させる導入空間30である。従って、封入空間20に封入された感温媒体には、感温棒52bを介して、第2冷媒通路1ayを流通する第1熱交換器3または第2熱交換器4から流出した低圧冷媒の温度が伝達される。また、この感温媒体には、ダイヤフラム53bを介して、導入空間30に導入された第1熱交換器3または第2熱交換器4から流出した低圧冷媒の温度も伝達される。
 従って、封入空間20の内圧は、第1熱交換器3または第2熱交換器4から流出した低圧冷媒の温度に応じた圧力となる。そして、ダイヤフラム53bは、封入空間20の内圧と導入空間30へ流入した第2熱交換器4から流出した低圧冷媒の圧力との差圧に応じて変位する。
 例えば、封入空間20の内圧の低下に伴ってダイヤフラム53bが上方側へ変位し、封入空間20の内圧が増大に伴ってダイヤフラム53bが下方側へ変位する。
 このため、ダイヤフラム53bは弾性に富み、かつ熱伝導が良好で、強靱な材質にて形成することが好ましく、例えば、ステンレス等の金属薄板にて形成される。
 また、図3に示すように、エレメントカバー53cには、封入空間20に感温媒体を充填するための充填穴53dが形成されており、この充填穴53dは、感温媒体の充填後に、その先端が封止プラグ53eによって閉塞される。さらに、本実施形態の封入空間20には、気相状態の冷媒および不活性ガスを混合した混合ガスが感温媒体として封入されている。
 本実施形態では、封入空間20に封入する冷媒として、冷凍サイクル100を循環する冷媒と同一組成の冷媒を採用している。不活性ガスとして、膨張弁1の使用温度範囲、例えば-30℃~60℃において、理想気体と同様の温度-圧力特性を示すヘリウムや窒素等を採用している。
 弁体1cは、ボデー部1aの内部に配置されて、絞り通路1agの流路断面積を調整する弁である。本実施形態では、弁体1cは、感温棒52bおよび作動棒52cの変位作動に連動して変位する。
 上記したように、本実施形態に係る膨張弁1は、A逆止弁1za、B逆止弁1zb、C逆止弁1zc、およびD逆止弁1zdを備える。A逆止弁1za、・・・、D逆止弁1zdは、第1冷媒通路1azにおける冷媒の流れを規定する規定部材として機能する。具体的には、この規定部材は、第1冷媒回路において弁室1ahを通過する冷媒によって弁体1cに作用する押圧力、および第2冷媒回路において弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用するように、第1冷媒通路1azにおける冷媒の流れを規定する。
 また、図3に示すように、A空間1acには、A空間1acにおける冷媒流れ上流側すなわち絞り通路1ag側と、A空間1acにおける冷媒流れ下流側すなわち第1開口部1aa側とを隔てる、隔壁1xaが形成されている。また、B空間1adには、B空間1adにおける冷媒流れ下流側すなわち絞り通路1ag側と、B空間1adにおける冷媒流れ上流側すなわち第1開口部1aa側とを隔てる、隔壁1xbが形成されている。また、C空間1aeには、C空間1aeにおける冷媒流れ上流側すなわち絞り通路1ag側と、C空間1aeにおける冷媒流れ下流側すなわち第2開口部1ab側とを隔てる、隔壁1xcが形成されている。また、D空間1afには、D空間1afにおける冷媒流れ下流側すなわち絞り通路1ag側と、D空間1afにおける冷媒流れ上流側すなわち第2開口部1ab側とを隔てる、隔壁1xdが形成されている。これらの隔壁1xa、1xb、1xc、1xdは、ボデー部1aの一部である。
 図3に示すように、A逆止弁1zaは、A空間1acに配置され、第1開口部1aaからA空間1acを通って絞り通路1agへ向かう方向への冷媒の流れを防止する弁である。A逆止弁1zaは、絞り通路1agからA空間1acを通って第1開口部1aaへ向かう方向には冷媒を流す。A逆止弁1zaは、隔壁1xaに配置されている。
 B逆止弁1zbは、B空間1adに配置され、弁室1ahからB空間1adを通って第1開口部1aaへ向かう方向への冷媒の流れを防止する弁である。B逆止弁1zbは、第1開口部1aaからB空間1adを通って弁室1ahへ向かう方向には冷媒を流す。B逆止弁1zbは、隔壁1xbに配置されている。
 C逆止弁1zcは、C空間1aeに配置され、第2開口部1abからC空間1aeを通って絞り通路1agへ向かう方向への冷媒の流れを防止する弁である。C逆止弁1zcは、絞り通路1agからC空間1aeを通って第2開口部1abへ向かう方向には冷媒を流す。C逆止弁1zcは、隔壁1xcに配置されている。
 D逆止弁1zdは、D空間1afに配置され、弁室1ahからD空間1afを通って第2開口部1abへ向かう方向への冷媒の流れを防止する弁である。D逆止弁1zdは、第2開口部1abからD空間1afを通って弁室1ahへ向かう方向には冷媒を流す。D逆止弁1zdは、隔壁1xdに配置されている。
 図3では、A逆止弁1za、B逆止弁1zb、C逆止弁1zc、D逆止弁1zdを模式的に示している。実際には、A逆止弁1za、B逆止弁1zb、C逆止弁1zc、D逆止弁1zdの各々は、周知の弁体、弁座部、弁体を弁座部の方向に付勢するバネ、バネの弁体側端とは反対側の端に接続されるバネ保持部を有している。
 このように、本実施形態に係る膨張弁1では、規定部材としてのA逆止弁1za、・・・、D逆止弁1zdを備える。このため、第1開口部1aaおよび第2開口部1abのいずれから冷媒が流入した場合においても、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用し易くなる。すなわち、本実施形態に係る膨張弁1では、A逆止弁1za、・・・、D逆止弁1zdを備えることで、第1冷媒回路および第2冷媒回路のいずれにおいても、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用し易くなる。
 なお、上記でも説明したように、本実施形態では、第2冷媒通路1ayは、B接続部243の一部として構成されている。
 また、ボデー部1aには、第3開口部1aiおよび第4開口部1ajが形成され、第3開口部1aiと第4開口部1ajとの間において冷媒を流す通路として、第1冷媒通路1azとは別の第2冷媒通路1ayが形成されている。
 第1冷媒通路1azは、第1冷媒回路において、放熱器として機能する第1熱交換器3から流出した高圧冷媒が流れると共に、第2冷媒回路において、放熱器として機能する第2熱交換器4から流出した高圧冷媒が流れる高圧冷媒通路である。第2冷媒通路1ayは、第1冷媒回路において、蒸発器として機能する第2熱交換器4から流出した低圧冷媒が流れると共に、第2冷媒回路において、蒸発器として機能する第1熱交換器3から流出した低圧冷媒が流れる低圧冷媒通路である。
 また、弁室1ahには、コイルバネ54が収容されている。このコイルバネ54は、支持部材54aを介して、弁体1cに対して絞り通路1agを閉弁させる側に付勢する荷重をかけている。さらに、本実施形態に係る膨張弁1では、コイルバネ54による荷重が、調整ネジ54bによって調整可能になっている。
 次に、本実施形態に係る冷凍サイクル100の作動について説明する。
 まず、第1冷媒回路、すなわち冷房運転モードの冷媒回路の場合について説明する。第1冷媒回路においては、制御部6は、A接続部234とC接続部324との間、およびD接続部423とB接続部243との間を同時に接続するように四方弁5を制御する。
 そして、圧縮機2が車両エンジンの駆動力や電気的な駆動力により回転駆動されると、圧縮機2から冷媒が流出され、流出した高温高圧冷媒は、A接続部234、四方弁5、C接続部324の順に流れ、放熱器として機能する第1熱交換器3に流入する。詳細には、高温高圧冷媒は、圧縮機2のA開口部2aから流出し、第1熱交換器3のC開口部3aから第1熱交換器3の内部に流入する。
 そして、第1熱交換器3に流入した高温高圧冷媒は、ファンにより送風された車室外空気と熱交換することで放熱して凝縮した後、第1熱交換器3から流出する。詳細には、高温高圧冷媒は、第1熱交換器3のC開口部3aから第1熱交換器3の内部に流入し、第1熱交換部31において凝縮し、受液器32にて気液分離され、第2熱交換部33で過冷却されて、第1熱交換器3のD開口部3bから流出する。
 そして、第1熱交換器3から流出した高圧冷媒は、E接続部13を通過して、膨張弁1の第1冷媒通路1azに流入する。詳細には、第1熱交換器3から流出した高圧冷媒は、膨張弁1の第1開口部1aaから膨張弁1の第1冷媒通路1azに流入する。
 そして、膨張弁1の第1冷媒通路1azに流入した高圧冷媒は、第1冷媒通路1azにおいて、第1開口部1aa、B空間1ad、弁室1ah、絞り通路1agの順に流れ、絞り通路1agにて減圧膨張される。ここで、膨張弁1の第1冷媒通路1azに流入した高圧冷媒は、蒸発器として機能する第2熱交換器4から流出した低圧冷媒の過熱度が予め定めた値に近づくように流路断面積を調整された絞り通路1agにおいて、流量を調整される。その後、絞り通路1agにより減圧された低圧冷媒は、C空間1ae、第2開口部1abの順に流れ、第2開口部1abから流出する。
 ここで、本実施形態では、第1開口部1aaから第1冷媒通路1azに流入した低圧冷媒は、A空間1acにA逆止弁1zaが設けられていることにより、A空間1acへ流れることなく、B空間1ad、弁室1ahの順に流れる。そして、弁室1ahへと流れた低圧冷媒は、D空間1afにD逆止弁1zdが設けられていることにより、D空間1afへ流れることなく、絞り通路1agへ流れる。絞り通路1agへ流れた冷媒は、A空間1acが高圧となっていることにより、A空間1acへ流れることなく、C空間1aeへ流れ、第2開口部1abへ流れる。
 このように、本実施形態では、規定部材であるA逆止弁1za、・・・、D逆止弁1zdが配置されたことで、弁室1ahから絞り通路1agへ向かう冷媒の流れとなる。このため、本実施形態では、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用する。この押圧力がA押圧力に対応する。
 そして、膨張弁1から流出した低圧冷媒は、F接続部14を通過して、蒸発器として機能する第2熱交換器4に流入する。詳細には、膨張弁1から流出した低圧冷媒は、第2熱交換器4のE開口部4aから第2熱交換器4の内部に流入する。
 そして、第2熱交換器4に流入した低圧冷媒は、ファンにより送風された車室内空気と冷媒とで熱交換して、蒸発させられて吸熱作用を発揮した後、第2熱交換器4から流出する。詳細には、第2熱交換器4のE開口部4aから流入した低圧冷媒は、第2熱交換器4のF開口部4bから流出する。
 そして、第2熱交換器4から流出した低圧冷媒は、D接続部423、四方弁5を通過して、B接続部243に流入し、B接続部243の一部である膨張弁1の第2冷媒通路1ayに流入する。詳細には、第2熱交換器4から流出した低圧冷媒は、膨張弁1の第3開口部1aiから膨張弁1の第2冷媒通路1ayに流入する。
 そして、膨張弁1に流入した低圧冷媒は、第2冷媒通路1ayにおいて、第3開口部1aiから第4開口部1ajへ流れ、第4開口部1ajから流出する。ここで、本実施形態では、蒸発器として機能する第2熱交換器4から流出して第2冷媒通路1ayを通る冷媒の温度および圧力に応じて、エレメント部53が変位作動することにより、弁体1cが変位する。例えば、本実施形態では、第2冷媒通路1ayを通る冷媒の過熱度が上昇した場合、封入空間20に封入された感温媒体の圧力が上昇する。これにより、封入空間20の内圧から、第2冷媒通路1ayと連通した空間である導入空間30の圧力を差し引いた差圧が大きくなる。よって、この場合は、ダイヤフラム53bは、弁体1cが絞り通路1agを開弁させる方向へ変位する。
 逆に、蒸発器として機能する第2熱交換器4から流出した低圧冷媒の過熱度が低下した場合、封入空間20に封入された感温媒体の圧力が低下して、封入空間20の内圧から導入空間30の圧力を差し引いた差圧が小さくなる。よって、この場合は、ダイヤフラム53bは、弁体1cが絞り通路1agを閉弁させる方向へ変位する。
 このように、本実施形態では、第2熱交換器4から流出した低圧冷媒の過熱度に応じてエレメント部53が弁体1cを変位させることで、第2熱交換器4から流出した低圧冷媒の過熱度が予め定めた値に近づくように、絞り通路1agの流路断面積が調整される。
 そして、膨張弁1の第4開口部1ajから流出した低圧冷媒は、B接続部243から流出して、圧縮機2に流入する。詳細には、膨張弁1の第4開口部1ajから流出した低圧冷媒は、圧縮機2のB開口部2bに流入する。
 以上説明したように、本実施形態に係る第1冷媒回路においては、冷媒が、圧縮機2、第1熱交換器3、膨張弁1、第2熱交換器4、圧縮機2の順に循環して流れる。
 次に、第2冷媒回路、すなわち暖房運転モードの冷媒回路の場合について説明する。第2冷媒回路においては、制御部6は、B接続部243とC接続部324との間、およびA接続部234とD接続部423との間を同時に接続するように四方弁5を制御する。
 そして、圧縮機2が車両エンジンの駆動力や電気的な駆動力により回転駆動されると、圧縮機2から冷媒が流出され、流出した高温高圧冷媒は、A接続部234、四方弁5、D接続部423の順に流れ、放熱器として機能する第2熱交換器4に流入する。詳細には、高温高圧冷媒は、圧縮機2のA開口部2aから流出し、第2熱交換器4のF開口部4bから第2熱交換器4の内部に流入する。
 そして、第2熱交換器4に流入した高温高圧冷媒は、ファンにより送風された車室内空気と熱交換することで放熱して凝縮された後、第2熱交換器4から流出する。詳細には、高温高圧冷媒は、第2熱交換器4のF開口部4bから第2熱交換器4の内部に流入し、第2熱交換器4において凝縮されて、第2熱交換器4のE開口部4aから流出する。
 そして、第2熱交換器4から流出した高圧冷媒は、F接続部14を通過して、膨張弁1の第1冷媒通路1azに流入する。詳細には、第2熱交換器4から流出した高圧冷媒は、膨張弁1の第2開口部1abから膨張弁1の第1冷媒通路1azに流入する。
 そして、膨張弁1の第1冷媒通路1azに流入した高圧冷媒は、第1冷媒通路1azにおいて、第2開口部1ab、D空間1af、弁室1ah、絞り通路1agの順に流れ、絞り通路1agにて減圧膨張される。ここで、膨張弁1の第1冷媒通路1azに流入した高圧冷媒は、蒸発器として機能する第1熱交換器3から流出した低圧冷媒の過熱度が予め定めた値に近づくように流路断面積を調整された絞り通路1agにおいて、流量を調整される。その後、絞り通路1agにより減圧された低圧冷媒は、A空間1ac、第1開口部1aaの順に流れ、第1開口部1aaから流出する。
 ここで、本実施形態では、第2開口部1abから第1冷媒通路1azに流入した低圧冷媒は、C空間1aeにC逆止弁1zcが設けられていることにより、C空間1aeへ流れることなく、D空間1af、弁室1ahの順に流れる。そして、弁室1ahへと流れた低圧冷媒は、B空間1adにB逆止弁1zbが設けられていることにより、B空間1adへ流れることなく、絞り通路1agへ流れる。絞り通路1agへ流れた冷媒は、C空間1aeが高圧となっていることにより、C空間1aeへ流れることなく、A空間1acへ流れ、第1開口部1aaへ流れる。
 このように、本実施形態では、規定部材であるA逆止弁1za、・・・、D逆止弁1zdが配置されたことで、弁室1ahから絞り通路1agへ向かう冷媒の流れとなる。このため、本実施形態では、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用する。すなわち、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、コイルバネ54の付勢による荷重の方向すなわち反力とは反対側の方向に作用する。この押圧力がB押圧力に対応する。
 以上のように、本膨張弁1は、圧力応動部材であるダイヤフラム53bの変位に応じて弁体1cを変位させる構成とされている。
 上記で説明したように、本実施形態では、規定部材であるA逆止弁1za、・・・、D逆止弁1zdが配置されたことで、第1冷媒回路および第2冷媒回路のいずれの場合も、弁室1ahから絞り通路1agへ向かう冷媒の流れとなる。これにより、本実施形態では、第1冷媒回路および第2冷媒回路のいずれの場合も、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用する。すなわち、第1開口部1aaおよび第2開口部1abのいずれから冷媒が流入した場合においても、弁室1ahから絞り通路1agへ向かう冷媒の流れとなり、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用する。
 このため、膨張弁1を冷凍サイクル100に適用すれば、第1冷媒回路および第2冷媒回路それぞれの膨張弁1の減圧特性の乖離を少なくすることできる。このように、膨張弁1によれば、冷凍サイクル100において、絞り通路1agを含む第1冷媒通路1azにおいて逆向きに冷媒を流した場合でも、膨張弁1の減圧特性の乖離を少なくすることができる。よって、膨張弁1によれば、絞り通路1agを含む第1冷媒通路1azにおいて逆向きに冷媒を流した場合でも、第1熱交換器3および第2熱交換器4のうち蒸発器として機能する熱交換器から流出した冷媒の過熱度を適切に制御することができる。
 また、本膨張弁1では、膨張弁1の内部にA逆止弁1za、・・・、D逆止弁1zdを備える。ここで、冷凍サイクル100における膨張弁1の外部において逆止弁などの規定部材を設けた場合には、追加で冷媒配管を設けるなど構成が複雑になる。しかしながら、本膨張弁1を適用した場合には、構成が複雑になることなく、第1冷媒通路1azにおける冷媒の流れを規定できる。
 引き続き第2冷媒回路について説明する。膨張弁1から流出した低圧冷媒は、E接続部13を通過して、蒸発器として機能する第1熱交換器3に流入する。詳細には、膨張弁1から流出した低圧冷媒は、第1熱交換器3のD開口部3bから第1熱交換器3の内部に流入する。
 そして、第1熱交換器3に流入した低圧冷媒は、ファンにより送風された車室外空気と冷媒とで熱交換して、蒸発させられて吸熱作用を発揮した後、第1熱交換器3から流出する。詳細には、第1熱交換器3のC開口部3aから流入した低圧冷媒は、第1熱交換器3のC開口部3aから流出する。
 そして、第1熱交換器3から流出した低圧冷媒は、C接続部324、四方弁5を通過して、B接続部243に流入し、B接続部243の一部である膨張弁1の第2冷媒通路1ayに流入する。詳細には、第1熱交換器3から流出した低圧冷媒は、膨張弁1の第3開口部1aiから膨張弁1の第2冷媒通路1ayに流入する。
 そして、膨張弁1に流入した低圧冷媒は、第2冷媒通路1ayにおいて、第3開口部1aiから第4開口部1ajへ流れ、第4開口部1ajから流出する。ここで、本実施形態では、第1冷媒回路の場合と同様、蒸発器として機能する第1熱交換器3から流出して第2冷媒通路1ayを通る冷媒の温度および圧力に応じて、エレメント部53が変位作動することにより、弁体1cが変位する。従って第1冷媒回路の場合と同様、例えば、本実施形態では、第2冷媒通路1ayを通る冷媒の過熱度が上昇した場合、封入空間20に封入された感温媒体の圧力が上昇する。
 これにより、封入空間20の内圧から、第2冷媒通路1ayと連通した空間である導入空間30の圧力を差し引いた差圧が大きくなる。よって、この場合は、ダイヤフラム53bは、弁体1cが絞り通路1agを開弁させる方向へ変位する。
 逆に、蒸発器として機能する第1熱交換器3または第2熱交換器4から流出した低圧冷媒の過熱度が低下した場合、封入空間20に封入された感温媒体の圧力が低下して、封入空間20の内圧から導入空間30の圧力を差し引いた差圧が小さくなる。よって、この場合は、ダイヤフラム53bは、弁体1cが絞り通路1agを閉弁させる方向へ変位する。
 このように、本実施形態では、第1熱交換器3または第2熱交換器4から流出した低圧冷媒の過熱度に応じてエレメント部53が弁体1cを変位させることで、第1熱交換器3または第2熱交換器4から流出した低圧冷媒の過熱度が予め定めた値に近づくように、絞り通路1agの流路断面積が調整される。
 引き続き第2冷媒回路について説明する。膨張弁1の第4開口部1ajから流出した低圧冷媒は、B接続部243から流出して、圧縮機2に流入する。詳細には、膨張弁1の第4開口部1ajから流出した低圧冷媒は、圧縮機2のB開口部2bに流入する。
 以上説明したように、本実施形態に係る第2冷媒回路においては、冷媒が、圧縮機2、第2熱交換器4、膨張弁1、第1熱交換器3、圧縮機2の順に循環して流れる。従来、冷房運転モードの冷媒回路および暖房運転モードの冷媒回路に切り換え可能である冷凍サイクルとしては、通常は、例えば特開2003-56930号公報に記載の冷凍サイクルのように、3つ以上の熱交換器が必要となる。また、2つの熱交換器で冷房運転モードの冷媒回路および暖房運転モードの冷媒回路に切り換え可能である冷凍サイクルを実現するには、膨張弁の外部に逆止弁を設けるか、追加の冷媒配管を設けるなどの構成とせざるをなかった。しかしながら、膨張弁1を適用した本冷凍サイクル100によれば、追加の冷媒配管などを設けずとも、2つの熱交換器すなわち第1、第2熱交換器3、4によって冷房運転モードの冷媒回路および暖房運転モードの冷媒回路に切り換え可能とすることができる。
 上記で説明したように、膨張弁1は、第1、第2冷媒回路のいずれにおいても、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用するように、冷媒の流れを規定するA逆止弁1za、・・・、D逆止弁1zdを備える。すなわち、膨張弁1では、冷媒が第1開口部1aaおよび第2開口部1abのいずれから流入した場合においても、弁室1ahを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向に作用する。
 このため、膨張弁1を冷凍サイクル100に適用すれば、第1冷媒回路および第2冷媒回路それぞれの膨張弁1の減圧特性の乖離を少なくすることできる。すなわち、膨張弁1によれば、冷凍サイクル100において、絞り通路1agを含む第1冷媒通路1azに逆向きに冷媒を流した場合でも、膨張弁1の減圧特性の乖離を少なくすることができる。
 また、本実施形態に係る膨張弁1では、エレメント部53は、温度に応じて圧力変化する感温媒体が封入された封入空間20を有する。なお、具体例として、エレメント部53は、封入空間20の内圧と、第1、第2熱交換器3、4のうち蒸発器として機能する熱交換器から流出して第2冷媒通路1ayを流れる冷媒の圧力との圧力差に応じて変位する圧力応動部材としてのダイヤフラム53bを有する。そして、エレメント部53は、ダイヤフラム53bの変位に応じて弁体1cを変位させる。
 このため、膨張弁1を冷凍サイクル100に適用すれば、絞り通路1agを含む第1冷媒通路1azにおいて逆向きに冷媒を流した場合でも、第1熱交換器3および第2熱交換器4のうち蒸発器として機能する熱交換器から流出した冷媒の過熱度を適切に制御することができる。
 なお、本実施形態では、規定部材の具体例として、A空間1acに配置されたA逆止弁1za、B空間1adに配置されたB逆止弁1zb、C空間1aeに配置されたC逆止弁1zc、D空間1afに配置されたD逆止弁1zdを備える。また、ボデー部1aには、前記第1冷媒通路とは別に、第1熱交換器3および第2熱交換器4のうち蒸発器として機能する熱交換器から流出した冷媒を流すための第2冷媒通路1ayが形成されている。
 また、膨張弁1を冷凍サイクル100に適用すれば、膨張弁1の内部にA逆止弁1za、・・・、D逆止弁1zdを備える構成とされていることで、追加で冷媒配管を設けるなど構成が複雑にすることなく、第1冷媒通路1azにおける冷媒の流れを規定できる。
 なお、本実施形態では、冷凍サイクル100の具体例として、四方弁5によって冷凍サイクル100における冷媒回路を切り替える構成とされている。四方弁5は、第1冷媒回路においては、A接続部234とC接続部324との間、およびB接続部243とD接続部423との間を同時に接続するように、制御部6によって制御される。また、四方弁5は、第2冷媒回路においては、A接続部234とD接続部423との間、およびB接続部243とC接続部324との間を同時に接続するように、制御部6によって制御される。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。
 例えば、上記第1実施形態に係る冷凍サイクル100では、第3開口部1aiから冷媒が膨張弁1の第2冷媒通路1ayに流入して第4開口部1ajから流出する構成としていた。しかしながら、第1実施形態に係る冷凍サイクル100において、第4開口部1ajから冷媒が膨張弁1の第2冷媒通路1ayに流入して第3開口部1aiから流出する構成としても良い。
 また、上記第1実施形態および上記の他の実施形態において、A逆止弁1za、B逆止弁1zb、C逆止弁1zc、およびD逆止弁1zd以外の規定部材を採用しても良い。ここでいう規定部材とは、上記実施形態の場合と同様、第1冷媒回路において第1冷媒通路1azを通過する冷媒によって弁体1cに作用する押圧力、および第2冷媒回路において第1冷媒通路1azを通過する冷媒によって弁体1cに作用する押圧力が、弁体1cの閉弁方向作用するように、第1冷媒通路1azにおける冷媒の流れを規定する部材である。
 (まとめ)
 第1の観点では、膨張弁において、第1冷媒回路と第2冷媒回路のいずれにおいても、絞り通路を通過する冷媒によって弁体に作用する押圧力が、弁体の閉弁方向に作用するように、冷媒の流れを規定する規定部材を備える。
 第2の観点では、本開示の第1の観点に係る膨張弁の具体例として、圧縮機に吸入される冷媒の温度および圧力に応じて弁体を変位させるエレメント部を備える。
 このため、この膨張弁を冷凍サイクルに適用すれば、絞り通路を含む第1冷媒通路において逆向きに冷媒を流した場合でも、第1熱交換器および第2熱交換器のうち蒸発器として機能する熱交換器から流出した冷媒の過熱度を適切に制御することができる。
 第3の観点では、本開示の第1、第2の観点に係る膨張弁の具体例として、A逆止弁、B逆止弁、C逆止弁、D逆止弁を備える。A逆止弁は、A空間に配置され、第1開口部から絞り通路へ向かう冷媒の流れを防止する弁である。B逆止弁は、B空間に配置され、弁室から第1開口部へ向かう逆方向への冷媒の流れを防止する弁である。C逆止弁は、C空間に配置され、第2開口部から絞り通路へ向かう冷媒の流れを防止する弁である。D逆止弁は、D空間に配置され、弁室から第2開口部へ向かう冷媒の流れを防止する弁である。これにより、第1の観点の場合と同様の効果が得られる。
 このため、この膨張弁を冷凍サイクルに適用すれば、膨張弁の内部にA逆止弁1za、・・・、D逆止弁1zdを備える構成とされていることで、追加で冷媒配管を設けるなど構成が複雑にすることなく、第1冷媒通路1azにおける冷媒の流れを規定できる。
 第4の観点では、本開示の第2の観点に係る膨張弁の具体例として、ボデー部には、第1冷媒通路とは別に、第1熱交換器3および第2熱交換器のうち蒸発器として機能する熱交換器から流出した冷媒を流すための第2冷媒通路が形成される。エレメント部は、温度に応じて圧力変化する感温媒体が封入された封入空間を有する。また、エレメント部は、該封入空間の内圧と、第1熱交換器および第2熱交換器のうち蒸発器として機能する熱交換器から流出して第2冷媒通路を流れる冷媒の圧力との圧力差に応じて変位する圧力応動部材を有し、該圧力応動部材の変位に応じて弁体を変位させる。これにより、第1の観点の場合と同様の効果が得られる。
 第5の観点では、本開示の第1~第4の観点に係る膨張弁を適用した冷凍サイクルの具体例として、以下のような四方弁を設けた冷凍サイクルとしている。すなわち、四方弁は、第1冷媒回路においては、A接続部とC接続部との間、およびD接続部とB接続部との間を同時に接続する。また、四方弁は、第2冷媒回路においては、B接続部とC接続部との間、およびA接続部とD接続部との間を同時に接続する。このような四方弁が設けられることで、第1冷媒回路においては、圧縮機、第1熱交換器、膨張弁の第1開口部、絞り通路、膨張弁の第2開口部、第2熱交換器、圧縮機の順に冷媒が流れる。また、第2冷媒回路においては、圧縮機、第2熱交換器、膨張弁の第2開口部、絞り通路、膨張弁の第1開口部、第1熱交換器、圧縮機の順に冷媒が流れる。
 第6の観点では、本開示の第5の観点に係る冷凍サイクルの具体例として、エレメント部が、B接続部における冷媒の温度および圧力に応じて弁体を変位させる。
 第7の観点では、本開示の第5の観点に係る冷凍サイクルの具体例として、第2冷媒通路がB接続部の一部として形成されており、エレメント部が、第2冷媒通路を通過する冷媒の温度および圧力に応じて弁体を変位させる。

Claims (7)

  1.  圧縮機(2)、第1熱交換器(3)、第2熱交換器(4)を有し、冷媒を前記第1熱交換器、前記第2熱交換器の順に流す第1冷媒回路と、冷媒を前記第2熱交換器、前記第1熱交換器の順に流す第2冷媒回路とを切り替え可能な蒸気圧縮式の冷凍サイクルに適用され、前記第1熱交換器および前記第2熱交換器の一方の熱交換器から流出した冷媒を減圧膨張させて他方の熱交換器に流出させるための膨張弁であって、
     第1開口部(1aa)および第2開口部(1ab)が形成され、前記第1開口部もしくは前記第2開口部から流入した冷媒を減圧させる絞り通路(1ag)を含む冷媒通路(1az)が形成されたボデー部(1a)と、
     前記ボデー部の内部に配置されて、前記絞り通路の流路断面積を調整する弁体(1c)と、
     前記第1冷媒回路において前記第1開口部から流入して前記絞り通路を通過する冷媒によって前記弁体に作用する押圧力をA押圧力とし、前記第2冷媒回路において前記第2開口部から流入して前記絞り通路を通過する冷媒によって前記弁体に作用する押圧力をB押圧力としたとき、
     前記A押圧力および前記B押圧力がいずれも、前記弁体の閉弁方向に作用するように、前記冷媒通路における冷媒の流れを規定する規定部材(1za~1zd)と、を備える膨張弁。
  2.  前記圧縮機に吸入される冷媒の温度および圧力に応じて前記弁体を変位させるエレメント部(53)を備える請求項1に記載の膨張弁。
  3.  前記冷媒通路が、
     前記弁体が収容される空間であり、前記絞り通路に連通する弁室(1ah)と、
     前記第1開口部および前記絞り通路に連通するA空間(1ac)と、
     前記第1開口部および前記弁室に連通するB空間(1ad)と、
     前記第2開口部および前記絞り通路に連通するC空間(1ae)と、
     前記第2開口部および前記弁室に連通するD空間(1af)と、
     を含み、
     前記規定部材は、
     前記A空間に配置され、前記第1開口部から前記絞り通路へ向かう冷媒の流れを防止するA逆止弁(1za)と、
     前記B空間に配置され、前記弁室から前記第1開口部へ向かう逆方向への冷媒の流れを防止するB逆止弁(1zb)と、
     前記C空間に配置され、前記第2開口部から前記絞り通路へ向かう冷媒の流れを防止するC逆止弁(1zc)と、
     前記D空間に配置され、前記弁室から前記第2開口部へ向かう冷媒の流れを防止するD逆止弁(1zd)と、を備える請求項1または2に記載の膨張弁。
  4.  前記冷媒通路は第1冷媒通路であり、
     前記ボデー部には、前記第1冷媒通路とは別に、前記第1熱交換器および前記第2熱交換器のうち蒸発器として機能する熱交換器から流出した冷媒を流すための第2冷媒通路(1ay)が形成され、
     前記エレメント部が、温度に応じて圧力変化する感温媒体が封入された封入空間(20)を有すると共に、該封入空間の内圧と、前記第1熱交換器および前記第2熱交換器のうち蒸発器として機能する熱交換器から流出して前記第2冷媒通路を流れる冷媒の圧力との圧力差に応じて変位する圧力応動部材(53b)を有し、該圧力応動部材の変位に応じて前記弁体を変位させる構成とされている請求項2に記載の膨張弁。
  5.  第1冷媒回路と第2冷媒回路とに切り替え可能な蒸気圧縮式の冷凍サイクルであって、
     第1開口部(1aa)および第2開口部(1ab)が形成され、冷媒を減圧膨張させる膨張弁(1)と、
     A開口部(2a)およびB開口部(2b)が形成され、吸入した冷媒を圧縮する圧縮機(2)と、
     前記第1冷媒回路において冷媒を冷却して放熱させる放熱器として機能すると共に、前記第2冷媒回路において冷媒を加熱して蒸発させる蒸発器として機能する第1熱交換器(3)と、
     前記第1冷媒回路において前記冷媒を加熱して蒸発させる蒸発器として機能すると共に、前記第2冷媒回路において前記冷媒を冷却して放熱させる放熱器として機能する第2熱交換器(4)と、
     前記圧縮機の前記A開口部に接続されて冷媒配管として機能するA接続部(234)と、
     前記圧縮機の前記B開口部に接続されて冷媒配管として機能するB接続部(243)と、
     前記第1熱交換器に接続されて冷媒配管として機能するC接続部(324)と、
     前記第2熱交換器に接続されて冷媒配管として機能するD接続部(423)と、
     前記第1熱交換器と前記第1開口部とを接続して冷媒配管として機能するE接続部(13)と、
     前記第2開口部と前記第2熱交換器とを接続して冷媒配管として機能するF接続部(14)と、
     前記第1冷媒回路においては、前記A接続部と前記C接続部との間、および前記D接続部と前記B接続部との間を同時に接続し、前記第2冷媒回路においては、前記B接続部と前記C接続部との間、および前記A接続部と前記D接続部との間を同時に接続する四方弁(5)と、を備え、
     前記膨張弁は、
     前記第1開口部もしくは前記第2開口部から流入した冷媒を減圧させる絞り通路(1ag)を含む冷媒通路(1az)が形成されたボデー部(1a)と、
     前記ボデー部の内部に配置されて、前記絞り通路の流路断面積を調整する弁体(1c)と、
     前記第1冷媒回路において前記第1開口部から流入して前記絞り通路を通過する冷媒によって前記弁体に作用する押圧力をA押圧力とし、前記第2冷媒回路において前記第2開口部から流入して前記絞り通路を通過する冷媒によって前記弁体に作用する押圧力をB押圧力としたとき、
     前記A押圧力および前記B押圧力がいずれも、前記弁体の閉弁方向に作用するように、前記冷媒通路における冷媒の流れを規定する規定部材(1za~1zd)と、を備え、
     前記第1冷媒回路においては、前記圧縮機、前記第1熱交換器、前記膨張弁の前記第1開口部、前記絞り通路、前記膨張弁の前記第2開口部、前記第2熱交換器、前記圧縮機の順に前記冷媒が流れると共に、
     前記第2冷媒回路においては、前記圧縮機、前記第2熱交換器、前記膨張弁の前記第2開口部、前記絞り通路、前記膨張弁の前記第1開口部、前記第1熱交換器、前記圧縮機の順に前記冷媒が流れる構成とされている冷凍サイクル。
  6.  前記膨張弁は、前記B接続部における冷媒の温度および圧力に応じて前記弁体を変位させるエレメント部(53)を有する請求項5に記載の冷凍サイクル。
  7.  前記第2冷媒通路が前記B接続部の一部として形成されており、
     前記膨張弁は、前記第2冷媒通路を通過する冷媒の温度および圧力に応じて前記弁体を変位させるエレメント部(53)を有する請求項5に記載の冷凍サイクル。
PCT/JP2017/002494 2016-02-26 2017-01-25 膨張弁および冷凍サイクル WO2017145619A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016036018A JP2019066047A (ja) 2016-02-26 2016-02-26 膨張弁
JP2016-036018 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017145619A1 true WO2017145619A1 (ja) 2017-08-31

Family

ID=59686289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002494 WO2017145619A1 (ja) 2016-02-26 2017-01-25 膨張弁および冷凍サイクル

Country Status (2)

Country Link
JP (1) JP2019066047A (ja)
WO (1) WO2017145619A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019047720A1 (zh) * 2017-09-11 2019-03-14 杭州三花研究院有限公司 流体控制组件
WO2019105334A1 (zh) * 2017-11-30 2019-06-06 浙江三花汽车零部件有限公司 一种膨胀阀
US11754204B2 (en) 2020-07-27 2023-09-12 Hanon Systems Stabilized h-plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223467A (ja) * 1985-03-28 1986-10-04 株式会社東芝 冷凍サイクル用膨張弁
JPS63263365A (ja) * 1987-04-20 1988-10-31 株式会社鷺宮製作所 可逆膨張弁
JPH0961017A (ja) * 1995-08-29 1997-03-07 Tgk Co Ltd 双方向定圧膨張弁
JPH0989419A (ja) * 1995-09-20 1997-04-04 Tgk Co Ltd 双方向過冷却膨張弁
US5836349A (en) * 1996-12-30 1998-11-17 Carrier Corporation Bidirectional flow control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223467A (ja) * 1985-03-28 1986-10-04 株式会社東芝 冷凍サイクル用膨張弁
JPS63263365A (ja) * 1987-04-20 1988-10-31 株式会社鷺宮製作所 可逆膨張弁
JPH0961017A (ja) * 1995-08-29 1997-03-07 Tgk Co Ltd 双方向定圧膨張弁
JPH0989419A (ja) * 1995-09-20 1997-04-04 Tgk Co Ltd 双方向過冷却膨張弁
US5836349A (en) * 1996-12-30 1998-11-17 Carrier Corporation Bidirectional flow control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019047720A1 (zh) * 2017-09-11 2019-03-14 杭州三花研究院有限公司 流体控制组件
JP2020533552A (ja) * 2017-09-11 2020-11-19 杭州三花研究院有限公司Hangzhou Sanhua Research Institute Co.,Ltd. 流体制御ユニット
US11300336B2 (en) 2017-09-11 2022-04-12 Zhejiang Sanhua Intelligent Controls Co., Ltd. Fluid control assembly
WO2019105334A1 (zh) * 2017-11-30 2019-06-06 浙江三花汽车零部件有限公司 一种膨胀阀
US11754204B2 (en) 2020-07-27 2023-09-12 Hanon Systems Stabilized h-plate

Also Published As

Publication number Publication date
JP2019066047A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2017217099A1 (ja) 冷凍サイクル装置
JP3794100B2 (ja) 電磁弁一体型膨張弁
JP5870903B2 (ja) 冷凍サイクル装置
JP4045654B2 (ja) 超臨界冷凍サイクル
JP3882299B2 (ja) 電磁弁一体型膨張弁
US20070130988A1 (en) Vapor compression refrigerating systems
WO2017145619A1 (ja) 膨張弁および冷凍サイクル
JP2004270966A (ja) 蒸気圧縮式冷凍機
KR20120104946A (ko) 팽창 밸브
US20140318164A1 (en) Automotive air conditioner and expansion valve
JPH11211250A (ja) 超臨界冷凍サイクル
EP0892226B1 (en) Pressure control valve for refrigerating system
JP5544469B2 (ja) 複合弁および車両用冷暖房装置
WO2013124936A1 (ja) 膨張弁
JP2008164239A (ja) 圧力制御弁
JP2016090067A (ja) 膨張弁
JP2006234207A (ja) 冷凍サイクル用減圧装置
JP2007024486A (ja) 膨張装置
JP2009063233A (ja) 冷凍サイクルの制御方法
JP4676166B2 (ja) 冷凍サイクルの安全弁装置
JP5369259B2 (ja) 膨張弁
JP2005201484A (ja) 冷凍サイクル
JP2011255689A (ja) 車両用冷暖房装置および制御弁
JP2005001449A (ja) 車両用冷凍サイクル装置
WO2021131497A1 (ja) 弁装置、冷凍サイクル装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756061

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP