JP6973495B2 - 海底分岐装置及び海底分岐方法 - Google Patents

海底分岐装置及び海底分岐方法 Download PDF

Info

Publication number
JP6973495B2
JP6973495B2 JP2019544991A JP2019544991A JP6973495B2 JP 6973495 B2 JP6973495 B2 JP 6973495B2 JP 2019544991 A JP2019544991 A JP 2019544991A JP 2019544991 A JP2019544991 A JP 2019544991A JP 6973495 B2 JP6973495 B2 JP 6973495B2
Authority
JP
Japan
Prior art keywords
power supply
power
receiving port
circuit
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019544991A
Other languages
English (en)
Other versions
JPWO2019065385A1 (ja
Inventor
欣也 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2019065385A1 publication Critical patent/JPWO2019065385A1/ja
Application granted granted Critical
Publication of JP6973495B2 publication Critical patent/JP6973495B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/02Installations of electric cables or lines in or on the ground or water laid directly in or on the ground, river-bed or sea-bottom; Coverings therefor, e.g. tile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

本発明は海底分岐装置及び海底分岐方法に関し、特に、給電路の障害時において給電路の切り替えを可能とする海底分岐装置及び海底分岐方法に関する。
海底ケーブルシステムでは、ネットワークのメッシュ化への対応や建設費の抑制を目的として、海底に設置された複数の海底分岐装置(Branching Unit、BU)及び複数の陸上局からなるネットワークが構築される。このような海底ケーブルシステムで用いられる海底中継器及び海底分岐装置は、一般的に、陸上局に設置された給電装置からの電力供給により動作する。
図16は、BUが用いられた一般的な海底ケーブルシステム900の給電路を示す図である。海底ケーブルシステム900は、BU901及び中継器902を備える。陸上局が備える給電装置911〜913は定電流電源であり、BU901及び中継器902には、これらの定電流電源により電力が供給される。BU901は、切替回路903を備える。
図17〜19は、BU901の給電路を示す第1の図乃至第3の図である。BU901は、給電装置911〜913のいずれかからの制御指示によって給電路の構成を変更できる。BU901の切替回路903は制御指示を受信し、切替回路903が備えるリレーを動作させることによって、給電路を切り替える。
図17はBU901がブランチA及びブランチBの給電路により給電される場合を示す。例えば、ブランチAに接続された給電装置911は正極性であり、ブランチBに接続された給電装置912は負極性である。この場合、給電電流は、ブランチAから流入し、BU901に給電し、ブランチBへ流出する。この際、ブランチA及びブランチBに設置された中継器902にも給電される。給電は定電流で行われるため、ブランチAの電流とブランチBの電流とは等しい。ブランチCは給電装置913に接続されている。図17ではブランチCはブランチA及びブランチBとは接続されておらず、ブランチCの給電電流はシーアース(Sea Earth、SE)に接続され、接地されている。
図18は、BU901のブランチAの「X」印の箇所において給電路に地絡障害が生じた後の給電路の例を示す。地絡障害は、給電路の電線が海中で接地される障害である。すなわち、地絡障害箇所はシーアースとなる。地絡障害が発生した時点では、「シーアース−地絡障害箇所−BU901−ブランチB−給電装置912」という経路の給電路が構成されることで、BU901に電力が供給される。すると、切替回路903は、障害を検出した給電装置911〜913のいずれかから受信した制御指示に基づいてBU901内部の給電路を図18のように切り替える。すなわち、切替回路903はブランチBとブランチCとを接続して給電路を再構成するとともに、ブランチAの障害箇所をBU901においてシーアースと接続する。このような接続により、BU901への電力供給が可能となるとともに、障害箇所が切替回路903及び給電路から切り離される。
図19は、BU901のブランチBにおいて給電路の地絡障害が生じた後の給電路の例を示す。この場合には、切替回路903はブランチAとブランチCとを接続して給電路を再構成するとともに、ブランチBの障害箇所をBU901においてシーアースと接続する。給電路の一方のみに地絡障害が発生した場合には、BU901は、図18又は図19のように給電路を切り替える。
本発明に関連して、特許文献1〜4には、給電路の切り替えを行う切替回路が記載されている。
特開平3−076322号公報 特開平4−245816号公報 特開平9−181654号公報 国際公開第2013/002391号
図20及び図21は、切替回路903に電力が供給されない障害の例を示す第1の図及び第2の図である。切替回路903に電力が供給されない場合にはリレーを動作させることができず、給電路の切り替えができない。例えば、ブランチA及びブランチBの両方で給電路の地絡障害が発生すると(図20)、BU901は、陸上局の給電装置911又は912と切替回路903とを含む給電路を形成できない。少なくとも一方の給電路の電線がオープンとなるオープン障害が発生した場合(図21)も同様である。その結果、障害の発生後は切替回路903に電力が供給されず、給電路の切り替え制御が不可能となる。
(発明の目的)
本発明は、上述のような給電路の地絡障害やオープン障害が発生しても給電路の切り替え制御が可能な技術を提供することを目的とする。
本発明の海底分岐装置は、
第1乃至第3の受電口の間に形成される複数の給電路を切り替える切替手段と、
前記第1の受電口と前記第2の受電口の間に形成される給電路から給電を受け、前記切替手段を制御する制御手段と、
前記第1の受電口と前記第2の受電口との間に形成される給電路から前記制御手段に給電されない場合、前記第3の受電口とシーアースとの間に前記制御手段を接続する接続手段と、
を備える。
本発明の海底分岐方法は、第1乃至第3の受電口の間に形成される複数の給電路を切り替える海底分岐方法であって、
前記第1の受電口と前記第2の受電口との間に形成される給電路から給電を受けて、前記複数の給電路を切り替え制御し、
前記第1の受電口と前記第2の受電口との間に形成される給電路から前記制御手段に給電されない場合、接続手段によって、前記第3の受電口とシーアースとの間に形成される給電路から給電を受けて、前記複数の給電路を切り替え制御する、
ことを含む。
本発明は、給電路の地絡障害やオープン障害が発生しても給電路の切り替え制御が可能な海底分岐装置及び海底分岐方法を提供する。
第1実施形態の海底ケーブルシステム100の構成例を示す図である。 制御回路122と接続回路123との接続を概念的に説明する図である。 給電回路120の例を示す図である。 各リレーの内部の接続例を説明する図である。 整流回路511の回路図の例である。 陸上局701からBU101へ通知される、リレーの制御信号のパスの例を示す図である。 給電回路120において、ブランチAからブランチBへ給電電流が流れる、正常な場合を説明する図である。 ブランチA及びブランチBを経由する給電が断となった場合の給電回路の動作を説明する第1の図である。 ブランチA及びブランチBを経由する給電が断となった場合の給電回路の動作を説明する第2の図である。 ブランチA及びブランチBを経由する給電が断となった場合の給電回路の動作を説明する第3の図である。 給電回路120の動作例を示すフローチャートである。 ブランチCを経由する給電路の切り替えを説明する第1の図である。 ブランチCを経由する給電路の切り替えを説明する第2の図である。 ブランチCを経由する給電路の切り替えを説明する第3の図である。 第2実施形態の海底分岐装置800の構成例を示すブロック図である。 海底分岐装置(BU)が用いられた一般的な海底ケーブルシステム900の給電路を示す図である。 BU901の給電路を示す第1の図である。 BU901の給電路を示す第2の図である。 BU901の給電路を示す第3の図である。 切替回路903に電力が供給されない障害の例を示す第1の図である。 切替回路903に電力が供給されない障害の例を示す第2の図である。
本発明の実施形態について以下に説明する。実施形態の図面において、信号あるいは電流の向きを示す矢印は説明のための例を示すものであり、信号あるいは電流の向きを限定しない。また、各図面において既出の要素には同一の参照符号を付して、重複する説明は省略する。各実施形態は、本発明にかかる海底分岐方法を用いている。
(第1実施形態)
図1は、本発明の第1実施形態の海底ケーブルシステム100の構成例を示す図である。海底ケーブルシステム100は、海底分岐装置(BU)101、中継器102、給電装置103〜105を備える通信システムである。BU101は、海底に設置された、海底ケーブルを分岐する装置である。BU101は、第1乃至第3の受電口601〜603を備える。各受電口は導体接続線であり、ブランチA、ブランチB、ブランチCの3方向の海底ケーブル中の給電線と蝋付け、圧着などによって接続される。
ブランチA、B、Cは、それぞれ給電装置103、104、105と接続される。中継器102は、海底ケーブルを伝搬する光信号及び電気信号を中継する。中継器102は必要な場合にのみ設置される。給電装置103〜105は、陸上局に備えられた定電流電源装置であり、BU101及び中継器102に電力を供給する。給電装置103〜105を収容する陸上局は、端局とも呼ばれる。海底ケーブルは光ファイバ伝送路及び給電線を含むケーブルである。給電線は、給電路に用いられる電線である。BU101は、光ファイバケーブルを伝搬する光信号をブランチA〜Cの間で分岐あるいは合流させるとともに、給電装置103〜105の少なくとも1つから給電を受ける。
BU101は、例えば、ブランチAで受信した光信号を、海底ケーブルシステム100の設定に基づいてブランチB及びブランチCへ分岐する。このため、BU101は、光信号を分岐するための光スイッチや波長選択スイッチ(Wavelength Selective Switch、WSS)などの光部品及びこれらの光部品の駆動回路を備える。そして、光部品の駆動回路も、制御回路122と同様に給電装置103〜105からの給電により動作する。ただし、BU101における光信号の分岐及び合流処理は、後述する光信号によるリレーの制御信号の処理を除いて一般的な技術であり、また、給電路から光部品の駆動回路への給電も一般的な技術である。このため、実施形態の説明及び図面では給電路の切り替えについて説明し、光部品の駆動回路への給電及び光信号の処理に関しては必要がない限り省略する。
BU101は、切替回路121、制御回路122及び接続回路123を備える。切替回路121は、BU101の内部の給電路を切り替える回路であり、本実施形態では、切替回路121はリレーを含む。すなわち、切替回路121は、第1乃至第3の受電口601〜603の間に形成される複数の給電路を切り替える切替手段を担う。切替回路121、制御回路122及び接続回路123を含む回路を、給電回路120と記載する。そして、このような給電回路120を備えるBU101は、海底分岐装置と呼ぶことができる。
制御回路122は、切替回路121を制御する。すなわち、制御回路122は、切替回路121を制御する制御手段を担う。接続回路123は、給電路の障害によって制御回路122への給電が停止した場合に、他の給電路により制御回路122へ給電する。給電回路120は、整流回路を備える。整流回路は、給電装置103〜105からの給電電流を一定の極性で制御回路122及び接続回路123に供給する。整流回路は、制御回路122あるいは接続回路123に含まれてもよい。これらの回路の詳細は後述する。
図2は、制御回路122と接続回路123との接続を概念的に説明する図である。接続回路123は、ある給電装置からの制御回路122への給電が失われた場合に、他の給電装置と接続された給電路を用いて制御回路122へ給電するために用いられる。本実施形態では、制御回路122が給電装置103及び104によって(すなわち、ブランチA及びBを給電路として用いて)正常に給電されている状態では、接続回路123は制御回路122から電気的に切り離されている。しかし、給電路の障害により制御回路122への給電が失われると、接続回路123は、ブランチC及び接続回路123を経由してシーアースに接続される給電路によって制御回路122が給電されるように、給電路を構成する。接続回路123を経由して制御回路122への給電が行われることで、障害の発生後も制御回路122が切替回路121を制御して給電路を切り替えることが可能となる。すなわち、接続回路123は、第1の受電口601と第2の受電口602との間に形成される給電路から制御回路122に給電されない場合に、第3の受電口603とシーアースとの間に制御回路122を接続する接続手段を担う。
図3は、給電回路120の例を示す図である。給電回路120はBU101の給電に関わる回路であり、BU101のブランチA、B、Cには、それぞれ、図1に示すように、給電装置103〜105が接続される。図1で示した第1〜第3の受電口601〜603の位置は、図3では黒丸印で示される。
まず、給電回路120の各部について説明する。RL(1)311〜RL(4)314は、RL制御回路301によって制御される保持型リレーである。保持型リレーは、そのリレーの制御回路への電力の供給が失われても、それまでの接続状態を維持する。RL(1)311〜RL(4)314は、図1の切替回路121に対応する。RL制御回路301は、RL(1)311〜RL(4)314の制御回路であり、給電されている場合にRL(1)311〜RL(4)314を制御できる。
RLA411及び421、RLB412及び422、RLC413及び423、RLD414及び424、RLE315及び316は、非保持型リレーである。RLA411及び421、RLB412及び422、RLC413及び423、RLD414及び424は、それぞれのリレーのドライブ回路へ給電されている場合はONとなる。RLE315及び316は、RL制御回路302へ給電されている場合は、RL制御回路302によってON/OFFが制御される。いずれの非保持型リレーも、ドライブ回路あるいは制御回路への給電が失われるとOFFとなる。リレーのON及びOFFについては図4で説明する。
RLAドライブ回路401は、RLA411及び421のドライブ回路である。RLBドライブ回路402は、RLB412及び422のドライブ回路である。RLCドライブ回路403は、RLC413及び423のドライブ回路である。RLDドライブ回路404は、RLD414及び424のドライブ回路である。これらのドライブ回路401〜404は、給電の有無によって対応するリレーをON又はOFFに制御する。言い換えれば、RLAドライブ回路401、RLBドライブ回路402、RLCドライブ回路403、RLDドライブ回路404は、給電路への給電状態を検出する検出手段を担う検出回路である。RLAドライブ回路401、RLBドライブ回路402及びRLCドライブ回路403は、それぞれ、受電口601、602及び603からの給電状況を検出する。RL制御回路302は、RLE315及び316の制御回路である。
整流回路511及び512は、ダイオードによって構成された整流回路である。整流回路511は、ブランチA〜C及びシーアースと接続可能に構成され、給電路から供給される給電電流を整流してRL制御回路301へ出力する。整流回路512は、ブランチA〜C及びシーアースと接続可能に構成され、これらから供給される給電電流を整流してRL制御回路302に向けて出力する。整流回路511及び512については、図5で説明する。
図3のRL制御回路301は、制御回路122に含まれる。また、RL制御回路302、RLE315及び316、RLDドライブ回路404、RLA411及び421、RLB412及び422、RLC413及び423、RLD414及び424は、接続回路123に含まれる。整流回路511は、制御回路122に含まれてもよい。整流回路512は、接続回路123に含まれてもよい。このように、図3に示す給電回路120は、図1で説明した切替回路121、制御回路122及び接続回路123を含む。
図4は、給電回路120に含まれる各リレーの内部の接続例を説明する図である。各リレーはトランスファ接点(c接点)を持つリレーであり、共通端子は二重丸で示される。
本実施形態では、黒丸で示される端子(ON端子)と共通端子とが接続された状態を「ON」と呼び、白抜き丸で示される端子(OFF端子)と共通端子とが接続された状態を「OFF」と呼ぶ。共通端子は、各リレーの制御回路あるいはドライブ回路による制御でON端子(黒丸)又はOFF端子(白丸)と接続される。図4の表記は、他の図面でも共通に用いられる。本実施形態では、リレーをON端子に接続することを「リレーをONする」と記載し、OFF端子に接続することを「リレーをOFFする」と記載する。リレーをONあるいはOFFするための、制御回路あるいはドライブ回路とリレーとの間の配線は各図では省略される。
図5は、整流回路511の回路図の例である。整流回路512の回路図も同様である。
整流回路511は、給電端子P1〜P4及び出力端子Q1、Q2を持つ。整流回路511は、8個のダイオードD1〜D8及び1個のツェナーダイオードDzを備える。ダイオードD1〜D8は、ブリッジ整流回路を構成する。P1〜P4は給電路に接続される。給電端子のいずれかから入力された電流は、ブリッジ整流回路で整流されてQ1(高電位側)から外部に出力される。外部からQ2(低電位側)に戻った電流は、ブリッジ整流回路を通過して給電路に戻る。P1〜P4に入力される給電電流の極性にかかわらず、Q1から電流が出力され、Q2に電流が戻る。
ツェナーダイオードDzのツェナー電圧は、Q1及びQ2がオープンであった場合には給電電流を逆方向に導通させ、Q1及びQ2から他の回路への給電が行われる際には逆方向電流がきわめて小さくなるように選択される。Q1及びQ2がオープンであった場合には、入力された電流はツェナーダイオードDzを経由して給電路に戻る。
図6は、陸上局701からBU101へ通知される、リレーの制御信号のパスの例を示す図である。陸上局701は制御信号を生成する光通信装置が設置された局舎である。陸上局701には給電装置103〜105のいずれかが併せて設置されていてもよい。制御信号は光ファイバ等の光伝送路711によって光信号として伝送される。光伝送路711は、例えば、陸上局701が備える給電装置とBU101とを結ぶ給電路に用いられる電線を含む海底ケーブルである。
BU101は光カプラ702及び703を備える。光カプラ702は、制御信号を含む、陸上局701から受信した光信号を分岐してO/E(Optical/Electrical)変換回路704及び705に入力する。O/E変換回路704及び705は光信号を電気信号に変換して、制御信号を含む電気信号をRL制御回路301及び302へ出力する。RL制御回路301及び302は、O/E変換回路704又は705から入力された電気信号からそれぞれが処理する制御信号を抽出し、抽出された制御信号に基づいて配下のリレーを制御する。ただし、RL制御回路301及び302は、制御信号の指示によらず、自律的にリレーを制御してもよい。RL制御回路301は、RL(1)311、RL(2)312、RL(3)313及びRL(4)314を制御する。RL制御回路302は、RLE315及び316を制御する。なお、海底ケーブル又は中継器に異常が生じても、光伝送路711が切断されたり中継器を含む光伝送路711の損失が増加したりしない限り、陸上局701からの制御信号はBU101に到達できる。
(動作の詳細な説明)
ブランチA及びブランチBを経由した給電路による給電、及び当該給電路による給電ができなくなった場合の給電回路120の動作について、図7〜図10を用いて説明する。
図7は、給電回路120において、ブランチAからブランチBへ給電電流が流れる、正常な場合を説明する図である。以降の図面において、破線の矢印は説明のために例示される給電電流である。図7ではRL(1)311、RL(2)312及びRL(4)314はOFFであり、RL(3)313のみONである。ブランチA及びブランチBを経由する給電路は、整流回路511を経由してRL制御回路301に電力を供給する。ブランチCはRL(3)313によって整流回路511とは切り離されている。
図7では、RLAドライブ回路401とRLBドライブ回路402とに給電電流が流れるため、RLA411及び421、RLB412及び422はONとなる。また、RLE315はOFFであるため、RLDドライブ回路404には給電されない。その結果、RLD414及び424はOFFとなる。従って、整流回路512の出力端子Q1及びQ2とRL制御回路302とは接続されず、出力端子Q1及びQ2はオープンとなる。その結果、整流回路512の給電端子P1に接続されたブランチCの給電電流はツェナーダイオードDzを経由して、給電端子P2に接続されたシーアースへ流れる。
このように、給電路が正常である場合には、ブランチA及びブランチBを経由してRL制御回路301へ給電される。従って、RL制御回路301は、RL(1)311〜RL(4)314を制御できる。一方、ブランチCを経由する給電路及び接続回路123はRL制御回路301から切り離される。
図8は、ブランチAからの給電とブランチBからの給電との両方が断となった場合の給電回路の動作を説明する第1の図である。例えば、ブランチA及びブランチBの両方の給電路において地絡障害が発生した場合、あるいは、ブランチA及びブランチBの少なくとも一方の給電路においてオープン障害が発生した場合が該当する。ブランチA及びブランチBの両方の給電路において地絡障害が発生すると、給電装置103及び104からRL制御回路301への給電が失われる。また、ブランチA及びブランチBの一方の給電路においてオープン障害が発生すると、ブランチA及びブランチBを経由する給電路が構成できないため、やはりRL制御回路301への給電は失われる。RL(1)311及びRL(2)312は、障害の発生前にRL制御回路301によってOFFされている。RL(1)311及びRL(2)312は保持型リレーであるため、その後、ブランチA及びBの両方から給電が断となってRL制御回路301が動作しなくなった場合でも、「OFF」状態を維持する。
図8では、ブランチA及びブランチBの両方の給電路において地絡障害が発生した場合を例に説明する。図8〜10及び図12においてブランチA及びブランチBの「X」印は、地絡障害により給電路がシーアースに接続されることを示す。ブランチAの給電路が断となると、RLAドライブ回路401に給電されなくなる。このため、RLA411及び421がONからOFFに変化する。同様に、ブランチBの給電路が断となるため、RLBドライブ回路402も給電されなくなる。このため、RLB412及び422がONからOFFに変化する。
ブランチCに着目すると、RL(3)313は、障害の発生前にRL制御回路301によってONされている。RL(3)313は保持型リレーであるため、その後、ブランチA及びBの両方から給電が断となってRL制御回路301が動作しなくなった場合でも、RL(3)313は「ON」状態を維持する。従って、ブランチA及びBの両方の給電が断となった後も、RLCドライブ回路403には電力は供給されない。その結果、RLC413及び423は、ブランチA及びBの両方の給電が断となる前後でOFF状態を維持する。
すなわち、ブランチA及びブランチBの両方からの給電が断となると、RLA411及び421、RLB412及び422、RLC413及び423がOFFする。その結果、整流回路512の出力端子Q1及びQ2がこれらのリレーを通じてRL制御回路302に接続される。
整流回路512とRL制御回路302とが接続されることによりRL制御回路302に電流が流れ始めるため、整流回路512のツェナーダイオードDzの両端の電圧はツェナー電圧以下に低下し、ツェナーダイオードDzはオフする。従って、整流回路512のツェナーダイオードDzに流れていた電流は全てRL制御回路302へ流れるようになる。
RL制御回路302が給電されることにより、RL制御回路302はRLE315及び316の制御が可能な状態(「スタンバイ状態」)となる。
図9は、ブランチA及びブランチBを経由する給電が断となった場合の給電回路の動作を説明する第2の図である。図9を参照すると、RL制御回路302は、整流回路512から給電されることによって、RLE315及び316をONする。その結果、RL制御回路302を介してRLDドライブ回路404及びRL制御回路301が給電される。RLE315及び316をONする制御は、図6で説明した機能を用いて、RL制御回路302が陸上局から受信した制御信号に基づいて行ってもよい。陸上局は、ブランチA及びブランチBの給電路の異常を検知することで、制御信号を送信してもよい。O/E変換回路705がRL制御回路302からの給電で動作するように回路を設計することで、ブランチA及びBを経由する給電が失われていても、O/E変換回路705は陸上局から受信した制御信号を処理できる。あるいは、RL制御回路302への給電の開始をトリガにRL制御回路302が自律的にRLE315及び316をONしてもよい。
図10は、ブランチA及びブランチBを経由する給電が断となった場合の給電回路の動作を説明する第3の図である。RLE315及び316がONすることで、RLDドライブ回路404に給電される。その結果、図10に示すように、RLD414及び424がONとなる。ここで、ブランチA及びブランチBの両方の給電が断となった後、ブランチAを経由する給電が復旧した場合を考える。給電の復旧によりRLAドライブ回路401に電流が流れると、RLA411及び421がONとなる。RLBドライブ回路402に電流が流れると、RLB412及び422がONとなる。いずれの場合にも、RLA411、RLB412、RLC413の直列回路及びRLA421、RLB422、RLC423の直列回路は導通しなくなる。しかし、RLDドライブ回路404の通電によりRLD414及び424はON状態を維持する。このため、ブランチA又はブランチBの一方の給電が復旧しても、RLD414及び424及びRL制御回路302を介することで、整流回路512からRL制御回路301への給電が維持される。
このように、接続回路123を用いることで、RL制御回路301への給電路が形成され、RL制御回路301によるRL(1)311〜RL(4)314の制御が可能となる。給電路の二重地絡障害やオープン障害時にBU101の制御回路122への給電が失われた場合には接続回路123がスタンバイ状態となる。そして、接続回路123を経由して給電路を制御回路122に接続することによって、RL制御回路301に給電することが可能となる。
ブランチAの給電が復旧した場合の、整流回路511を経由する給電路について説明する。RL制御回路301がRL(4)314をONすることで、ブランチA及び整流回路511を経由する給電はシーアースに接続される。ここで、RL制御回路301は、整流回路511及び512の両方から給電が可能である場合は、整流回路512からの給電により動作するように設計されてもよい。例えば、RL制御回路301は、接続回路123からの給電により整流回路511からの給電路を切り離すリレーを備えることでこのような機能が実現される。この機能により、図10では、RL制御回路301において整流回路511からの給電路が切り離される。そして、ブランチAの給電電流は整流回路511のツェナーダイオードDz及びRL(4)314を通過してシーアースへ流れる。接続回路123がRL制御回路301と切り離されると、RL制御回路301は整流回路511からの給電で動作可能となる。
図11は、図8〜図10で説明した、給電回路120の動作例を示すフローチャートである。給電回路120は、RLAドライブ回路401への給電が断となると、RLA411及び421をOFFする(図11のステップS01)。また、給電回路120は、RLBドライブ回路402への給電が断となると、RLB412及び422をOFFする(ステップS02)。そして、給電回路120は、整流回路512の出力端子Q1及びQ2をRL制御回路302に接続する(ステップS03)。これにより、RL制御回路302に給電される。RL制御回路302は、RLE315及び316をONする(ステップS04)。また、RLDドライブ回路404への給電によりRLD414及び424がONする(ステップS05)。ステップS01とステップS02の順序は不問であり、ステップS04とステップS05との順序も不問である。
図10では、RL制御回路301が接続回路123を経由して給電される状態を説明した。図12〜図14では、図10の状態以降の給電回路120の動作例を説明する。
図12は、ブランチCを経由する給電路の切り替え例を説明する第1の図である。図12では、ブランチA及びブランチBの両方で地絡障害が発生し、RL制御回路301の給電が整流回路512からの給電に切り替えられた場合について説明する。図10で説明したように、地絡障害により、接続回路123を経由した制御回路122への給電が開始される。その後、図12に示すように、RL制御回路301はRL(3)313をOFFとし、RL(4)314をONとし、第3の受電口とシーアースとの間を、接続回路123を経由しない経路に切り替えてもよい。このような制御により、ブランチCによるRL制御回路301への給電を、整流回路512を経由した給電から整流回路511を経由した給電に変更できる。このような給電路の切り替えにより接続回路123はRL制御回路301の給電路から切り離され、給電電流が通過する電気回路が減少するため、給電路における電圧降下(すなわち、電力の消費)が減少するとともに、給電路の信頼性も向上する。
給電回路120が図12の状態になった場合に、RL制御回路301は、さらに、RL(1)311をONしてもよい。RL(1)311のON側端子は、整流回路512のツェナーダイオードDzを介してシーアースに接続されている。このため、RL(1)311をONすることにより、ブランチAの給電回路120側の接地点の電圧はツェナーダイオードDzのツェナー電圧以下となる。そのため、ブランチAの障害箇所の作業時に、給電回路120から予期しない高電圧がブランチAの障害箇所に印加されることを回避でき、作業の安全性を高めることができる。ブランチBの給電路に関しても同様である。すなわち、RL制御回路301がRL(2)312をONすることで、給電回路120側から予期しない高電圧がブランチBの障害箇所に印加されることを回避できる。
図13及び図14は、ブランチCを経由する給電路の切り替えを説明する第2の図及び第3の図である。図13及び図14では、ブランチBにおいてオープン障害が発生した場合について説明する。図13及び図14において、ブランチBの「X」印は、オープン障害により給電路が開放されていることを示す。ブランチBにおけるオープン障害が発生した場合も、図8〜図10で説明したようにブランチCを経由した給電が開始される。その後、RL制御回路301はRL(4)314をONするとともに、RL制御回路302はRLE315及び316の少なくとも一方をOFFする。このような制御により、ブランチA及び整流回路511を経由したRL制御回路301の給電電流を、RL(4)314を経由して、シーアースに接続できる。また、RLAドライブ回路401が通電されるとともにRLDドライブ回路404は通電されなくなるため、RLA411及び421はONし、RLD414及び424はOFFする。その結果、制御回路122と接続回路123との間の給電路は切り離される。
一方、図14では、接続回路123を経由した給電が開始された後、RL制御回路301はRL(3)313をOFFするとともに、RL制御回路302はRLE315及び316の少なくとも一方をOFFする。図14では、ブランチAによるRL制御回路301の給電電流はシーアースに接続されず、ブランチCを経由する給電路に接続される。ブランチCを経由する給電電流(すなわち、図1の給電装置105の給電電流)の大きさがブランチAを経由する給電電流の大きさと同一で、電流の方向が反対である場合には、このような接続が可能である。例えば、図1の給電装置103が正電圧であり、給電装置105が負電圧であり、双方の給電電流が同一である場合に、このような給電路の構成が可能である。
図13及び図14ではブランチBにおいてオープン障害が発生した場合について説明した。しかし、ブランチAにおいてオープン障害が発生した場合にも、同様の手順により、制御回路122から接続回路123を切り離し、ブランチB、制御回路122及びブランチCを経由する給電路を構成することができる。
図13及び図14で説明したリレーの制御によっても、図12の例と同様に、給電電流が通過する電気部品が減少するため、給電路における電圧降下が減少するとともに、給電路の信頼性も向上する。
以上説明したように、第1実施形態の海底分岐装置(BU)101は、給電が失われた際に接続回路123が制御回路122に給電するため、給電路の地絡障害やオープン障害が発生しても給電路の切り替え制御が可能である。
(第2実施形態)
図15は、本発明の第2実施形態の海底分岐装置800の構成例を示すブロック図である。海底分岐装置800は、切替回路801と、制御回路802と、接続回路803と、を備える。切替回路801は、第1乃至第3の受電口811〜813の間に形成される複数の給電路を切り替える、切替手段を担う。制御回路802は、第1の受電口811と第2の受電口812との間に形成される給電路から給電を受け、切替回路801を制御する、制御手段を担う。接続回路803は、第1の受電口811と第2の受電口812との間に形成される給電路から制御回路802に給電されない場合、第3の受電口813とシーアースとの間に制御回路802を接続する、接続手段を担う。
このような構成を備える海底分岐装置800は、第1の受電口811と第2の受電口812との間に形成される給電路から制御回路802への給電が失われた場合でも、第3の受電口813とシーアースとの間に形成される給電路に制御回路802を接続する。よって、制御回路802への給電を維持できる。
従って、第2実施形態の海底分岐装置800は、給電路の地絡障害やオープン障害が発生しても給電路の切り替え制御が可能である。
本実施形態の切替回路801は第1実施形態のRL(1)311〜RL(4)314に対応する。制御回路802は第1実施形態のRL制御回路301に対応し、接続回路803は第1実施形態のBU101の接続回路123に対応する。
なお、本発明の実施形態は以下の付記のようにも記載されうるが、以下には限定されない。
(付記1)
第1乃至第3の受電口の間に形成される複数の給電路を切り替える切替手段と、
前記第1の受電口と前記第2の受電口の間に形成される給電路から給電を受け、前記切替手段を制御する制御手段と、
前記第1の受電口と前記第2の受電口との間に形成される給電路から前記制御手段に給電されない場合、前記第3の受電口とシーアースとの間に前記制御手段を接続する接続手段と、
を備える海底分岐装置。
(付記2)
前記第3の受電口は、前記第1の受電口と前記第2の受電口との間に形成される給電路に接続される端局とは異なる端局に接続される付記1に記載された海底分岐装置。
(付記3)
さらに、前記第1の受電口と前記第2の受電口の間に形成される給電路への給電状態を検出する検出手段を備え、
前記接続手段は、前記検出手段の出力に基づき、前記第3の受電口とシーアースとの間に前記制御手段を接続する付記2に記載された海底分岐装置。
(付記4)
前記接続手段は、前記端局のいずれかから受信した制御信号に基づいて前記第3の受電口と前記シーアースとの間に前記制御手段を接続する、付記2又は3のいずれか1項に記載された海底分岐装置。
(付記5)
前記接続手段が前記第3の受電口と前記シーアースとの間に前記制御手段を接続した後、前記制御手段は、前記第3の受電口と前記シーアースとの間を、前記接続手段を経由しない経路に切り替えるように前記切替手段を制御する、付記1乃至4のいずれか1項に記載された海底分岐装置。
(付記6)
さらに、入力された光信号を分岐して出力する機能を備える、付記1乃至5のいずれか1項に記載された海底分岐装置。
(付記7)
給電装置を備える端局と、
付記6に記載された海底分岐装置と、を備え、
前記端局は、前記海底分岐装置への給電が可能な、通信システム。
(付記8)
第1乃至第3の受電口の間に形成される複数の給電路を切り替える海底分岐方法であって、
前記第1の受電口と前記第2の受電口との間に形成される給電路から制御手段に給電を受けて、前記複数の給電路を切り替え制御し、
前記第1の受電口と前記第2の受電口との間に形成される給電路から前記制御手段に給電されない場合、前記第3の受電口とシーアースとの間に形成される給電路から給電を受けて、前記複数の給電路を切り替え制御する、
海底分岐方法。
(付記9)
前記第3の受電口を、前記第1の受電口と前記第2の受電口との間に形成される給電路に接続される端局とは異なる端局に接続する、付記8に記載された海底分岐方法。
(付記10)
前記第1の受電口と前記第2の受電口の間に形成される給電路への給電状態に基づき、接続手段によって、前記第3の受電口とシーアースとの間に前記制御手段を接続する、付記9に記載された海底分岐方法。
(付記11)
前記端局のいずれかから受信した制御信号に基づき、前記接続手段によって、前記第3の受電口とシーアースとの間に前記制御手段を接続する、付記10に記載された海底分岐方法。
(付記12)
前記第3の受電口と前記シーアースとの間に前記制御手段が接続された後、前記第3の受電口と前記シーアースとの間を、前記接続手段を経由しない経路に切り替える、付記10又は11に接続された海底分岐方法。
以上、実施形態を参照して本発明を説明したが、本発明は上記の実施形態に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
以上の各実施形態に記載された機能及び手順の一部又は全部は、給電回路120あるいは海底分岐装置800が備える中央処理装置(central processing unit、CPU)がプログラムを実行することにより実現されてもよい。プログラムは、固定された、一時的でない記録媒体に記録される。記録媒体としては半導体メモリ又は固定磁気ディスク装置が用いられるが、これらには限定されない。CPUは例えば分岐装置あるいは海底分岐装置に備えられるコンピュータである。
この出願は、2017年9月29日に出願された日本出願特願2017−189336を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 海底ケーブルシステム
101 海底分岐装置(BU)
102 中継器
103〜105 給電装置
120 給電回路
121 切替回路
122 制御回路
123 接続回路
301〜302 RL制御回路
311 RL(1)
312 RL(2)
313 RL(3)
314 RL(4)
315〜316 RLE
401 RLAドライブ回路
402 RLBドライブ回路
403 RLCドライブ回路
404 RLDドライブ回路
411、421 RLA
412、422 RLB
413、423 RLC
414、424 RLD
511〜512 整流回路
601 第1の受電口
602 第2の受電口
603 第3の受電口
701 陸上局
702〜703 光カプラ
704〜705 O/E変換回路
711 光伝送路
800 海底分岐装置
801 切替回路
802 制御回路
803 接続回路
811 第1の受電口
812 第2の受電口
813 第3の受電口
900 海底ケーブルシステム
901 分岐装置(BU)
902 中継器
903 切替回路
911〜913 給電装置

Claims (8)

  1. 第1乃至第3の受電口の間に形成される複数の給電路を切り替える切替手段と、
    前記第1の受電口と前記第2の受電口の間に形成される給電路から給電を受け、前記切替手段を制御する制御手段と、
    前記第1の受電口と前記第2の受電口との間に形成される給電路から前記制御手段に給電されない場合、前記第3の受電口とシーアースとの間に前記制御手段を接続する接続手段と、
    を備え、
    前記接続手段が前記第3の受電口と前記シーアースとの間に前記制御手段を接続した後、前記制御手段は、前記第3の受電口と前記シーアースとの間を、前記接続手段を経由しない経路に切り替えるように前記切替手段を制御する、
    海底分岐装置。
  2. 前記第3の受電口は、前記第1の受電口と前記第2の受電口との間に形成される給電路に接続される端局とは異なる端局に接続される請求項1に記載された海底分岐装置。
  3. さらに、前記第1の受電口と前記第2の受電口の間に形成される給電路への給電状態を検出する検出手段を備え、
    前記接続手段は、前記検出手段の出力に基づき、前記第3の受電口と前記シーアースとの間に前記制御手段を接続する請求項2に記載された海底分岐装置。
  4. 前記接続手段は、前記端局のいずれかから受信した制御信号に基づいて前記第3の受電口と前記シーアースとの間に前記制御手段を接続する、請求項2又は3に記載された海底分岐装置。
  5. さらに、入力された光信号を分岐して出力する機能を備える、請求項1乃至4のいずれか1項に記載された海底分岐装置。
  6. 給電装置を備える端局と、
    請求項5に記載された海底分岐装置と、を備え、
    前記端局は、前記海底分岐装置への給電が可能な、通信システム。
  7. 第1乃至第3の受電口の間に形成される複数の給電路を、切替手段によって切り替える海底分岐方法であって、
    前記第1の受電口と前記第2の受電口との間に形成される給電路から制御手段に給電を受けて、前記複数の給電路を切り替え制御し、
    前記第1の受電口と前記第2の受電口との間に形成される給電路から前記制御手段に給電されない場合、前記第3の受電口とシーアースとの間に形成される給電路から接続手段によって給電を受けて、前記複数の給電路を切り替え制御し、
    前記第3の受電口と前記シーアースとの間に、前記接続手段によって前記制御手段を接続した後、前記制御手段によって、前記第3の受電口と前記シーアースとの間を、前記接続手段を経由しない経路に切り替えるように前記切替手段を制御する、
    海底分岐方法。
  8. 前記第3の受電口を、前記第1の受電口と前記第2の受電口との間に形成される給電路に接続される端局とは異なる端局に接続する、請求項7に記載された海底分岐方法。
JP2019544991A 2017-09-29 2018-09-19 海底分岐装置及び海底分岐方法 Active JP6973495B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017189336 2017-09-29
JP2017189336 2017-09-29
PCT/JP2018/034551 WO2019065385A1 (ja) 2017-09-29 2018-09-19 海底分岐装置及び海底分岐方法

Publications (2)

Publication Number Publication Date
JPWO2019065385A1 JPWO2019065385A1 (ja) 2020-07-02
JP6973495B2 true JP6973495B2 (ja) 2021-12-01

Family

ID=65902101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019544991A Active JP6973495B2 (ja) 2017-09-29 2018-09-19 海底分岐装置及び海底分岐方法

Country Status (5)

Country Link
US (1) US11556096B2 (ja)
EP (1) EP3691134B1 (ja)
JP (1) JP6973495B2 (ja)
CN (1) CN111133684B (ja)
WO (1) WO2019065385A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777336B1 (en) * 2019-04-12 2020-09-15 Subcom, Llc Branching unit for power distribution
CN115296727A (zh) * 2022-07-06 2022-11-04 中航宝胜海洋工程电缆有限公司 一种可靠远程控制的分支单元

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376322A (ja) 1989-08-17 1991-04-02 Fujitsu Ltd 給電路切替回路
JPH04245816A (ja) 1991-01-31 1992-09-02 Fujitsu Ltd 給電路切替回路
JP3341245B2 (ja) 1995-12-21 2002-11-05 ケイディーディーアイ株式会社 給電路切替回路
GB9722560D0 (en) 1997-10-24 1997-12-24 Alsthom Cge Alcatel A branching unit for an underwater communications system
JP5682847B2 (ja) * 2011-06-30 2015-03-11 日本電気株式会社 給電路切替装置、光海底分岐装置、海底ケーブルシステムおよび給電路切替方法
WO2013007017A1 (zh) 2011-07-12 2013-01-17 华为海洋网络有限公司 分路单元、切换供电路径的方法和光传输系统
CN103975534B (zh) * 2011-12-22 2016-05-11 日本电气株式会社 分支单元和电力线监视方法
US9252670B2 (en) 2012-12-19 2016-02-02 General Electric Company Multilevel converter
JP6428930B2 (ja) * 2015-05-12 2018-11-28 日本電気株式会社 給電路切替装置、給電路切替システムおよび給電路切替方法
JP6176758B1 (ja) 2016-04-13 2017-08-09 株式会社サンセイアールアンドディ 遊技機

Also Published As

Publication number Publication date
CN111133684B (zh) 2022-04-08
EP3691134B1 (en) 2022-08-10
WO2019065385A1 (ja) 2019-04-04
US20200257251A1 (en) 2020-08-13
EP3691134A4 (en) 2020-08-05
CN111133684A (zh) 2020-05-08
EP3691134A1 (en) 2020-08-05
JPWO2019065385A1 (ja) 2020-07-02
US11556096B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
CN108702177B (zh) 接地电路和接地方法
JP5682847B2 (ja) 給電路切替装置、光海底分岐装置、海底ケーブルシステムおよび給電路切替方法
JP6421824B2 (ja) 給電路分岐装置及び給電路分岐方法
US10721001B2 (en) Submarine optical cable shore landing apparatus
JP6083473B2 (ja) 給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法
JP6973495B2 (ja) 海底分岐装置及び海底分岐方法
JP4335430B2 (ja) 海底給電方式
JP2786524B2 (ja) 海中分岐装置の給電路切替回路および海底ケーブル通信システムの給電方法
US20140117775A1 (en) Power feeding path switching device and power feeding system
US7269353B2 (en) Branching unit for an optical transmission system
JP6962441B2 (ja) 海底ケーブルシステム、分岐装置及びその状態応答方法
JP2632905B2 (ja) 伝送路の給電線の切替回路
JP7448018B2 (ja) 海底光ケーブルシステム
JP2665544B2 (ja) 海底ケーブル伝送路の給電切り替え回路
JPH05327561A (ja) 給電路切替回路
JP3341246B2 (ja) 給電路切替回路
JP2009111482A (ja) パケット交換装置
JP2024044279A (ja) 分岐装置、光海底ケーブルシステム及び給電方法
JP2551807B2 (ja) 海底ケーブル伝送路の給電分岐切り替え方法とその給電切り替え回路
JPH01200832A (ja) 海中分岐装置の給電路切替回路
JPH01221930A (ja) 分岐伝送路
JPH04336718A (ja) 海中分岐装置
JPH04341018A (ja) 海中分岐装置の給電路切替回路と海底ケーブル通信システムの給電方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6973495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150