WO2019105334A1 - 一种膨胀阀 - Google Patents

一种膨胀阀 Download PDF

Info

Publication number
WO2019105334A1
WO2019105334A1 PCT/CN2018/117593 CN2018117593W WO2019105334A1 WO 2019105334 A1 WO2019105334 A1 WO 2019105334A1 CN 2018117593 W CN2018117593 W CN 2018117593W WO 2019105334 A1 WO2019105334 A1 WO 2019105334A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall portion
spacer
wall
hole
valve body
Prior art date
Application number
PCT/CN2018/117593
Other languages
English (en)
French (fr)
Inventor
王月祥
Original Assignee
浙江三花汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花汽车零部件有限公司 filed Critical 浙江三花汽车零部件有限公司
Publication of WO2019105334A1 publication Critical patent/WO2019105334A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid

Definitions

  • the invention relates to the field of fluid control.
  • Fig. 1 is a cross-sectional structural view of an expansion valve 100.
  • the air conditioning system refrigerant flows from the interface III through the interface IV, and the pressure and temperature of the refrigerant acts upward on the transmission piece 44, and acts on the diaphragm through the transmission piece 44. 43.
  • the response speed of the thermal expansion valve is related to the system refrigerant temperature and pressure sensed by the cylinder head.
  • the transfer of the refrigerant pressure is achieved by acting on the drive plate and can be transmitted instantaneously.
  • the temperature transfer is achieved by the metal conduction of the drive plate, so the response of the expansion valve is time-dependent on the air conditioning system.
  • An expansion valve includes a valve body and a gas box seat, the valve body includes a receiving cavity, at least a portion of the gas box seat is located in the receiving cavity, the gas box seat includes a pressure equalizing chamber, and the expansion
  • the valve includes a spacer, the valve body includes a first wall portion, the first wall portion is a portion of the wall portion forming the accommodating cavity, and at least a portion of the spacer is located in the accommodating cavity;
  • the valve body includes a fluid chamber, the fluid chamber is located below the accommodating chamber, and the spacer includes a first outer wall portion and a second outer wall portion, the second outer wall portion faces the air box seat, a first wall portion is disposed opposite to the first outer wall portion, the spacer mostly partitions the pressure equalization chamber and the fluid chamber, the expansion valve includes a communication passage, and the communication passage communicates with the pressure equalization a chamber and the fluid chamber, and an equivalent diameter of the communication passage along a radial direction of the valve body is smaller than an equivalent diameter of the fluid chamber along a radial direction of the valve body.
  • the above technical solution of the present invention provides the communication between the pressure equalization chamber and the fluid chamber through the communication passage by the arrangement of the spacer, and the equivalent diameter of the communication passage along the radial extension direction of the valve body is smaller than the radial extension direction of the fluid chamber along the valve body.
  • the equivalent diameter in this way, reduces the rate at which fluid enters the pressure equalization chamber from the fluid chamber, thereby reducing fluctuations in the expansion valve due to changes in ambient temperature.
  • Figure 1 is a schematic cross-sectional view of the prior art
  • Figure 2 is a schematic cross-sectional view showing a first embodiment of the present invention
  • Figure 3 is an enlarged schematic view of A in Figure 2;
  • FIG. 4 is a schematic structural view of an embodiment of a spacer
  • Figure 5 is a schematic structural view of another embodiment of the spacer.
  • Figure 6 is a bottom view of the spacer shown in Figure 5;
  • Figure 7 is a schematic structural view of still another embodiment of the spacer.
  • Figure 8 is a bottom plan view of the spacer shown in Figure 7;
  • Figure 9 is a schematic cross-sectional view showing a second embodiment of the present invention.
  • Figure 10 is a schematic structural view of an embodiment of the spacer shown in Figure 9;
  • Figure 11 is a schematic structural view of another embodiment of the spacer.
  • Figure 12 is a bottom plan view of the spacer of Figure 11;
  • the expansion valve 200 includes a gas box head 40, a valve body 10, a transmission rod 20, and an adjustment seat 30.
  • the air box head 40 is fixed to one side of the valve body 10, and the adjustment seat 30 is fixed to the valve body.
  • the transmission rod 20 is located inside the valve body 10. One end of the transmission rod 20 is fixed or limited to the air box head 40, and the other end of the transmission rod 20 is fixed or limited to the adjustment seat 30.
  • the air box head 40 includes a air box cover 41, a air box seat 42, a diaphragm 43, a transmission piece 44 and a sealing plug 45.
  • the diaphragm 43 is located between the air box cover 41 and the air box seat 42, and the air box cover 41 and the air
  • the box seat 42 is fixedly disposed, for example, by welding.
  • the inside of the air box head 40 includes a closed chamber 46 and a pressure equalizing chamber 47.
  • the diaphragm 43 separates the closed chamber 46 and the pressure equalizing chamber 47.
  • the closed chamber 46 is filled with a refrigerant, and the closed chamber is filled. 46 is sealed by a top sealing plug 45.
  • the pressure equalization chamber 47 is located below the closed chamber 46, and the pressure equalization chamber 47 is an open space, and the open space refers to the closed chamber 46 of the air box head 40.
  • the sealing plug 45 has a flat top shape, and the sealing plug 45 is welded and fixed to the air box cover 41.
  • the gas box cover 41 has a top opening at least partially located at the top opening, and the sealing plug 45 is welded to the wall portion of the gas box cover 41 where the top opening is provided.
  • the expansion valve 400 includes a filler 49. The filler 49 closes the wall portion corresponding to the top opening, effectively reducing the corrosion of the wall portion corresponding to the top opening by the external environment, and is beneficial to the quality and stability of the welding.
  • the adjusting seat 30 includes a valve core 31, a valve core seat 32, a spring 33, a limiting member 34 and a base 35.
  • the valve core seat 32 supports the valve core 31.
  • the spring 33 is limited between the limiting member 34 and the base 35, and the limiting member 34 is sleeved on at least a portion of the spool seat 32, and at least a portion of the retaining member 34 abuts against the wall of the valve body 10.
  • the limiting member 34 stabilizes the structure of the spool seat 32 and stabilizes the position of the spool seat 32 in the radial direction.
  • the driving piece 44 is located under the diaphragm 43.
  • the diaphragm 43 can apply force to the driving piece 44.
  • the gas box seat 42 includes a first inner wall portion 421 and a second inner wall portion 422.
  • the distance between the second inner wall portion 422 and the central axis of the gas box seat 42 is smaller than between the first inner wall portion 421 and the central axis of the gas box seat 42. the distance.
  • the driving piece 44 includes a body portion 441 and an edge portion 442.
  • the edge portion 442 has an equivalent diameter larger than the body portion 441, and the equivalent diameter of the edge portion 442 is larger than the second inner wall portion 422, and at least a portion of the edge portion 442 is located at the first inner wall portion 421.
  • the edge portion 442 of the driving piece 44 cannot move from the first inner wall portion 421 to the second inner wall portion 422, so that the driving piece 44 moves up and down in the space between the air box seat and the air box cover, and the closing chamber 46 is adjusted.
  • the pressure difference of the pressure equalization chamber 47 is adjusted.
  • the valve body 10 includes a accommodating cavity 101. At least a portion of the vent head 40 is located in the accommodating cavity 101, and the sump housing 42 is sealingly disposed with the wall of the valve body 10 forming the accommodating cavity 101. At least a portion of the transmission rod 20 extends into the air box seat 42 and at least a portion of the transmission rod 20 is located in the accommodating chamber 101.
  • the valve body 10 includes a first wall portion 103 and a second wall portion 102, and the second wall portion 102 forms a stepped shape with the first wall portion 103, wherein the second wall portion 102 extends substantially along the axial direction of the valve body 10,
  • the extension generally extends along the axial direction of the valve body 10 including extending parallel to the axial direction and extending at an acute angle to the axial direction of the valve body 10.
  • the radial extension direction includes a forward extension and a reverse extension, that is, taking the line segment AB as an example, the radial extension direction includes a ray direction extending toward B and a ray extending toward A with B as an origin and B as an origin. direction.
  • the valve body 10 includes a fluid chamber 105 located below the accommodating chamber 101.
  • the boundary defining the accommodating chamber 101 is an extension of the first wall portion 103, in the case where the first wall portion 103 is uneven.
  • the extension line is a line connecting the inner end portions of the first wall portion 103. In this paper, the position of the air box head 40 is above, and the position of the adjusting seat 30 is below.
  • the expansion valve 200 includes a spacer 50. At least a portion of the spacer 50 is located around the transmission rod 20.
  • the spacer 50 has a through hole 501.
  • the through hole 501 is located at a center of the spacer 50, and the transmission rod 20 passes through the through hole 501.
  • the first wall portion 103 extends outward from the second wall portion 102, here outwardly away from the center of the valve body 10.
  • the spacer 50 includes a first outer wall portion 503, a second outer wall portion 504, and a third outer wall portion 502.
  • the third outer wall portion 502 is disposed opposite to the second wall portion 102, and the first wall portion 103 is disposed opposite to the first outer wall portion 503.
  • the position of the first outer wall portion 503 is the front side of the spacer 50, and the second outer wall portion 504 is located on the opposite side of the spacer 50, with the axial direction of the valve body 10 as the projection direction, and the second inner wall of the air box seat 42. At least a portion of the portion 422 is projected onto the second outer wall portion 504.
  • the first inner wall portion 421 and the second inner wall portion 422 are defined such that the inner space of the air box seat 42 is inside.
  • the air box seat 42 has a bottom end portion 423, the bottom end portion 423 is annularly disposed, the spacer 50 has a fourth outer wall portion 505, and the fourth outer wall portion 505 is an annular peripheral wall, and the fourth outer wall portion
  • the outer diameter of the 505 is not smaller than the inner diameter of the bottom end portion 423, and the gap between the bottom end portion 423 and the second outer wall portion 504 is provided.
  • the outer diameter of the fourth outer wall portion 505 is not smaller than the inner diameter of the bottom end portion 423.
  • valve body 10 includes a third wall portion 104 having a threaded portion 1041 and a smooth portion 1042 extending downward from the opening of the accommodating cavity 101, The smooth portion 1042 is located below the screw portion 1041, and the smooth portion 1042 is provided in a gap with the fourth outer wall portion 505.
  • the spacer 50 includes a small diameter portion 509 and a large diameter portion 508.
  • the large diameter portion 508 is provided with the first outer wall portion 503 and the second outer wall portion 504, and the large diameter portion 508 is at the valve body 10.
  • the height in the axial direction is smaller than the height of the small diameter portion 509 in the axial direction of the valve body 10.
  • the small diameter portion 509 is relatively high in height to help provide radial stability of the spacer 50, and the height of the spacer 50 in the accommodating chamber 101 is relatively small, so that the valve body 10 is provided with the spacer 50.
  • the air box head 40 has a high accommodation space and has little or no effect on the installation of the air box head 40.
  • the first outer wall portion 503 and the second outer wall portion 504 are mostly separated from the pressure equalizing chamber 47 and the fluid chamber 105.
  • the expansion valve 200 includes a communication passage 111.
  • the communication passage 111 communicates with the pressure equalizing chamber 47 and the fluid chamber 105, and the communication passage 111 is along
  • the equivalent diameter D1 of the radial extension direction of the valve body 10 is smaller than the equivalent diameter D2 of the fluid chamber 105 in the radial direction of the valve body 10.
  • the equivalent diameter D2 of the fluid chamber 105 along the radial direction of the valve body 10 is taken as its minimum value.
  • the communication passage 111 communicates with the pressure equalization chamber 47 and the fluid chamber 105 including the communication passage 111 directly communicating with the pressure equalization chamber 47 and the fluid chamber 105, and the communication passage 111 directly communicates with the fluid chamber 105, and indirectly communicates the pressure equalization chamber 47 through other spaces.
  • the communication passage 111 and the pressure equalization chamber 47 may also communicate through a portion of the accommodation chamber 101.
  • the expansion valve 200 when used in the system, fluid enters the pressure equalization chamber 47 from the fluid chamber 105 via the communication passage 111, and the equivalent diameter D1 of the communication passage 111 in the radial direction of the valve body 10 is smaller than the fluid chamber 105.
  • the equivalent diameter D2 along the radial extension direction of the valve body 10 makes the velocity of the fluid entering the pressure equalizing chamber 47 slow, reduces the transfer rate of heat transferred to the diaphragm 43, reduces the temperature sensitivity of the valve, and changes the temperature response rate, thereby Reduce the instability or fluctuation of the system caused by the coupling relationship (or resonance relationship) between the response frequency and the adjustment frequency of the compressor of the air conditioning system, and reduce the noise.
  • the equivalent diameter D1 of the communication passage 111 in the radial extending direction of the valve body 10 includes the communication passage 111 being a non-single passage, for example, the communication passage 111 has a plurality of, here, the communication passage 111 is along the valve body 10
  • the equivalent diameter D1 of the radial extension direction is an equivalent diameter of the sum of the plurality of communication passages 111.
  • the spacer 50 is mostly separated from the pressure equalizing chamber 47 and the fluid chamber 105, or the first outer wall portion 503 and the second outer wall portion 504 are mostly separated from the equalizing chamber 47 and the fluid chamber 105, and are not limited to the equalizing chamber 47.
  • the fluid chamber 105 is completely isolated from the fluid chamber 105. After the partition member 50 is largely separated, the communication passage 111 can communicate with the pressure equalizing chamber 47 and the fluid chamber 105.
  • the spacer 50 includes an inner peripheral wall 501a which is a wall portion forming the through hole 501, and the inner peripheral wall 501a has a gap with the transmission rod 20.
  • the through hole 501 can have various shapes such as a circular shape, an elliptical shape, a crescent shape, and the like.
  • the gap between the inner peripheral wall 501a and the transmission rod 20 may be an annular, semi-annular or acyclic structure.
  • the through hole 501 is, for example, elliptical
  • the distance between at least a portion of the inner peripheral wall 501a and the transmission rod 20 is smaller than the distance between at least another portion of the inner peripheral wall 501a and the transmission rod 20, which not only facilitates the positioning of the transmission rod 20.
  • the transmission rod 20 is forced to move up and down, the effect on the stable fixing or limiting of the spacer 50 is small.
  • the transmission rod 20 and the partition 50 form a first gap 107 between the wall portions of the through hole 501
  • the communication passage 111 includes a first gap 107
  • the spacer 50 includes a through hole
  • the through hole a hole is disposed at a circumferential position of the through hole 501, and the through hole is separated from the through hole 501 by the spacer 50, and the through hole communicates with the fluid chamber 105 and the equalizing chamber 47
  • the communication passage 111 includes The through hole.
  • the third outer wall portion 502 of the spacer 50 is an annular peripheral wall, the third outer wall portion 502 is located at a peripheral portion of the through hole 501, the annular peripheral wall is a continuous wall, and the third outer wall portion 502 is The first outer wall portion 503 has a stepped shape.
  • the spacer 50 further includes a fourth outer wall portion 505, which is an annular peripheral wall, the annular peripheral wall being a continuous wall, and the valve body 10 includes a third wall portion 104, at least a portion of the fourth outer wall portion 505 and the third wall portion 104. Relative settings.
  • a first gap 107 is left between the transmission rod 20 and the wall portion of the spacer 50 forming the through hole 501.
  • the valve body 10 includes a fluid chamber 105, and the fluid chamber 105 communicates with the pressure equalization chamber 47.
  • the fluid in the fluid chamber 105 can pass through.
  • the through hole 501 of the spacer 50 and the gap 107 of the transmission rod 20 enter the pressure equalizing chamber 47 to adjust the transfer rate of heat transferred to the film, reduce the temperature sensitivity, change the temperature response rate, thereby reducing the response frequency and the compressor of the air conditioning system.
  • the regulation frequency produces system instability or fluctuations caused by the coupling relationship (or resonance relationship), reducing noise generation.
  • the valve body 10 includes a partition wall portion 108 and a step wall portion 109.
  • the partition wall portion 108 is connected to the step wall portion 109, and the step wall portion 109 is convex with respect to the partition wall portion 108, the convex direction is downward, and the second wall portion 102 is The step wall portion 109 is connected, at least a portion of the second wall portion 102 is convex with respect to the partition wall portion 108, and the protruding direction is downward.
  • the step wall portion 109 can provide an external pipe limit. The position reduces the influence of the extension of the external pipe on the structure of the transmission rod 20 to a certain extent.
  • the step wall portion 109 is convex with respect to the spacer 50, and the protruding direction is downward, so that the penetration of the external pipe does not affect the structure of the spacer 50, contributing to the stability of the structure of the spacer 50.
  • the partition wall portion 108 is also convexly disposed with respect to the spacer 50, and the protruding direction is downward.
  • FIG. 5 is a schematic structural view of the spacer 50'
  • FIG. 6 is a schematic view of the spacer 50 shown in FIG. A schematic view of the bottom view. Only the structure of the spacer and its partial connection relationship will be described below. The relationship between the spacer and the valve body can also be referred to the above embodiment.
  • the spacer 50 ′ includes a through hole 506 disposed at a circumferential position of the through hole 501 and the through hole 506 is isolated from the through hole 501 at the spacer 50 ′
  • a hole 506 communicates with the fluid chamber 105 and the space 106, and the communication passage 111 includes the through hole 506.
  • the third outer wall portion 502 includes two or more arcuate portions 5021 spaced apart, the arcuate portions 5021 being spaced apart, the third outer wall portion 502 including one or more concave portions 5022, the concave portions 5022 being joined Adjacent to the curved portion 5021, a third gap is left between the concave portion 5022 and the second wall portion 102.
  • the third outer wall portion 502 of the spacer 50' includes an arcuate portion 5021 and a concave portion 5022 that connects adjacent curved portions 5021, and the curved portion 5021 is disposed opposite the second wall portion 102 to facilitate The accurate positioning of the spacer 50' is ensured, and it is not easy to be offset.
  • the concave portion 5022 is a circular arc surface, and the radius of the circular arc surface is smaller than the radius of the curved portion 5021.
  • the center of the circular arc surface and the center of the curved portion 5021 are respectively disposed on the convergence side and the divergent side of the circular arc surface.
  • the convergence side refers to the center of the circular arc of the convex surface, and the diverging side and the convergence side are opposite directions.
  • the spacer 50' includes a through hole 506.
  • the through hole 506 may be one or more.
  • the through hole 506 is located at a circumferential position of the through hole 501.
  • the through hole 506 may be evenly distributed through the hole 501.
  • the through hole 506 penetrates the first outer wall.
  • the portion 503 and the second outer wall portion 604, the concave portion 5022 is engaged with the wall portion of the spacer 50' forming the through hole 506, and the concave portion 5022 has a bottom portion 5023 defining the bottom portion 5023 as the center distance between the concave portion 5022 and the through hole 501.
  • the smallest portion, the distance between the bottom 5023 and the center of the through hole 501 is smaller than the distance between the curved portion 5021 and the center of the through hole 501, so that in the case where the curved portion 5021 is used for positioning, the fluid can be self-concave
  • the shaped portion 5022 passes through the through hole 506 to enter the pressure equalizing chamber 47, thus changing the flow rate of the fluid entering the pressure equalizing chamber 47 to reduce the rate of heat transfer to the membrane.
  • the curvature of the concave portion 5022 is substantially coincident with the curvature of the wall portion of the spacer 50' forming the through hole 506, which facilitates the processing of the through hole 506 and the processing of the concave portion 5022.
  • the number of through holes 506 can vary depending on the desired performance of the air conditioning system.
  • the first gap 107 may also be left between the spacer 50' and the wall portion of the transmission rod 20 forming the through hole 501.
  • the fluid in the fluid chamber 105 may pass through the first The gap 107 and the through hole 506 enter the pressure equalization chamber 47 so that it can cooperate with different air conditioning systems to vary the flow of fluid entering the pressure equalization chamber 47 to reduce the rate of heat transfer to the membrane.
  • the first gap 107 is not disposed between the spacer 50' and the wall portion of the transmission rod 20 forming the through hole 501, and the fluid in the fluid chamber 105 may enter the pressure equalizing chamber 47 through the through hole 506.
  • the third outer wall portion 502 and the second wall portion 102 may be disposed opposite to each other so as to prevent displacement of the spacer 50' in the radial direction.
  • the curved portion 5021 is disposed opposite to the second wall portion 102.
  • the curved portion 5021 and the second wall portion 102 may not be disposed/contacted.
  • the spacer 50' further includes a fourth outer wall portion 505, which is an annular peripheral wall, and the valve body 10 includes a third wall portion 104, and the fourth outer wall portion 505 is disposed opposite to at least a portion of the third wall portion 104.
  • the first outer wall portion 503 may be a continuous wall, and the through hole 506 passes through a portion of the first outer wall portion 503; it should be noted that in this embodiment, the through hole 506 is in the form of a circular hole, but it should be understood that the shape of the through hole 506 It is not limited to the drawings, and its shape may have various regular shapes such as squares, triangles, diamonds, and the like, as well as various irregular forms.
  • FIG. 7 is a schematic structural view of the spacer 50"
  • the third outer wall portion 502 of the spacer 50" includes The curved portion 5021 and the concave portion, the concave portion is a groove portion 5024, and the groove portion 5024 connects the adjacent curved portion 5021, and the curved portion 5021 is disposed opposite to the second wall portion 102 to help ensure the spacer The accurate positioning of the 50" is not easy to shift.
  • the groove portion 5024 has a bottom portion 5023 defining a bottom portion 5023 as a portion where the center distance between the groove portion 5024 and the through hole 501 is the smallest, and a distance between the bottom portion 5023 and the center of the through hole 501 is smaller than the center of the curved portion 5021 and the through hole 501.
  • the distance between thus, in the case where the curved portion 5021 is used for positioning, fluid can pass through the channel portion 5024 to enter the pressure equalization chamber 47, thus changing the flow of fluid entering the pressure equalization chamber 47 to reduce The rate of heat transfer to the membrane.
  • the first outer wall portion 503 may be spaced apart, the spacer 50" includes a notch 507, and the notch 507 is located between the adjacent first outer wall portions 503.
  • the provision of the notch 507 facilitates the processing of the groove portion 5024.
  • the processing of the spacer 50" is made simpler.
  • the groove portion 5024 is disposed, and the first gap 107 is left between the transmission rod 20 and the wall portion of the partition 50 forming the through hole 501, and the notch 507 is disposed.
  • the fluid can enter the pressure equalization chamber 47 from the fluid chamber 105.
  • the arrangement of these gaps and channel portions 5024 allows the expansion valve 200 to match the performance of its connected air conditioning system, reducing the likelihood of noise.
  • the first gap 107 may not be provided between the transmission rod 20 and the wall portion of the spacer 50 ′ which forms the through hole 501.
  • Figure 9 is a schematic cross-sectional view of the expansion valve 300.
  • the structure of the expansion valve 300 is substantially the same as that of the expansion valve 200, and its structure can be referred to the above.
  • the expansion valve 300 includes a spacer 50"' which includes a through hole 501 which is located at a center position of the spacer 50"' through which the transmission rod 20 passes.
  • the valve body 10 includes a accommodating cavity 101. At least a portion of the vent head 40 is located in the accommodating cavity 101, and the sump housing 42 is sealingly disposed with the wall of the valve body 10 forming the accommodating cavity 101.
  • the valve body 10 includes a first wall portion 103 and a second wall portion 102, and the second wall portion 102 forms a stepped shape with the first wall portion 103, wherein the second wall portion 102 extends substantially along the axial direction of the valve body 10,
  • the extension generally extends along the axial direction of the valve body 10 including extending parallel to the axial direction and extending at an acute angle to the axial direction of the valve body 10.
  • the second wall portion 102 encloses a space 106
  • the valve body 10 includes a fluid chamber 105
  • the space 106 is a portion of the fluid chamber 105
  • at least a portion of the spacer 50"' is disposed opposite the space 106
  • the first wall portion 103 is from the second wall
  • the portion 102 extends outwardly, here outwardly away from the center of the valve body 10.
  • the spacer 50"' includes a first outer wall portion 503, at least a portion of which is disposed opposite the first wall portion 103, and At least a portion of the first outer wall portion 503 is disposed opposite the first wall portion 103.
  • the spacer 50"' further includes a second outer wall portion 504.
  • the first outer wall portion 503 is located at the front side of the spacer 50"', and the second outer wall portion 504 is located at the opposite side of the spacer 50"'.
  • the axial direction of 10 is the projection direction, at least a portion of the second inner wall portion 422 of the air box seat 42 is projected onto the second outer wall portion 504, and at least a portion of the second inner wall portion 422 is opposed to the second outer wall portion 504.
  • the spacer 50"' includes a fourth outer wall portion 505, and the fourth outer wall portion 505 is an annular peripheral wall. At least a portion of the first outer wall portion 503 abuts the first wall portion 103, such that the spacer 50"' can be accessed by the air box seat 42 is resisted such that the spacer 50"' remains relatively fixed.
  • the second wall portion 102 encloses a space 106 that is a portion of the fluid chamber 105. At least a portion of the first outer wall portion 503 is disposed opposite the space 106, and at least a portion of the first outer wall portion 503 is disposed opposite the first wall portion 103.
  • the spacer 50"' includes a through hole 506 disposed at a peripheral portion of the through hole 501 and the through hole 506 is isolated from the through hole 501 at the spacer 50"', and at least a portion of the through hole 506 is disposed opposite to the space 106.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of the spacer 50"".
  • the spacer 50"" includes a through hole 506, and the through hole 506 may be two or more.
  • the through hole 506 is disposed at a circumferential position of the through hole 501 and the through hole 506 is separated from the through hole 501 by the spacer 50"".
  • the through hole 506 can be evenly distributed at a central position through the hole 501, and may of course be unevenly distributed.
  • the second wall portion 102 is an annular wall, and at least a portion of the through hole 506 falls into the space 106 surrounded by the second wall portion 102, such that the through hole 506 can communicate with the fluid chamber 105 and the pressure equalizing chamber 47.
  • the fluid in the fluid chamber 105 can enter the pressure equalization chamber 47 through the through hole 506, the through hole 501 of the spacer 50"" and the gap of the transmission rod 20, so that the flow rate of the fluid entering the pressure equalization chamber 47 can be changed to reduce the transmission to The rate of heat transfer from the membrane.
  • the relative arrangement includes two objects facing each other.
  • the relative arrangement refers to the relatively close arrangement of the circumferential surface and the close arrangement, for example, the object A is placed outside the object B, and the object B The outer circumference is disposed opposite to the inner circumference of the object A.
  • the material of the separator described above includes at least one of nylon, resin, and the like, for example, PA66-GF30.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Valves (AREA)

Abstract

一种膨胀阀,包括阀体(10)、气箱座(42),膨胀阀包括隔离件(50),阀体包括第一壁部(103),第一壁部(103)形成容置腔(101)的一部分,隔离件(50)的至少部分位于该容置腔(101);流体腔(105),流体腔(105)位于容置腔(101)下方,隔离件(50)包括第一外壁部(503)与第二外壁部(504),第二外壁部(504)朝向气箱座(42),第一外壁部(503)朝向流体腔(105),第一壁部(103)与第一外壁部(503)相对设置,隔离件(50)大部分隔开均压室(47)与流体腔(105),膨胀阀包括连通通道(111),连通通道(111)连通均压室(47)与流体腔(105),且连通通道(111)沿阀体的径向延伸方向的当量直径小于流体腔沿阀体的径向延伸方向的当量直径。该膨胀阀加工方便,且可降低阀的温度响应速率。

Description

一种膨胀阀
本申请要求于2017年11月30日提交中国专利局、申请号为201711233004.4、发明名称为“一种膨胀阀”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及流体控制领域。
背景技术
参照图1,图1是一种膨胀阀100的剖视结构图,空调系统冷媒从接口III流过接口IV,冷媒的压力和温度向上作用于传动片44,并通过传动片44作用于膜片43。
热力膨胀阀的响应速度和气箱头感应到的系统冷媒温度和压力有关。其中冷媒压力的传递是通过作用在传动片上实现的,可以瞬时传递。温度传递是通过传动片的金属导热实现的,因此在空调系统上,膨胀阀的响应具有一定的时间性。
参考专利文件CN20039010000,该专利可降低阀对外界温度瞬变的灵敏度,并且对于来自蒸发器的制冷剂的温度变化可作出适当的响应。但其需要特殊材料加工成承压垫,成本较高且工艺较为复杂。
发明内容
本发明的目的在于提供一种膨胀阀,其加工方便,且可减少膨胀阀因外界温度变化导致的波动。
为实现上述目的,采用如下技术方案:
一种膨胀阀,包括阀体、气箱座,所述阀体包括容置腔,所述气箱座的至少部分位于所述容置腔,所述气箱座包括均压室,所述膨胀阀包括隔离件,所述阀体包括第一壁部,所述第一壁部为形成所述容置腔的一部分壁部,所述隔离件的至少部分位于所述容置腔;
所述阀体包括流体腔,所述流体腔位于所述容置腔下方,所述隔离件 包括第一外壁部与第二外壁部,所述第二外壁部朝向所述气箱座,所述第一壁部与所述第一外壁部相对设置,所述隔离件大部分隔开所述均压室与所述流体腔,所述膨胀阀包括连通通道,所述连通通道连通所述均压室与所述流体腔,且所述连通通道沿所述阀体的径向延伸方向的当量直径小于所述流体腔沿所述阀体的径向延伸方向的当量直径。
本发明的上述技术方案通过隔离件的设置,使得均压室与流体腔通过连通通道的连通,且连通通道沿阀体的径向延伸方向的当量直径小于流体腔沿阀体的径向延伸方向的当量直径,如此,可降低流体自流体腔进入均压室的速率,从而可减少膨胀阀因外界温度变化导致的波动。
附图说明
图1为已有技术的剖面示意图;
图2为本发明的第一种实施方式的剖面示意图;
图3为图2中A的放大示意图;
图4为隔离件的一种实施方式的结构示意图;
图5为隔离件的另一种实施方式的结构示意图;
图6为图5所示隔离件的仰视示意图;
图7为隔离件的又一种实施方式的结构示意图;
图8为图7所示隔离件的仰视示意图;
图9为本发明的第二种实施方式的剖面示意图;
图10为图9所示隔离件的一种实施方式的结构示意图;
图11为隔离件的另一种实施方式的结构示意图;
图12为图11所示隔离件的仰视示意图。
具体实施方式
参照图2、图3和图4,膨胀阀200包括气箱头40、阀体10、传动杆20、调节座30,气箱头40固定于阀体10一侧,调节座30固定于阀体10另一侧,传动杆20位于阀体10内部,传动杆20一端与气箱头40固定或限位设置,传动杆20另一端与调节座30固定或限位设置。
气箱头40包括气箱盖41、气箱座42、膜片43、传动片44和密封塞45,膜片43位于气箱盖41与气箱座42之间,且气箱盖41与气箱座42固定设置,例如通过焊接固定,气箱头40内部包括封闭室46和均压室47,膜片43分隔封闭室46和均压室47,封闭室46内填充有制冷剂,封闭室46通过顶部密封塞45密封。
均压室47位于封闭室46下方,均压室47为开放空间,开放空间是指相对气箱头40的封闭室46而言。
密封塞45呈平顶状,密封塞45与气箱盖41焊接固定。气箱盖41具有顶部开口,密封塞45的至少部分位于该顶部开口,密封塞45与气箱盖41设置顶部开口的壁部焊接固定。膨胀阀400包括填充物49,填充物49封闭顶部开口对应的壁部,有效降低该顶部开口对应的壁部受外界环境影响带来的腐蚀的问题,有利于焊接的质量及稳定性。
调节座30包括阀芯31、阀芯座32、弹簧33、限位件34和底座35,阀芯座32支撑阀芯31,弹簧33限位于限位件34与底座35之间,限位件34套于阀芯座32的至少部分,限位件34的至少部分与阀体10壁部相抵。限位件34可稳定阀芯座32的结构,稳定该阀芯座32在径向方向上的位置。
传动片44位于膜片43下方,膜片43可以对传动片44施力,在膨胀阀工作过程中,封闭室46内有一定的压力,传动片44在均压室47与其下方环境中处于平衡状态。
气箱座42包括第一内壁部421和第二内壁部422,第二内壁部422与气箱座42的中心轴之间的距离小于第一内壁部421与气箱座42的中心轴之间的距离。
传动片44包括本体部441和边缘部442,边缘部442的当量直径大于本体部441,且边缘部442的当量直径大于第二内壁部422,边缘部442的至少部分位于第一内壁部421位置,如此,传动片44的边缘部442无法自第一内壁部421移动至第二内壁部422,使得传动片44在气箱座与气箱盖之间的空间内上下移动,调节封闭室46与均压室47的压力差。
阀体10包括容置腔101,气箱头40的至少部分位于该容置腔101,且气箱座42与阀体10形成容置腔101的壁部密封设置。传动杆20的至少部分伸入气箱座42,传动杆20的至少部分位于容置腔101。阀体10包括第 一壁部103和第二壁部102,第二壁部102与第一壁部103形成台阶状,其中第二壁部102大体沿着阀体10的轴向方向延伸,此处大体沿着阀体10的轴向方向延伸包括平行于轴向方向延伸和与阀体10的轴向方向呈锐角方向延伸。本文中,径向延伸方向包括正向延伸和反向延伸,即以线段AB为例,径向延伸方向包括以A为原点,向B延伸的射线方向和以B为原点,向A延伸的射线方向。阀体10包括流体腔105,流体腔105位于容置腔101的下方,本文中,定义容置腔101的界线为第一壁部103的延伸线,在第一壁部103为不平的情况下,其延伸线为第一壁部103的内端部的连线。本文中,以气箱头40所在位置为上方,以调节座30所在位置为下方。
膨胀阀200包括隔离件50,隔离件50的至少部分位于传动杆20周围,隔离件50具有贯穿孔501,该贯穿孔501位于隔离件50的中心位置,传动杆20穿过该贯穿孔501。在隔离件50的径向方向,第一壁部103自第二壁部102向外延伸,此处向外是远离阀体10的中心的方向。隔离件50包括第一外壁部503、第二外壁部504和第三外壁部502,第三外壁部502与第二壁部102相对设置,第一壁部103与第一外壁部503相对设置,以第一外壁部503所在位置为隔离件50的正面侧,则第二外壁部504位于隔离件50的反面侧,以阀体10的轴向方向为投影方向,气箱座42的第二内壁部422的至少部分投影于第二外壁部504。其中,第一内壁部421和第二内壁部422的界定是以气箱座42内部空间为内侧。
所述气箱座42具有底端部423,所述底端部423环形设置,所述隔离件50具有第四外壁部505,所述第四外壁部505为环形周壁,所述第四外壁部505的外径不小于所述底端部423的内径,所述底端部423与所述第二外壁部504之间间隙设置。第四外壁部505的外径不小于底端部423的内径,如此,隔离件50在上下推动过程中难以被挤入气箱座42内,底端部423与第二外壁部504间隙设置,使得气箱座42的安装对隔离件50的影响较小。
更进一步,所述阀体10包括第三壁部104,所述第三壁部104具有螺纹部1041和平滑部1042,所述螺纹部1041自所述容置腔101开口向下延伸,所述平滑部1042位于所述螺纹部1041下方,所述平滑部1042与所述 第四外壁部505间隙设置。
所述隔离件50包括小径部509和大径部508,所述大径部508设置所述第一外壁部503和所述第二外壁部504,所述大径部508在所述阀体10轴向方向的高度小于所述小径部509在所述阀体10轴向方向的高度。小径部509高度相对较高,有助于提供隔离件50的径向稳定,且隔离件50在容置腔101内所占的高度相对较小,使得在装配有隔离件50的阀体10上的气箱头40容置空间较高,对安装气箱头40的影响较小或没有。
第一外壁部503、第二外壁部504大部分隔开均压室47与流体腔105,膨胀阀200包括连通通道111,连通通道111连通均压室47与流体腔105,且连通通道111沿阀体10的径向延伸方向的当量直径D1小于流体腔105沿阀体10的径向延伸方向的当量直径D2。在流体腔105的内径不同的情况下,流体腔105沿所述阀体10的径向延伸方向的当量直径D2取值为其最小值。此处,连通通道111连通均压室47与流体腔105包括连通通道111直接连通均压室47和流体腔105,以及连通通道111直接连通流体腔105,并通过其他空间间接连通均压室47,例如连通通道111与均压室47还可通过容置腔101的一部分连通。如此,在膨胀阀200用于系统中时,流体从流体腔105经由连通通道111进入均压室47,且由于连通通道111的沿阀体10的径向延伸方向的当量直径D1小于流体腔105沿阀体10的径向延伸方向的当量直径D2,使得流体进入均压室47的速度变缓,降低传递到膜片43的热量的传递速率,降低阀的温度灵敏度,改变温度响应速率,从而降低因响应频率与空调系统压缩机的调节频率产生耦合关系(或共振关系时)所引起的系统不稳定或波动,降低噪音的产生。
连通通道111沿所述阀体10的径向延伸方向的当量直径D1包括连通通道111为非单一通道的情况下,例如连通通道111具有多个,此处,连通通道111沿所述阀体10的径向延伸方向的当量直径D1为多个连通通道111之和的当量直径。
隔离件50大部分隔开均压室47与流体腔105,或者说第一外壁部503、第二外壁部504大部分隔开均压室47与流体腔105,并不限制为均压室47和流体腔105通过隔离件50完全隔离,隔离件50大部分隔开后仍可以有连通通道111连通均压室47与流体腔105。
隔离件50包括内周壁501a,所述内周壁501a为形成所述贯穿孔501的壁部,所述内周壁501a与所述传动杆20留有间隙。贯穿孔501可为多种形状,例如为圆形,椭圆形、月牙形等。内周壁501a与传动杆20之间的间隙可为环状、半环状或者非环状结构。当贯穿孔501例如为椭圆形时,内周壁501a的至少部分与传动杆20之间的距离小于内周壁501a的至少另有部分与传动杆20之间的距离,不仅有利于传动杆20的定位,而且在传动杆20受力上下运动时,对隔离件50的稳定固定或限位影响较小。
更为具体的,传动杆20与隔离件50形成贯穿孔501的壁部之间留有第一间隙107,连通通道111包括第一间隙107;和/或隔离件50包括通孔,所述通孔布置于所述贯穿孔501周部位置且所述通孔与所述贯穿孔501在所述隔离件50隔离,通孔连通所述流体腔105与所述均压室47,连通通道111包括所述通孔。
具体的,作为一种具体的实施方式,隔离件50的第三外壁部502为环形周壁,第三外壁部502位于贯穿孔501的周部位置,环形周壁为连续壁,第三外壁部502与第一外壁部503呈台阶状。隔离件50还包括第四外壁部505,第四外壁部505为环形周壁,环形周壁为连续壁,阀体10包括第三壁部104,第四外壁部505与第三壁部104的至少部分相对设置。传动杆20与隔离件50形成贯穿孔501的壁部之间留有第一间隙107,阀体10包括流体腔105,流体腔105与均压室47连通,如此,流体腔105内流体可经过隔离件50的贯穿孔501与传动杆20的间隙107进入均压室47,以调节传递到膜的热量的传递速率,降低温度灵敏度,改变温度响应速率,从而降低因响应频率与空调系统压缩机的调节频率产生耦合关系(或共振关系时)所引起的系统不稳定或波动,降低噪音的产生。
阀体10包括分壁部108、台阶壁部109,分壁部108与台阶壁部109连接,且台阶壁部109相对分壁部108凸出,凸出方向朝下,第二壁部102与台阶壁部109连接,第二壁部102的至少部分相对分壁部108凸出,凸出方向朝下,在阀体10与外接管路配合时,台阶壁部109可提供外接管路的限位点,一定程度上降低因外接管路伸入过深对传动杆20结构的影响。台阶壁部109相对隔离件50凸出,凸出方向朝下,使得外接管路的伸入不影响隔离件50的结构,有助于隔离件50的结构的稳定性。当然,在没有 台阶壁部109的情况下,分壁部108相对隔离件50也为凸出设置,凸出方向朝下。
作为其他实施方式,本实施方式的隔离件的大体结构类似于上述实施方式,参照图5和图6,图5示意出隔离件50’的结构示意图,图6示意出图5所示隔离件50”的仰视示意图。以下仅阐述隔离件结构及其部分连接关系,隔离件与阀体的关系还可参照上文实施方式。
所述隔离件50’包括通孔506,所述通孔506布置于所述贯穿孔501周部位置且所述通孔506与所述贯穿孔501在所述隔离件50’隔离,所述通孔506连通所述流体腔105与所述空间106,所述连通通道111包括所述通孔506。
第三外壁部502包括两个或两个以上弧形部分5021,所述弧形部分5021间隔设置,所述第三外壁部502包括一个或一个以上凹形部分5022,所述凹形部分5022连接相邻的所述弧形部分5021,所述凹形部分5022与所述第二壁部102之间留有第三间隙。
隔离件50’的第三外壁部502包括弧形部分5021和凹形部分5022,凹形部分5022连接相邻的弧形部分5021,弧形部分5021与第二壁部102相对设置,有助于保证隔离件50’的准确定位,不易偏移。
更为具体的,凹形部分5022为圆弧面,圆弧面的半径小于弧形部分5021的半径,圆弧面的圆心与弧形部分5021的圆心分设于圆弧面的收敛侧与发散侧;本文中,收敛侧是指圆弧凹面的圆心位置侧,发散侧与收敛侧为相背方向。
隔离件50’包括通孔506,通孔506可以为一个或一个以上,通孔506位于贯穿孔501周部位置,通孔506可以贯穿孔501为中心位置均匀分布,通孔506贯穿第一外壁部503和第二外壁部604,凹形部分5022与隔离件50’形成通孔506的壁部衔接,凹形部分5022具有底部5023,定义底部5023为凹形部分5022与贯穿孔501的中心距离最小的部位,底部5023与贯穿孔501的中心之间的距离小于弧形部分5021与贯穿孔501的中心之间的距离,如此,在弧形部分5021用于定位的情况下,流体可自凹形部分5022穿过通孔506,从而进入均压室47,如此可改变进入均压室47的流体的流量,以降低传递到膜的热量传递速率。凹形部分5022的弧度与隔离件50’ 形成通孔506的壁部的弧度大致为一致,如此方便通孔506的加工以及凹形部分5022的加工。通孔506的数量可依据空调系统所需性能而变化。
在隔离件50’包括通孔506的情况下,隔离件50’与传动杆20形成贯穿孔501的壁部之间也可以留有第一间隙107,如此,流体腔105内流体可经第一间隙107和通孔506进入均压室47,以使其可与不同空调系统相配合,以改变进入均压室47的流体的流量,以降低传递到膜的热量传递速率。或者隔离件50’与传动杆20形成贯穿孔501的壁部之间不设置第一间隙107,流体腔105内流体经通孔506进入均压室47即可。
第三外壁部502与第二壁部102可以相对且接触设置,如此可以防止隔离件50’在径向上的移位。具体的,弧形部分5021与所述第二壁部102相抵设置。当然弧形部分5021与所述第二壁部102也可以不相抵设置/接触设置。隔离件50’还包括第四外壁部505,第四外壁部505为环形周壁,阀体10包括第三壁部104,第四外壁部505与第三壁部104的至少部分相对设置。
第一外壁部503可以为连续壁,通孔506穿过第一外壁部503的部分;应当注意,此实施方式中,通孔506为圆形孔的形式,但应了解,通孔506的形状并不局限为附图所示,其外形可具有各种规则形状,例如方形、三角形、菱形等,以及各种不规则形式。
作为其他实施方式,本实施方式的隔离件的大体结构类似于上述实施方式,参照图7和图8,图7示意出隔离件50”的结构示意图,隔离件50”的第三外壁部502包括弧形部分5021和凹形部分,凹形部分为槽形部分5024,槽形部分5024连接相邻的弧形部分5021,弧形部分5021与第二壁部102相对设置,有助于保证隔离件50”的准确定位,不易偏移。
槽形部分5024具有底部5023,定义底部5023为槽形部分5024与贯穿孔501的中心距离最小的部位,底部5023与贯穿孔501的中心之间的距离小于弧形部分5021与贯穿孔501的中心之间的距离,如此,在弧形部分5021用于定位的情况下,流体可穿过槽形部分5024,从而进入均压室47,如此可改变进入均压室47的流体的流量,以降低传递到膜的热量传递速率。
本实施方式中,第一外壁部503可以为间隔设置,隔离件50”包括缺 口507,缺口507位于相邻第一外壁部503之间,缺口507的设置有助于槽形部分5024的加工,使该隔离件50”的加工工艺更为简单。槽形部分5024的设置,传动杆20与隔离件50”形成贯穿孔501的壁部之间留有第一间隙107,且设置有缺口507,如此,流体可自流体腔105进入均压室47,这些间隙与槽形部分5024的设置可使膨胀阀200与其相连接的空调系统的性能相匹配,降低噪声的可能性。
当然,在有缺口507存在的情况下,传动杆20与隔离件50”形成贯穿孔501的壁部之间也可以不设置第一间隙107。
参照图9和图10,图9示意出膨胀阀300的剖面示意图。膨胀阀300的结构大致与膨胀阀200相同,其结构可参照上文所述。
膨胀阀300包括隔离件50”’,隔离件50”’包括贯穿孔501,该贯穿孔501位于隔离件50”’的中心位置,传动杆20穿过该贯穿孔501。
阀体10包括容置腔101,气箱头40的至少部分位于该容置腔101,且气箱座42与阀体10形成容置腔101的壁部密封设置。阀体10包括第一壁部103和第二壁部102,第二壁部102与第一壁部103形成台阶状,其中第二壁部102大体沿着阀体10的轴向方向延伸,此处大体沿着阀体10的轴向方向延伸包括平行于轴向方向延伸和与阀体10的轴向方向呈锐角方向延伸。
第二壁部102围成空间106,阀体10包括流体腔105,空间106为流体腔105的一部分,隔离件50”’的至少部分与空间106相对设置,第一壁部103自第二壁部102向外延伸,此处向外是远离阀体10的中心的方向。隔离件50”’包括第一外壁部503,第一外壁部503的至少部分与第一壁部103相对设置,且第一外壁部503的至少部分与第一壁部103相抵设置。隔离件50”’还包括第二外壁部504,以第一外壁部503所在位置为隔离件50”’的正面侧,则第二外壁部504位于隔离件50”’的反面侧,以阀体10的轴向方向为投影方向,气箱座42的第二内壁部422的至少部分投影于第二外壁部504,且第二内壁部422的至少部分与第二外壁部504相抵。参照图9,隔离件50”’包括第四外壁部505,第四外壁部505为环形周壁,第一外壁部503的至少部分与第一壁部103相抵,如此隔离件50”’可借由气箱座42抵住,使得隔离件50”’保持相对固定。
第二壁部102围成空间106,空间106为流体腔105的一部分,第一外壁部503的至少部分与空间106相对设置,第一外壁部503的至少部分与第一壁部103相抵设置。
隔离件50”’包括通孔506,通孔506布置于贯穿孔501周部位置且通孔506与贯穿孔501在隔离件50”’隔离,通孔506的至少部分与空间106相对设置。
作为其他实施方式,参照图11和图12,图11、图12示意出隔离件50””的结构示意图,隔离件50””包括通孔506,通孔506可以为两个以及两个以上,通孔506布置于贯穿孔501周部位置且通孔506与贯穿孔501在隔离件50””隔离,通孔506可以贯穿孔501为中心位置均匀分布,当然也可以不均匀分布。第二壁部102为环形壁,通孔506的至少部分落入第二壁部102围成的空间106,如此,通孔506可以连通流体腔105和均压室47。流体腔105内流体可以经过通孔506、隔离件50””的贯穿孔501与传动杆20的间隙进入均压室47,如此,可改变进入均压室47的流体的流量,以降低传递到膜的热量传递速率。
本文中,相对设置包括两个物体相面对设置,在物体具有圆周表面的情况下,相对设置是指其圆周表面的相对靠近设置以及贴近设置,例如,物体A套在物体B外,物体B的外周与物体A的内周相对设置。
应当注意,以上所述的隔离件的材料包括尼龙、树脂等中的至少一种,例如为PA66-GF30。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,例如对“前”、“后”、“左”、“右”、“上”、“下”等方向性的界定,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行相互组合、修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (15)

  1. 一种膨胀阀,包括阀体、气箱座,所述阀体包括容置腔,所述气箱座的至少部分位于所述容置腔,所述气箱座包括均压室,其特征在于:所述膨胀阀包括隔离件,所述阀体包括第一壁部,所述第一壁部为形成所述容置腔的一部分壁部,所述隔离件的至少部分位于所述容置腔;
    所述阀体包括流体腔,所述流体腔位于所述容置腔下方,所述隔离件包括第一外壁部与第二外壁部,所述第二外壁部朝向所述气箱座,所述第一壁部与所述第一外壁部相对设置,所述隔离件大部分隔开所述均压室与所述流体腔,所述膨胀阀包括连通通道,所述连通通道连通所述均压室与所述流体腔,且所述连通通道沿所述阀体的径向延伸方向的当量直径小于所述流体腔沿所述阀体的径向延伸方向的当量直径。
  2. 根据权利要求1所述的膨胀阀,其特征在于:所述膨胀阀包括传动杆,所述传动杆的至少部分伸入所述气箱座;所述传动杆的至少部分位于所述流体腔,且所述隔离件的至少部分位于所述传动杆周围,所述隔离件包括贯穿孔,所述传动杆穿过所述贯穿孔。
  3. 根据权利要求2所述的膨胀阀,其特征在于:所述隔离件包括内周壁,所述内周壁为形成所述贯穿孔的壁部,所述内周壁与所述传动杆留有空隙,所述传动杆与所述内周壁之间留有第一间隙,所述连通通道包括所述第一间隙;
    和/或所述隔离件包括通孔,所述通孔布置于所述贯穿孔周部位置且所述通孔与所述贯穿孔在所述隔离件隔离,所述通孔连通所述流体腔与所述均压室,所述连通通道包括所述通孔。
  4. 根据权利要求1或2或3所述的膨胀阀,其特征在于:
    所述膨胀阀包括传动片,所述传动片包括底壁部,所述底壁部与所述隔离件之间留有第二间隙,所述流体腔位于所述第二间隙下方,且所述流体腔与所述第二间隙连通;所述第二外壁部的至少部分与所述第二间隙相对设置;
    和/或所述气箱座包括第一内壁部和第二内壁部,所述第二内壁部与所述气箱座的中心轴之间的距离小于所述第一内壁部与所述气箱座的中心轴之间的距离,以所述第一外壁部所在位置为所述隔离件的正面侧,所述第 二外壁部位于所述隔离件的反面侧,以所述阀体的轴向方向为投影方向,所述第二内壁部的至少部分投影于所述第二外壁部。
  5. 根据权利要求1-4中任一项所述的膨胀阀,其特征在于:所述阀体包括第二壁部,所述第二壁部大体沿着所述阀体的轴向方向延伸,所述第二壁部与所述第一壁部形成台阶状,所述第一壁部朝向所述气箱座,;所述第一外壁部的至少部分与所述第一壁部相抵设置。
  6. 根据权利要求2或3或4所述的膨胀阀,其特征在于:所述阀体包括第二壁部,所述第二壁部大体沿着所述阀体的轴向方向延伸,在所述隔离件的径向方向,所述第一壁部自所述第二壁部向外延伸,所述隔离件包括第三外壁部,所述第三外壁部相对所述第一外壁部朝着所述流体腔方向延伸,所述第三外壁部与所述第二壁部面对设置,且所述第三外壁部位于所述贯穿孔的周部位置。
  7. 根据权利要求6所述的膨胀阀,其特征在于:所述第三外壁部包括弧形部分和凹形部分,所述凹形部分连接相邻的所述弧形部分,所述弧形部分与所述第二壁部相对设置;所述隔离件包括通孔和贯穿孔,所述通孔位于所述贯穿孔周部位置,所述凹形部分与所述隔离件形成所述通孔的壁部衔接,所述凹形部分具有底部,定义所述底部为所述凹形部分与所述贯穿孔的中心距离最小的部位,所述底部与所述贯穿孔的中心之间的距离小于所述弧形部分与所述贯穿孔的中心之间的距离。
  8. 根据权利要求7所述的膨胀阀,其特征在于:所述隔离件包括第四外壁部,所述第四外壁部为环形周壁且所述第四外壁部为连续壁,所述阀体包括第三壁部,所述第四外壁部与所述第三壁部的至少部分相对设置,所述第一外壁部为连续壁,所述第一外壁部形成所述通孔的一部分壁部。
  9. 根据权利要求6所述的膨胀阀,其特征在于:所述第三外壁部包括弧形部分和槽形部分,所述槽形部分连接相邻的所述弧形部分,所述弧形部分与所述第二壁部相对设置,所述槽形部分具有底部,定义所述底部为所述槽形部分与所述贯穿孔的中心距离最小的部位,所述底部与所述贯穿孔的中心之间的距离小于所述弧形部分与所述贯穿孔的中心之间的距离。
  10. 根据权利要求9所述的膨胀阀,其特征在于:所述第一外壁部为间隔设置,所述隔离件包括缺口,所述缺口位于相邻所述第一外壁部之间;
    所述隔离件包括第四外壁部,所述阀体包括第三壁部,所述第四外壁部与所述第三壁部的至少部分相对设置。
  11. 根据权利要求1-10中任一项所述的膨胀阀,其特征在于:所述阀体包括第二壁部,所述第二壁部大体沿着所述阀体的轴向方向延伸,所述第二壁部围成空间,所述空间为所述流体腔的一部分,所述隔离件的至少部分与所述空间相对设置,所述第一外壁部的至少部分与所述空间相对设置,所述第一外壁部的至少部分与所述第一壁部相抵设置。
  12. 根据权利要求1-10中任一项所述的膨胀阀,其特征在于:所述隔离件包括小径部和大径部,所述大径部设置所述第一外壁部和所述第二外壁部,所述大径部在所述阀体轴向方向的高度小于所述小径部在所述阀体轴向方向的高度。
  13. 根据权利要求1-10中任一项所述的膨胀阀,其特征在于:所述隔离件的材料包括尼龙、树脂中的至少一种。
  14. 根据权利要求1-13中任一项所述的膨胀阀,其特征在于:所述气箱座具有底端部,所述底端部环形设置,所述隔离件具有第四外壁部,所述第四外壁部为环形周壁,所述第四外壁部的外径不小于所述底端部的内径,所述底端部与所述第二外壁部之间间隙设置。
  15. 根据权利要求1-13中任一项所述的膨胀阀,其特征在于:所述阀体包括第三壁部,所述隔离件具有第四外壁部,所述第三壁部的至少部分与第四外壁部相对设置,所述第三壁部具有螺纹部和平滑部,所述螺纹部自所述容置腔开口向下延伸,所述平滑部位于所述螺纹部下方,所述第四外壁部为环形周壁,所述平滑部与所述第四外壁部间隙设置;
    所述阀体包括分壁部、台阶壁部,所述分壁部与所述台阶壁部连接,且所述台阶壁部相对所述分壁部凸出,所述第二壁部与所述台阶壁部连接,所述第二壁部的至少部分相对所述分壁部凸出,所述台阶壁部相对所述隔离件凸出。
PCT/CN2018/117593 2017-11-30 2018-11-27 一种膨胀阀 WO2019105334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711233004.4A CN109854805A (zh) 2017-11-30 2017-11-30 一种膨胀阀
CN201711233004.4 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019105334A1 true WO2019105334A1 (zh) 2019-06-06

Family

ID=66663825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117593 WO2019105334A1 (zh) 2017-11-30 2018-11-27 一种膨胀阀

Country Status (2)

Country Link
CN (1) CN109854805A (zh)
WO (1) WO2019105334A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692106A (zh) * 2012-05-31 2012-09-26 宁波松鹰汽车部件有限公司 一种减振消噪的热力膨胀阀
CN204555456U (zh) * 2015-04-24 2015-08-12 浙江新劲空调设备有限公司 装有缓冲隔离结构的h型汽车空调热力膨胀阀
EP3076104A1 (en) * 2015-04-03 2016-10-05 Fujikoki Corporation Caulking fixation type power element and expansion valve using the same
CN106247704A (zh) * 2015-06-04 2016-12-21 株式会社Tgk 膨胀阀
CN205939839U (zh) * 2016-06-23 2017-02-08 盾安环境技术有限公司 一种热力膨胀阀
WO2017145619A1 (ja) * 2016-02-26 2017-08-31 株式会社デンソー 膨張弁および冷凍サイクル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2100972T3 (es) * 1991-05-14 1997-07-01 T G K Co Ltd Valvula de expansion.
JP2001091108A (ja) * 1999-09-17 2001-04-06 Tgk Co Ltd 膨張弁
JP2001091106A (ja) * 1999-09-22 2001-04-06 Tgk Co Ltd 膨張弁
JP2004138292A (ja) * 2002-10-16 2004-05-13 Fuji Koki Corp 膨張弁
JP2010112616A (ja) * 2008-11-06 2010-05-20 Tgk Co Ltd 温度式膨張弁
JP5807613B2 (ja) * 2012-05-29 2015-11-10 株式会社デンソー 膨張弁
CN203532919U (zh) * 2013-08-30 2014-04-09 浙江敏特汽车空调有限公司 一种h型热力膨胀阀
JP6447906B2 (ja) * 2014-10-30 2019-01-09 株式会社テージーケー 膨張弁

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692106A (zh) * 2012-05-31 2012-09-26 宁波松鹰汽车部件有限公司 一种减振消噪的热力膨胀阀
EP3076104A1 (en) * 2015-04-03 2016-10-05 Fujikoki Corporation Caulking fixation type power element and expansion valve using the same
CN204555456U (zh) * 2015-04-24 2015-08-12 浙江新劲空调设备有限公司 装有缓冲隔离结构的h型汽车空调热力膨胀阀
CN106247704A (zh) * 2015-06-04 2016-12-21 株式会社Tgk 膨胀阀
WO2017145619A1 (ja) * 2016-02-26 2017-08-31 株式会社デンソー 膨張弁および冷凍サイクル
CN205939839U (zh) * 2016-06-23 2017-02-08 盾安环境技术有限公司 一种热力膨胀阀

Also Published As

Publication number Publication date
CN109854805A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
US20050028876A1 (en) Method of mixing fluids using a valve
WO2019193978A1 (ja) バルブ装置および流体制御装置、流体制御方法、半導体製造装置及び半導体製造方法
WO2012065437A1 (zh) 一种膨胀阀
TW201925668A (zh) 閥裝置、使用此閥裝置的流體控制裝置及半導體製造裝置
JP6745636B2 (ja) 膨張弁
KR20110121601A (ko) 유량 제한 펑션 및 델타p-펑션을 구비한 밸브
KR20140022460A (ko) 유량조절밸브
JP3940429B1 (ja) ウエハー形パイロット式バルブ
US20200284483A1 (en) Fluid control assembly
WO2019105336A1 (zh) 一种膨胀阀
WO2019062592A1 (zh) 阀组件、热交换组件和变速箱油温度调节系统
WO2019105334A1 (zh) 一种膨胀阀
CN103411357B (zh) 带三次节流及减振功能的空调双向节流阀
JPWO2020021911A1 (ja) バルブ装置、流体制御装置、流体制御方法、半導体製造装置及び半導体製造方法
WO2018188512A1 (zh) 热力膨胀阀
CN103245141B (zh) 一种热力膨胀阀及其装配方法
US20130298597A1 (en) Refrigerating system and thermostatic expansion valve thereof
JP2022502620A (ja) 電子膨張弁
JP7089769B2 (ja) 膨張弁
JP4294155B2 (ja) 温度膨張弁
CN217274977U (zh) 一种膨胀阀
CA3097290A1 (en) Check valve
JP6846875B2 (ja) 膨張弁
CN203454487U (zh) 一种带三次节流及减振功能的空调双向节流阀
CN211082428U (zh) 一种叠加式溢流阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882739

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18882739

Country of ref document: EP

Kind code of ref document: A1