WO2017141855A1 - 接地回路及び接地方法 - Google Patents

接地回路及び接地方法 Download PDF

Info

Publication number
WO2017141855A1
WO2017141855A1 PCT/JP2017/005079 JP2017005079W WO2017141855A1 WO 2017141855 A1 WO2017141855 A1 WO 2017141855A1 JP 2017005079 W JP2017005079 W JP 2017005079W WO 2017141855 A1 WO2017141855 A1 WO 2017141855A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
ground
resistor
power supply
supply path
Prior art date
Application number
PCT/JP2017/005079
Other languages
English (en)
French (fr)
Inventor
欣也 瀧川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201780011493.0A priority Critical patent/CN108702177B/zh
Priority to US16/074,478 priority patent/US10404382B2/en
Priority to EP17753112.6A priority patent/EP3419185B1/en
Priority to JP2018500097A priority patent/JP6536736B2/ja
Publication of WO2017141855A1 publication Critical patent/WO2017141855A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/808Electrical power feeding of an optical transmission system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H45/00Details of relays
    • H01H45/14Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/001Functional circuits, e.g. logic, sequencing, interlocking circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line

Definitions

  • the present invention relates to a grounding circuit and a grounding method, and more particularly to a grounding circuit and a grounding method used in a power feeding circuit for a submarine repeater.
  • FIG. 11 is a diagram showing a connection between a submarine branching device (Branching Unit, hereinafter referred to as “BU”) and a land station related to the present invention.
  • BU 901 is connected to land stations 991, 992, and 993 by a submarine cable including a power supply line, and switches a power supply circuit according to a signal received from any of land stations 991, 992, and 993.
  • the power supply circuit of BU 901 is dropped to sea sea earth (Sea Earth; hereinafter referred to as “SE”) (right figure in FIG. 11), or the power supply circuit is disconnected from sea earth (left figure in FIG. 11). can do.
  • SE sea sea earth
  • FIG. 12 is a diagram illustrating an example of a power supply circuit of BU901.
  • the internal circuit 910 includes an electric circuit that processes a transmitted optical signal.
  • the power feeding circuit supplies power to the electric circuit.
  • the power supply circuit of BU 901 includes three relays RL1 to RL3. By controlling the relays RL1 to RL3, the grounding state of the power supply circuit of the BU 901 to the SE can be switched.
  • the left side of FIG. 12 shows a state where the internal circuit is disconnected from the sea earth, and the right side of FIG. 12 shows a state where the ground potential of the internal circuit is dropped to the sea earth.
  • Patent Document 1 describes a technique related to power feeding switching of a submarine branching device.
  • the submarine branching device 901 described in FIG. 12 has a problem that there is a conflicting request with respect to the resistance value of the resistor Rp. And patent document 1 does not describe the technique for solving such a subject.
  • An object of the present invention is to provide a grounding circuit and a grounding method capable of achieving both suppression of a large current and suppression of arc discharge during hot switching.
  • the ground circuit of the present invention is a ground circuit used for connecting a power feeding path to the ground, and includes a first relay, a second relay, a third relay, A first resistor connected in series with the first relay and capable of connecting the power supply path and the ground by the first relay; A voltage dividing means connected in series with the second relay and the third relay, and connectable to divide the voltage between the power supply path and the ground, The third relay is located at the point where the voltage is divided, When the power feeding path is connected to the ground, the power feeding path is connected to the ground via the first resistor by the first relay, and the voltage dividing means is the first relay and the first relay by the second and third relays.
  • the first to third relays are controlled so that the connection to the first resistor is connected in parallel, and the connection to the ground by the first resistor is interrupted by the first relay, When the connection with the ground of the power feeding path is released, the first to third relays are controlled so that the ground current is interrupted by the third relay.
  • the grounding method of the present invention is a grounding method for connecting a power feeding path to the ground, A first relay and a first resistor connected in series; Connecting the second relay, the voltage dividing means and the third relay in series; A third relay is arranged at a point where the voltage between the power supply path and the ground is divided by the voltage dividing means;
  • the first relay connects the feed line to ground through a first resistor;
  • a voltage dividing means connected in parallel with the first relay and the first resistor by the second and third relays; Only the connection with the ground by the first resistor is cut off by the first relay, Control the first through third relays, When disconnecting from the ground of the power supply path,
  • the first to third relays are controlled so that the ground current is interrupted by the third relay. It is characterized by that.
  • the program of the present invention is a control program used in a ground circuit having a function of connecting a power feeding path to the ground,
  • the ground circuit A first resistor, a second relay, a third relay, a first resistor connected in series with the first relay and connected to the power supply path and the ground by the first relay;
  • a voltage dividing means connected in series with the relay and the third relay and connectable so as to divide the voltage between the power supply path and the ground, and the third relay is arranged at a point to be divided.
  • the control program is When the power feeding path is connected to the ground, the power feeding path is connected to the ground via the first resistor by the first relay, and the voltage dividing means is the first relay and the first relay by the second and third relays.
  • a step of controlling the first to third relays such that the first relay is disconnected from the ground by the first resistor, and the connection to the ground by the first resistor is interrupted by the first relay;
  • a procedure for controlling the first to third relays so that the ground current is interrupted by the third relay when the connection with the ground of the power feeding path is released; Is executed.
  • the present invention makes it possible to achieve both suppression of a large current during hot switching and suppression of arc discharge.
  • FIG. 1 is a block diagram illustrating a configuration example of a power feeding system 100 according to a first embodiment. It is a block diagram which shows the structural example for controlling relay with which BU101 is provided. It is a figure for demonstrating the structure of the electric power feeding circuit 301 of BU101. It is a figure which shows the example of the open / close state of a relay. It is a figure which shows the example of the open / close state of a relay. It is a figure which shows the example of the open / close state of a relay. It is a figure which shows the example of the open / close state of a relay. It is a figure which shows the example of the open / close state of a relay. It is a figure which shows the example of the open / close state of a relay. It is a figure which shows the example of the open / close state of a relay.
  • FIG. 1 is a block diagram illustrating a configuration example of a power supply system 100 according to the first embodiment of the present invention.
  • the power feeding system 100 includes a submarine branch device (BU) 101, land stations 111, 112, 113, and a control unit 121.
  • the BU 101 is a device that branches a submarine cable, and is installed on the sea floor.
  • the BU 101 and the land stations 111 to 113 are connected by a submarine cable, and data is transmitted between the land stations.
  • the land stations 111 to 113 include a power supply device and a transmission device for the BU 101, and also have a function of monitoring and controlling the BU 101 by signals transmitted to and received from the BU 101.
  • the land stations 111 to 113 notify the monitoring result of the BU 101 to the control unit 121 and transmit a signal for controlling the BU 101 notified from the control unit 121 to the BU 101.
  • a workstation or a board computer may be used as the control unit 121.
  • the control unit 121 monitors the power supply state of the BU 101 based on the monitoring results received from the land stations 111 to 113, and controls the power supply circuit of the BU 101.
  • the control unit 121 generates a signal (relay control signal) including a command for switching a relay for switching the power feeding circuit included in the BU 101, and sends the command to the BU 101 via any of the land stations 111 to 113. Notice.
  • the controller 121 may further have a function of monitoring the voltage potential of the power supply circuit of the BU 101.
  • the BU 101 operates by power supply from at least one of the land stations 111 to 113. Further, the BU 101 controls the relay of the power feeding circuit by a relay control signal received from any of the land stations 111 to 113 via the submarine cable, thereby connecting the sea ground (SE) of the power feeding circuit (that is, A function of switching the grounding state).
  • SE sea ground
  • the switching of the grounding state of the feeder circuit is performed, for example, triggered by a failure of the feeder path between the BU 101 and the land stations 111 to 113 or construction of the submarine cable.
  • the switching of the ground state of the power feeding circuit may be performed autonomously within the power feeding system 100 or may be performed based on an instruction from a maintenance person.
  • FIG. 2 is a block diagram showing a configuration example for controlling the relay included in the BU 101.
  • the BU 101 includes an optical coupler 211, an O / E (optical / electrical) converter 212, a relay control circuit 213, a relay drive circuit 214, and a relay 215.
  • the relay 215 is a relay included in the power feeding circuit. In FIG. 2, only the configuration for the BU 101 to control the relay 215 in accordance with an instruction from the land station 111 is shown as an example.
  • the relay 215 may be controlled by a signal received from a land station other than the land station 111.
  • the BU 101 receives an optical signal including a relay control signal from the land station 111.
  • the relay control signal is generated by the control unit 121.
  • the optical coupler 211 branches the received optical signal and inputs one to the O / E converter 212.
  • the other branched optical signal is transmitted to another BU or a land station by a relay function provided in the BU 101.
  • the O / E converter 212 is an optical receiving circuit that converts the optical signal input from the optical coupler 211 into an electrical signal.
  • the relay control circuit 213 regenerates the relay control signal based on the electrical signal output from the O / E converter 212.
  • the relay control signal includes information on a relay 215 to be controlled and a control command to the relay 215 (for example, the relay contact is “open” or “closed”).
  • the relay drive circuit 214 generates a signal having an amplitude that can drive the corresponding relay 215 based on the relay control signal.
  • the relay 215 is a relay used for switching the power supply circuit of the BU 101, and the BU 101 may include a plurality of relays 215.
  • FIG. 3 is a diagram for explaining the configuration of the power supply circuit 301 of the BU 101.
  • the power feeding circuit 301 includes an internal circuit 311, a ground circuit 312, relays RL2 and RL3, and a resistor Rc.
  • the power feeding circuit 301 supplies power to the internal circuit 311.
  • the internal circuit 311 includes an electric circuit for realizing the function of the BU 101 and a power supply function unit for the electric circuit.
  • the electric circuit included in the internal circuit 311 includes, for example, signals transmitted between the O / E converter 212, the relay control circuit 213, the relay drive circuit 214, and the land stations 111 to 113 shown in FIG. Signal) is an electric circuit used for relaying.
  • the internal circuit 311 may be disposed inside the BU 101 and outside the power feeding circuit 301. Power is supplied to the internal circuit 311 from a power supply path connected to the terminals A, B, and C of the BU 101. Terminals A, B, and C are connected to land stations 111, 112, and 113 by submarine cables, respectively.
  • the ground circuit 312 includes resistors Rh, Rm, and Rs, and relays RL1-1, RL1-2, and RL1-3.
  • the resistor Rh has a larger resistance value than the resistors Rm and Rs.
  • a hollow resistor or the like that can withstand large electric power is used.
  • the resistor Rm is a resistor having an intermediate resistance value compared to the resistors Rh and Rs.
  • the resistor Rs is a resistor having a small resistance value such as several ⁇ .
  • the relationship between the resistance values of the resistors Rh, Rm, and Rs is Rh> Rm> Rs, and Rh> Rm + Rs.
  • the power supply circuit 301 further includes relays RL2 and RL3 and a resistor Rc.
  • the relay RL2 is closed when the power feeding path connected to the terminal A is connected to SE (Sea Earth).
  • the relay RL3 is closed when the power feeding circuit connected to the terminal A or the terminal C is connected to the SE.
  • the resistor Rc is a resistor having a medium resistance value, and is a protective resistor when the terminal A or the terminal C is connected to the SE.
  • the internal circuit 311 is supplied with power from the power supply path connected to the terminals A and B, and the power supply path connected to the terminal C is always connected to the SE. Therefore, in this embodiment, the relay RL2 is always open and the relay RL3 is always closed.
  • connection configuration of the relays RL2, RL3 and the resistor Rc is an example, and the configuration of the power feeding circuit 301 to which the ground circuit 312 is applied is not limited.
  • a circuit for feeding or grounding connected to the terminal A and the terminal C a circuit having a different configuration can be used according to the specification of the feeding system 100 in which the BU 101 is used.
  • Relays RL1-1, RL1-2, RL1-3, RL2, and RL3 correspond to the relay 215 shown in FIG. These relays operate independently based on a signal output from the relay drive circuit 214, and switch the connection state of the power feeding circuit 301 to the SE.
  • FIG. 3 shows an initial state of the open / close state of the contact of each relay.
  • 4 to 8 are diagrams showing examples of the open / closed state of the relay, and show an open / closed state different from FIG.
  • FIG. 9 and FIG. 10 are flowcharts showing an example of the control procedure of each relay by the relay control circuit 213. Below, the procedure at the time of the relay control circuit 213 controlling each relay is demonstrated.
  • the relay control circuit 213 controls each relay based on the relay control signal generated by the control unit 121.
  • the relays RL1-1, RL1-2, and RL2 are open (non-conductive), and the relays RL1-3 and RL3 are closed (conductive).
  • the BU 101 is supplied with power through a power supply path connected to the terminal A and a power supply path connected to the terminal B.
  • the power supply path of terminal C is connected to SE.
  • the internal circuit 311 is not connected to the SE. The subsequent operation may be performed when the control unit 121 illustrated in FIG. 1 detects that the power supply voltage of the internal circuit 311 is high (high potential).
  • any of the land stations 111 to 113 that have received the relay control signal generated by the control unit 121 converts the relay control signal into an optical signal and transmits the optical signal to the BU 101.
  • the relay control signal is transmitted through the submarine cable and reaches the BU 101.
  • the O / E converter 212 converts the received optical signal into an electrical signal.
  • the relay control circuit 213 outputs a signal to the relay drive circuit 214 so as to operate the corresponding relay according to the content of the relay control signal transmitted by the control unit 121.
  • the relay drive circuit 214 controls the corresponding relay based on an instruction from the relay control circuit 213. By such a procedure, the relay in the BU 101 is switched by a relay control signal from the control unit 121.
  • the relay control circuit 213 controls the relay RL1-1 to open the contact. (Step S02 in FIG. 9 and FIG. 4). As a result, a current flows through the resistor Rh, and the internal circuit 311 is connected to SE.
  • the resistor Rh is a high resistance such as a hollow resistor, and can withstand hot switching from a high voltage even when the voltage of the power feeding circuit is high.
  • the relay control circuit 213 closes the relay RL1-2 (step S03 and FIG. 5).
  • the circuit in which resistance Rm and resistance Rs are connected in series is also connected to SE. That is, the current to the SE also flows through the combined resistance path of the resistors Rm and Rs.
  • the relay control circuit 213 opens the relay RL1-1 after closing the relay RL1-2 (step S04 and FIG. 6). Opening relay RL1-1 prevents current from flowing to resistor Rh, thus reducing power consumption and heat generation when BU 101 is grounded to SE. By the procedure up to step S04, the connection operation of the ground circuit 312 to the SE is completed.
  • relay control circuit 213 When canceling the grounding state to SE, relay control circuit 213 first opens relays RL1-3 and disconnects the power feeding circuit from SE (step S05 in FIG. 10 and FIG. 7).
  • the resistance Rs between the relays RL1-3 and SE is a relatively small resistance (for example, several ⁇ ), and the voltage applied to the relays RL1-3 is divided by the resistance Rm and the resistance Rs. Pressed. For this reason, the voltage between SE and relay RL1-3 can be made small.
  • the relay control circuit 213 opens the relay RL1-2 after opening the relay RL1-3 (step S06 and FIG. 8), and then further closes the relay RL1-3 (step S07).
  • steps S06 and S07 the relays RL1-2 and RL1-3 are not energized. Therefore, in steps S06 and S07, there is no adverse effect on the relay contact due to a large current or arc discharge.
  • the ground circuit 312 returns to the initial state of FIG.
  • the ground circuit 312 of the present embodiment can achieve both suppression of a large current that occurs during grounding and suppression of arc discharge that occurs when the ground is released when the power supply of the BU 101 is switched.
  • the power feeding circuit switching function provided in the BU 101 described in the first embodiment is also realized by the ground circuit 312 alone.
  • the corresponding element symbols in FIGS. 3 to 8 are shown in parentheses.
  • the operation procedure of the first to third relays (relays RL1-1 to RL1-3) is the same as that of the first embodiment.
  • the ground circuit 312 is a ground circuit used for connecting the power feeding path to the ground (for example, SE).
  • the ground circuit 312 includes a first relay (RL1-1), a second relay (RL1-2), a third relay (RL1-3), a first resistor (Rh), and voltage dividing means. (Rm and Rs).
  • the first resistor is a resistor that is connected in series with the first relay and can be connected by the first relay so that the power supply path is connected to the ground.
  • the voltage dividing means is connected in series with the second relay and the third relay.
  • the voltage dividing means divides the voltage between the power feeding path and the ground, and the third relay is arranged at a point where the voltage is divided by the voltage dividing means.
  • the first to third relays are controlled so that the circuits are connected as follows. First, the power supply path is grounded via the first resistor by the first relay. Thereafter, the voltage dividing means is connected in parallel with the first resistor by the second and third relays, and only the grounding by the first resistor is interrupted by the first relay.
  • the first to third relays are controlled so that the grounding current is interrupted by the third relay.
  • the first resistor having a high resistance value when connecting the power supply path to ground, first, only the first resistor having a high resistance value is grounded. After the potential of the power supply path is lowered by the grounding by the first resistor, the grounding by the voltage dividing circuit is further performed, and thereafter the grounding by the first resistor is interrupted.
  • the voltage applied to the third relay is divided by the voltage dividing circuit connected in series between the power supply path and the ground. Therefore, since the voltage applied to the third relay is divided when the ground current is interrupted using the third relay, the occurrence of arc discharge that occurs when the ground is released can be suppressed. That is, the grounding circuit according to the second embodiment can both suppress the large current that occurs during grounding and suppress the arc discharge that occurs when the grounding is released.
  • the ground circuit 312 includes the first to third relays (RL1-1 to RL1-3), the first resistor (Rh), the second resistor (Rm), and the third resistor (Rs). And comprising.
  • One end of the first relay is connected to the power supply path, the other end of the first relay is connected to one end of the first resistor (Rh), and the other end of the first resistor is grounded.
  • One end of the second relay is connected to the power supply path, and the other end of the second relay is connected to one end of the second resistor.
  • the other end of the second resistor is connected to one end of the third relay, and the other end of the third relay is connected to one end of the third resistor.
  • the other end of the third resistor is grounded.
  • the second resistor and the third resistor are connected in series via a third relay. That is, it can be said that the second resistor and the third resistor can be referred to as a voltage dividing circuit that can be connected between the power feeding path and the ground.
  • the voltage applied to the third relay is divided by the second resistor and the third resistor connected in series between the power feeding path and the ground. Therefore, since the voltage applied to the third relay is divided when the ground current is interrupted using the third relay, the occurrence of arc discharge that occurs when the ground is released can be suppressed. That is, the grounding circuit according to the modified example of the second embodiment can achieve both suppression of a large current that occurs during grounding and suppression of arc discharge that occurs when the grounding is released.
  • the functions and procedures of the ground circuit 312 described in each of the above embodiments may be realized when the control unit 121 or the central processing unit (CPU) included in the relay control circuit 213 executes the program. Good.
  • the program is recorded on a fixed, non-temporary recording medium.
  • a semiconductor memory or a fixed magnetic disk device is used, but is not limited thereto.
  • the CPU is, for example, a computer provided in the control unit 121 or the relay control circuit 213, but the arrangement of the CPU is not limited to these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

ホットスイッチングの際の、大電流の抑制とアーク放電の抑制とを両立させるために、接地回路は、第1のリレーと、第2のリレーと、第3のリレーと、第1のリレーと直列に接続され第1のリレーによって給電路と接地とを接続可能な第1の抵抗と、第2のリレー及び第3のリレーと直列に接続され、給電路と接地との間の電圧を分圧するように接続可能な分圧手段と、を備え、第3のリレーは分圧される点に配置され、給電路を接地と接続する際には、第1のリレーによって給電路が第1の抵抗を介して接地と接続され、第2及び第3のリレーによって分圧手段が第1のリレー及び第1の抵抗と並列に接続され、さらに、第1の抵抗による接地との接続が第1のリレーによって遮断される、ように第1乃至第3のリレーが制御され、給電路の接地との接続を解除する際には、第3のリレーによって接地電流が遮断されるように第1乃至第3のリレーが制御される。

Description

接地回路及び接地方法
 本発明は、接地回路及び接地方法に関し、特に、海底中継器の給電回路で用いられる接地回路及び接地方法に関する。
 近年の海底ケーブル通信システムでは、伝送量の大容量化、中継スパンの拡大、ファイバ数の増加などに伴い、海底分岐装置で必要とされる電力が増大している。海底分岐装置に対してより高い電力を供給するためには、海底分岐装置への給電電圧を高くする必要がある。このため、例えば海底ケーブルの障害による通信ルートの切替に際して、高電圧での給電回路の切替が可能な海底分岐装置が求められている。
 図11は、本発明に関連する、海底分岐装置(Branching Unit、以下では「BU」と記載する。)と陸上局との接続を示す図である。図11において、BU901は、給電線を含む海底ケーブルによって陸上局991、992、993と接続されており、陸上局991、992、993のいずれかから受信した信号により給電回路を切り替える。切り替えによって、BU901の給電回路を海中のシーアース(Sea Earth、以下では「SE」と記載する。)に落としたり(図11の右図)、給電回路をシーアースから切り離したり(図11の左図)することができる。
 図12は、BU901の給電回路の例を示す図である。内部回路910は、伝送される光信号を処理する電気回路を含む。給電回路は電気回路に電力を供給する。図12に示すように、BU901の給電回路は、3個のリレーRL1~RL3を備える。リレーRL1~RL3を制御することで、BU901の給電回路のSEへの接地状態を切り替えることができる。図12の左側は内部回路がシーアースから切り離された状態を示し、図12の右側は内部回路の接地電位をシーアースに落とした状態を示す。
 また、本発明に関連して、特許文献1には、海底分岐装置の給電切替に関する技術が記載されている。
特開平04-323917号公報
 図12において、内部回路をシーアースと接続する際には、リレーRL1の切替は通電状態で行われる(ホットスイッチング)。このため、BU901の内部回路910が数kVを超える高電圧で給電されている場合、リレーRL1を閉じた直後にリレーRL1に大電流が流れる可能性がある。この際の電流はリレー接点の劣化を加速する可能性がある。リレーRL1とシーアースとの間に接続された抵抗Rpの抵抗値を大きくすることでスイッチング時に流れる電流を下げることができる。しかし、抵抗Rpを高抵抗にすると、BU901全体の消費電力が上昇するという課題がある。
 一方、図12の右図において、リレーRL1の接点を開放することで、内部回路910のシーアースへの接地を解除する際には、リレーRL1及び抵抗Rpを通ってシーアースに流れる電流を遮断する必要がある。この場合、切替直前に接点へ印加されている電圧によりリレーRL1の接点にアーク放電が発生する恐れがある。アーク放電はリレーRL1の接点の劣化を加速するため、アーク放電の発生を抑えることがリレー接点の信頼性の向上につながる。リレーRL1の接点へ印加されている電圧を低減することでアーク放電の発生を抑制するためには、抵抗Rpを小さくし、リレーRL1の接点の電圧を低下させることが望ましい。
 このように、ホットスイッチングの際の大電流を抑制するためにはリレーRL1の接点とシーアースとの間の抵抗Rpを大きくする必要がある。一方で、アーク放電の抑制のためには、リレーRL1の接点の電圧を低下させるために抵抗Rpを小さくする必要がある。すなわち図12に記載された海底分岐装置901には、抵抗Rpの抵抗値に対して相反する要求があるという課題があった。そして、特許文献1は、このような課題を解決するための技術を記載していない。
 (発明の目的)
 本発明は、ホットスイッチングの際の、大電流の抑制とアーク放電の抑制とを両立させることが可能な接地回路及び接地方法を提供することを目的とする。
 本発明の接地回路は、給電路を接地と接続するために用いられる接地回路であって、第1のリレーと、第2のリレーと、第3のリレーと、
 第1のリレーと直列に接続され第1のリレーによって給電路と接地とを接続可能な第1の抵抗と、
 第2のリレー及び第3のリレーと直列に接続され、給電路と接地との間の電圧を分圧するように接続可能な分圧手段と、を備え、
 第3のリレーは分圧される点に配置され、
 給電路を接地と接続する際には、第1のリレーによって給電路が第1の抵抗を介して接地と接続され、第2及び第3のリレーによって分圧手段が第1のリレー及び第1の抵抗と並列に接続され、さらに、第1の抵抗による接地との接続が第1のリレーによって遮断される、ように第1乃至第3のリレーが制御され、
 給電路の接地との接続を解除する際には、第3のリレーによって接地電流が遮断されるように第1乃至第3のリレーが制御される。
 本発明の接地方法は、給電路を接地と接続するための接地方法であって、
 第1のリレーと第1の抵抗とを直列に接続し、
 第2のリレーと分圧手段と第3のリレーとを直列に接続し、
 給電路と接地との間の電圧が分圧手段により分圧される点に第3のリレーを配置し、
 給電路を接地と接続する際には、
  第1のリレーによって、第1の抵抗を介して給電路を接地と接続し、
  第2及び第3のリレーによって、分圧手段を第1のリレー及び第1の抵抗と並列に接続し、さらに、
  第1のリレーによって、第1の抵抗による接地との接続のみを遮断する、
 ように第1乃至第3のリレーを制御し、
 給電路の接地との接続を解除する際には、
  第3のリレーによって接地電流を遮断する
 ように第1乃至第3のリレーが制御される、
ことを特徴とする。
 本発明のプログラムは、給電路を接地と接続する機能を備える接地回路で用いられる制御プログラムであって、
 接地回路は、
 第1のリレーと、第2のリレーと、第3のリレーと、第1のリレーと直列に接続され第1のリレーによって給電路と接地とを接続可能な第1の抵抗と、第2のリレー及び第3のリレーと直列に接続され、給電路と接地との間の電圧を分圧するように接続可能な分圧手段と、を備え、第3のリレーは分圧される点に配置され、
 制御プログラムは、
 給電路を接地と接続する際には、第1のリレーによって給電路が第1の抵抗を介して接地と接続され、第2及び第3のリレーによって分圧手段が第1のリレー及び第1の抵抗と並列に接続され、さらに、第1の抵抗による接地との接続が第1のリレーによって遮断される、ように第1乃至第3のリレーを制御する手順、
 給電路の接地との接続を解除する際には、第3のリレーによって接地電流が遮断されるように第1乃至第3のリレーを制御する手順、
を実行させる。
 本発明は、ホットスイッチングの際の大電流の抑制とアーク放電の抑制とを両立させることを可能とする。
第1の実施形態の給電システム100の構成例を示すブロック図である。 BU101が備える、リレーを制御するための構成例を示すブロック図である。 BU101の給電回路301の構成を説明するための図である。 リレーの開閉状態の例を示す図である。 リレーの開閉状態の例を示す図である。 リレーの開閉状態の例を示す図である。 リレーの開閉状態の例を示す図である。 リレーの開閉状態の例を示す図である。 各リレーの制御手順の例を示すフローチャートである。 各リレーの制御手順の例を示すフローチャートである。 本発明に関連する、海底分岐装置と陸上局との接続を示す図である。 本発明に関連するBU901の給電切替回路の例を示す図である。
 本発明の実施形態について図面を参照して説明する。参照される各図面の矢印は、実施形態の動作を説明するために信号の方向の例を示すものであり、信号の種類及び方向を限定しない。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の給電システム100の構成例を示すブロック図である。図1において、給電システム100は、海底分岐装置(BU)101、陸上局111、112、113、及び制御部121を備える。BU101は、海底ケーブルを分岐する装置であり、海底に設置される。BU101と陸上局111~113とは海底ケーブルで接続され、各陸上局間でデータが伝送される。
 陸上局111~113は、BU101に対する給電装置及び伝送装置を備えるとともに、BU101との間で送受信される信号によりBU101を監視及び制御する機能を備える。陸上局111~113は、BU101の監視結果を制御部121に通知するとともに、制御部121から通知された、BU101を制御する信号をBU101に送信する。制御部121として、ワークステーションやボードコンピュータが用いられてもよい。
 制御部121は、陸上局111~113から受信した監視結果に基づいてBU101の給電状態を監視し、BU101の給電回路を制御する。制御部121は、BU101が備える、給電回路の切替のためのリレーを切り替える命令を含む信号(リレー制御信号)を生成して、陸上局111~113のいずれかを経由して当該命令をBU101に通知する。制御部121は、さらに、BU101の給電回路の電圧ポテンシャルを監視する機能を備えてもよい。
 BU101は、陸上局111~113の少なくとも1つからの給電により動作する。また、BU101は、陸上局111~113のいずれかから海底ケーブルを経由して受信したリレー制御信号により、給電回路のリレーを制御することで、給電回路のシーアース(SE)との接続状態(すなわち、接地状態)を切り替える機能を備える。給電回路の接地状態の切り替えは、例えば、BU101と陸上局111~113との間の給電路の故障や海底ケーブルの工事を契機として実施される。また、給電回路の接地状態の切り替えは、給電システム100内で自律的に行われてもよく、保守者の指示に基づいて行われてもよい。
 図2は、BU101が備える、リレーを制御するための構成例を示すブロック図である。BU101は、光カプラ211、O/E(optical/electrical)コンバータ212、リレー制御回路213、リレー駆動回路214、リレー215を備える。リレー215は、給電回路に含まれるリレーである。図2には、BU101が陸上局111の指示によりリレー215を制御するための構成のみが例として示される。リレー215は、陸上局111以外の陸上局から受信した信号によって制御されてもよい。
 BU101は、陸上局111からリレー制御信号を含む光信号を受信する。リレー制御信号は、制御部121によって生成される。光カプラ211は、受信された光信号を分岐して、一方をO/Eコンバータ212に入力する。分岐された他方の光信号は、BU101が備える中継機能により他のBU又は陸上局へ送信される。
 O/Eコンバータ212は、光カプラ211から入力された光信号を電気信号に変換する、光受信回路である。リレー制御回路213は、O/Eコンバータ212から出力された電気信号に基づいて、リレー制御信号を再生する。リレー制御信号は、制御の対象となるリレー215及びリレー215への制御命令(例えば、リレー接点を「開」又は「閉」とする)の情報を含む。リレー駆動回路214は、リレー制御信号に基づいて、該当するリレー215を駆動可能な振幅の信号を生成する。リレー215はBU101の給電回路の切替に用いられるリレーであり、BU101は複数のリレー215を備える場合がある。
 図3は、BU101の給電回路301の構成を説明するための図である。給電回路301は、内部回路311、接地回路312、リレーRL2、RL3及び抵抗Rcを備える。給電回路301は、内部回路311に電力を供給する。内部回路311は、BU101の機能を実現するための電気回路及び当該電気回路への給電機能部を含む。内部回路311に含まれる電気回路は、例えば、図2に示されたO/Eコンバータ212、リレー制御回路213及びリレー駆動回路214、並びに、陸上局111~113の間で伝送される信号(主信号)の中継に用いられる電気回路である。しかし、内部回路311は、BU101の内部でかつ給電回路301の外部に配置されてもよい。内部回路311には、BU101の端子A、B、Cに接続された給電路から電力が供給される。端子A、B、Cは、海底ケーブルによりそれぞれ陸上局111、112、113と接続される。
 接地回路312は、抵抗Rh、Rm、Rs、及び、リレーRL1-1、RL1-2、RL1-3を備える。抵抗Rhは、抵抗Rm、Rsと比較して大きな抵抗値を持つ。また、抵抗Rhには、大きな電力に耐えうるホーロー抵抗などが用いられる。抵抗Rmは、抵抗Rh、Rsと比較して中程度の抵抗値を持つ抵抗である。抵抗Rsは、数Ωなどの小さな抵抗値を持つ抵抗である。抵抗Rh、Rm、Rsの抵抗値の関係は、Rh>Rm>Rsであり、また、Rh>Rm+Rsである。
 給電回路301は、さらに、リレーRL2、RL3及び抵抗Rcを備える。リレーRL2は、端子Aに接続された給電路をSE(シーアース)と接続する際に閉となる。リレーRL3は、端子A又は端子Cに接続された給電回路をSEと接続する際に閉となる。抵抗Rcは中程度の抵抗値をもつ抵抗であり、端子A又は端子CがSEと接続される際の保護抵抗である。本実施形態では、内部回路311は端子A及び端子Bに接続された給電路から給電されており、端子Cに接続された給電路は常時SEに接続されている。従って、本実施形態では、リレーRL2は常時開いており、リレーRL3は常時閉じている。以下では端子Bからの給電路を接地と接続する形態について説明する。なお、図3及び以降の本実施形態の図面において、リレーRL2、RL3及び抵抗Rcの接続構成は一例であり、接地回路312が適用される給電回路301の構成を限定するものではない。端子A及び端子Cと接続される給電あるいは接地のための回路には、BU101が用いられる給電システム100の仕様に応じて異なる構成の回路を用いることができる。
 リレーRL1-1、RL1-2、RL1-3、RL2、RL3は、図2に示したリレー215に相当する。これらのリレーは、リレー駆動回路214が出力する信号に基づいて独立に動作し、給電回路301のSEへの接続状態を切り替える。
 (動作の説明)
 図3~図10を用いて接地回路312の動作を説明する。図3は、各リレーの接点の開閉状態の初期状態を示す。図4~図8は、リレーの開閉状態の例を示す図であり、図3とは異なる開閉状態が示される。図9及び図10は、リレー制御回路213による各リレーの制御手順の例を示すフローチャートである。以下では、リレー制御回路213が各リレーを制御する際の手順について説明する。リレー制御回路213は、制御部121が生成したリレー制御信号に基づいて各リレーを制御する。
 図3に示された初期状態では、リレーRL1-1、RL1-2及びRL2は開(非導通)であり、リレーRL1-3及びRL3は閉(導通)である。BU101は、端子Aに接続された給電路と端子Bに接続された給電路とにより給電される。端子Cの給電路はSEに接続される。図3の状態では、内部回路311は、SEとは接続されていない。なお、以降の動作は、図1に記載された制御部121が、内部回路311の給電電圧が高い(高ポテンシャル)ことを検知した場合に行われてもよい。
 制御部121で生成されたリレー制御信号を受信した陸上局111~113のいずれかは、リレー制御信号を光信号に変換してBU101へ送信する。リレー制御信号は海底ケーブルを伝送されて、BU101に到達する。図2を参照して説明したように、O/Eコンバータ212は、受信した光信号を電気信号へ変換する。リレー制御回路213は、制御部121が送信したリレー制御信号の内容に従って、該当するリレーを動作させるようにリレー駆動回路214へ信号を出力する。リレー駆動回路214は、リレー制御回路213からの指示に基づいて、該当するリレーを制御する。このような手順により、BU101内のリレーは、制御部121からのリレー制御信号により切り替えられる。
 図3の初期状態(図9のステップS01)から端子Bの給電回路をSEに接地する手順が開始される場合、まず、リレー制御回路213は、リレーRL1-1を制御して、接点を開から閉にする(図9のステップS02及び図4)。その結果、抵抗Rhに電流が流れ、内部回路311はSEに接続される。抵抗Rhはホーロー抵抗などの高抵抗であり、給電回路の電圧が高い場合でも、高電圧からのホットスイッチングに耐えることができる。
 リレーRL1-1が閉じた後、BU101の内部回路の電位は低下する。電位が低下した後に、リレー制御回路213は、リレーRL1-2を閉じる(ステップS03及び図5)。リレーRL1-2を閉じることにより、抵抗Rmと抵抗Rsとが直列に接続された回路もSEと接続される。すなわち、抵抗Rm、Rsの合成抵抗の経路にもSEへの電流が流れる。
 リレー制御回路213は、リレーRL1-2を閉じた後、リレーRL1-1を開く(ステップS04及び図6)。リレーRL1-1が開かれることにより、電流が抵抗Rhへ流れなくなるため、BU101がSEへ接地されている時の消費電力および発熱量が低下する。ステップS04までの手順により、接地回路312のSEへの接続動作が終了する。
 次に、図6に示される、SEとの接続を解除する場合の手順について図7~図8及び図10を参照して説明する。SEへの接地状態を解除する場合、リレー制御回路213は、まず、リレーRL1-3を開き、給電回路をSEと切り離す(図10のステップS05及び図7)。ここで、リレーRL1-3とSEとの間にある抵抗Rsは比較的小さな抵抗(例えば数Ω)であり、また、リレーRL1-3に印加される電圧は、抵抗Rmと抵抗Rsとによって分圧される。このため、SEとリレーRL1-3との間の電圧を小さくすることができる。その結果、リレーRL1-3の切替時のリレーRL1-3の接点の電圧がアーク放電が発生する電圧を下回るように抵抗Rm及びRsを選択することにより、リレーRL1-3におけるアーク放電の発生を抑制できる。
 リレー制御回路213は、リレーRL1-3を開いた後にリレーRL1-2を開き(ステップS06及び図8)、その後、さらにリレーRL1-3を閉じる(ステップS07)。ステップS06及びS07において、リレーRL1-2及びRL1-3は通電されないため、ステップS06及びS07においては大電流やアーク放電によるリレー接点への悪影響は生じない。ステップS07の手順の実行により、接地回路312は図3の初期状態に復帰する。
 以上説明したように、本実施形態においては、内部回路311をSEに接地する場合は、一旦、抵抗値が高い抵抗Rhによって接地される。その後、内部回路311は抵抗Rm及び抵抗Rsによって接地される。また、SEへの接地状態を解除する場合には、抵抗Rmと抵抗Rsとの間に配置されたリレーRL1-3を用いて接地電流を遮断する。この際、リレーRL1-3に印加される電圧は抵抗Rm及びRsによって分圧される。その結果、本実施形態の接地回路312は、BU101の給電切替に際して、接地時に発生する大電流の抑制と、接地解除時に発生するアーク放電の抑制とを両立させることができる。
 (第2の実施形態)
 第1の実施形態で説明したBU101が備える給電回路の切り替え機能は、接地回路312単独によっても実現される。以下に、接地回路312の他の表現について記載する。第2の実施形態の説明において、対応する図3~図8の要素の記号を括弧内に示す。第1~第3のリレー(リレーRL1-1~RL1-3)の動作手順は、第1の実施形態と同様である。
 接地回路312は、給電路を接地(例えばSE)と接続するために用いられる接地回路である。接地回路312は、第1のリレー(RL1-1)と、第2のリレー(RL1-2)と、第3のリレー(RL1-3)と、第1の抵抗(Rh)と、分圧手段(Rm及びRs)と、を備える。第1の抵抗は、第1のリレーと直列に接続され、第1のリレーによって給電路を接地と接続するように接続可能な抵抗器である。
 分圧手段は、第2のリレー及び第3のリレーと直列に接続される。そして、分圧手段は、給電路と接地との間の電圧を分圧するとともに、第3のリレーは分圧手段により電圧が分圧される点に配置される。
 給電路が接地される場合には、第1~第3のリレーは、以下のように回路が接続されるように制御される。まず、第1のリレーによって給電路が第1の抵抗を介して接地される。その後、第2及び第3のリレーによって分圧手段が第1の抵抗と並列に接続され、さらに、第1の抵抗による接地のみが第1のリレーによって遮断される。
 また、給電路の接地が解除される際には、まず、第3のリレーによって接地電流が遮断されるように第1~第3のリレーが制御される。
 第2の実施形態においては、給電路を接地と接続する場合は、まず、抵抗値が高い第1の抵抗のみが接地される。第1の抵抗による接地によって給電路の電位が低下した後、さらに分圧回路による接地が実施され、その後、第1の抵抗による接地が遮断される。
 また、給電路と接地との間に直列に接続された分圧回路により、第3のリレーに印加される電圧が分圧される。従って、第3のリレーを用いて接地電流を遮断する際に第3のリレーに印加される電圧は分圧されるため、接地解除時に発生するアーク放電の発生を抑制できる。すなわち、第2の実施形態の接地回路も、接地時に発生する大電流の抑制と、接地解除時に発生するアーク放電の抑制とを両立させることができる。
 (第2の実施形態の変形例)
 接地回路312の構成及び動作は、さらに、以下のようにも記載されうる。すなわち、接地回路312は、第1乃至第3のリレー(RL1-1~RL1-3)と、第1の抵抗(Rh)と、第2の抵抗(Rm)と、第3の抵抗(Rs)と、を備える。第1のリレーの一端は給電路に接続され、第1のリレーの他端は第1の抵抗(Rh)の一端に接続され、第1の抵抗の他端は接地される。第2のリレーの一端は給電路に接続され、第2のリレーの他端は第2の抵抗の一端に接続される。第2の抵抗の他端は第3のリレーの一端に接続され、第3のリレーの他端は第3の抵抗の一端に接続される。第3の抵抗の他端は接地される。第2の抵抗と第3の抵抗とは、第3のリレーを介して直列に接続される。すなわち、第2の抵抗と第3の抵抗とは、給電路と接地との間に接続可能な分圧回路ということができる。
 第2の実施形態の変形例においては、給電路を接地と接続する場合は、まず、抵抗値が高い第1の抵抗のみが接地される。第1の抵抗による接地によって給電路の電位が低下した後、さらに第2及び第3の抵抗による接地が実施され、その後、第1の抵抗による接地が遮断される。
 また、給電路と接地との間に直列に接続された第2の抵抗と第3の抵抗により、第3のリレーに印加される電圧が分圧される。従って、第3のリレーを用いて接地電流を遮断する際に第3のリレーに印加される電圧は分圧されるため、接地解除時に発生するアーク放電の発生を抑制できる。すなわち、第2の実施形態の変形例の接地回路も、接地時に発生する大電流の抑制と、接地解除時に発生するアーク放電の抑制とを両立させることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 以上の各実施形態に記載された接地回路312の機能及び手順は、制御部121、あるいはリレー制御回路213が備える中央処理装置(central processing unit、CPU)がプログラムを実行することにより実現されてもよい。プログラムは、固定された、一時的でない記録媒体に記録される。記録媒体としては半導体メモリ又は固定磁気ディスク装置が用いられるが、これらには限定されない。CPUは例えば制御部121、あるいはリレー制御回路213に備えられるコンピュータであるが、CPUの配置はこれらに限定されない。
 この出願は、2016年2月17日に出願された日本出願特願2016-028066を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100  給電システム
 111~113  陸上局
 121  制御部
 211  光カプラ
 212  O/Eコンバータ
 213  リレー制御回路
 214  リレー駆動回路
 215  リレー
 301  給電回路
 311  内部回路
 312  接地回路
 901  海底分岐装置
 910  内部回路
 991~993  陸上局

Claims (8)

  1.  給電路を接地と接続するために用いられる接地回路であって、
     第1のリレーと、第2のリレーと、第3のリレーと、
     前記第1のリレーと直列に接続され前記第1のリレーによって前記給電路と前記接地とを接続可能な第1の抵抗と、
     前記第2のリレー及び前記第3のリレーと直列に接続され、前記給電路と前記接地との間の電圧を分圧するように接続可能な分圧手段と、を備え、
     前記第3のリレーは前記分圧される点に配置され、
     前記給電路を前記接地と接続する際には、前記第1のリレーによって前記給電路が前記第1の抵抗を介して前記接地と接続され、前記第2及び第3のリレーによって前記分圧手段が前記第1のリレー及び前記第1の抵抗と並列に接続され、さらに、前記第1の抵抗による前記接地との接続が前記第1のリレーによって遮断される、ように前記第1乃至第3のリレーが制御され、
     前記給電路の前記接地との接続を解除する際には、前記第3のリレーによって接地電流が遮断されるように前記第1乃至第3のリレーが制御される、
    接地回路。
  2.  前記第1のリレーの一端は前記給電路に接続され、前記第1のリレーの他端は前記第1の抵抗の一端に接続され、前記第1の抵抗の他端は前記接地に接続され、
     前記分圧手段は第2の抵抗及び第3の抵抗を備え、前記第2のリレーの一端は前記給電路に接続され、前記第2のリレーの他端は前記第2の抵抗の一端に接続され、前記第2の抵抗の他端は前記第3のリレーの一端に接続され、前記第3のリレーの他端は前記第3の抵抗の一端に接続され、前記第3の抵抗の他端は前記接地に接続される、
    請求項1に記載された接地回路。
  3.  陸上局からの給電路をシーアースに接続して接地する機能を備える、請求項1又は2に記載された接地回路と、
     前記陸上局からリレー制御信号を含む光信号を受信して電気信号に変換するO/E(optical/electrical)変換手段と、前記電気信号から前記リレー制御信号を再生するリレー制御手段と、前記リレー制御信号に基づいて前記接地回路が備えるリレーを駆動するリレー駆動手段と、
    を備える海底分岐装置。
  4.  請求項3に記載された海底分岐装置と、
     前記海底分岐装置が備える接地回路のリレーを制御するリレー制御信号を生成する制御装置と、
     前記海底分岐装置と接続され、前記制御装置が生成した前記リレー制御信号を前記海底分岐装置に送信する陸上局と、を備える給電システム。
  5.  前記制御装置は、前記海底分岐装置の給電路の電圧ポテンシャルを検出する機能をさらに備え、前記電圧ポテンシャルが所定の値以上である場合に、前記第1乃至第3のリレーを制御する、請求項4に記載された給電システム。
  6.  給電路を接地と接続するための接地方法であって、
     第1のリレーと第1の抵抗とを直列に接続し、
     第2のリレーと分圧手段と第3のリレーとを直列に接続し、
     前記給電路と前記接地との間の電圧が前記分圧手段により分圧される点に前記第3のリレーを配置し、
     前記給電路を前記接地と接続する際には、
      前記第1のリレーによって、前記第1の抵抗を介して前記給電路を前記接地と接続し、
      前記第2及び第3のリレーによって、前記分圧手段を前記第1のリレー及び前記第1の抵抗と並列に接続し、さらに、
      前記第1のリレーによって、前記第1の抵抗による前記接地との接続のみを遮断する、
     ように前記第1乃至第3のリレーを制御し、
     前記給電路の前記接地との接続を解除する際には、
      前記第3のリレーによって接地電流を遮断する
     ように前記第1乃至第3のリレーが制御される、
    ことを特徴とする接地方法。
  7.  前記第1のリレーの一端を前記給電路に接続し、前記第1のリレーの他端を前記第1の抵抗の一端に接続し、前記第1の抵抗の他端を前記接地と接続し、
     前記分圧手段は第2の抵抗及び第3の抵抗を備え、前記第2のリレーの一端を前記給電路に接続し、前記第2のリレーの他端を前記第2の抵抗の一端に接続し、前記第2の抵抗の他端を前記第3のリレーの一端に接続し、前記第3のリレーの他端を前記第3の抵抗の一端に接続し、前記第3の抵抗の他端を前記接地と接続する、
    請求項6に記載された接地方法。
  8.  給電路を接地と接続する機能を備える接地回路で用いられるコンピュータの制御プログラムを記録した記録媒体であって、
     前記接地回路は、
     第1のリレーと、第2のリレーと、第3のリレーと、前記第1のリレーと直列に接続され前記第1のリレーによって前記給電路と前記接地とを接続可能な第1の抵抗と、前記第2のリレー及び前記第3のリレーと直列に接続され、前記給電路と前記接地との間の電圧を分圧するように接続可能な分圧手段と、を備え、前記第3のリレーは前記分圧される点に配置され、
     前記制御プログラムは、前記コンピュータに、
     前記給電路を前記接地と接続する際には、前記第1のリレーによって前記給電路が前記第1の抵抗を介して前記接地と接続され、前記第2及び第3のリレーによって前記分圧手段が前記第1のリレー及び前記第1の抵抗と並列に接続され、さらに、前記第1の抵抗による前記接地との接続が前記第1のリレーによって遮断される、ように前記第1乃至第3のリレーを制御する手順、
     前記給電路の前記接地との接続を解除する際には、前記第3のリレーによって接地電流が遮断されるように前記第1乃至第3のリレーを制御する手順、
    を実行させる。
PCT/JP2017/005079 2016-02-17 2017-02-13 接地回路及び接地方法 WO2017141855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780011493.0A CN108702177B (zh) 2016-02-17 2017-02-13 接地电路和接地方法
US16/074,478 US10404382B2 (en) 2016-02-17 2017-02-13 Grounding circuit and grounding method
EP17753112.6A EP3419185B1 (en) 2016-02-17 2017-02-13 Grounding circuit and grounding method
JP2018500097A JP6536736B2 (ja) 2016-02-17 2017-02-13 接地回路及び接地方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028066 2016-02-17
JP2016028066 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141855A1 true WO2017141855A1 (ja) 2017-08-24

Family

ID=59624982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005079 WO2017141855A1 (ja) 2016-02-17 2017-02-13 接地回路及び接地方法

Country Status (5)

Country Link
US (1) US10404382B2 (ja)
EP (1) EP3419185B1 (ja)
JP (1) JP6536736B2 (ja)
CN (1) CN108702177B (ja)
WO (1) WO2017141855A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163716A1 (ja) * 2018-02-20 2019-08-29 日本電気株式会社 海底ケーブルシステム、分岐装置及びその状態応答方法
WO2020022303A1 (ja) * 2018-07-24 2020-01-30 日本電気株式会社 通信システム
WO2020054614A1 (ja) * 2018-09-10 2020-03-19 日本電気株式会社 経路切替装置および経路切替方法
WO2020137821A1 (ja) * 2018-12-26 2020-07-02 日本電気株式会社 光伝送装置及び光伝送方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155520A (zh) * 2016-05-25 2019-01-04 日本电气株式会社 接地电路、电气装置、接地控制方法以及接地控制程序
WO2021044993A1 (ja) * 2019-09-02 2021-03-11 日本電気株式会社 海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及び非一時的なコンピュータ可読媒体
CN111799129B (zh) * 2020-07-17 2022-11-04 广州彩熠灯光股份有限公司 三相继电器的控制方法、控制设备及计算机可读存储介质
CN116488126B (zh) * 2023-06-21 2023-09-05 华海通信技术有限公司 一种泄压装置、海缆系统及海缆电压泄放方法
CN116488168B (zh) * 2023-06-21 2023-09-01 华海通信技术有限公司 一种切换器、海缆供电系统及接地切换方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323917A (ja) 1991-04-23 1992-11-13 Nec Corp 海底分岐装置
US20030218389A1 (en) * 2001-12-19 2003-11-27 Giuseppe Bianchi Submarine branching unit having aysmmetrical architecture
JP2015109643A (ja) * 2013-11-14 2015-06-11 パッドテック エス.エー.Padtec S.A. 光遠隔通信リンク用の分岐装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230707A (ja) * 2000-02-18 2001-08-24 Kdd Submarine Cable Systems Inc 給電線接続装置
US6765775B2 (en) * 2000-12-27 2004-07-20 Pirelli Cavi E Sistemi S.P.A. Submarine cable branching unit with current limiter
JP3759704B2 (ja) * 2001-07-18 2006-03-29 三菱電機株式会社 給電路切替回路および海中分岐装置
CN201312117Y (zh) * 2008-12-03 2009-09-16 徐成飞 一种电网中性点经灵活电阻接地运行装置
CN103490406A (zh) * 2013-09-29 2014-01-01 安徽一天电气技术有限公司 一种采用全阻法解决相间短路的消弧装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323917A (ja) 1991-04-23 1992-11-13 Nec Corp 海底分岐装置
US20030218389A1 (en) * 2001-12-19 2003-11-27 Giuseppe Bianchi Submarine branching unit having aysmmetrical architecture
JP2015109643A (ja) * 2013-11-14 2015-06-11 パッドテック エス.エー.Padtec S.A. 光遠隔通信リンク用の分岐装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163716A1 (ja) * 2018-02-20 2019-08-29 日本電気株式会社 海底ケーブルシステム、分岐装置及びその状態応答方法
JPWO2019163716A1 (ja) * 2018-02-20 2021-02-04 日本電気株式会社 海底ケーブルシステム、分岐装置及びその状態応答方法
US11270859B2 (en) 2018-02-20 2022-03-08 Nec Corporation Submarine cable system, branching device, and state response method therefor
WO2020022303A1 (ja) * 2018-07-24 2020-01-30 日本電気株式会社 通信システム
CN112385148A (zh) * 2018-07-24 2021-02-19 日本电气株式会社 通信系统
JPWO2020022303A1 (ja) * 2018-07-24 2021-08-02 日本電気株式会社 通信システム
JP7151768B2 (ja) 2018-07-24 2022-10-12 日本電気株式会社 通信システム、監視装置及び監視方法
US11929791B2 (en) 2018-07-24 2024-03-12 Nec Corporation Communication system
WO2020054614A1 (ja) * 2018-09-10 2020-03-19 日本電気株式会社 経路切替装置および経路切替方法
JPWO2020054614A1 (ja) * 2018-09-10 2021-08-30 日本電気株式会社 経路切替装置および経路切替方法
WO2020137821A1 (ja) * 2018-12-26 2020-07-02 日本電気株式会社 光伝送装置及び光伝送方法
US11817907B2 (en) 2018-12-26 2023-11-14 Nec Corporation Optical transmission device and optical transmission method

Also Published As

Publication number Publication date
EP3419185A1 (en) 2018-12-26
EP3419185A4 (en) 2019-08-07
JPWO2017141855A1 (ja) 2018-11-29
US20190044621A1 (en) 2019-02-07
CN108702177B (zh) 2020-03-06
US10404382B2 (en) 2019-09-03
EP3419185B1 (en) 2020-07-01
CN108702177A (zh) 2018-10-23
JP6536736B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2017141855A1 (ja) 接地回路及び接地方法
JP5682847B2 (ja) 給電路切替装置、光海底分岐装置、海底ケーブルシステムおよび給電路切替方法
JP7325857B2 (ja) 分岐器、海底ケーブルシステム及び断線切替方法
US20140355610A1 (en) Switched power line communication
KR101758601B1 (ko) 수중 통신 데이터를 제공하기 위한 시스템 및 방법
WO2016092806A1 (ja) 給電路分岐装置及び給電路分岐方法
WO2017204097A1 (ja) 接地回路、電気装置、接地制御方法、及び接地制御プログラム
US6166836A (en) Power switching of optical fibre cable branching units
JP6466694B2 (ja) 光遠隔通信リンク用の分岐装置
JP2019501586A (ja) 海底光ケーブルの陸上陸揚装置
JP6973495B2 (ja) 海底分岐装置及び海底分岐方法
US20240039273A1 (en) Grounding device, grounding method, and program recording medium
US4462058A (en) Switching apparatus for devices for alternating current parallel remote feed
JP6044274B2 (ja) 給電路切替装置及び給電システム
JP6773230B2 (ja) 接地回路、電気装置、接地制御方法、及び接地制御プログラム
US7269353B2 (en) Branching unit for an optical transmission system
EP3540892B1 (en) Transmission system having a trunk and a branch
EP2874324B1 (en) Power supply for a submarine branching unit
JP6962441B2 (ja) 海底ケーブルシステム、分岐装置及びその状態応答方法
WO2023166587A1 (ja) 陸揚げ局特定装置、陸揚げ局特定方法及び非一時的な記録媒体
JP2632905B2 (ja) 伝送路の給電線の切替回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500097

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753112

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753112

Country of ref document: EP

Effective date: 20180917