WO2021044993A1 - 海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及び非一時的なコンピュータ可読媒体 - Google Patents

海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及び非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2021044993A1
WO2021044993A1 PCT/JP2020/032824 JP2020032824W WO2021044993A1 WO 2021044993 A1 WO2021044993 A1 WO 2021044993A1 JP 2020032824 W JP2020032824 W JP 2020032824W WO 2021044993 A1 WO2021044993 A1 WO 2021044993A1
Authority
WO
WIPO (PCT)
Prior art keywords
submarine
terminal station
terminal
station device
control signal
Prior art date
Application number
PCT/JP2020/032824
Other languages
English (en)
French (fr)
Inventor
大樹 金井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021543749A priority Critical patent/JPWO2021044993A5/ja
Priority to CN202080060805.9A priority patent/CN114342324A/zh
Priority to EP20861653.2A priority patent/EP4027589A1/en
Priority to US17/633,644 priority patent/US20220321236A1/en
Publication of WO2021044993A1 publication Critical patent/WO2021044993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters

Definitions

  • the present invention relates to a submarine cable system, a submarine device control device, a control method and a program for the submarine device.
  • a submarine cable system in which a terminal device installed on land and a submarine device such as an optical branching device and a relay device installed on the seabed are connected to each other by a cable (for example, Patent Documents 1 and 2).
  • the submarine equipment is controlled by instructions from the terminal equipment.
  • the submarine equipment is controlled by an instruction from one terminal device.
  • general submarine equipment is connected to a plurality of terminal devices.
  • the user selects the appropriate terminal device for issuing the instruction to the submarine device from among the plurality of terminal devices connected to the submarine device. I had to do it.
  • the user's work for properly operating the submarine equipment has been complicated.
  • An object of the present disclosure is to provide a submarine cable system, a submarine device control device, a control method and a program of the submarine device, which can simplify the work of the user while appropriately operating the submarine device in view of the above-mentioned problems. To do.
  • the submarine cable system includes a submarine device, a first terminal station device capable of communicating with the submarine device, a second terminal station device capable of communicating with the submarine device, and the first terminal station device. It also includes a control device that selects one of the second terminal station devices based on the priority order and instructs the selected one to output a control signal to the submarine device.
  • the submarine device control device includes a holding unit that holds a priority corresponding to the first terminal station device and the second terminal station device capable of communicating with the submarine device, and the above-mentioned according to the priority.
  • a selection unit that selects either the first terminal station device or the second terminal station device, and an instruction unit that instructs the selected terminal station device to output a control signal to the submarine device. Is provided.
  • the method for controlling a submarine device is the first terminal device or the second terminal device, depending on the priority corresponding to the first terminal device and the second terminal device capable of communicating with the submarine device. Select one of the terminal devices and Instructs the selected terminal device to output a control signal to the submarine device.
  • the program according to one aspect of the present invention relates to the first terminal station device or the second terminal station device according to the priority corresponding to the first terminal station device and the second terminal station device capable of communicating with the submarine equipment.
  • the computer is made to execute a process of selecting either one and a process of instructing the selected terminal device to output a control signal to the submarine device.
  • the present invention it is possible to provide a submarine cable system, a control device, a control method and a program of the submarine device, which can simplify the work of the user while appropriately operating the submarine device.
  • Non-temporary computer-readable media include various types of tangible storage media.
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, It includes a CD-R / W and a semiconductor memory (for example, a mask ROM, a PROM (Programmable ROM), an EPROM (Erasable PROM), a flash ROM, and a RAM (RandomAccessMemory)).
  • a semiconductor memory for example, a mask ROM, a PROM (Programmable ROM), an EPROM (Erasable PROM), a flash ROM, and a RAM (RandomAccessMemory)
  • the program may also be supplied to the computer by various types of temporary computer-readable media (Transitory computer Readable Medium).
  • temporary computer-readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • FIG. 1 is a diagram showing a configuration of a submarine cable system 10 according to an embodiment.
  • the submarine cable system 10 includes a first terminal station device 1, a second terminal station device 2, a submarine device 11, and a control device 20.
  • the first terminal station device 1 and the second terminal station device 2 are provided in the station building of the landing station provided on land.
  • the submarine device 11 is arranged on the seabed and is connected between the first terminal station device 1 and the second terminal station device 2 via a submarine cable.
  • the submarine cable system which is a long-distance transmission system, uses a configuration in which a plurality of submarine devices are connected in a row via a submarine cable.
  • the control device 20 is arranged in a building different from the station building in which the first terminal station device 1 is arranged and the station building in which the second terminal station device 1 is arranged. Further, the control device 20 may be arranged in the station building in which the first terminal station device 1 is arranged or in the station building in which the second terminal station device is arranged.
  • the submarine device 11 is an optical amplifier.
  • the optical amplifier amplifies the optical signal input from the first terminal station device 1 or the second terminal station device 2, and compensates for the optical loss associated with the transmission of the optical signal.
  • the optical amplifier is controlled by a control signal from the control device 20.
  • the control device 20 can control the amplification factor (gain) of the optical signal of the optical amplifier.
  • the first terminal station device 1 and the second terminal station device 2 can communicate with the submarine device 11 via the submarine cable.
  • the first terminal station device 1 and the second terminal station device 2 convert the control signal received from the control device 20 into an optical signal and output it to the submarine device 11.
  • FIG. 2 is a diagram showing the configuration of the control device 20 according to the embodiment.
  • the control device 20 includes a holding unit 21, a selection unit 22, and an indicating unit 23.
  • the holding unit 21 holds the priority corresponding to the first terminal station device 1 and the second terminal station device 2 for one submarine device 11. Specifically, the holding unit 21 holds the priority determined by the first priority corresponding to the first terminal station device 1 and the second priority corresponding to the second terminal station device 2.
  • the first priority can be determined according to, for example, the distance from the first terminal station device 1 to the submarine device 11.
  • the second priority can be determined according to, for example, the distance from the second terminal station device 2 to the submarine device 11. For example, a terminal device having a shorter distance to the submarine device 11 can have a higher priority.
  • the first priority and the second priority are determined by the control device 20. Further, the first priority and the second priority may be given to the control device 20 from an external device (not shown).
  • the selection unit 22 selects either the first terminal station device 1 or the second terminal station device 2 according to the priority order held by the holding unit 21.
  • the instruction unit 23 instructs the first terminal station device 1 or the second terminal station device 2 selected by the selection unit 22 to output a control signal to the submarine device 11.
  • the control device 20 receives a user's operation from an interface (not shown) and generates control information for the submarine device 11 based on the operation (S101).
  • the selection unit 22 of the control device 20 selects either the first terminal station device 1 or the second terminal station device 2 based on the priority order (S102). In this description, it is assumed that the first terminal station device 1 is selected by the selection unit 22.
  • the instruction unit 23 outputs the generated control information to the first terminal station device 1 via an electric line.
  • the instruction unit 23 instructs the first terminal station device 1 to output a control signal to the submarine device 11 (S103).
  • the first terminal station device 1 generates an optical signal by modulating light with the control information received from the instruction unit 23 of the control device 20, and outputs the optical signal to the submarine device 11 (S104).
  • the submarine device 11 receives the optical signal from the first terminal station device 1 and operates according to the control information included in the optical signal (S105).
  • the first terminal station device 1 generates an optical signal by modulating light of a specific wavelength with control information, and generates a wavelength-multiplexed optical signal by multiplexing the generated optical signal with an optical signal of a different wavelength. To do.
  • the first terminal station device 1 outputs the generated wavelength division multiplexing optical signal to the submarine device 11.
  • the first terminal station device 1 multiplexes a plurality of optical signals having different wavelengths to generate a wavelength division multiplexing optical signal.
  • the first terminal station device 1 modulates the generated wavelength division multiplexing optical signal based on the control information, thereby superimposing a low frequency component corresponding to the control information on the wavelength division multiplexing optical signal.
  • the first terminal station device 1 outputs a wavelength division multiplexing optical signal on which a low frequency component is superimposed to the submarine device 11.
  • control signal can be output to the submarine device 11 from one of the first terminal station device 1 and the second terminal station device 2 capable of outputting the control signal, whichever has the higher priority. it can. This makes it possible to simplify the work by the user while appropriately operating the submarine device 11.
  • FIG. 4 is a diagram showing another configuration of the submarine cable system according to the embodiment.
  • a third terminal station device 3 capable of communicating with the submarine device 11 is further provided.
  • the submarine device 11 is an optical branching device.
  • the optical branching device is laid on the seabed and inserted in the middle of the submarine cable between the first terminal station device 1 and the second terminal station device 2.
  • the optical branching device and the third terminal station device 3 are connected by a submarine cable.
  • Wavelength division multiplexing (WDM) optical signals are transmitted between the first terminal station device 1, the second terminal station device 2, and the third terminal station device 3 using a submarine cable.
  • the optical branching device can branch the signal light from one terminal device to the remaining two terminal devices and output it.
  • the optical branching device performs wavelength separation based on the set value held by its own device.
  • the set value can be changed based on the control signal from the control device 20.
  • a wavelength selection switch for example, when a WDM optical signal containing wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 is input from the first terminal device 1 to the optical branching device, the optical branching device separates the WDM optical signal by wavelength, and the optical signal and wavelength of wavelength ⁇ 1 are separated.
  • the optical signal of ⁇ 2 can be output to the second terminal station device 2, and the optical signal of wavelength ⁇ 3 can be output to the third terminal station device 3.
  • the optical branching device when the wavelength switching is instructed by the control signal, the optical branching device outputs the optical signals of the wavelengths ⁇ 1 and ⁇ 2 to the second terminal station device 2. From the first state of outputting the optical signal of the wavelength ⁇ 3 to the third terminal station device 3, the optical signal of the wavelength ⁇ 1 is output to the second terminal station device 2, and the optical signals of the wavelengths ⁇ 2 and ⁇ 3 are output to the third terminal station device 3. It is possible to switch to the second state of outputting to 3.
  • the optical turnout may have a ROADM (reconfigurable optical add / drop multiplexer) function.
  • a part of the WDM optical signal may be branched (Drop) by the WSS, and a new optical signal to be transmitted to another terminal device may be inserted (Add) and output to the submarine cable again.
  • the control device 20 shown in FIG. 2 is used. As a result, the control signal can be output from one of the terminal devices having a higher priority.
  • FIG. 5 is a diagram showing a configuration of a submarine cable system according to an embodiment.
  • four landing stations (A station, B station, C station, and D station) are provided.
  • Each landing station (A station, B station, C station, D station) is provided with optical transmission devices 1a to 1d and device monitoring devices (EMS: Element Management System) 2a to 2d, respectively.
  • EMS Element Management System
  • Each EMS 2a to 2d monitors and controls the optical transmission devices 1a to 1d in each station building. Although not shown here, other devices such as a power supply device for supplying electric power to the submarine equipment are also installed in each station building. Each EMS 2a to 2d can also monitor and control the operating state of these other devices.
  • the optical transmission devices 1a to 1d convert the control signals (electrical signals) of the submarine equipment received from the EMSs 2a to 2d into optical signals and transmit them to the submarine cable.
  • BU Branching Unit
  • the first optical branching device 12 shown and the second optical branching device 13 shown as BU2 are provided.
  • the first optical branching device 12 and the second optical branching device 13 are arranged on the seabed.
  • the optical transmission device 1c of station C is connected to the first optical branching device 12 via a submarine cable
  • the optical transmission device 1d of station D is connected to the second optical branching device 13 via a submarine cable. Is connected.
  • the monitoring information from each station building is transferred to the control center (NOC: Network Operation Center) 30 via the network 32 for centralized monitoring and management.
  • NOC Network Operation Center
  • the NOC 30 is provided with an integrated monitoring and control device (UMS: Unified Management System) 31.
  • UMS Unified Management System
  • the UMS 31 monitors and controls the entire system in cooperation with each of the EMSs 2a to 2d.
  • the control signal for controlling the submarine equipment is transmitted from the UMS 31 to the optical transmission device determined to transmit the control signal to the submarine equipment via the corresponding EMS. To reach. Then, the optical transmission device converts the control signal into an optical signal and transmits it to the submarine equipment.
  • the UMS 31 transmits the control signal by designating the EMS in the station building where the optical transmission device determined to transmit the control signal is installed. However, if there is a disconnection between the submarine equipment and the optical transmission device due to a submarine cable failure, communication between the optical transmission device and EMS is not possible, or communication between EMS and UMS31 is not possible, The control signal transmitted by the UMS 31 cannot be transmitted to the submarine equipment.
  • the maintenance person of the submarine cable system had to select an appropriate control signal transmitting station based on the failure situation of the entire system and output the control signal by a route that can avoid the failure.
  • These operations also depend on the skill level of the maintainer, and in order to always ensure a certain level of maintenance quality, automatic judgment and automatic processing by the system have been desired.
  • the UMS 31 a control device including the configuration shown in FIG. 2 is used. That is, the UMS 31 holds in advance the transmission station priority for determining the terminal device for transmitting the control signal to each submarine device.
  • the transmission station priority for the first optical branching device 12 is C station> A station> B station in descending order of priority
  • the transmitting station priority for the second optical branching device 13 is in descending order of priority.
  • the UMS 31 relays a control signal to the first optical branching device 12 or the second optical branching device 13 via the respective optical transmission devices 1a to 1d. Understand the failure situation that indicates whether or not can be executed.
  • the term "relay” as used herein means that each of the optical transmission devices 1a to 1d modulates the light with the information contained in the control signal input from the UMS 31, and causes the first optical branching device 12 or the second optical branching device 13 to perform the light. Refers to outputting a modulated optical signal.
  • the UMS 31 holds the failure status (alarm status) of the entire system based on the alarm information collected from each EMS 2a to 2d, and grasps the cable failure location (cable disconnection, etc.).
  • UMS31 constantly monitors life and death for each EMS2a to 2d.
  • each EMS 2a to 2d constantly monitors the life and death of the subordinate optical transmission devices 1a to 1d. Further, the UMS 31 changes the priority order of the optical transmission devices 1a to 1d held in the holding unit based on the failure situation.
  • the optical transmission device 1c that has received the control signal converts the received control signal into an optical signal and sends it to the submarine cable.
  • the control signal (optical signal) sent to the submarine cable reaches the first optical branching device 12 via the submarine cable.
  • the first optical branching device 12 that has received the control signal (optical signal) executes processing according to the control signal. The flow of this control signal is indicated by an arrow in FIG.
  • a method for detecting a cable failure for example, it is possible to monitor the backscattered light of an optical signal from an optical transmission device to a submarine device, and when the backscattered light is no longer detected, it is possible to detect that the submarine cable is broken.
  • the optical transmission device affected by the cable failure detects the line failure such as the disconnection of the submarine cable, and notifies the upper EMS of the alarm information.
  • the EMS that has received the alarm information from the optical transmission device transfers these alarm information to the UMS 31.
  • the alarm information of the entire system is collected in the UMS 31.
  • the UMS 31 identifies that a cable failure has occurred between the C station and the first optical branching device 12.
  • the UMS 31 grasps that the control signal cannot be transmitted to the first optical branching device 12 via the C station.
  • the UMS 31 sets the transmission station priority to the first optical branching device 12 as "C station> A station> B station". To "Station A> Station B". That is, the priority corresponding to the optical transmission device that cannot be relayed is deleted from the priority held in the holding unit 21.
  • the UMS 31 selects the optical transmission device 1a of station A according to the priority of the transmitting station. That is, the UMS 31 selects the optical transmission device 1a of station A, which has the highest priority next to the optical transmission device 1c of station C, among the optical transmission device 1a of station A and the optical transmission device 1b of station B.
  • the control signal issued from the UMS 31 is sent to the EMS2a of the A station, and the EMS2a transfers the control signal to the optical transmission device 1a in the own station.
  • the optical transmission device 1a converts the received control signal into an optical signal and transmits it to the submarine cable.
  • the control signal (optical signal) sent to the submarine cable reaches the first optical branching device 12 via the submarine cable.
  • the first optical branching device 12 that has received the control signal (optical signal) executes processing according to the control signal. The flow of this control signal is indicated by an arrow in FIG.
  • EMS2b of station B performs alive monitoring, detects a connection abnormality (failure of station B) between EMS2b and the optical transmission device 1b, and notifies UMS31 of the information.
  • the UMS 31 recognizes that a connection abnormality has occurred between the EMS 2b and the optical transmission device 1b based on the information notified from the EMS 2b.
  • the UMS 31 grasps that the control signal cannot be transmitted to the first optical branching device 12 and the second optical branching device 13 via the B station.
  • the UMS 31 changes the transmission station priority for the first optical branching device 12 from "C station> A station> B station" to "C station> A station” and changes the transmitting station priority for the second optical branching device 13 to "C station> A station". Change from "D station> B station> A station” to "D station> A station".
  • the UMS 31 selects the optical transmission device 1c of the C station according to the priority of the transmitting station.
  • the control signal issued from the UMS 31 is sent to the EMS 2c, and the EMS 2c transfers the control signal to the optical transmission device 1c in the own station.
  • the optical transmission device 1c converts the received control signal into an optical signal and transmits it to the submarine cable.
  • the control signal (optical signal) sent to the submarine cable reaches the first optical branching device 12 via the submarine cable.
  • the first optical branching device 12 that has received the control signal (optical signal) executes processing according to the control signal.
  • the flow of this control signal is indicated by a solid arrow in FIG.
  • the UMS 31 selects the optical transmission device 1d of the D station according to the priority of the transmitting station.
  • the control signal issued from the UMS 31 is sent to the EMS 2d, and the EMS 2d transfers the control signal to the optical transmission device 1d in the own station.
  • the optical transmission device 1d converts the received control signal into an optical signal and transmits it to the submarine cable.
  • the control signal (optical signal) sent to the submarine cable reaches the second optical branching device 13 via the submarine cable.
  • the second optical branching device 13 that has received the control signal (optical signal) executes processing according to the control signal. The flow of this control signal is indicated by the dashed arrow in FIG.
  • the terminal device in the submarine cable system, the terminal device (optical transmission) that relays the control signal for controlling the submarine device based on the failure status (alarm status) of the entire system grasped by the control device.
  • the priority of the device can be changed. According to this changed priority, the terminal device to transmit the control signal is determined, and by transmitting the control signal to the determined terminal device, the signal is automatically transmitted to the submarine equipment by the route avoiding the failure location. It becomes possible to do.
  • a holding unit that holds the priority corresponding to the first terminal station device and the second terminal station device that can communicate with the submarine equipment, and A selection unit that selects either the first terminal station device or the second terminal station device according to the priority, and a selection unit.
  • An instruction unit that instructs the selected terminal equipment to output a control signal to the submarine equipment, and To prepare Submarine equipment control device.
  • the submarine device is an optical branching device.
  • the holding unit further holds the priority corresponding to the third terminal device capable of communicating with the submarine equipment.
  • a failure detection unit that grasps a failure situation indicating whether or not the output of the control signal to the submarine device can be executed using the first terminal station device, the second terminal station device, or the third terminal station device.
  • a priority changing unit that changes the priority held in the holding unit based on the failure situation, and a priority changing unit that changes the priority. Further prepare, The submarine equipment control device according to Appendix 1.
  • the priority order changing unit has a priority order. Delete the terminal device that can no longer output the control signal from The submarine equipment control device according to Appendix 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

海底機器を適切に動作させつつ、ユーザの作業を簡素化する。 実施の形態に係る海底ケーブルシステム(10)は、海底機器(11)と、海底機器(11)と通信可能な第1端局装置(1)及び第2端局装置と、第1端局装置(1)及び第2端局装置(2)のうちの一方を優先順位に基づいて選択し、選択された一方に対して海底機器(11)への制御信号を出力するように指示する制御装置(20)とを備える。優先順位は、第1端局装置(1)から海底機器(11)までの距離と、第2端局装置(2)から海底機器(11)までの距離とに基づく。

Description

海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及び非一時的なコンピュータ可読媒体
 本発明は、海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及びプログラムに関する。
 陸上に設置された端局装置と、海底に設置された光分岐装置、中継装置等の海底機器とがケーブルで互いに接続された海底ケーブルシステムがある(例えば、特許文献1、2)。このような海底ケーブルシステムにおいて、海底機器は、端局装置からの指示によって制御される。
特開2010-226167号公報 特開平09-289494号公報
 特定の海底機器に対して複数の端局装置が異なる指示をすると、海底機器は適切に動作できない。このため、海底機器は、一つの端局装置からの指示によって制御されることが好ましい。しかし、一般的な海底機器は、複数の端局装置に接続されている。一つの端局装置からの指示によって海底機器を制御するためには、海底機器に接続されている複数の端局装置のうち、海底機器に指示を出すのに適切な端局装置をユーザが選択する必要があった。このように、海底機器を適切に動作させるためのユーザの作業が煩雑であった。
 本開示の目的は、上述した問題を鑑み、海底機器を適切に動作させつつ、ユーザの作業を簡素化することが可能な海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及びプログラムを提供することにある。
 本発明の一態様に係る海底ケーブルシステムは、海底機器と、前記海底機器と通信可能な第1端局装置と、前記海底機器と通信可能な第2端局装置と、前記第1端局装置及び前記第2端局装置のうちの一方を優先順位に基づいて選択し、選択された一方に対して前記海底機器への制御信号を出力するように指示する制御装置とを備えるものである。
 本発明の一態様に係る海底機器制御装置は、海底機器と通信可能な第1端局装置及び第2端局装置に対応する優先順位を保持する保持部と、前記優先順位に応じて、前記第1端局装置又は前記第2端局装置のいずれか一方を選択する選択部と、選択された端局装置に対して、前記海底機器への制御信号を出力するように指示する指示部とを備えるものである。
 本発明の一態様に係る海底機器の制御方法は、海底機器と通信可能な第1端局装置及び第2端局装置に対応する優先順位に応じて、前記第1端局装置又は前記第2端局装置のいずれか一方を選択し、
 選択された端局装置に対して、前記海底機器への制御信号を出力するように指示する。
 本発明の一態様に係るプログラムは、海底機器と通信可能な第1端局装置及び第2端局装置に対応する優先順位に応じて、前記第1端局装置又は前記第2端局装置のいずれか一方を選択する処理と、選択された端局装置に対して、前記海底機器への制御信号を出力するように指示する処理とをコンピュータに実行させる。
 本発明によれば、海底機器を適切に動作させつつ、ユーザの作業を簡素化することが可能な海底ケーブルシステム、制御装置、海底機器の制御方法及びプログラムを提供することができる。
実施の形態に係る海底ケーブルシステムの構成を示す図である。 実施の形態に係る制御装置の構成を示す図である。 実施例に係る海底ケーブルシステムの動作例を示すフロー図である。 実施の形態に係る海底ケーブルシステムの他の構成を示す図である。 実施例に係る海底ケーブルシステムの構成を示す図である。 図5の海底ケーブルシステムにおいて、ケーブル障害が発生した場合を示す図である。 図6のときの制御信号の伝送ルートを示す図である。 図5の海底ケーブルシステムにおいて、光伝送装置とEMSとの間に接続異常が発生した場合を示す図である。 図8の場合の制御信号の伝送ルートを示す図である。
 以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU、メモリ、その他の回線で構成することができる。また、本発明は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。従って、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
 また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-Transitory computer Readable Medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage Medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(Transitory computer Readable Medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 図1は、実施の形態に係る海底ケーブルシステム10の構成を示す図である。図1に示すように、海底ケーブルシステム10は、第1端局装置1、第2端局装置2、海底機器11、制御装置20を備えている。第1端局装置1、第2端局装置2は、陸上に設けられる陸揚げ局の局舎内に設けられている。海底機器11は海底に配置され、第1端局装置1と第2端局装置2との間に海底ケーブルを介して接続される。なお、ここでは、1つの海底機器のみを図示しているが、長距離伝送システムである海底ケーブルシステムは、複数の海底機器を、海底ケーブルを介して数珠繋ぎにした構成が用いられる。制御装置20は、第1端局装置1が配置されている局舎及び第2端局装置が配置されている局舎と異なる建物に配置されている。また、制御装置20は、第1端局装置1が配置されている局舎又は第2端局装置が配置されている局舎に配置されていても良い。
 図1に示す例では、海底機器11は光増幅器である。光増幅器は、第1端局装置1又は第2端局装置2から入力された光信号を増幅し、光信号の伝送に伴う光損失を補償する。光増幅器は、制御装置20からの制御信号によって制御される。例えば、制御装置20は、光増幅器の光信号の増幅率(利得)を制御することができる。第1端局装置1及び第2端局装置2は、海底ケーブルを介して海底機器11と通信可能である。第1端局装置1及び第2端局装置2は、制御装置20から受信した制御信号を光信号に変換して海底機器11に出力する。
 図2は、実施の形態に係る制御装置20の構成を示す図である。制御装置20は、保持部21、選択部22、指示部23を備えている。保持部21は、1つの海底機器11に対して、第1端局装置1及び第2端局装置2に対応する優先順位を保持する。具体的には、保持部21は、第1端局装置1に対応する第1優先度及び第2端局装置2に対応する第2優先度によって定められる優先順位を保持する。なお、第1優先度は、例えば、第1端局装置1から海底機器11までの距離に応じて決定され得る。また、第2優先度は、例えば、第2端局装置2から海底機器11までの距離に応じて決定され得る。例えば、海底機器11までの距離が短い端局装置ほど優先度を高くすることができる。第1優先度及び第2優先度は、制御装置20により決定される。また、第1優先度及び第2優先度は、外部の装置(不図示)から制御装置20に与えられても良い。
 選択部22は、保持部21に保持された優先順位に応じて、前記第1端局装置1又は前記第2端局装置2のいずれか一方を選択する。指示部23は、選択部22により選択された第1端局装置1又は第2端局装置2に対して海底機器11への制御信号を出力するように指示する。
 海底ケーブルシステム10の動作例について、図3を参照して説明する。制御装置20は、不図示のインターフェースからユーザの操作を受け付け、該操作に基づいて海底機器11に対する制御情報を生成する(S101)。制御装置20の選択部22は、優先順位に基づいて、第1端局装置1及び第2端局装置2の何れか一方を選択する(S102)。この説明においては、第1端局装置1が選択部22によって選択されたものとする。
 指示部23は、生成された制御情報を、電気回線を介して第1端局装置1に出力する。これによって、指示部23は、第1端局装置1に対して、海底機器11への制御信号を出力するように指示する(S103)。第1端局装置1は、制御装置20の指示部23から受信した制御情報で光を変調することで光信号を生成し、該光信号を海底機器11に出力する(S104)。海底機器11は、第1端局装置1からの光信号を受信し、該光信号に含まれる制御情報に従って動作する(S105)。
 上記の動作例のうち、第1端局装置1での処理(S104)の第1の具体例を説明する。第1端局装置1は、特定の波長の光を制御情報で変調することで光信号を生成し、生成した光信号を、異なる波長の光信号と多重化することで波長多重光信号を生成する。第1端局装置1は、生成した波長多重光信号を海底機器11に出力する。
 上記の動作例のうち、第1端局装置1での処理(S104)の第2の具体例を説明する。第1端局装置1は、波長の異なる複数の光信号を多重化し、波長多重光信号を生成する。第1端局装置1は、生成した波長多重光信号を制御情報に基づいて変調することにより、制御情報に応じた低周波成分を波長多重光信号に重畳する。第1端局装置1は、低周波成分が重畳された波長多重光信号を海底機器11に出力する。
 このように、実施の形態では、海底機器11に対して制御信号を出力可能な第1端局装置1及び第2端局装置2のうち、優先度の高い一方から制御信号を出力させることができる。これにより、海底機器11を適切に動作させつつ、ユーザによる作業を簡素化することが可能となる。
 図4は、実施の形態に係る海底ケーブルシステムの他の構成を示す図である。図4に示す例では、図1に示す海底ケーブルシステム10の構成に加えて、海底機器11と通信可能な第3端局装置3がさらに設けられている。ここでは、海底機器11は光分岐装置である。光分岐装置は、海底に敷設され、第1端局装置1と第2端局装置2との間の海底ケーブルの途中に挿入される。光分岐装置と第3端局装置3とは海底ケーブルによって接続されている。
 第1端局装置1、第2端局装置2、第3端局装置3との間では、海底ケーブルを用いて波長多重(WDM:wavelength division multiplexing)光信号の伝送が行われる。光分岐装置は、ある端局装置からの信号光を、残りの2つの端局装置へ分岐して出力することができる。
 光分岐装置は、自装置が保持する設定値に基づいて波長分離を行う。なお、この設定値は、制御装置20からの制御信号に基づいて変更することが可能である。波長分離には、例えば、波長選択スイッチ(WSS:wavelength selective switch)が用いられる。例えば、波長λ1、λ2及びλ3を含むWDM光信号が第1端局装置1から光分岐装置に入力されたとき、光分岐装置は、WDM光信号を波長分離し、波長λ1の光信号及び波長λ2の光信号を第2端局装置2へ出力し、波長λ3の光信号を第3端局装置3へ出力することができる。
 上述の波長λ1、λ2及びλ3を含むWDM光信号の分離において、制御信号によって波長切替が指示された場合、光分岐装置は、波長λ1、λ2の光信号を第2端局装置2へ出力し、波長λ3の光信号を第3端局装置3へ出力する第1状態から、波長λ1の光信号を第2端局装置2へ出力し、波長λ2、λ3の光信号を第3端局装置3へ出力する第2状態へと切り替えることができる。
 なお、光分岐器は、ROADM(reconfigurable optical add/drop multiplexer)機能を有していてもよい。例えば、WDM光信号の一部が、WSSにより分岐(Drop)され、また、他の端局装置に伝送される新たな光信号が挿入(Add)され、再び海底ケーブルに出力されてもよい。図4に示す例においても、図2に示す制御装置20が用いられる。これにより、優先度の高い一方の端局装置から制御信号を出力させることができる。
 以下、具体的な実施例について、図5~9を参照して説明する。図5は、実施例に係る海底ケーブルシステムの構成を示す図である。実施例では、4つの陸揚げ局(A局、B局、C局、D局)が設けられている。各陸揚げ局(A局、B局、C局、D局)には、それぞれ光伝送装置1a~1d、機器監視装置(EMS:Element Management System)2a~2dが設けられている。
 各EMS2a~2dは、それぞれの局舎内の光伝送装置1a~1dを監視制御する。なお、ここでは図示していないが、各局舎には、海底機器へ電力供給するための給電装置等の他の装置も設置される。各EMS2a~2dは、これら他の装置の運用状態を監視制御することも可能である。光伝送装置1a~1dは、それぞれEMS2a~2dから受信した海底機器の制御信号(電気信号)を光信号に変換して海底ケーブルに伝送する。
 A局の光伝送装置1aとB局の光伝送装置1bとの間の海底ケーブルの伝送路上には、海底機器の一例として、2つの光分岐装置(図5中、BU(Branching Unit)1と示す第1光分岐装置12及びBU2と示す第2光分岐装置13)が設けられている。第1光分岐装置12、第2光分岐装置13は、海底に配置される。また、第1光分岐装置12には、海底ケーブルを介してC局の光伝送装置1cが接続されており、第2光分岐装置13には、海底ケーブルを介してD局の光伝送装置1dが接続されている。
 各局舎からの監視情報は、ネットワーク32を介して、管制センター(NOC:Network Operation Center)30に転送され集中監視・管理される。NOC30には、統合監視制御装置(UMS:Unified Management System)31が設けられている。UMS31は、各EMS2a~2dと連携してシステム全体を監視・制御する。
 このような海底ケーブルシステムにおいて、海底機器を制御するための制御信号は、UMS31から送信され、該海底機器に対して制御信号を送信するよう決定された光伝送装置に、対応するEMSを経由して到達する。そして、光伝送装置が、制御信号を光信号に変換して海底機器に伝送する。
 UMS31は、制御信号を送信するよう決定された光伝送装置が設置される局舎内のEMSを指定して制御信号を送信する。しかしながら、海底ケーブル障害等により海底機器と光伝送装置との間が切断されている場合や、光伝送装置とEMSの間の通信ができない場合、EMSとUMS31の間の通信ができない場合には、UMS31が送信した制御信号は海底機器に伝達できないこととなる。
 この場合、海底ケーブルシステムの保守者は、システム全体の障害状況に基づき適切な制御信号送信局を選定し、障害を回避できるルートで制御信号を出力する必要があった。これらの作業は、保守者のスキルレベルに依存する面もあり、常に一定の保守品質を確保するためには、システムによる自動判断・自動処理が望まれていた。
 このような問題を解決するために、本実施例では、UMS31としては、図2に示す構成を含む制御装置が用いられる。すなわち、UMS31は、各海底機器に対して制御信号を送信する端局装置を決定するための送信局優先順位を予め保持している。本実施例では、第1光分岐装置12に対する送信局優先順位は優先度の高い順にC局>A局>B局とし、第2光分岐装置13に対する送信局優先順位は優先度の高い順からD局>B局>A局とする。
 図5に示す実施例では、UMS31は、図2に示す構成に加えて、各光伝送装置1a~1dを介した、第1光分岐装置12又は第2光分岐装置13への制御信号の中継が実行できるか否かを示す障害状況を把握する。ここでいう中継とは、光伝送装置1a~1dの各々が、UMS31から入力された制御信号に含まれている情報で光を変調し、第1光分岐装置12又は第2光分岐装置13に変調された光信号を出力することを指す。UMS31は、各EMS2a~2dから収集した警報情報を元に、システム全体の障害状況(警報状況)を保持しており、ケーブル障害箇所(ケーブルの断線等)を把握する。
 さらに、UMS31は各EMS2a~2dに対し常時死活監視を実施する。また、各EMS2a~2dは配下の光伝送装置1a~1dに対し常時死活監視を実施する。また、UMS31は、障害状況に基づいて、保持部に保持される各光伝送装置1a~1dの優先順位を変更する。
 図5では、海底ケーブルのいずれの箇所にも障害は発生しておらず、また、UMS31と各EMS2a~2d間、各EMS2a~2dとその配下の光伝送装置1a~1d間の接続状態にも異常がないものとする。このような場合において、保守者が第1光分岐装置12の設定変更を実施する場合、保守者はUMS31を操作し、第1光分岐装置12に対する制御信号を出力する。UMS31から出力された制御信号は、上述の送信局優先順位に従い、C局のEMS2cに送られる。EMS2cは自局内の光伝送装置1cに制御信号を転送する。
 制御信号を受信した光伝送装置1cでは、受信した制御信号を光信号に変換し、海底ケーブルに送出する。海底ケーブルに送出された制御信号(光信号)は海底ケーブルを介して、第1光分岐装置12に到達する。制御信号(光信号)を受信した第1光分岐装置12は、その制御信号に応じた処理を実行する。この制御信号の流れが、図5において矢印で示される。
 ここで、図6、7を参照して、図5の海底ケーブルシステムにおいて、ケーブル障害が発生した場合にについて説明する。図6において「×」記号で示すように、第1光分岐装置12と光伝送装置1cとの間の海底ケーブルに障害が発生したものとする。すなわち、制御信号を中継していたC局が制御信号を中継できなくなる。
 ケーブル障害の検出方法として、例えば、光伝送装置から海底機器への光信号の後方散乱光を監視し、後方散乱光が検出されなくなったとき、海底ケーブルが断線したことを検出することができる。または、光伝送装置から海底機器への光信号の反射光又は折り返し光を監視し、光が検出されなくなったとき、海底ケーブルが断線したことを検出することも可能である。
 この場合、ケーブル障害の影響を受けた光伝送装置は海底ケーブルの断線等の回線障害を検出し、上位のEMSに対して警報情報を通知する。光伝送装置からの警報情報を受信したEMSは、これらの警報情報をUMS31に転送する。これにより、UMS31にシステム全体の警報情報が集約される。UMS31は、これらの警報情報に基づいて、C局と第1光分岐装置12との間にケーブル障害が発生していることを特定する。これにより、UMS31は、C局を経由して第1光分岐装置12に制御信号を送信できないことを把握する。
 UMS31は、制御信号を中継していたC局の光伝送装置1cが制御信号を中継できなくなったときに、第1光分岐装置12に対する送信局優先順位を「C局>A局>B局」から「A局>B局」に変更する。すなわち、保持部21に保持される優先順位から中継できなくなった光伝送装置に対応する優先度を削除する。この状況において、保守者が第1光分岐装置12の設定変更を実施する場合、UMS31は、送信局優先順位に応じて、A局の光伝送装置1aを選択する。すなわち、UMS31は、A局の光伝送装置1aとB局の光伝送装置1bのうち、C局の光伝送装置1cの次に優先度が高かったA局の光伝送装置1aを選択する。
 これにより、UMS31から発行された制御信号はA局のEMS2aに送られ、EMS2aは自局内の光伝送装置1aに制御信号を転送する。光伝送装置1aは、受信した制御信号を光信号に変換して、海底ケーブルに送信する。海底ケーブルに送出された制御信号(光信号)は海底ケーブルを介して、第1光分岐装置12に到達する。制御信号(光信号)を受信した第1光分岐装置12は、その制御信号に応じた処理を実行する。この制御信号の流れが、図7において矢印で示される。
 次に、図8、9を参照して、図5の海底ケーブルシステムにおいて、光伝送装置とEMSとの間に接続異常が発生した場合について説明する。図8において「×」記号で示すように、B局の光伝送装置1bとEMS2bとの間に接続異常が発生したものとする。
 この場合、B局のEMS2bは死活監視を行い、EMS2bと光伝送装置1b間の接続異常(B局の故障)を検出し、その情報をUMS31に通知する。UMS31は、EMS2bから通知された情報に基づいて、EMS2bと光伝送装置1bの間において接続異常が発生していることを認識する。ここで、UMS31はB局経由で第1光分岐装置12及び第2光分岐装置13に制御信号を送信できないことを把握する。UMS31は、第1光分岐装置12に対する送信局優先順位を「C局>A局>B局」から「C局>A局」に変更し、第2光分岐装置13に対する送信局優先順位を「D局>B局>A局」から「D局>A局」に変更する。
 この状況において、保守者が第1光分岐装置12の設定変更を実施する場合、UMS31は、送信局優先順位に応じて、C局の光伝送装置1cを選択する。UMS31から発行された制御信号は、EMS2cに送られ、EMS2cは自局内の光伝送装置1cに制御信号を転送する。光伝送装置1cは、受信した制御信号を光信号に変換して、海底ケーブルに送信する。海底ケーブルに送出された制御信号(光信号)は海底ケーブルを介して、第1光分岐装置12に到達する。制御信号(光信号)を受信した第1光分岐装置12は、その制御信号に応じた処理を実行する。この制御信号の流れが、図9において実線の矢印で示される。
 一方、保守者が第2光分岐装置13の設定変更を実施する場合、UMS31は、送信局優先順位に応じて、D局の光伝送装置1dを選択する。UMS31から発行された制御信号は、EMS2dに送られ、EMS2dは自局内の光伝送装置1dに制御信号を転送する。光伝送装置1dは、受信した制御信号を光信号に変換して、海底ケーブルに送信する。海底ケーブルに送出された制御信号(光信号)は海底ケーブルを介して、第2光分岐装置13に到達する。制御信号(光信号)を受信した第2光分岐装置13は、その制御信号に応じた処理を実行する。この制御信号の流れが、図9において破線の矢印で示される。
 以上説明したように、実施例では、海底ケーブルシステムにおいて、制御装置が把握するシステム全体の障害状況(警報状況)に基づき、海底機器を制御するための制御信号を中継する端局装置(光伝送装置)の優先順位を変更することができる。この変更された優先順位に従って、制御信号を送信する端局装置を決定し、決定した端局装置に制御信号を送信することにより、自動的に障害箇所を回避したルートで信号を海底機器に伝送することが可能となる。
 これにより、ケーブル障害等により海底機器まで制御信号が伝送されない場合、システムが自動的に障害を回避するルートを指定して制御信号を送信することが可能となる。その結果、従来このような場合に、保守者が介入していた状況判断や操作が不要となり、保守者のスキルに依存する属人性も排除することが可能となる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 海底機器と通信可能な第1端局装置及び第2端局装置に対応する優先順位を保持する保持部と、
 前記優先順位に応じて、前記第1端局装置又は前記第2端局装置のいずれか一方を選択する選択部と、
 選択された端局装置に対して、前記海底機器への制御信号を出力するように指示する指示部と、
 を備える、
 海底機器制御装置。
(付記2)
 前記海底機器は、光分岐装置であり、
 前記保持部は、前記海底機器と通信可能な第3端局装置に対応する優先順位をさらに保持し、
 前記第1端局装置、前記第2端局装置又は前記第3端局装置を用いた、前記海底機器への前記制御信号の出力が実行できるか否かを示す障害状況を把握する障害検出部と、
 前記障害状況に基づいて、前記保持部に保持される前記優先順位を変更する優先順位変更部と、
 をさらに備える、
 付記1に記載の海底機器制御装置。
(付記3)
 前記障害検出部が、前記第1端局装置、前記第2端局装置又は前記第3端局装置のいずれかが前記制御信号を出力できなくなったと判断したとき、前記優先順位変更部は優先順位から前記制御信号を出力できなくなった端局装置を削除する、
 付記2に記載の海底機器制御装置。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2019年9月2日に出願された日本出願特願2019-159467を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 第1端局装置
 2 第2端局装置
 3 第3端局装置
 1a~1d 光伝送装置
 2a~2d EMS
 10 海底ケーブルシステム
 11 海底機器
 12 第1光分岐装置
 13 第2光分岐装置
 20 制御装置
 21 保持部
 22 選択部
 23 指示部
 30 NOC
 31 UMS
 32 ネットワーク

Claims (10)

  1.  海底機器と、
     前記海底機器と通信可能な第1端局装置と、
     前記海底機器と通信可能な第2端局装置と、
     前記第1端局装置及び前記第2端局装置のうちの一方を優先順位に基づいて選択し、選択された一方に対して前記海底機器への制御信号を出力するように指示する制御装置と、
     を備える、
     海底ケーブルシステム。
  2.  前記優先順位は、前記第1端局装置から前記海底機器までの距離と、前記第2端局装置から前記海底機器までの距離とに基づく、
     請求項1に記載の海底ケーブルシステム。
  3.  前記海底機器と通信可能な第3端局装置をさらに備え、
     前記制御装置は、前記制御信号を出力していた前記第3端局装置が前記制御信号を出力できなくなったときに、前記第1端局装置及び前記第2端局装置の何れか一方を前記優先順位に応じて用いる、
     請求項1又は2に記載の海底ケーブルシステム。
  4.  前記第3端局装置は、前記優先順位において前記第1端局装置及び前記第2端局装置よりも上位であり、
     前記制御装置は、前記第1端局装置及び前記第2端局装置のうち前記第3端局装置の次に高い方の端局装置を用いる、
     請求項3に記載の海底ケーブルシステム。
  5.  前記制御装置は、前記第3端局装置と前記海底機器との間の海底ケーブルが断線したことを検出したときに、前記第3端局装置が前記制御信号を出力できなくなったと判断する、
     請求項3又は4に記載の海底ケーブルシステム。
  6.  前記制御装置は、前記第3端局装置が故障したときに、前記第3端局装置が前記制御信号を出力できなくなったと判断する、
     請求項3又は4に記載の海底ケーブルシステム。
  7.  前記海底機器は、光分岐装置である、
     請求項1~6のいずれか1項に記載の海底ケーブルシステム。
  8.  海底機器と通信可能な第1端局装置及び第2端局装置に対応する優先順位を保持する保持手段と、
     前記優先順位に応じて、前記第1端局装置又は前記第2端局装置のいずれか一方を選択する選択手段と、
     選択された端局装置に対して、前記海底機器への制御信号を出力するように指示する指示手段と、
     を備える、
     海底機器制御装置。
  9.  海底機器と通信可能な第1端局装置及び第2端局装置に対応する優先順位に応じて、前記第1端局装置又は前記第2端局装置のいずれか一方を選択し、
     選択された端局装置に対して、前記海底機器への制御信号を出力するように指示する、
     海底機器の制御方法。
  10.  海底機器と通信可能な第1端局装置及び第2端局装置に対応する優先順位に応じて、前記第1端局装置又は前記第2端局装置のいずれか一方を選択する処理と、
     選択された端局装置に対して、前記海底機器への制御信号を出力するように指示する処理と、
     をコンピュータに実行させるプログラムが格納された、非一時的なコンピュータ可読媒体。
PCT/JP2020/032824 2019-09-02 2020-08-31 海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及び非一時的なコンピュータ可読媒体 WO2021044993A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021543749A JPWO2021044993A5 (ja) 2020-08-31 海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及びプログラム
CN202080060805.9A CN114342324A (zh) 2019-09-02 2020-08-31 海底线缆系统、海底设备控制装置、用于控制海底设备的方法以及非暂时性计算机可读介质
EP20861653.2A EP4027589A1 (en) 2019-09-02 2020-08-31 Submarine cable system, submarine appliance control device, method for controlling submarine appliance, and non-transitory computer-readable medium
US17/633,644 US20220321236A1 (en) 2019-09-02 2020-08-31 Submarine cable system, submarine device control apparatus, method for controlling submarine device, and non-transitory computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019159467 2019-09-02
JP2019-159467 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021044993A1 true WO2021044993A1 (ja) 2021-03-11

Family

ID=74853215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032824 WO2021044993A1 (ja) 2019-09-02 2020-08-31 海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及び非一時的なコンピュータ可読媒体

Country Status (4)

Country Link
US (1) US20220321236A1 (ja)
EP (1) EP4027589A1 (ja)
CN (1) CN114342324A (ja)
WO (1) WO2021044993A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047490A1 (ja) * 2021-09-22 2023-03-30 日本電気株式会社 制御装置、制御システム、制御方法、及び非一時的なコンピュータ可読媒体
WO2023047510A1 (ja) * 2021-09-24 2023-03-30 日本電気株式会社 海底光通信システム
WO2023166587A1 (ja) * 2022-03-02 2023-09-07 日本電気株式会社 陸揚げ局特定装置、陸揚げ局特定方法及び非一時的な記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289494A (ja) 1996-04-22 1997-11-04 Kokusai Denshin Denwa Co Ltd <Kdd> 波長多重光海底ケーブルネットワーク用線路監視装置
JP2010226167A (ja) 2009-03-19 2010-10-07 Nec Corp 光信号レベル調整システム及びこれにおける情報解析・制御信号生成装置並びに情報解析・制御信号生成方法
WO2019005383A1 (en) * 2017-06-30 2019-01-03 Conmed Corporation FILTER CARTRIDGE ASSEMBLIES
JP2019159467A (ja) 2018-03-08 2019-09-19 東京瓦斯株式会社 空家判定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321844A (ja) * 1994-05-24 1995-12-08 Nissin Electric Co Ltd 回線接続管理装置および回線接続管理システム
US20020080447A1 (en) * 2000-12-21 2002-06-27 Julian Fells Transmission system with enhanced repeaters
US6556319B2 (en) * 2001-05-08 2003-04-29 Dorsal Networks, Inc. Split redundant trunk architecture using passive splitters and path switching
US20030030860A1 (en) * 2001-08-13 2003-02-13 John Mellert Redundant line unit monitoring architecture
CA2415598A1 (en) * 2002-01-11 2003-07-11 Nec Corporation Multiplex communication system and method
JP6007983B2 (ja) * 2012-07-02 2016-10-19 日本電気株式会社 光分岐装置及び光分岐方法
CN106464839A (zh) * 2014-03-31 2017-02-22 株式会社理光 传输终端、传输系统、以及用于选择中继装置的方法
JP2016006951A (ja) * 2014-05-28 2016-01-14 株式会社リコー 伝送管理システム、伝送システム、中継装置の選択方法、プログラム、及びメンテナンスシステム
US10110466B2 (en) * 2015-11-23 2018-10-23 Tyco Electronics Subsea Communications Llc Optical communication system with distributed wet plant manager
CN108702177B (zh) * 2016-02-17 2020-03-06 日本电气株式会社 接地电路和接地方法
US9755734B1 (en) * 2016-06-09 2017-09-05 Google Inc. Subsea optical communication network
JP2018064192A (ja) * 2016-10-13 2018-04-19 富士通株式会社 管理装置及び波長設定方法
WO2019065383A1 (ja) * 2017-09-28 2019-04-04 日本電気株式会社 海底分岐装置、光海底ケーブルシステム、光通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289494A (ja) 1996-04-22 1997-11-04 Kokusai Denshin Denwa Co Ltd <Kdd> 波長多重光海底ケーブルネットワーク用線路監視装置
JP2010226167A (ja) 2009-03-19 2010-10-07 Nec Corp 光信号レベル調整システム及びこれにおける情報解析・制御信号生成装置並びに情報解析・制御信号生成方法
WO2019005383A1 (en) * 2017-06-30 2019-01-03 Conmed Corporation FILTER CARTRIDGE ASSEMBLIES
JP2019159467A (ja) 2018-03-08 2019-09-19 東京瓦斯株式会社 空家判定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047490A1 (ja) * 2021-09-22 2023-03-30 日本電気株式会社 制御装置、制御システム、制御方法、及び非一時的なコンピュータ可読媒体
WO2023047510A1 (ja) * 2021-09-24 2023-03-30 日本電気株式会社 海底光通信システム
WO2023166587A1 (ja) * 2022-03-02 2023-09-07 日本電気株式会社 陸揚げ局特定装置、陸揚げ局特定方法及び非一時的な記録媒体

Also Published As

Publication number Publication date
JPWO2021044993A1 (ja) 2021-03-11
US20220321236A1 (en) 2022-10-06
EP4027589A1 (en) 2022-07-13
CN114342324A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2021044993A1 (ja) 海底ケーブルシステム、海底機器制御装置、海底機器の制御方法及び非一時的なコンピュータ可読媒体
US9197347B2 (en) Optical transmission system and noise suppression method
US10193651B2 (en) Optical network controller and optical network control method
CN107408981B (zh) 光学复用和解复用设备以及控制光学复用和解复用设备的方法
JPWO2017013875A1 (ja) 経路切替装置、経路切替システムおよび経路切替方法
JP2017005384A (ja) 光ネットワークシステム、光伝送装置及び検出方法
US9866345B2 (en) Device, system and method for transmitting wavelength division multiplexed optical signal
JPWO2009060522A1 (ja) 光送受信モジュールおよびその管理制御方法,光送受信装置ならびに波長多重光送受信装置
JP7359214B2 (ja) 海底光通信システム
US11817907B2 (en) Optical transmission device and optical transmission method
US11942991B2 (en) Optical submarine branching apparatus, optical submarine cable system, switching method, non-transitory computer-readable medium
JPWO2020175020A1 (ja) 光分岐結合装置及び光分岐結合方法
CN111466089B (zh) 海底光学传送装置和海底光学通信系统
US11705971B2 (en) Submarine optical communication system and submarine branching apparatus
JP2005286736A (ja) 波長切替制御方法、可変波長伝送装置および可変波長伝送システム
JP2022002402A (ja) 中継器及び中継方法
US20240154692A1 (en) Light control device, method for controlling light control device, and recording medium
JP4488813B2 (ja) 直接的に接続された光学素子を管理するための方法及びシステム
JP2006186538A (ja) 光伝送装置及び光伝送路切換方法
WO2020195737A1 (ja) 光分岐挿入装置および光伝送方法
US20230101846A1 (en) Optical transmission system, optical device, and optical transmission method
WO2020179182A1 (ja) 光合分波装置、光海底ケーブルシステム、光合分波方法及び非一時的なコンピュータ可読媒体
JP2015070421A (ja) 光伝送装置、光伝送システムおよび光伝送方法
CN117397182A (zh) 通信方法和通信系统
JP2012147124A (ja) 波長多重光クロスコネクト装置および光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861653

Country of ref document: EP

Effective date: 20220404