WO2017138714A1 - 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법 - Google Patents

마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법 Download PDF

Info

Publication number
WO2017138714A1
WO2017138714A1 PCT/KR2017/001129 KR2017001129W WO2017138714A1 WO 2017138714 A1 WO2017138714 A1 WO 2017138714A1 KR 2017001129 W KR2017001129 W KR 2017001129W WO 2017138714 A1 WO2017138714 A1 WO 2017138714A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
magnesium alloy
chemical conversion
weight
alloy material
Prior art date
Application number
PCT/KR2017/001129
Other languages
English (en)
French (fr)
Inventor
김은경
박창현
박영삼
김동윤
최명희
Original Assignee
주식회사 노루코일코팅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 노루코일코팅 filed Critical 주식회사 노루코일코팅
Priority to EP17750406.5A priority Critical patent/EP3415659B1/en
Publication of WO2017138714A1 publication Critical patent/WO2017138714A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/22Acidic compositions for etching magnesium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/22Light metals

Definitions

  • the present invention relates to an alkali chemical conversion treatment composition for magnesium and magnesium alloys and a surface treatment method of magnesium and magnesium alloy materials using the same, and more particularly, magnesium and magnesium which are applied to give high corrosion resistance to the surface of magnesium or magnesium alloys. It relates to an alkali chemical conversion treatment composition for an alloy and a surface treatment method of magnesium and magnesium alloy material using the same.
  • Magnesium is the 8th most abundant metal on the planet and is the lightest among the practical metals. It is excellent in specific strength, machinability and dimensional stability. In addition, magnesium alloy is excellent in electromagnetic shielding, heat dissipation, and vibration absorption has an advantageous advantage that can be applied to electronic devices or transportation equipment aimed at light weight. Recently, electronic devices such as computers, cameras, MP3s, mobile phones, and the like are being applied as structural materials for automobiles such as steering wheels, cylinder heads, ventilation fans, seat frames, and other applications.
  • the majority of metal material members (aluminum alloys, steel, magnesium alloys, etc.) used in automobiles, motorcycles, home appliances, and the like are required to be coated and used after various surface treatments because corrosion resistance and aesthetics are required.
  • the purpose of the surface treatment is to remove the contaminants such as cutting oil and processing oil remaining on the surface of the material to form a dense chemical film, thereby providing corrosion resistance and paint adhesion.
  • the magnesium alloy member is painted after surface treatment as in the case of steel or aluminum alloy.
  • Magnesium alloys are the most active and easily corrosive among practical metals. Also, because the surface of the magnesium alloy is chemically uneven, it is extremely difficult to form a dense and uniform chemical film.
  • the non-chromium conversion treatment method includes at least one organic metal compound selected from metal alkoxides, metal acetylacetonates, and metal carboxylates, and any one of an acid, an alkali and salts thereof, or a hydroxyl group, a carboxyl group, or an amino group.
  • Metal surface treatment method Japanese Patent Application Laid-open No. Hei 9-228062
  • “Metal surface treatment method comprising at least one coating forming agent selected from organic compounds, a treatment method based on magnesium phosphate treatment, and zirconium other than chromium and titanium
  • Phosphate treatment Japanese Patent Publication No. 7-126858
  • these chemical conversion compositions are impractical because of their long processing process, and require a long time for treatment, but cannot provide sufficient corrosion resistance, rust resistance, and coating film adhesion. It is easy to be affected and has a problem such as unstable performance.
  • An object of the present invention was conceived to overcome such a problem, and to form a uniform and dense chemical conversion coating on the surface of a magnesium or magnesium alloy material, and at the same time, an alkali chemical treatment composition having a significantly lower aging characteristic than an existing acidic chemical treatment solution was prepared. To provide.
  • Another object of the present invention has been conceived to overcome this problem, magnesium and magnesium to form a uniform and dense chemical conversion film after removing the contaminants and oxide layer on the surface of the magnesium or magnesium alloy material using an alkali chemical conversion treatment composition It is to provide a surface treatment method of the alloy material.
  • Alkali chemical conversion treatment composition for forming a chemical film on the surface of the magnesium and magnesium alloy material of the present invention for achieving the above object is 2 to 10% by weight phosphoric acid compound, 1 to 5% by weight inorganic metal sol, 0.03 to 0.3% by weight vanadium compound %, 0.5-5% by weight of basic compound, 0.01-0.1% by weight of acrylic resin, and excess water-soluble solvent.
  • the step of performing a degreasing process on magnesium and magnesium alloy material using an acidic aqueous solution to the degreasing magnesium and magnesium alloy material Etching the surface, performing a desmut process to remove smut present in the etched magnesium and magnesium alloy materials, and using an alkali chemical conversion composition for magnesium alloys to the surface of the magnesium and magnesium alloy materials. It can be done by performing the step of forming a chemical conversion film.
  • the chemical conversion film is 2 to 10% by weight of phosphoric acid compound, 1 to 5% by weight of inorganic metal sol, 0.03 to 0.3% by weight of vanadium compound, 0.5 to 5% by weight of basic compound, 0.01 to 0.1% by weight of acrylic resin and extra water-soluble It is preferable to form using the alkali chemicals treatment composition for magnesium and magnesium alloy containing a solvent.
  • the alkali chemical treatment composition for magnesium and alloy materials of the present invention having such a composition has a low elution of magnesium ions, thereby preventing deterioration of the alkali chemical treatment composition due to the chemical conversion process.
  • a film can be formed.
  • high corrosion resistance, excellent paint adhesion and water resistance can be imparted to the magnesium material without causing surface defects of the top coat film formed later.
  • Example 1 is a graph showing the pH change of the chemical conversion treatment compositions of Example 1 and Comparative Example 11.
  • FIG. 2 is an enlarged photograph of the microstructure of the chemical conversion film formed using the chemical conversion treatment composition of Example 1.
  • the alkali chemical conversion treatment composition of the present embodiment has a composition containing a phosphoric acid compound, an inorganic metal sol, a vanadium compound, a basic compound, an acrylic resin, and a water-soluble solvent.
  • the alkaline chemical composition for magnesium and magnesium alloy is 2 to 10% by weight phosphoric acid compound, 1 to 5% by weight inorganic metal sol, 0.03 to 0.3% by weight vanadium compound, 0.5 to 5% by weight basic compound, acrylic It has a composition comprising 0.01 to 0.1% by weight resin and excess water-soluble solvent.
  • the phosphoric acid compound included in the alkali chemical treatment composition is used to impart corrosion resistance to the chemical conversion film formed and to improve coating film adhesion.
  • Examples of the phosphate compound include first ammonium phosphate, second sodium phosphate, second potassium phosphate, orthophosphoric acid, and the like.
  • the phosphoric acid compound may be used alone or in combination of two or more.
  • the phosphoric acid compound applied to the chemical conversion treatment composition according to the present invention is less than 2% by weight, a sufficient chemical conversion film is not formed, thereby making it difficult to secure corrosion resistance and paint adhesion.
  • the content is more than 10% by weight, an excessive chemical film is formed on the film, thereby improving corrosion resistance, but it is difficult to secure paint adhesion. Therefore, the phosphoric acid compound is preferably used 2 to 10% by weight, more preferably 3 to 9% by weight.
  • the inorganic metal sol applied to the alkali chemical conversion treatment composition according to the present embodiment is applied to secure corrosion resistance and to form a uniform chemical conversion film.
  • examples of the inorganic metal sol include silica sol, alumina sol, titania sol and zirconia sol. These can be used individually or in mixture of 2 or more.
  • the alumina zolo (ALUMINASOL TM AS-100, ALUMINASOL TM AS-200, GerardKluyskens Co., Inc. Ultra-Sol 200A, Ultra-Sol 201A / 60, Ultra-Sol 201A / 280 from NISSAN CHEMICAL, Wesol A, Wesol from WESBOND) C12, Wesol D30) and the like. These can be used individually or in mixture of 2 or more.
  • the inorganic metal sol contained in the composition according to the present invention is less than 1% by weight, there is a problem that the non-uniformity and corrosion resistance of the chemical conversion film are reduced, whereas when the content is more than 5% by weight, the water-resistant adhesion resistance is reduced. Problems are accompanied by a decrease in stability of the treatment composition. Therefore, the inorganic metal sol is preferably used at 1 to 5% by weight, more preferably at 1.5 to 4% by weight.
  • the vanadium compound applied to the alkali treatment composition according to the present invention is applied to further improve the corrosion resistance and to impart a self-healing effect to the magnesium alloy material.
  • a vanadium oxide water may be a pentavalent, tetravalent or trivalent vanadium compound.
  • the vanadium compound contained in the composition according to the present invention is less than 0.03% by weight, corrosion resistance and self-healing effect cannot be obtained.
  • the content exceeds 0.3% by weight, the performance improvement is not confirmed and the increase in cost There is a problem that occurs. Therefore, the vanadium compound is preferably used at 0.03 to 0.3% by weight, more preferably 0.05 to 0.2% by weight.
  • the basic compound serves to increase the pH of the chemical conversion composition to make a more stable alkaline chemical composition, and examples thereof include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, ammonium hydroxide and lithium hydroxide. These can be used individually or in mixture of 2 or more.
  • the pH of the alkaline chemical composition may not be increased to a desired level.
  • the content of the basic compound exceeds 5% by weight, the pH of the alkaline chemical composition is increased so much that when the chemical is treated on the surface of the magnesium material There is a problem that the film is not formed. Therefore, the basic compound is preferably used at 0.5 to 5% by weight.
  • the acrylic resin applied to the alkali chemical conversion treatment composition according to an embodiment of the present invention improves the durability of the chemical conversion film to be formed, thereby forming a denser chemical conversion film and serves to improve water resistance.
  • the acrylic resins include acrylic polyols, acrylic acid copolymers, modified acrylic acid copolymers, and polyacrylates. These can be used individually or in mixture of 2 or more.
  • acrylic resin is less than 0.01% by weight, the durability of the formed chemical film is lowered, resulting in poor adhesion and water-resistant adhesion, and when the content of the acrylic resin is more than 0.1% by weight, the chemical film is thickly formed due to excess resin, thereby degrading adhesion. There is this. Therefore, it is preferable to use acrylic resin within 0.01 to 0.1 weight% of range.
  • the alkali chemicals treatment composition according to the present embodiment has a pH of 8.5 to 10.5.
  • the pH of the alkali chemical treatment composition is less than 8.5, the reactivity of the magnesium alloy material is increased, so that the chemical conversion film is actively formed, but magnesium ions dissolve very rapidly on the surface of the material to promote aging of the solution.
  • the pH is 10.5 or more, the reactivity of the magnesium alloy material is significantly reduced, so that the formation of the chemical conversion film on the surface of the magnesium material is difficult.
  • Magnesium and its alloying composition having such a composition has a low elution of magnesium ions and prevents deterioration of the alkaline conversion composition due to the chemical conversion process, thereby forming a dense chemical coating film even after several times of reuse. can do.
  • high corrosion resistance, excellent paint adhesion and water resistance can be imparted to the magnesium material without causing surface defects of the top coat film formed later.
  • the surface treatment method of the magnesium and magnesium alloy material according to the present invention can be made by performing a surface cleaning process and a chemical conversion process.
  • the surface clarification process is a step of removing contaminants (processing oil, oil, etc.) and oxide layer present on the surface of magnesium alloy as a step before chemical conversion to help to form a uniform and dense chemical film. ), The first washing process, the etching process, the second washing process, the de-must process, the third washing process.
  • the degreasing step is a step of primarily removing oil and processed oil components on the surface of the magnesium alloy prior to the etching process.
  • the degreasing solution that can be used in the degreasing step is not particularly limited as long as it can remove organic contaminants.
  • an alkaline aqueous solution containing a surfactant As an alkali builder of such a degreasing liquid, hydrate, phosphate, silicate, carbonate, etc. of an alkali metal can be applied.
  • a surfactant any of nonionic, cationic, and anionic system can be applied.
  • the temperature and time for contacting the degreasing liquid to the magnesium alloy is not particularly limited, but it is preferably carried out within 30 to 70 °C, 2 to 10 minutes depending on the degree of contamination of the magnesium surface.
  • the concentration of the degreasing liquid may also be appropriately set according to the contamination degree of the magnesium alloy surface, the degreasing liquid component and the like.
  • the first washing step is a washing step using water to remove the washing solution applied in the degreasing step.
  • the first washing may be carried out by a method such as immersion, spray, dripping, etc., and may be performed using all kinds of water including deionized water, distilled water, pure water, and the like, and there is no particular limitation on the temperature range. However, it may preferably be carried out in the temperature range of 25 to 80 °C. This is because the use of hot water washes the water more efficiently and improves the dehydration and drying property, thereby minimizing the inflow of water into the next process treatment tank and managing the treatment liquid.
  • ultrasonic vibration may be applied to increase the cleaning effect when the washing step is performed.
  • an etching process is performed to remove the surface of the magnesium alloy to be processed if the surface of the magnesium alloy is excessively contaminated with processing oil or an oxide layer is grown.
  • the etching treatment in the etching process is carried out by bringing an acidic aqueous solution into contact with a magnesium alloy material as an object.
  • the acidic aqueous solution is not particularly limited as long as it can dissolve and remove contaminants on the magnesium alloy surface. It is preferable to use sulfuric acid, phosphoric acid, hydrochloric acid, hydrofluoric acid, nitric acid, one kind or two or more kinds thereof. In order to improve the etching efficiency, organic acids may be mixed. Conditions such as the concentration of the acidic aqueous solution, the temperature, and the contact time with the magnesium alloy surface are not limited, and are appropriately adjusted according to the contamination degree of the magnesium alloy, the components of the acidic aqueous solution to be used, and the like.
  • the second washing step is a washing step using water to remove the acidic aqueous solution applied in the etching step.
  • the second washing may be performed by a method such as immersion, spray, dripping, etc., and may be performed using all kinds of water including deionized water, distilled water, pure water, and the like, and there is no particular limitation on the temperature range.
  • the de-must process is performed to remove the smut after the etching process remains on the magnesium alloy surface.
  • Desmuth in the desmuth process can be performed by contacting the desmuth liquid with the magnesium alloy to be processed.
  • the desmut solution is not particularly limited as long as it can remove the smut remaining on the magnesium surface after the etching process, and strong alkali by mixing one or two phases of tartaric acid, ascorbic acid, gluconic acid, citric acid, oxalic acid, and the like. It is preferable to mix and use in aqueous solution (PH12 or more).
  • Conditions such as the concentration of the desorbed smut liquid, the temperature, the contact time with the magnesium alloy surface, etc. are not particularly limited, and may be appropriately adjusted according to the degree of smut generated after the etching process, the desorbed smut liquid component used, and the like.
  • the third water washing step is a washing step using water to remove the residual desorbed smudge liquid applied in the dewatering smudge step.
  • the third water washing may be performed by a method such as immersion, spray, dripping, etc., and may be performed using all kinds of water including deionized water, distilled water, pure water, and the like, and there is no particular limitation on the temperature range.
  • the etching and desmuth processes may not be performed in the surface cleaning process of unprocessed or unprocessed magnesium and magnesium alloy material.
  • the chemical conversion process according to the present invention is a process of forming a chemical conversion coating on the surface of the magnesium and magnesium alloy material having a cleaned surface by using the chemical conversion treatment composition.
  • the alkali chemical conversion treatment composition of the present invention is 2 to 10% by weight of phosphoric acid compound, 1 to 5% by weight of inorganic metal sol, 0.03 to 0.3% by weight of vanadium compound, 0.5 to 5% by weight of basic compound, 0.01 to 0.1% by weight of acrylic resin and It may have a composition comprising excess water soluble solvent.
  • a detailed description of the alkalizing treatment composition is disclosed in the detailed description of the present invention and will be omitted to avoid duplication.
  • the chemical conversion film is preferably formed to have a thickness of 0.1 to 2.5 ⁇ m.
  • the coating film of 0.1 ⁇ m or less has good coating adhesion, but the problem of corrosion resistance and water adhesion is greatly lowered. If the chemical coating of 2.5 ⁇ m or more is formed, the corrosion resistance is excellent, but the coating adhesion and water resistance adhesion are deteriorated. .
  • the thickness of the chemical conversion film as described above can be adjusted by adjusting the temperature and time of the chemical conversion treatment solution.
  • Magnesium and magnesium alloy material formed by performing the above-described surface treatment process may be used to replace automotive parts or other steel after the top coat.
  • Top coat is an electrodeposition coating, it is desirable to have a drying process before coating the top coating because moisture on the surface of the magnesium alloy material may be mixed into the paint.
  • the drying is not particularly limited, it is preferable that hot air is preferred, and drying temperature in an oven to dry by a heater or an infrared heater or the like is carried out within 80 ⁇ 160 o C, 20 to 60 minutes.
  • drying conditions after electrodeposition coating may vary depending on the type and characteristics of electrodeposition paint,
  • the kind of paint used at the time of coating is not restrict
  • the coating method of the coating material is not limited, and any coating method known in the art such as spraying, dipping and powder coating can be applied.
  • Alkaline chemical treatment compositions containing the components shown in Table 1 were prepared in 1 L of distilled water, and an acidic chemical conversion composition containing the components disclosed in Table 2 was prepared.
  • a magnesium alloy material (AZ31B plate material; ASTM standard, rolled plate, 70 mm X 140 mm X 0.8 mm AZ31B (high temperature press)) was prepared, respectively. Then, the prepared alloy material was subjected to the surface cleaning process under the conditions of Table 3 below. Test specimens were prepared by the process of forming chemical films, washing with water, and electrodeposition coating using chemical conversion treatment compositions prepared in Examples and Comparative Examples, respectively.
  • the surface treatment process, the chemical conversion film formation process, and electrodeposition coating were carried out to prepare samples, and the coating adhesion of the specimens was evaluated.
  • the film adhesion was evaluated by the coating film remaining test by the cross film test (ASTMD3359, 1mm X 1mm, 100) by the Cross Cut Test (CCT) method. Evaluation criteria are shown in Table 4 below.
  • Each specimen was evaluated for corrosion resistance by applying the salt spray method according to the method specified in ASTM B117. At this time, the specimens were put in an X-cut before the salt water test. The salt spraying time was set to 800 hours, and corrosion resistance after coating was evaluated by measuring one expansion width from the X-cut of each specimen after the completion of the salt spraying. Evaluation criteria are shown in Table 5 below.
  • the coating film adhesion, the corrosion resistance, and the water adhesion resistance were evaluated by the same method as above for each of the specimens prepared by applying the chemical conversion treatment compositions of Example 1 and Comparative Examples 1 to 11, and the results are shown in Table 6.
  • Example 1 showed more than good results in all physical properties.
  • Comparative Example 9 in which the acrylic resin contained in the alkali chemical treatment composition is added too little, the water adhesion resistance is deteriorated, which causes the acrylic resin to form a more dense and durable chemical conversion film on the surface of the magnesium alloy. This is because it serves to improve.
  • the problem of lowering the corrosion resistance and water tightness was caused, and in Comparative Example 10, in which too much was added, the effect could not be confirmed, and both the corrosion resistance and water tightness were deteriorated.
  • the magnesium alloy material (AZ31B) was treated in a chemical conversion treatment composition having the composition of Example 1 and Comparative Example 11, respectively, to measure the pH change of the solution. The measurement result is shown in FIG.
  • the graph of FIG. 1 shows the pH change when a magnesium alloy material is continuously processed using each chemical conversion treatment composition (Example 1, Comparative Example 11).
  • the X axis of the graph of FIG. 1 was expressed in terms of the amount of solution (m 2 / L) per treatment area by continuously treating the magnesium alloy.
  • the pH increases rapidly as the treatment capacity of the magnesium alloy increases, but in the case of Example 1, the pH gradually decreases.
  • Comparative Example 11 when the pH exceeds 5 or more, as described in the existing patent, physical properties are deteriorated, and thus it cannot be used as a chemical conversion treatment composition.
  • the 25 cm ⁇ 9 cm AZ31B material was evaluated in two chemical conversion compositions (Example 1, Comparative Example 11) before and after the chemical conversion.
  • Magnesium alloy material was processed 50 sheets each of the chemical conversion treatment composition having the composition of Example 1 and Comparative Example 11 and then measured the contamination of the solution by ICP (inductively coupled plasma mass spectrometry) analysis. The measurement results are shown in Table 7.
  • each chemical conversion composition (Example 1, Comparative Example 11) and Comparative Example 11 of the initial state is 0.15m 2 / L solution having a pH of 5 or less and Example 1 has a processing capacity of 2.0m 2
  • the solutions at the time of treatment up to / L were analyzed respectively.
  • the results of the measurement showed that in Comparative Example 11, the treatment capacity was 0.15 m 2 / L, but the concentration of magnesium ions increased rapidly, but in Example 1, magnesium ions were not detected even in the case of 2.0 m 2 / L. Can be confirmed.
  • FIG. 2 is an enlarged photograph of the microstructure of the chemical conversion film formed using the chemical conversion treatment composition of Example 1.
  • the microstructure of the chemical conversion film formed on the surface of the magnesium alloy material (AZ31B) by the first embodiment of the present invention has a unique structure and similar to the Dendrite structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

마그네슘 및 마그네슘 합금 소재에 표면에 화성피막을 형성하는 알칼리 화성처리 조성물은 인산 화합물 2 내지 10 중량%, 무기 금속졸 1 내지 5 중량%, 바나듐 화합물 0.03 내지 0.3 중량%, 염기성 화합물 0.5 내지 5 중량%, 아크릴계 수지 0.01 내지 0.1 중량% 및 여분의 수용성 용매를 포함하는 조성을 가질 수 있다. 상술한 조성물은 마그네슘 또는 마그네슘 합금 소재의 표면에 균일하고 치밀한 화성처리 피막을 형성하는 동시에 내식성, 상도밀착성, 내수밀착성을 부여하며 상도 도장의 표면결함이 초래되지 않는다.

Description

마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법
본 발명은 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법에 관한 것으로서, 더욱 상세하게는 마그네슘 또는 마그네슘 합금의 표면에 고 내식성을 부여하기 위해 적용되는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법에 관한 것이다.
마그네슘은 지구상에서 8번째로 풍부한 금속으로 실용금속 중 가장 가벼우며 비강도, 기계 가공성, 치수안정성이 우수하다. 또한 마그네슘 합금은 전자파 차폐성, 방열성 및 진동 흡수성이 우수하여 경량화를 목표로 하는 전자기기나 수송기기에 적용할 수 있는 유리한 장점을 가지고 있다. 최근에는 컴퓨터, 카메라, MP3, 휴대폰과 같은 전자기기나 핸들, 실린더 헤드, 환기 팬, 시트프레임 등의 자동차용 구조재로서 적용되고 있으며 이외의 적용분야 또한 급격히 증가할 것으로 예상되고 있다.
전술한 바와 같이 자동차나 이륜차, 가전 등에 사용되는 금속재료 부재(알루미늄 합금, 철강, 마그네슘 합금 등)의 대다수는 내식성이나 미관이 요구되므로 여러 가지 표면 처리가 된 후, 도장되어 사용되고 있다. 표면 처리의 목적은 소재표면에 잔존하는 절삭유, 가공유 등의 오염물을 제거하여 치밀한 화성피막을 형성시켜 내식성과 도장 밀착성을 부여하는 것이다.
마그네슘 합금 부재는 철강이나 알루미늄 합금의 경우와 마찬가지로 표면 처리가 된 후에 도장된다. 마그네슘합금은 실용금속 중에서도 가장 활성이 높고 부식하기 쉬운 성질을 가지고 있다 또한 마그네슘 합금의 표면이 화학적으로 불균일하여 마그네슘 합금은 치밀하고 균일한 화성피막을 형성시키는 것이 극히 어려운 재료이기도 하다.
이러한 문제점을 해결하기 위하여 종래에는 내식성이 우수한 6가 크롬을 함유하는 화성처리액을 사용하여 내식성 및 도장 부착성을 확보하여 왔으나(일본특허등록번호 10-0869402), 이러한 6가 크롬은 인체에 치명적이며 환경오염 문제를 유발하기 때문에 그 사용이 규제되고 있다. 따라서 최근에는 크롬이 함유되지 않은 비크롬 화성처리액을 이용하여 치밀한 화성피막을 형성 하여 내식성 및 도장 부착성을 부여하는 방법이 적용되고 있다.
비크롬 화성처리법으로서는 금속 알콕시드, 금속 아세틸아세토네이트, 금속 카르복실레이트로부터 선택되는 적어도 1종의 유기 금속화합물과, 산, 알칼리 및 그 염류, 또는 히드록실기, 카르복실기, 아미노기의 어느 하나를 가진 유기 화합물로부터 선택되는 적어도 1종의 피막형성 조제로 된 "금속의 표면 처리방법(일본국의 특개 평 9-228062호)", 인산 마그네슘처리를 베이스로 한 처리법, 거기에 크롬 이외의 지르코늄, 티탄이나 아연 등의 금속을 첨가하는 "인산염 처리 (일본국의 특공 평7-126858호)"등을 들 수 있다. 그러나 이들 화성처리 조성물은 처리공정이 길기 때문에 비실용적이고, 처리에 장시간을 요하는 반면 충분한 내식성, 녹방지성 및 도막 밀착성을 부여할 수 없는 등의 문제가 있고 또한 이들 화성처리 조성물은 소재의 불균일성의 영향을 받기 쉬워 성능이 안정하지 않는 등의 문제를 가지고 있다.
이러한 문제점을 해결하기 위하여 본 출원인은 마그네슘 또는 마그네슘 합금 소재용 화성처리 조성물에 대한 기술을 특허 출원하여 특허 등록(10-1559285)을 받은바 있습니다. 해당 기술의 경우 우수한 성능의 화성피막을 형성할 수 있는 장점을 가지나 화성처리 조성물이 산성의 특성을 가지고 있음으로 인해 화성피막을 형성하는 공정을 반복 수행할 경우 마그네슘이 화성처리 조성물에 빠르게 용출된다. 마그네슘의 융출은 화성처리 조성물 노후화를 초래하여 내식성과 내수밀착성이 우수한 화성피막을 연속적으로 형성하기 어려운 문제점이 있다.
본 발명의 과제는 이러한 문제점을 극복하기 위해 착안된 것으로 마그네슘 또는 마그네슘 합금 소재의 표면에 균일하고 치밀한 화성처리 피막을 형성하는 동시에 기존 산성의 화성처리 용액 대비 노후화 특성이 현저하게 낮은 알칼리 화성처리 조성물을 제공하는데 있다.
본 발명의 다른 과제는 이러한 문제점을 극복하기 위해 착안된 것으로 알칼리 화성처리 조성물을 이용하여 마그네슘 또는 마그네슘합금 소재 표면에 존재하는 오염물과 산화막층을 제거한 후 균일하고 치밀한 화성처리 피막을 형성하는 마그네슘 및 마그네슘합금 소재의 표면 처리방법을 제공하는데 있다.
상기 과제를 달성하기 위한 본 발명의 마그네슘 및 마그네슘 합금 소재에 표면에 화성피막을 형성하는 알칼리 화성처리 조성물은 인산 화합물 2 내지 10 중량%, 무기 금속졸 1 내지 5 중량%, 바나듐 화합물 0.03 내지 0.3 중량%, 염기성 화합물 0.5 내지 5 중량%, 아크릴계 수지 0.01 내지 0.1 중량% 및 여분의 수용성 용매를 포함하는 조성을 가질 수 있다.
상기 본 발명의 다른 목적을 달성하기 위한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법에 있어서, 마그네슘 및 마그네슘 합금 소재에 탈지 공정을 수행하는 단계, 탈지 처리된 마그네슘 및 마그네슘 합금 소재에 산성 수용액을 이용하여 그 표면을 식각하는 단계, 식각 처리된 마그네슘 및 마그네슘 합금 소재에 존재하는 스머트를 제거하는 탈 스머트 공정을 수행하는 단계 및 마그네슘 합금용 알칼리 화성처리 조성물을 이용하여 상기 마그네슘 및 마그네슘 합금 소재의 표면에 화성피막을 형성하는 단계를 수행함으로서 이루어질 수 있다. 이때, 상기 화성피막은 인산 화합물 2 내지 10 중량%, 무기 금속졸 1 내지 5 중량%, 바나듐 화합물 0.03 내지 0.3 중량%, 염기성 화합물 0.5 내지 5 중량%, 아크릴계 수지 0.01 내지 0.1 중량% 및 여분의 수용성 용매를 포함하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물을 이용하여 형성하는 것이 바람직하다.
이와 같은 조성을 갖는 본 발명의 마그네슘 및 그 합금 소재용 알칼리 화성처리 조성물은 마그네슘 이온의 용출성이 낮아 화성처리 공정으로 인해 알칼리 화성처리 조성물이 노후화 되는 것을 방지함으로서 수십회 이상 재 사용을 하여도 치밀한 화성피막을 형성할 수 있다. 이로 인해 이후 형성되는 상도도막의 표면결함을 초래하지 않으면서 마그네슘 소재에 고내식성, 우수한 도장밀착성, 내수밀착성을 부여할 수 있다.
도 1은 실시예1 및 비교예 11의 화성처리 조성물의 pH 변화의 나타내는 그래프이다.
도 2는 실시예1의 화성처리 조성물을 사용하여 형성된 화성피막의 미세구조를 확대하여 관찰한 사진이다.
이하, 본 발명의 실시예에 따른 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 표면 처리 방법에 대하여 상세히 설명하기로 한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 발명의 일 실시예에 따른 알칼리 화성처리 조성물 및 이를 이용한 표면 처리 방법에 대하여 상세히 설명하기로 한다.
마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물
기존 화성처리 조성물은 산성의 특성을 가짐으로 인해 마그네슘 소재를 용액에 딥핑하면 마그네슘이 소재로부터 계속 용출되어 화성처리 조성물의 노후화를 촉진시키는 반면에 본 실시예의 알칼리 화성처리 조성물은 화성처리 공정시 마그네슘 소재로부터 마그네슘이 용출되는 않는 동시에 마그네슘 소재와의 반응성이 잘 제어되어 상온에서도 마그네슘 소재의 표면에 우수한 특성의 화성처리 피막을 형성할 수 있다.
상술한 특성을 갖는 본 실시예의 알칼리 화성처리 조성물로서, 인산 화합물, 무기 금속졸, 바나듐 화합물, 염기성 화합물, 아크릴계 수지 및 수용성 용매를 포함하는 조성을 갖는다. 예시적인 예로서, 상기 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물은 인산 화합물 2 내지 10 중량%, 무기 금속졸 1 내지 5 중량%, 바나듐 화합물 0.03 내지 0.3 중량%, 염기성 화합물 0.5 내지 5 중량%, 아크릴계 수지 0.01 내지 0.1 중량% 및 여분의 수용성 용매를 포함하는 조성을 갖는다.
일 예로서, 상기 알칼리 화성처리 조성물에 포함된 인산 화합물은 형성되는 화성 피막에 내식성의 부여와 도막 밀착성의 향상시키기 위해 사용된다.
상기 인산 화합물의 예로서는 제1 인산암모늄, 제2 인산나트륨, 제2 인산칼륨, 오르토인산 등을 들 수 있다. 상기 인산 화합물은 단독 또는 둘 이상을 혼합하여 사용할 수 있다.
본 발명에 따른 화성처리 조성물에 적용되는 인산 화합물의 함량이 2 중량% 미만일 경우에는 충분한 화성피막의 형성이 이루어지지 않아 내식성 및 도장 밀착성을 확보하기 어려운 문제가 있다. 반면에 그 함량이 10중량%를 초과할 경우 피막에 과도한 화성피막이 형성되어 내식성은 향상되나 도장 밀착성을 확보하기 어려운 문제점이 있다. 따라서 인산 화합물은 2 내지 10 중량% 사용되는 것이 바람직하고 보다 바람직하게는 3 내지 9중량% 사용된다.
본 실시예에 따른 알칼리 화성처리 조성물에 적용되는 상기 무기 금속졸은 내식성 확보 및 균일한 화성피막을 형성하기 위해 적용된다. 상기 무기 금속졸의 예로서는 실리카졸, 알루미나졸, 티타니아졸, 지르코니아졸을 들 수 있다. 이들은 단독 또는 둘 이상을 혼합하여 사용할 수 있다.
일 예로서, 상기 무기 금속 졸 중에서 실리카졸로서 GRACE사의 Ludox  HS-30, Ludox  HS-40, Ludox  TM, Ludox  SM, Ludox  AM, Ludox  AS, Ludox  LS, Ludox  CL-X, Ludox  SK, Ludox  TMA, Ludox  PG, Ludox  CL, Ludox  CL-P, Ludox  DF, Ludox  FM, Ludox  HSA, NISSAN CHEMICAL 사의 SNOWTEX  ST-20L, SNOWTEX  ST-40, SNOWTEX  ST-50, SNOWTEX  ST-C, SNOWTEX  ST-N, SNOWTEX  ST-O, SNOWTEX  ST-OL, SNOWTEX  ST-ZL, SNOWTEX  ST-PS-M, SNOWTEX  ST-PS-S, SNOWTEX  ST-PS-SO, SNOWTEX  ST-OUP, SNOWTEX  ST-UP, S-CHEMTECH사의 SS-SOL 30SG, SS-SOL 30E, SS-SOL 30, SS-SOL 30F, SS-SOL 100, SS-SOL 30A, SS-SOL 20AM, SS-SOL 30OEAC, SS-SOL 30OMAC, SS-SOL 30OPAC, SS-SOL 20EG, SS-SOL 30EK, SS-SOL 30BK)등이 사용될 수 있다. 상기 알루미나졸로 (NISSAN CHEMICAL 사의 ALUMINASOLTM AS-100, ALUMINASOLTM AS-200, GerardKluyskens Co., Inc사의 Ultra-Sol 200A, Ultra-Sol 201A/60, Ultra-Sol 201A/280, WESBOND 사의 Wesol A, Wesol C12, Wesol D30)등을 예로 들수 있다. 이들은 단독 또는 둘이상을 혼합하여 사용할 수 있다.
이때, 본 발명에 따른 조성물에 함유되는 무기 금속졸의 사용량이 1 중량% 미만이면 화성피막의 불균일성 및 내식성 저하되는 문제가 있으며, 반면에 그 함량이 5중량%를 초과할 경우 내수밀착성 저하, 화성처리 조성물의 안정성 저하를 수반하는 문제가 발생된다. 따라서, 무기 금속졸은 1 내지 5 중량%로 사용되는 것이 바람직하고, 1.5 내지 4중량%로 사용되는 것이 보다 바람직하다.
또한, 본 발명에 따른 알칼리 화성처리 조성물에 적용되는 상기 바나듐화합물은 내식성을 보다 향상시키고, 마그네슘 합금 소재에 자기치유(self-healing)효과를 부여하기 위해 적용된다.
상기 바나듐 화합물로는, 바나듐의 산화수가 5가, 4가 또는 3가 바나듐 화합물을 사용할 수 있고, 예를 들어 5산화바나듐(V2O5), 메타바나딘산(HVO3), 메타바나딘산암모늄, 메타바나딘산나트륨, 옥시3염화 바나듐(VOCl3) 등의 산화수 5 가인 바나듐 화합물 3산화바나듐(V2O3), 이산화바나듐(VO2), 옥시황산바나듐(VOSO4), 바나듐옥시아세틸아세테이트 VO(OC(=CH2)CH2COCH3))2, 바나듐아세틸아세테이트 V(OC(=CH2)CH2COCH3))3, 3염화바나듐(VCl3), 인바나드몰리브덴산등의 산화수 3가 또는 4가의 바나듐 화합물을 들 수 있다. 이들은 단독으로 또는 둘 이상을 혼합하여 사용할 수 있다.
이때, 본 발명에 따른 조성물에 함유되는 바나듐 화합물이 0.03 중량% 미만이면 내식성 및 자기치유 효과를 얻을 수 없고, 반면에 그 함량이 0.3중량%를 초과할 경우 성능 향상이 확인되지 않아 비용의 상승이 발생하는 문제점이 있다. 따라서, 바나듐 화합물은 0.03 내지 0.3 중량%로 사용되는 것이 바람직하고 보다 바람직하게는 0.05 내지 0.2중량%로 사용될 수 있다.
상기 염기성 화합물은 화성처리 조성물의 pH를 상승시켜 보다 안정한 알카리 화성처리 조성물을 만드는 역할을 하며, 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화바륨, 수산화암모늄 및 수산화리튬 등을 예로 들 수 있다. 이들은 단독 또는 둘이상을 혼합하여 사용할 수 있다.
이때 염기성 화합물의 함량이 0.5 중량% 미만이면 알칼리 화성처리 조성물의 pH를 원하는 수준으로 증가시키지 못하며, 5 중량%를 초과할 경우 알칼리 화성처리 조성물의 pH가 너무 증가하여 마그네슘 소재의 표면에 화성처리시 피막이 형성되지 않는 문제점이 있다. 따라서 염기성 화합물은 0.5 내지 5 중량%로 사용되는 것이 바람직하다.
또한 본 발명의 일 실시예에 따른 알칼리 화성처리 조성물에 적용되는 아크릴계 수지는 형성하고자 하는 화성피막의 내구성을 향상시켜 보다 치밀한 화성피막을 형성시키며 내수밀착성을 향상시키는 역할을 한다. 상기 아크릴계 수지는 아크릴 폴리올, 아크릴산 공중합체, 변성 아크릴산 공중합체, 폴리아크릴레이트 등을 예로 들 수 있다. 이들은 단독 또는 둘 이상을 혼합하여 사용할 수 있다.
이때 아크릴계 수지의 함량이 0.01중량% 미만이면 형성되는 화성피막의 내구성이 저하되어 부착성과 내수밀착성이 떨어지며, 0.1 중량%를 초과할 경우 과량의 수지로 인해 화성피막이 두껍게 형성되어 부착성이 저하되는 문제점이 있다. 따라서, 아크릴계 수지는 0.01 내지 0.1 중량%의 범위 내에서 사용하는 것이 바람직하다.
특히, 본 실시예에 따른 알칼리 화성처리 조성물은 8.5 내지 10.5 pH를 갖는 것이 바람직하다. 상기 알칼리 화성처리 조성물의 pH가 8.5보다 작을 경우 마그네슘 합금 소재의 반응성이 커져 화성피막이 활발하게 형성되나 소재표면에서 마그네슘 이온이 매우 빠르게 녹아나 용액의 노후화를 촉진시킨다. 반면 pH가 10.5 이상일 경우 마그네슘 합금 소재의 반응성이 현저히 줄어들어 마그네슘 소재의 표면에 화성피막 형성이 잘 이루어지지 않는다.
이와 같은 조성을 갖는 마그네슘 및 그 합금 소재용 알칼리 화성처리 조성물은 마그네슘 이온의 용출성이 낮아 화성처리 공정으로 인해 알칼리 화성처리 조성물이 노후화 되는 것을 방지함으로서 수십회 이상 재 사용을 하여도 치밀한 화성피막을 형성할 수 있다. 이로 인해 이후 형성되는 상도도막의 표면결함을 초래하지 않으면서 마그네슘 소재에 고내식성, 우수한 도장밀착성, 내수밀착성을 부여할 수 있다.
이하, 본 발명의 일 실시예에 따른 마그네슘 및 마그네슘 합금 소재의 표면 처리하는 방법을 설명하기로 한다.
본 발명에 따른 마그네슘 및 마그네슘 합금 소재의 표면 처리방법은 표면청정화 공정과 화성처리 공정을 수행함으로서 이루어질 수 있다.
상기 표면청정화 공정은 화성처리 이전 단계로 마그네슘 합금표면에 존재하는 오염물(가공오일, 유분등)과 산화막층을 제거하여 균일하고 치밀한 화성피막이 형성되는 것을 돕도록 하는 공정으로서, 아래와 같은 탈지(알칼리 탈지)공정과, 1차 수세공정, 식각공정, 2차 수세공정, 탈 머스트공정, 3차 수세공정을 수행함으로서 이루어질 수 있다.
본 발명의 표면청정화 공정에서 탈지공정은 식각 공정에 앞서 마그네슘 합금의 표면의 유분, 가공오일 성분을 1차적으로 제거하는 단계이다.
탈지공정에 사용할 수 있는 탈지액으로서는 유기 오염물을 제거할 수 있는 것이면 특히 조성은 한정되니 않으나, 계면활성제를 함유한 알칼리성 수용액을 사용하는 것이 바람직하다. 이러한 탈지액의 알칼리 빌더로는 알칼리 금속의 수화물, 인산염, 규산염, 탄산염 등을 적용할 수 있다. 그리고 계면활성제로서는 비인온계, 양이온계, 음이온계 중의 어느 것이라도 적용할 수 있다. 더욱이 탈지효율성을 높이기 위해 킬레이트제를 배합하여도 무방하다.
상기 탈지액을 마그네슘 합금에 접촉시키는 온도와 시간은 특별히 한정되지 않으나, 마그네슘 표면의 오염도에 따라 30~70℃, 2~10분 범위내에서 실시되는 것이 바람직하다. 탈지액의 농도 또한 마그네슘 합금표면의 오염도, 탈지액 성분 등에 따라 적절히 설정될 수 있다.
상기 제1 수세 공정은 탈지 공정에서 적용되는 세정액을 제거하기 위해 물을 이용한 세정공정이다. 상기 제1 수세는 침적, 스프레이, 유하 등의 방법으로 수행될 수 있으며 탈이온수, 증류수, 순수 등을 포함하는 모든 종류의 물을 사용하여 수행될 수 있으며 온도 범위에 특별한 제한은 없다. 그러나 바람직하게는 25 내지 80℃ 온도 범위에서 수행될 수 있다. 이는 온수를 사용하면 보다 효율적으로 수세가 되고 탈수 건조성이 향상되어 다음 공정 처리조에 물의 유입이 적어도 되고 처리액 관리도 용이하기 때문이다. 또한, 수세 단계의 수행시에 세정 효과를 높이기 위해서 초음파 진동을 가할 수도 있다.
본 발명의 표면청정화 공정에서 식각공정은 피처리물인 마그네슘 합금의 표면이 가공유에 의해 과도하게 오염되어 있거나 산화막층이 성장해 있을 경우 이를 제거하기 위해 수행된다. 식각 공정에서의 식각처리는 산성 수용액에 피처리물인 마그네슘 합금 소재를 접촉시킴으로써 실시된다.
일 예로서, 산성 수용액으로는 마그네슘 합금표면의 오염물을 용해제거 할 수 있는 것이 특별히 한정되지 않으며 황산, 인산, 염산, 불산, 질산, 탄산 1종 또는 2종 이상을 혼합 하여 사용하는 것이 바람직하다. 에칭의 효율을 높이기 위해 유기산을 혼합하여도 무방하다. 상기 산성 수용액의 농도, 온도, 상기 마그네슘 합금표면과의 접촉시간 등의 조건은 한정 되지 않으며, 상기 마그네슘 합금의 오염도, 사용하는 산성 수용액의 성분 등에 따라 적절히 조정된다.
상기 제2 수세 공정은 식각 공정에서 적용되는 산성 수용액을 제거하기 위해 물을 이용한 세정공정이다. 상기 제2 수세는 침적, 스프레이, 유하 등의 방법으로 수행될 수 있으며 탈이온수, 증류수, 순수 등을 포함하는 모든 종류의 물을 사용하여 수행될 수 있으며 온도 범위에 특별한 제한은 없다.
본 발명의 표면청정화 공정에서 탈 머스트공정은 식각 공정 이후 상기 마그네슘 합금표면에 스머트가 잔존할 경우 이를 제거하기 위해 수행된다. 탈 스머트 공정에서의 탈 스머트는 탈 스머트액에 피처리물인 마그네슘 합금을 접촉시킴으로써 수행될 수 있다.
일 예로서, 탈 스머트액은 에칭공정 후 상기 마그네슘표면에 잔존하는 스머트를 제거 할 수 있는 것이면 특별히 한정 되지 않으며 주석산, 아스코르브산, 글루콘산, 구연산, 옥살산 1종 또는 2종이 상을 혼합하여 강알칼리수용액(PH12이상)에 혼합하여 사용하는 것이 바람직하다.
상기 탈 스머트액의 농도, 온도, 상기 마그네슘 합금표면과의 접촉시간 등의 조건은 특별히 한정되지 않으며, 식각 공정후 생성된 스머트의 정도, 사용하는 탈 스머트액 성분 등에 따라 적절이 조정될 수 있다.
상기 제3 수세 공정은 탈 스머트공정에서 적용되는 잔류 탈 스머트액을 제거하기 위해 물을 이용한 세정공정이다. 상기 제3 수세는 침적, 스프레이, 유하 등의 방법으로 수행될 수 있으며 탈 이온수, 증류수, 순수 등을 포함하는 모든 종류의 물을 사용하여 수행될 수 있으며 온도 범위에 특별한 제한은 없다.
본 발명의 다른 실시예로서, 가공유에 오염이 없거나 가공되지 않은 마그네슘 및 마그네슘 합금 소재의 표면 청정화 공정에서 식각 및 탈 스머트 공정을 수행하지 않을 수 있다.
본 발명에 따른 화성처리 공정은 청정화된 표면을 갖는 마그네슘 및 마그네슘 합금 소재의 표면에 화성처리 조성물을 이용하여 화성피막을 형성하는 공정이다. 상기 본 발명의 알칼리 화성처리 조성물은 인산 화합물 2 내지 10 중량%, 무기 금속졸 1 내지 5 중량%, 바나듐 화합물 0.03 내지 0.3 중량%, 염기성 화합물 0.5 내지 5 중량%, 아크릴계 수지 0.01 내지 0.1 중량% 및 여분의 수용성 용매를 포함하는 조성을 가질 수 있다. 상기 알칼리 화성처리 조성물에 대한 구체적인 설명은 본 발명의 상세한 설명에 개시되어 있어 중복을 피하기 위해 생략한다.
이때, 화성피막은 0.1 내지 2.5㎛ 두께를 갖도록 형성하는 것이 바람직하다. 0.1㎛이하의 화성피막은 도장부착성은 양호하나 내식성 및 내수밀착성이 크게 저하되는 문제점이 발생되고, 2.5㎛이상의 화성피막이 형성될 경우 내식성은 우수하나 도장 부착성 및 내수밀착성이 저하되는 문제가 발생한다. 상기와 같은 화성피막의 두께는 화성처리 용액의 온도와 시간을 조정하여 조절가능하다.
상술한 표면 처리 공정을 수행하여 형성된 마그네슘 및 마그네슘합금 소재는 상도 도장 후 자동차 부품 또는 기타 철강을 대체하는 용도로 사용될 수 있다. 상도 도장은 전착 도장으로 마그네슘합금 소재 표면의 수분이 도료에 혼입되어 영향을 줄 수 있으므로 상도 도장 전에 건조공정을 두는 것이 바람직하다.
상기 건조는 특히 제한은 없고, 열풍 히터나 적외선 히터 등에 의한 오븐건조로 하는 것이 바람직하며 건조 온도는 80~160oC, 20 내지 60분 범위 내에서 실시되는 것이 바람직하다. 또한 전착 도장 이후의 건조 조건은 전착 도료의 종류 및 특성에 따라 변화될 수 있으며,
또한, 도장시 사용되는 도료의 종류는 크게 제한되지 않으며, 수계, 용제계의 어느 것을 사용하도 무방하다. 도료의 도장 방법에 대해서도 제한되지 않으며, 스프레이, 침지, 분체 도장 등, 종래 고지된 어떠한 도장방법이라도 적용할 수 있다.
이하, 본 발명에 따르는 실시예, 실험예 및 평가예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1 및 비교예 1 ~ 11
증류수 1L에 하기 표 1에 개시된 성분이 포함된 알칼리 화성처리 조성물들을 제조하였고, 표 2에 개시된 성분이 포함된 산성의 화성처리 조성물을 제조하였다.
Figure PCTKR2017001129-appb-T000001
Figure PCTKR2017001129-appb-T000002
<실험예 1>
마그네슘 합급 소재(AZ31B 판재; ASTM규격품, 압연판, 70mm X 140mm X 0.8mm AZ31B(고온 프레스) 각각 을 마련하였다. 이후, 마련된 합금 소재에 아래 표 3의 조건의 표면 청정화 공정을 수행한다. 이어서, 실시예들 및 비교예들에서 각각 제조된 화성처리 조성물을 각각 이용하여 화성피막들을 형성하는 공정, 수세, 전착도장을 하여 시험용 시편들을 제작하였다. 전착도장의 조건은 아래와 같다.
Figure PCTKR2017001129-appb-T000003
전착도장 조건
- Curing Condition : 160℃ x 40min
- Coating thickness: 20 ± 5㎛
- 도료 : RF-6900 F-1, F-2 (Noroo Auto Coating)
도장 밀착성 평가
실시예들 및 비교예들의 알칼리 화성처리 조성물을 각각 이용하여 실험예 1의 표면 처리 공정, 화성피막 형성 공정 및 전착도장을 하여 샘플들을 마련한 후 상기 시편들의 도장밀착성을 평가하였다. 여기서, 도막밀착성은 Cross Cut Test(CCT)방법으로 도막부착 시험(ASTMD3359, 1mm X 1mm, 100개)을 하여 도막 잔존에 의해 평가 하였다. 평가기준은 아래의 표 4와 같다.
Figure PCTKR2017001129-appb-T000004
내수밀착성 평가
내수시험 후 (40℃, 240시간, 침지처리) Cross Cut Test(CCT)방법으로 도막부착 시험(ASTMD3359, 1mm X 1mm, 100개)을 하여 도막 잔존 여부에 의해 평가 하였다. 평가기준은 표 3과 같다.
내식성 평가
ASTM B117에 규정한 방법에 준한 염수 분무법을 적용여 각각의 시편들을 내식성을 평가하였다. 이때, 시편들은 염수분부 시험전 X-커트를 넣어 두었다. 염수분부 시간은 800시간으로 하고, 염수 분무 종료 후 각 시편의 X-커트로 부터 한쪽 팽창폭을 측정함으로써 도장후의 내식성을 평가 하였다. 평가기준은 아래의 표 5에 나온 바와 같다.
Figure PCTKR2017001129-appb-T000005
실시예 및 비교예들의 평가 결과
실시예 1 및 비교예 1 ~ 11의 화성처리 조성물이 적용되어 제조된 각각의 시편들의 위와 같은 방법을 통하여 도막밀착성, 내식성, 내수밀착성를 평가하여 그 결과가 표 6에 개시되어 있다.
Figure PCTKR2017001129-appb-T000006
1) 인산화합물 함량에 따른 물성 변화 평가
상기 표 6에 나타낸 바와 같이, 본 발명에서 제안하는 바에 따라 인산화합물을 첨가하는 경우(실시예 1)에는 모든 물성에서 양호 이상의 결과를 보였다. 이에 반면, 인산화합물을 너무 적게 첨가하는 경우(비교예1)에는 화성피막이 너무 얇게 형성되어 내식성 저하가 매우 크며, 인산화합물을 너무 많이 첨가하는 경우(비교예2) 화성피막이 너무 두껍게 형성되어 도장밀착성과 내수밀착성을 저하시키는 결과를 보였다. 상기 결과로 볼 때 인산화합물은 화성피막 형성에 효과가 매우 크며 본 발명의 범위내에서 사용될 때 내식성 및 다른 물성에도 효과가 있음이 확인되었다.
2) 무기금속졸 함량에 따른 물성변화 평가
상기 표 6에 나타낸 바와 같이, 본 발명에서 제안하는 바에 따라 무기금속졸(알루미나졸)을 첨가하는 경우 실시예 1에서 알 수 있듯이 모든 물성에서 양호 이상의 결과를 보였다. 이에 반해, 무기금속졸인 알루미나졸을 너무 적게 첨가하는 경우인 비교예 3에는 모든 물성에서 불량한 결과를 보였으며, 너무 많이 첨가하는 경우인 비교예 4에서도 일부 물성에서 불량한 결과를 보였다. 이는 무기금속졸이 화성피막 형성시 도막의 치밀함이나 균일함에 영향을 주기 때문에 균일한 피막을 얻기 위해서는 무기금속졸을 본 발명의 범위내에서 사용하여야 하는 것이 확인되었다.
3) 바나듐계 화합물 함량에 따른 물성변화 평가
상기 표 6에 나타낸 바와 같이, 본 발명에서 제안하는 바에 따라 바나듐계 화합물(옥시황산바나듐)을 첨가하는 경우 실시예 1에서 알 수 있듯이 모든 물성에서 양호 이상의 결과를 보였다. 상기 바나듐계 화합물의 사용량이 너무 적으면 비교예 5에서와 같이 내식성이 매우 불량해지는 문제점이 발생하고, 비교예 6에서와 같이 그 함량이 너무 높으면 과도한 바나듐피막의 형성으로 내수밀착성 및 내식성이 불량해지는 문제점이 발생하였다.
4) 염기성 화합물(수산화나트륨) 함량에 따른 물성변화 평가
상기 표 6에 나타낸 바와 같이, 본 발명에서 제안하는 바에 따라 염기성 화합물 (수산화나트륨)을 첨가하는 경우 실시예 1에서 알 수 있듯이 모든 물성에서 양호 이상의 결과를 보였다. 반면, 상기 수산화나트륨을 너무 적게 첨가하는 경우인 비교예 7 에서는 마그네슘 합금 소재에서 마그네슘 이온이 녹아나 용액의 노후화를 촉진시키며, 두껍게 형성된 화성피막으로 인해 모든 물성이 다 저하되는 문제점이 발생한다. 너무 많이 첨가하는 경우인 비교예 8에서는 화성처리 조성물의 pH가 상승하여 화성처리시 반응이 일어나지 않아 원하는 물성을 확보할 수 없는 것이 확인되었다.
5) 아크릴계 수지 함량에 따른 물성변화 평가
상기 표 6에 나타낸 바와 같이, 본 발명에서 제안하는 바에 따라 아크릴계 수지를 첨가하는 경우 실시예 1이 모든 물성에서 양호 이상의 결과를 보였다. 상기 알칼리 화성처리 조성물에 함유되는 아크릴계 수지가 너무 적게 첨가하는 경우인 비교예 9 에서는 내수밀착성이 저하되는 문제가 있으며 이는 아크릴계 수지가 마그네슘합금 표면에 보다 치밀하고 내구성있는 화성피막을 형성시켜 내수밀착성을 향상시키는 역할을 하기 때문이다. 내식성 및 내수밀착성이 낮아지는 문제점이 초래되었으며, 너무 많이 첨가하는 경우인 비교예 10에서는 오히려 그 효과를 확인할 수 없었으며 내식성 및 내수밀착성이 모두 저하되는 결과를 보였다.
실시예 1 및 비교예 11의 화성처리 조성물의 pH 변화
마그네슘합금 소재(AZ31B)를 각각 실시예1과 비교예11의 조성을 가진 화성처리 조성물에 처리하여 용액의 pH 변화를 측정하였다. 그 측정결과는 도 1에 개시되어 있다.
도 1의 그래프는 각각의 화성처리 조성물(실시예1, 비교예11)을 사용하여 마그네슘합금 소재를 계속해서 처리했을 때의 pH 변화를 나타낸다. 도 1의 그래프의 X축은 마그네슘합금을 계속 처리하여 처리면적당 용액양(m2/L)으로 환산하여 표시하였다. 비교예 11의 경우 마그네슘 합금의 처리용량이 많아질 수록 pH가 급격하게 증가하나 실시예1의 경우는 pH가 서서히 감소함을 알 수 있다. 이때 비교예11의 경우 기존 특허에 명시된 바와 같이 pH가 5이상 넘어가면 물성이 저하되어 화성처리 조성물로 사용할 수 없게 된다.
실시예 1 및 비교예 11의 화성처리 조성물의 노후화 평가
25cm x 9cm AZ31B 소재를 두 가지 화성처리 조성물(실시예1, 비교예11)에 화성처리 전 및 화성처리 후 오염도를 평가하고자 하였다. 마그네슘합금 소재를 각각 50매씩 실시예1과 비교예11의 조성을 가진 화성처리 조성물에 처리 한 후 ICP(유도결합 플라즈마 질량 분석) 분석을 통해 용액의 오염도를 측정하였다. 그 측정결과 표7에 개시되어 있다.
Figure PCTKR2017001129-appb-T000007
표 7을 참조하면, 초기상태의 각각의 화성처리 조성물(실시예1, 비교예11)과 비교예 11은 pH가 5이하인 0.15m2/L의 용액과 실시예1은 처리용량이 2.0m2/L까지 처리했을 때의 용액을 각각 분석하였다. 그 측정결과는 비교예11의 경우 처리용량이 0.15m2/L의 수준이지만 마그네슘 이온의 농도가 급격하게 증가하는 것이 확인되었으나, 실시예1은 2.0m2/L의 경우에도 마그네슘 이온이 검출되지 않음을 확인할 수 있었다.
또한, 비교예11과 실시예1의 화성처리 조성물의 초기 물성과 화성처리 후 조성물의 물성을 각각 측정하여 비교하였다. 그 결과가 표8에 개시되어 있다.
Figure PCTKR2017001129-appb-T000008
표 8을 참조하면, 비교예1의 화성처리 조성물의 초기 물성은 모두 우수하나 비교예 11의 경우 0.15m2/L까지는 초기물성과 동등한 결과를 보이지만 그 이후에는 물성이 저하됨을 알 수 있다. 이에 반해 실시예1의 경우는 처리용량 2.0m2/L까지도 초기물성과 동등한 결과를 보였다. 이는 비교예11의 경우 화성처리 연속작업시 마그네슘 이온이 계속해서 녹아나 용액의 pH가 증가함과 동시에 용액이 급격하게 노후화되었기 때문이며 실시예1의 경우에는 화성처리시 마그네슘 이온이 녹아나지 않아 용액의 노후화가 거의 진행되지 않는 것으로 확인되었다.
도 2는 실시예1의 화성처리 조성물을 사용하여 형성된 화성피막의 미세구조를 확대하여 관찰한 사진이다.
도 2에 보이는 바와 같이 본 발명의 실시예1에 의해 마그네슘합금 소재(AZ31B)의 표면에 형성된 화성피막의 미세구조는 특이한 구조를 가지고 있으며 Dendrite 구조와 유사한 구조를 보이고 있는 것이 확인되었다.

Claims (11)

  1. 마그네슘 및 마그네슘 합금 소재의 표면에 내식성을 갖는 화성피막을 형성하는데 적용되는 알칼리 화성처리 조성물에 있어서,
    인산 화합물 2 내지 10 중량%, 무기 금속졸 1 내지 5 중량%, 바나듐 화합물 0.03 내지 0.3 중량%, 염기성 화합물 0.5 내지 5 중량%, 아크릴계 수지 0.01 내지 0.1 중량% 및 여분의 수용성 용매를 포함하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물.
  2. 제1항에 있어서, 상기 인산 화합물은 인산이온을 발생하는 화합물로서, 제2 인산나트륨, 제1 인산암모늄, 제2 인산칼륨 및 오르토인산으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물.
  3. 제1항에 있어서, 상기 염기성 화합물 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화바륨, 수산화암모늄 및 수산화리튬으로 이루어진 군에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물.
  4. 제1항에 있어서, 상기 무기 금속졸은 실리카졸, 알루미나졸, 티타니아졸 및 지르코니아졸로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물.
  5. 제1항에 있어서, 상기 바나듐 화합물은 5산화바나듐(V2O5), 메타바나딘산(HVO3), 메타바나딘산암모늄, 메타바나딘산나트륨, 옥시3염화 바나듐(VOCl3), 3산화바나듐 V2O3), 이산화바나듐(VO2), 옥시황산바나듐(VOSO4), 바나듐옥시아세틸아세테이트 VO(OC(=CH2)CH2COCH3))2, 바나듐아세틸아세테이트 V(OC(=CH2)CH2COCH3))3, 3염화바나듐 (VCl3) 및 인바나드몰리브덴산으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물.
  6. 제1항에 있어서, 상기 아크릴계 수지는 아크릴 폴리올, 아크릴산 공중합체, 변성 아크릴산 공중합체 및 폴리아크릴레이트로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물.
  7. 제1항에 있어서, 8.5 내지 10.5pH 값을 갖는 것을 특징으로 하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물.
  8. 마그네슘 및 마그네슘 합금 소재에 청정화 공정을 수행하는 단계; 및
    알칼리 화성처리 조성물을 이용하여 상기 마그네슘 및 마그네슘 합금 소재의 표면에 화성피막을 형성하는 단계를 수행하되,
    상기 화성피막은 인산 화합물 2 내지 10 중량%, 무기 금속졸 1 내지 5 중량%, 바나듐 화합물 0.03 내지 0.3 중량%, 염기성 화합물 0.5 내지 5 중량%, 아크릴계 수지 0.01 내지 0.1 중량% 및 여분의 수용성 용매를 포함하는 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물을 이용하여 형성하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금 소재의 표면 처리방법.
  9. 제8항에 있어서, 상기 청정화 공정은
    마그네슘 및 마그네슘 합금 소재를 탈지 처리하는 단계;
    탈지 처리된 마그네슘 및 마그네슘 합금 소재를 1차 수세 처리하는 단계;
    산성 수용액을 이용하여 마그네슘 및 마그네슘 합금 소재의 표면을 식각하는 단계;
    식각 처리된 마그네슘 및 마그네슘 합금 소재를 2차 수세 처리하는 단계;
    탈 스머트 공정을 수행하여 마그네슘 및 마그네슘 합금 소재에 존재하는 스머트를 제거하는 단계; 및
    탈 스머트 공정이 수행된 마그네슘 및 마그네슘 합금 소재를 3차 수세 처리하는 단계를 포함하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금 소재의 표면 처리방법.
  10. 제8항에 있어서, 상기 청정화 공정은
    마그네슘 및 마그네슘 합금 소재를 탈지 처리하는 단계; 및
    탈지 처리된 마그네슘 및 마그네슘 합금 소재를 1차 수세 처리하는 단계를 포함하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금 소재의 표면 처리방법.
  11. 제8항에 있어서, 상기 화성피막은 0.1 내지 2.5㎛ 두께를 갖도록 형성하는 것을 특징으로 하는 마그네슘 및 마그네슘 합금 소재의 표면 처리방법.
PCT/KR2017/001129 2016-02-11 2017-02-02 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법 WO2017138714A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17750406.5A EP3415659B1 (en) 2016-02-11 2017-02-02 Alkaline conversion treatment composition for magnesium and magnesium alloy, and method for performing surface treatment on magnesium and magnesium alloy material by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160015698A KR101751453B1 (ko) 2016-02-11 2016-02-11 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법
KR10-2016-0015698 2016-02-11

Publications (1)

Publication Number Publication Date
WO2017138714A1 true WO2017138714A1 (ko) 2017-08-17

Family

ID=59354816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001129 WO2017138714A1 (ko) 2016-02-11 2017-02-02 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법

Country Status (3)

Country Link
EP (1) EP3415659B1 (ko)
KR (1) KR101751453B1 (ko)
WO (1) WO2017138714A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150301A (zh) * 2021-10-29 2022-03-08 北京卫星制造厂有限公司 一种镁锂合金蒙皮表面防腐处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126858A (ja) 1993-10-29 1995-05-16 Nippon Parkerizing Co Ltd マグネシウム含有金属用化成処理液組成物、化成処理方法、および化成処理された材料
JPH09228062A (ja) 1996-02-20 1997-09-02 Sony Corp 金属の表面処理方法
KR20010024643A (ko) * 1997-12-05 2001-03-26 사또미 유따까 크롬 무함유 방식제 및 방식방법
KR100869402B1 (ko) 2002-03-05 2008-11-21 니혼 파커라이징 가부시키가이샤 알루미늄계 또는 마그네슘계 금속의 표면처리용 처리액 및 표면처리 방법
KR20090104575A (ko) * 2008-03-31 2009-10-06 주식회사 포스코 마그네슘 합금의 표면처리방법 및 표면처리된 마그네슘합금
KR20100079864A (ko) * 2008-12-31 2010-07-08 주식회사 포스코 금속표면처리용 조성물 및 이를 이용한 표면처리방법
KR20110010791A (ko) * 2008-05-19 2011-02-07 헨켈 아게 운트 코 카게아아 금속 기판을 위한 부식 보호용 온화한 알칼리성 얇은 무기 코팅
KR20140106938A (ko) * 2013-02-27 2014-09-04 주식회사 노루코일코팅 마그네슘용 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면처리방법
KR101559285B1 (ko) 2014-02-28 2015-10-08 주식회사 노루코일코팅 마그네슘 및 마그네슘 합금용 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면처리방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288580A (ja) * 2000-03-31 2001-10-19 Nippon Parkerizing Co Ltd マグネシウム合金の表面処理方法、およびマグネシウム合金部材
JP5647326B1 (ja) * 2013-11-29 2014-12-24 日本ペイントホールディングス株式会社 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
GB201408005D0 (en) * 2014-05-07 2014-06-18 Delphi Int Operations Lux Srl Valve actuator of a fuel injector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126858A (ja) 1993-10-29 1995-05-16 Nippon Parkerizing Co Ltd マグネシウム含有金属用化成処理液組成物、化成処理方法、および化成処理された材料
JPH09228062A (ja) 1996-02-20 1997-09-02 Sony Corp 金属の表面処理方法
KR20010024643A (ko) * 1997-12-05 2001-03-26 사또미 유따까 크롬 무함유 방식제 및 방식방법
KR100869402B1 (ko) 2002-03-05 2008-11-21 니혼 파커라이징 가부시키가이샤 알루미늄계 또는 마그네슘계 금속의 표면처리용 처리액 및 표면처리 방법
KR20090104575A (ko) * 2008-03-31 2009-10-06 주식회사 포스코 마그네슘 합금의 표면처리방법 및 표면처리된 마그네슘합금
KR20110010791A (ko) * 2008-05-19 2011-02-07 헨켈 아게 운트 코 카게아아 금속 기판을 위한 부식 보호용 온화한 알칼리성 얇은 무기 코팅
KR20100079864A (ko) * 2008-12-31 2010-07-08 주식회사 포스코 금속표면처리용 조성물 및 이를 이용한 표면처리방법
KR20140106938A (ko) * 2013-02-27 2014-09-04 주식회사 노루코일코팅 마그네슘용 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면처리방법
KR101559285B1 (ko) 2014-02-28 2015-10-08 주식회사 노루코일코팅 마그네슘 및 마그네슘 합금용 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면처리방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415659A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150301A (zh) * 2021-10-29 2022-03-08 北京卫星制造厂有限公司 一种镁锂合金蒙皮表面防腐处理方法
CN114150301B (zh) * 2021-10-29 2023-12-12 北京卫星制造厂有限公司 一种镁锂合金蒙皮表面防腐处理方法

Also Published As

Publication number Publication date
EP3415659A4 (en) 2019-10-23
EP3415659A1 (en) 2018-12-19
KR101751453B1 (ko) 2017-07-11
EP3415659B1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
EP2094880B1 (en) Process for treating metal surfaces
EP0713541B1 (en) Composition and method for treatment of phosphated metal surfaces
JP4805280B2 (ja) リン酸陽極酸化アルミニウムの封孔処理方法
KR101439693B1 (ko) 아연도금강판용 표면처리 조성물, 아연도금강판의 표면처리 방법 및 아연도금강판
CN104593793B (zh) 一种铝和铝合金表面预处理中和液
CN1271246C (zh) 抗腐蚀剂和用于金属表面的防腐蚀工艺
EP0795045B1 (en) Composition and method for treatment of conversion-coated metal surfaces
WO2017138714A1 (ko) 마그네슘 및 마그네슘 합금용 알칼리 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면 처리방법
CN1386902A (zh) 用于镁合金的化学转化试剂、表面处理方法和镁合金基质
CN108624933A (zh) 一种成本低的铝制品表面处理工艺
CN109295458B (zh) 铝合金无磷无氮抛光液及铝合金表面处理方法
CN101144158A (zh) 热浸镀锌钢板钼酸盐/磷酸盐复合体系无铬钝化方法
JP5981585B2 (ja) マグネシウムおよびマグネシウム合金用化成処理組成物およびそれを用いたマグネシウムおよびマグネシウム合金素材の表面処理方法
KR101469610B1 (ko) 마그네슘용 화성처리 조성물 및 이를 이용한 마그네슘 및 마그네슘 합금 소재의 표면처리방법
CN111282790A (zh) 一种抗菌抗病毒铝合金氟碳辊涂工艺
JP6594678B2 (ja) 表面処理剤、表面処理方法及び表面処理済み金属材料
KR20020011874A (ko) 금속표면의 친수화 처리방법
JP2004218014A (ja) 金属の非クロム表面処理方法
RU2210123C2 (ru) Способ очистки металлических поверхностей от радиоактивных загрязнений
KR20010104206A (ko) 금속표면 처리제, 금속표면 처리방법 및 표면처리 금속재료
CN111235618B (zh) 一种高硅高铜铝合金零部件的阳极氧化电泳工艺
JPH10337530A (ja) 有機系表面処理金属板および有機系金属表面処理液
JPH01129979A (ja) アルミニウムの表面処理方法
JP2007169353A (ja) 耐食性水系塗料組成物及び耐食性アルミニウム塗装材
KR960004782B1 (ko) 아연도금강판용 크로메이트 처리용액의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750406

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750406

Country of ref document: EP

Effective date: 20180911