WO2017138663A1 - 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ - Google Patents

流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ Download PDF

Info

Publication number
WO2017138663A1
WO2017138663A1 PCT/JP2017/005025 JP2017005025W WO2017138663A1 WO 2017138663 A1 WO2017138663 A1 WO 2017138663A1 JP 2017005025 W JP2017005025 W JP 2017005025W WO 2017138663 A1 WO2017138663 A1 WO 2017138663A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic tube
flocking
actuator
tube
layer
Prior art date
Application number
PCT/JP2017/005025
Other languages
English (en)
French (fr)
Inventor
正紀 冬木
Original Assignee
学校法人冬木学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016025382A external-priority patent/JP6108502B1/ja
Priority claimed from JP2017020090A external-priority patent/JP6154088B1/ja
Application filed by 学校法人冬木学園 filed Critical 学校法人冬木学園
Priority to EP17750384.4A priority Critical patent/EP3415770B1/en
Priority to CN201780011197.0A priority patent/CN108713103B/zh
Publication of WO2017138663A1 publication Critical patent/WO2017138663A1/ja
Priority to US16/100,820 priority patent/US10634171B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear

Definitions

  • the present invention relates to an elastic tube used in a hydraulic actuator driven by supplying and discharging a fluid such as air or liquid, and a hydraulic actuator using the elastic tube, and more particularly to a McKibben type hydraulic actuator. .
  • McKibben type hydraulic actuators have a synthetic resin fiber spiral on the outer periphery of an elastic tube G made of natural rubber or urethane rubber, as shown in FIGS. Covered with a cylindrical sleeve S woven in the mesh, and fixedly sealed at both ends by a pair of terminal portions T having a fluid suction / discharge mechanism such as air or liquid, and an elastic tube G is applied from the outside. The entire length is contracted by expanding with air pressure.
  • the sleeve S has a structure in which the angle of the mesh changes like an accordion so that the radius becomes thicker when pushed in the axial direction, and the radius becomes thinner when pulled reversely.
  • the sleeve S takes out the expansion in the radial direction and changes the angle of the mesh, thereby causing the elastic tube G to contract in the axial direction.
  • the principle is to generate.
  • the hydraulic actuator is lighter, has a higher output density than the electromagnetic or hydraulic cylinder actuator (a large force is produced even though its own weight is small), and has excellent environmental resistance (resistant to rust and dust).
  • it has the advantages of being simple, easy to maintain, highly flexible, close to human muscle characteristics, and low in manufacturing cost.
  • the surface of the elastic tube is damaged due to friction with the sleeve. Or it has the demerit that durability is low because it wears and a hole and a crack are produced.
  • Patent Documents 1 to 3 Prior arts as shown in Patent Documents 1 to 3 have been proposed.
  • the elastic tube is made to be oriented in the longitudinal direction thereof to contain short fibers such as carbon fiber or glass fiber, thereby enhancing the wear resistance of the elastic tube material itself, and The durability is enhanced by controlling the direction of expansion and contraction.
  • durability is improved by the structure which makes an elastic body tube a double structure, and the abrasion and crack of an outer tube do not propagate to an inner tube.
  • the wear is reduced by arranging a low-friction body having elasticity between the elastic tube and the sleeve.
  • the present invention improves the wear resistance of the outer peripheral surface of the conventional elastic tube by performing minimum processing, and has a simple structure and is lightweight. It is an object of the present invention to provide an elastic body tube for a fluid pressure actuator and a fluid pressure actuator which are low in cost and high in durability while maintaining the advantageous characteristics of the above.
  • the invention described in claim 1 of the present application is an elastic tube as a driving force source of a hydraulic actuator driven by supply and discharge of fluid such as air or liquid, and the elastic body
  • a wear resistant flocking layer formed by electrostatic flocking of short fibers made of synthetic resin perpendicularly to the outer peripheral surface is provided on the entire outer periphery of the tube.
  • nylon fiber having high elastic restoring force is suitable, but not limited thereto, synthetic fiber having high wear resistance is used.
  • electrostatic flocking a work (flocked object) whose surface is coated with an adhesive in advance is placed in an electrostatic flocking device, and a high voltage is applied to the input short fibers to allow the short fibers to pass through the electric field. While the direction is aligned in parallel with the electric field, it jumps up by electrostatic attraction force and is densely and densely bonded vertically to the adhesive application surface of the workpiece.
  • it was widely used in the field of surface processing such as metal heat source covers of amber, various machine tools, daily necessities, etc., and it was used to improve heat insulation, soundproofing, impact resistance, and texture. Technology.
  • the flocking layer by electrostatic flocking is highly elastic and is used to modify the surface of rubber. It is also used for various interior parts such as automobile rubber parts and daily necessities, but its purpose is to reduce friction. Smoothing of member operation by sound, sound insulation, airtightness, improvement of texture, etc.
  • electrostatic flocking on rubber packing of automobiles is intended to prevent chatter noise due to friction reduction effect and to facilitate the raising and lowering of window glass, and products with electrostatic flocking inside rubber cooking gloves This is also known for the purpose of preventing stickiness of the glove hand skin and facilitating attachment / detachment. That is, until now, the friction reducing effect of electrostatic flocking has been aimed at facilitating the operation of the contact object, and has not been intended to improve the wear resistance of the flocked body itself.
  • the inventor of the present application pays attention to the mechanical wear resistance improving effect of the flocking layer by such electrostatic flocking, and newly requires a relatively high friction coefficient like rubber and requires repeated expansion and contraction.
  • the present invention has been conceived for application to surface protection of an elastic body, that is, durability improvement. Specifically, the layer of short fibers planted at a high density on the rubber surface contacts the inner surface of the sheathed sleeve at the so-called innumerable “points” of the tips of the respective short fibers, so that the rubber surface is in the sleeve. Compared to direct contact with the inner surface, the contact area is greatly reduced.
  • the frictional force is used to smooth the movement of the object in contact with the planted member, protect the human body, reduce the impact sound at the time of contact, or appropriately stop the movement of the object after the contact.
  • Electrostatic flocking has been used for the purpose of increasing the resistance.
  • the present invention is based on the opposite idea of improving the wear resistance of the surface of the elastic tube that expands and contracts by the electrostatic flocking layer and protects it from friction with the inner surface of the rubbing sleeve.
  • the invention described in claim 2 is an elastic tube as a driving force source of a hydraulic actuator driven by supply and discharge of fluid such as air or liquid, and the outer peripheral surface of the elastic tube is provided on the outer peripheral surface of the elastic tube. It is characterized in that a wear-resistant flocking layer formed by electrostatic flocking of short fibers made of synthetic resin in a strip shape along the axial direction perpendicular to the outer peripheral surface is provided.
  • Adhesives used for electrostatic flocking include acrylic, urethane, engineered, and vinyl acetate types, and there are emulsion types and solvent types.
  • the adhesive is not particularly limited as long as it has strong adhesion to the rubber surface and has elasticity and flexibility corresponding to the deformation and expansion of the rubber itself.
  • Nylon to rubber elastic tube For example, an acrylic emulsion type or a urethane solvent type is suitable for flocking short fibers.
  • Such an adhesive not only has strong adhesion to rubber, but also has high elasticity of the adhesive layer to be formed, and exhibits high elasticity following the expansion and contraction of the elastic tube. If the elasticity of the adhesive layer is different, cracks may occur in the thin adhesive layer as the expansion and contraction is repeated, and the flocked layer may eventually peel from there.
  • the tensile force acting on the adhesive layer at the time of expansion is smaller than that in the circumferential direction, so that cracks hardly occur.
  • the mesh of the sleeve since the mesh of the sleeve is compressed in the axial direction when the elastic tube is expanded, and is expanded when the elastic tube is contracted, the friction between the surface of the elastic tube and the inner surface of the sleeve is smaller than that in the circumferential direction.
  • the axial direction becomes larger. Therefore, if the flocking layer is formed on the outer peripheral surface of the elastic tube in a plurality of strips along the axial direction, the wear resistance against friction in the axial direction can be maintained, and the strips of flocking layers are separated by gaps. Since it is divided, it is possible to prevent the adhesive layer from being cracked by the tensile force in the circumferential direction.
  • the invention described in claim 3 is an elastic tube as a driving force source of a hydraulic actuator driven by supply and discharge of a fluid such as air or liquid, and is provided on the entire outer periphery of the elastic tube. It is characterized in that an anti-abrasion flocking layer formed by electrostatically flocking short fibers made of synthetic resin in the form of a large number of dots perpendicular to the outer peripheral surface is provided.
  • the elastic tube in the driving Macchiben type hydraulic actuator is contracted in the axial direction and expanded in the circumferential direction when contracted, while operating in the opposite direction when extended, and at the center of the tube and terminals at both ends. In the vicinity, the expansion / contraction rate responds nonlinearly to the applied air pressure.
  • the direction of expansion and contraction of the elastic tube surface and the direction of friction with the sleeve inner surface also differ depending on the site, so it is more desirable that the flock layer has durability in all directions for expansion and contraction and friction.
  • the dot arrangement is preferably such that the center of each dot is equidistant from the centers of all adjacent dots.
  • the size of the dots and the distance between the centers of the adjacent dots can be appropriately set according to the diameter of the elastic tube and the expansion / contraction rate, and are not particularly limited.
  • the shape of the dots is not limited to a circle, and a square or other rotationally symmetric shape may be repeated in a net shape.
  • the inventor conducted a reciprocating friction test using a sample piece in which electrostatic flocking was applied to a rubber plate in order to verify the effect of improving the abrasion resistance of the elastic tube surface by electrostatic flocking.
  • the sample piece used was a natural rubber sheet (64 mm square, 3 mm thick) with nylon short fibers (length 0.5 mm, thickness 19 ⁇ m) electrostatically flocked by a simple electrostatic flocking device.
  • an acrylic emulsion type rubber sheet flocking adhesive was applied to a thickness of about 0.1 mm.
  • the object of friction in the reciprocating friction test is a PET (polyethylene terephthalate) sleeve that is generally used for Macchiben type hydraulic actuators, and three PET filament wires with a thickness of about 0.3 mm are arranged in a plane.
  • the reciprocating friction test is performed by a surface property measuring machine (friction wear tester) with a weight of 200 g, a speed of 150 mm / min, and a one-way length of 100 mm, each parallel and perpendicular to the sleeve axial direction.
  • Friction of 50 reciprocations was added, and the static friction coefficient, dynamic friction coefficient, and the amount of wear due to the change in the weight of the test piece were measured. As shown in Table 1, the average and standard deviation values were obtained.
  • the “dotted shape” of the “flocked form” is the one in which a circular dot-shaped flocking layer having a diameter of 3 mm is placed on the surface of the sample piece, and flocked on the entire surface of one side of the sample piece with an interval of 6 mm between the centers. did.
  • “Glass piece (reference)” of “Friction object” uses a glass piece with a smooth surface instead of a sleeve as a friction object as a reference test.
  • the static friction coefficient and the dynamic friction coefficient are about 80% and about 49% in the parallel direction, respectively, and about 78% in the vertical direction. About 39%.
  • the wear amount was about 4 mg without the flocked layer, but decreased to 0.1 mg or less with the flocked layer to a measurement error level. This shows that the short fibers implanted under the test conditions were not dropped out at all, and the rubber of the sample piece was prevented from being worn.
  • the friction coefficient is about 68% and about 43% in the case of the parallel direction, and about 66% and about 31% in the case of the vertical direction. Although the reduction range of the coefficient was small, the wear amount was still 0.1 mg or less. From the above results, the flocking layer provided on the rubber surface reduces the friction with the sleeve, so that the McKibben type hydraulic actuator can be expected to operate more smoothly, and the wear resistance of the elastic tube can be greatly improved. Was confirmed.
  • a sample piece having a flocking layer provided on the entire surface of a sample piece without a flocking layer has a static friction coefficient and a dynamic friction coefficient of about 89% and about 86%, respectively.
  • the reduction was about 79% and about 71%.
  • the invention described in claim 4 is a fluid pressure type actuator having the elastic tube according to any one of claims 1 to 3 as a driving force source.
  • damage and wear of the elastic tube due to friction between the outer peripheral surface of the elastic tube and the inner surface of the sleeve which is a limitation on the durability of the hydraulic actuator, particularly the McKibben actuator, are specially applied to the elastic tube itself. Can be effectively reduced without changing the design. As a result, the durability of the elastic tube as a consumable member can be improved at low cost and the maintenance burden on the actuator can be reduced, which contributes to the promotion of its spread.
  • FIG. 5 is a perspective view showing an internal structure of a hydraulic actuator to which the elastic tube according to the first embodiment of the present invention (rubber tube G made of urethane rubber in the embodiment) is applied, and FIG. FIG.
  • the rubber tube G has a flocking layer F formed by electrostatically flocking nylon short fibers f on its outer peripheral surface, and is embedded in the sleeve S.
  • the sleeve S is formed by weaving a weft and a warp in which three filament wires s made of PET are arranged in a plane with a sharp angle in a mesh, and its inner surface has irregularities.
  • the rubber tube G not having the flocking layer F is applied and expanded, the inner surface of the sleeve S rubs while directly pressing the surface of the rubber tube G, so that the rubber tube G is worn and damaged by friction. There is a fear.
  • each short fiber f is fixed at the root, while its tip is inclined so that it can be freely restored in all directions.
  • the wire linearly contacts the inner surface of the sleeve S, so that the friction is reduced in a so-called “chair” shape in all directions at all times, and damage and wear of the rubber tube G surface are suppressed.
  • the short fibers f are planted at a sufficiently high density, the short fibers f are supported with each other and are not easily inclined even when pressed against the inner surface of the sleeve S. It serves as a buffer layer between the tube G and the sleeve S.
  • the length and thickness of the short fibers f forming the flocking layer F are not particularly limited as long as a sufficient flocking density can be ensured, but a sleeve (diameter of the filament s is 0.3 mm used in a general Macchiben type hydraulic actuator).
  • a short fiber f having a length of about 0.5 mm and a diameter of about 20 ⁇ m is implanted at a density of at least 5,000 fibers / square cm. Is preferred. Since the mesh of the sleeve S is repeatedly expanded and contracted by the operation of the actuator, if the short fiber f is too long, the short fiber f that has entered the mesh during expansion may be pinched and pulled out by the mesh at the time of contraction. This is because if the roughness is rough, the filament s bites into the flocked layer F, the friction coefficient increases, and the wear resistance is impaired.
  • the short short fibers f of different lengths support the long short fibers that fall down due to the external pressure on the surface of the flocked layer F, and it is known that the restoring force of the whole flocked layer F is improved. Further, the wear resistance of the flocked layer F can be further increased.
  • FIG. 8 is a perspective view showing an internal structure of a fluid pressure actuator to which a rubber tube G according to a second embodiment of the present invention is applied
  • FIG. 9 is a sectional view of the same.
  • the flocked layer F on the surface of the rubber tube G is formed in a strip shape along the axial direction as shown in the enlarged view of FIG.
  • the flocking layer F is constituted by the adhesive layer a for flocking the short fibers f on the surface of the rubber tube G with an adhesive. If the elasticity of the rubber and the adhesive layer is different even when using an acrylic emulsion type or urethane type solvent type adhesive that exerts its properties, while the rubber tube G repeatedly expands and contracts due to the operation of the actuator, A crack c is generated in the thin adhesive layer a, and there is a possibility that the flocked layer F will eventually peel off from the crack c.
  • the band-like flocked layer F is formed with a gap g and is not continuous, so that the adhesive layer a itself is stretched by expansion and contraction of the surface of the rubber tube G. Is reduced, and cracks are less likely to occur.
  • the friction between the flocked layer F and the inner surface of the sleeve S mainly occurs in the reciprocating direction along the axis, and the friction in the circumferential direction is relatively small. Therefore, the flocked layer F is axially disposed on the outer peripheral surface of the rubber tube G.
  • the width and interval of the band of the flocking layer F are not particularly limited, but when applied to the sleeve S used in the above-described general McKibben type hydraulic actuator, a band having a width of about 3 mm is about 1 mm. It is preferable to provide them at intervals.
  • the flocked layer F provided on the surface of the rubber tube G is formed in a circular dot shape as shown in the enlarged view of FIG. 13, and the dot arrangement is such that the centers of the dots are adjacent to each other.
  • the center of all dots is equidistant, and other configurations are the same as in the second embodiment.
  • the flock layer F since the flock layer F has a gap between the adhesive layers a in all directions, even if the surface of the rubber tube G contracts non-linearly with different expansion / contraction ratios depending on the part of the rubber tube G during the operation of the actuator, The possibility that this occurs is reduced, and the durability of the flocked layer F can be further improved as compared with the second embodiment.
  • the durability test was performed by using an electrostatic flocked rubber tube G and three non-electrostatic flocked rubber tubes G (control group), with an air compressor connected with an extension load of 20 kg weight.
  • the apparatus was repeatedly applied at a pressure of 0.5 MPa for 3 seconds (pressurization 1.5 seconds, exhaust 1.5 seconds) until air leakage from the rubber tube G occurred.
  • Table 4 is a graph showing the result of comparison between the presence or absence of the flock layer F by measuring the amount of contraction of the fluid pressure actuator with respect to the change in air pressure applied to the rubber tube G.
  • the present invention is not limited to the above-described embodiment, and can be improved or changed within the scope of the technical idea of the present invention. They belong to the technical scope of the present invention.
  • the present invention can be used for a fluid pressure actuator, particularly an elastic tube as a drive body of a McKibben type actuator, and an actuator using the same. It is effective in application to devices such as powered suits (human body-mounted robots), robot prostheses, and prosthetic legs that operate at a high frequency at all times and require a reduction in maintenance burden. According to the present invention, the durability of the elastic tube as a consumable member is improved at low cost, and the burden of maintenance of the actuator is reduced, thereby contributing to the spread of such devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Actuator (AREA)

Abstract

【課題】 弾性体チューブへ最小限の加工を施すことによってその外周表面の耐摩耗性を向上させ、簡易な構造でかつ軽量であるという有利な特徴を保持しつつ、低コストで耐久性の高い流体圧式アクチュエータ用弾性体チューブ並びに流体圧式アクチュエータを提供する。 【解決手段】 空気又は液体等の流体の給排により駆動される流体圧式アクチュエータの駆動力源としての弾性体チューブであって、外周全面に合成樹脂製の短繊維を表面に対して垂直に静電植毛して成る耐摩耗植毛層を設け、さらに、前記耐摩耗植毛層は、前記弾性体チューブの外周表面に軸線方向に沿って多数の帯状、又は、前記弾性体チューブ外周全面に多数のドット状に前記合成樹脂製の短繊維を静電植毛して成る。

Description

流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ
 本発明は、空気又は液体等の流体の給排により駆動される流体圧式アクチュエータに用いられる弾性体チューブ及び、該弾性体チューブを用いた流体圧式アクチュエータ、特に、マッキベン(McKibben)型流体圧式アクチュエータに関する。
 いわゆるアクチュエータ(駆動装置)のうち、マッキベン(McKibben)型流体圧式アクチュエータは、図1乃至図3に示すように、天然ゴムやウレタンゴム等製の弾性体チューブGの外周に合成樹脂繊維を螺旋状の網目に織った筒状のスリーブSを被せた上で、空気又は液体等の流体の吸排機構を備える一対のターミナル部Tにて両端を固定封鎖してなり、弾性体チューブGを外部から印加する空気圧で膨張させることにより全長を収縮させる。スリーブSは、図4に示すように、網目の角度がアコーディオンのように変化することにより、軸方向に押し込むと半径が太くなり、逆に引っ張ると半径が細くなる構造を有し、内蔵する弾性体チューブGに空気圧が印加されて軸方向と半径方向に膨張しようとする際に、スリーブSが半径方向の膨張を取り出して網目の角度を変化させることで弾性体チューブGに軸方向の収縮力を生じさせることを原理としている。
 流体圧式アクチュエータは、電磁式あるいは油圧シリンダ式アクチュエータに比べて、軽量で出力密度が高い(自重が小さいのに大きな力が出る)、耐環境性に優れている(錆びや埃に強い)、構造がシンプルでメンテナンスが容易、柔軟性が高く人間の筋特性に近い特性を有する、製造コストが小さい、といったメリットを有する一方、構造上の必然としてスリーブとの摩擦により弾性体チューブの表面が傷付きあるいは摩耗して孔や亀裂を生じるため耐久性が低いというデメリットを有する。
 この問題を解決するために、特許文献1乃至3に示されるような先行技術が提案されている。特許文献1に記載の発明では、弾性体チューブにその長手方向に配向させて炭素繊維またはガラス繊維等の短繊維を含有させることで、弾性体チューブの材質自体の耐摩耗性を強化し、かつ、その伸縮方向を制御することで耐久性を高めるものである。また、特許文献2に記載の発明では、弾性体チューブを二重構造として外側チューブの摩耗や亀裂が内側チューブに伝播しない構成で耐久性を高めている。さらに、特許文献3に記載の発明では、弾性体チューブとスリーブとの間に伸縮性を有する低摩擦体を挟んで配置することで摩耗を低減させる構成としている。
特開2015-180829号公開特許公報 特開2015-108436号公開特許公報 特表2004-085856号公開特許公報
 しかしながら、特許文献1の記載発明の如く弾性体チューブの素材自体に短繊維を含有させると必然的にゴム等の素材の弾性が変化してアクチュエータの出力特性も変化する。そのため、弾性体チューブの素材の仕様も専用化せざるを得ない。また、特許文献2及び3の記載発明の如く弾性体チューブを二重構造化させたり、弾性体チューブとスリーブとの間に低摩擦体を挟む構成は構造が複雑化せざるを得ない。従ってこれらの先行技術は、いずれも製造コストが小さいという流体圧式アクチュエータのメリットを低下させることとなる。
 本発明は、以上のような従来技術の問題を解決するべく、従前の弾性体チューブへ最小限の加工を施すことによってその外周表面の耐摩耗性を向上させ、簡易な構造でかつ軽量であるという有利な特徴を保持しつつ、低コストで耐久性の高い流体圧式アクチュエータ用弾性体チューブ並びに流体圧式アクチュエータを提供することを課題とする。
 上記課題を解決するため、本願の請求項1に記載した発明は、空気又は液体等の流体の給排により駆動される流体圧式アクチュエータの駆動力源としての弾性体チューブであって、前記弾性体チューブの外周全面には合成樹脂製の短繊維を外周表面に対して垂直に静電植毛して成る耐摩耗植毛層を設けたことを特徴とする。
 本発明における合成樹脂製の短繊維としては弾性復元力の高いナイロン繊維が好適であるが、これに限らず耐摩耗性の高い合成繊維を用いる。静電植毛は、予め表面に接着剤を塗布したワーク(植毛対象物)を静電植毛器内に設置し、投入した短繊維に高電圧を掛けることにより、電界を通過する際に短繊維の方向が電界と平行に揃いつつ、静電吸引力により飛昇してワークの接着剤塗布面に垂直に高密度に密集して接着されるものである。古くは炬燵の金属製熱源カバーから各種機械器具の部材、日用品等の表面加工の分野で広く普及し、断熱性・防音性・耐衝撃性の改善や手触り等の風合い向上に用いられてきた旧知の技術である。
 静電植毛による植毛層は弾力性が高いためゴムの表面の改質にも用いられ、自動車のゴム製部品等の各種の内装部材や日用品等にも多用されているが、その目的は摩擦低減による部材動作の円滑化、遮音性、気密性、質感の向上等であった。たとえば、自動車のゴム製パッキングへの静電植毛は、摩擦低減効果によるビビリ音の防止や窓ガラス昇降の円滑化を目的とし、また、ゴム製炊事用手袋の内側に静電植毛を施した製品も公知であるが、これも手袋の手の皮膚へのベタ付き防止と着脱の円滑化を目的としていた。すなわち、これまで静電植毛の摩擦低減効果は、接触物の動作の円滑化を目的としていたのであり、被植毛体自体の耐摩耗性向上を企図したものではなかったのである。
 一方、本願発明者は、かかる静電植毛による植毛層の有する機械的な耐摩耗性向上効果に着目し、新たにゴムのように本来的に比較的摩擦係数が高く、反復的な伸縮を要求される弾性体の表面保護、すなわち耐久性向上への適用に想到したものである。具体的には、ゴムの表面に高密度に植毛された短繊維の層は、外装されたスリーブの内面と各短繊維の先端のいわば無数の「点」で接触するため、ゴム表面がスリーブの内面に直接接触する場合に比べて接触面積は大幅に減少する。また、弾性体チューブの膨張収縮によりスリーブの内面がその表面を押圧して擦過する際にも、個々の短繊維は根元で固定されている反面、その先端は自由に全方位へ復元可能に傾斜するから、短繊維の側面が線的にスリーブの内面と接触し、いわばスリーブの内面を常時全方向に「いなす」形で接触面積を減少させる。かかる作用により弾性体チューブの表面とスリーブの内面との摩擦は低減され、弾性体チューブ表面の損傷や摩耗が抑制される。
 前述の通り、従来の機械分野では、被植毛部材に接触する物体の動きの円滑化、人体の保護、接触時の衝撃音の低減、あるいは接触後の物体の運動を適宜停止させるために摩擦力を増加させることを目的に静電植毛が用いられてきた。一方、本願発明は、静電植毛層によって伸縮する弾性体チューブの表面の耐摩耗性を向上させ、擦過するスリーブの内面との摩擦から保護するという逆の発想に基づく。後述の通り、発明者が実施した往復摩擦試験の結果、短繊維を静電植毛した植毛層を設けたゴムの表面の摩擦係数並びに摩耗物質量は、植毛層なしのゴム表面に比べて大幅に低減されており、植毛層による耐摩耗性の向上が確認されている。
 次に、請求項2に記載した発明は、空気又は液体等の流体の給排により駆動される流体圧式アクチュエータの駆動力源としての弾性体チューブであって、前記弾性体チューブの外周表面には軸線方向に沿って多数の帯状に合成樹脂製の短繊維を外周表面に対して垂直に静電植毛して成る対摩耗植毛層を設けたことを特徴とする。
 静電植毛に用いられる接着剤にはアクリル系、ウレタン系、工ポキシ系、酢酸ビニル系等があり、剤型にはエマルジョンタイプ、ソルベントタイプがある。接着剤は、ゴム表面のへの接着力が強く、かつ、ゴム自体の変形伸縮に応じた弾力性・柔軟性を備えたものであれば特に限定されないが、ゴム製の弾性体チューブへのナイロン製短繊維の植毛には、たとえばアクリル系のエマルジョンタイプやウレタン系のソルベントタイプが好適である。かかる接着剤は、ゴムへの接着力が強いだけでなく、形成する接着層の弾力性も高く、弾性体チューブの伸縮に追従して高い伸縮性を発揮するが、それでも、ゴム自体の弾性と接着層の弾性が異なる場合には伸縮が反復されるうちに薄い接着層にクラックが生じ、最終的にはそこから植毛層が剥離するおそれがある。
 かかる植毛層の剥離を防止するためには、ゴム表面における植毛層に隙間を設けることが有効である。接着層が連続していなければゴム表面の伸縮による接着層自体の引伸ばしの影響は低減されるため、クラックが生じにくくなる。前述の通り、弾性体チューブに空気圧が印加されて膨張する際には、スリーブが半径方向の膨張を取り出して網目の角度を変化させることで弾性体チューブを軸方向に収縮させる。そのため、弾性体チューブの表面は、周方向においては膨張の際にその断面外周が拡大し、接着層に引張力が働いて引伸ばされることでクラックが生じ易くなる。一方、軸線方向では、膨張の際に接着層に働く引張力は周方向に比べて小さいため、クラックは生じにくい。また、図4に示した如く、弾性体チューブの膨張時にはスリーブの網目が軸線方向に圧縮され、縮小時には伸展されるため、弾性体チューブの表面とスリーブ内面との摩擦は、周方向に比べて軸線方向がより大きくなる。従って、植毛層を弾性体チューブの外周表面に軸線方向に沿って多数の帯状に配列させて形成すれば、軸線方向の摩擦に対する耐摩耗性を維持でき、しかも、帯状の植毛層同士が隙間により分断されているため、周方向の引張力により接着層にクラックが生じることを防ぐことができるのである。
 次に、請求項3に記載した発明は、空気又は液体等の流体の給排により駆動される流体圧式アクチュエータの駆動力源としての弾性体チューブであって、前記弾性体チューブの外周全面には多数のドット状に合成樹脂製の短繊維を外周表面に対して垂直に静電植毛して成る対摩耗植毛層を設けたことを特徴とする。
 駆動中のマッキベン型流体圧式アクチュエータにおける弾性体チューブは、収縮時には軸線方向に収縮するとともに周方向に拡張される一方、伸展時にはその逆方向に作動し、しかも、チューブの中央部と両端のターミナルの近くとでは印加される空気圧に対して伸縮率が非線形に応答する。その結果、弾性体チューブ表面の伸縮の方向及びスリーブ内面との摩擦の方向も部位により異なるから、植毛層は全方向への伸縮及び摩擦への耐久性を備えることがより望ましい。
 これに対し、植毛層を高密度かつ等間隔のドット状に分散して設ければ、弾性体チューブの周方向への膨張収縮に対してのみならず、全方向への膨張収縮に対しても接着層のクラックを防止することができ、弾性体チューブの耐摩耗性がさらに向上する。従って、ドットの配置は、各ドットの中心が隣接するすべてのドットの中心と等距離となるようにすることが好適である。なお、ドットの大きさ及び隣接するドットの中心同士の間隔は弾性体チューブの直径や伸縮率に応じて適宜設定可能であり、特に限定されない。また、植毛層を高密度としつつ均等に隙間を設けるためには、ドットの形状は円形に限らず、四角形その他の回転対称形を網状に反復させたものとしても良い。
 発明者は、静電植毛による弾性体チューブ表面の耐摩耗性向上効果を検証するべくゴム板に静電植毛を施した試料片を用いて往復摩擦試験を行った。使用した試料片は天然ゴムシート(64mm四方、厚さ3mm)の片面にナイロン製短繊維(長さ0.5mm、太さ19μm)を簡易静電植毛装置により静電植毛したもので、植毛用接着剤としてはアクリル系エマルジョンタイプのゴムシート植毛用接着剤を厚さ約0.1mmに塗布して用いた。また、往復摩擦試験の摩擦対象は、マッキベン型流体圧式アクチュエータに一般的に用いられているPET(ポリエチレンテレフタラート)製スリーブであり、太さ約0.3mmのPETフィラメント線3本を平面に並べて成る緯糸と経糸を鋭角(約35度)で開口率約25%のメッシュに綾織りしたものを切り出したスリーブ片を使用した。また、往復摩擦試験は、表面性測定機(摩擦摩耗試験機)により、重り:200g、速度150mm/分、片道長さ100mmにて、スリーブ片に対してスリーブの軸線方向に平行・垂直に各往復回数50回の摩擦を加え、静止摩擦係数、動摩擦係数、及び試験片の重量変化による摩耗量の計測を行い、表1の通り平均値と標準偏差の数値を得た。なお、「植毛形態」の「ドット状」とは、試料片の表面に直径3mmの円形ドット状の植毛層を、各中心の間隔を6mmの配置で試料片の片面全面に植毛したものを使用した。「摩擦対象」の「ガラス片(参考)」は、参考試験として、摩擦対象としてスリーブではなく表面が平滑なガラス片を使用したものである。

 
Figure JPOXMLDOC01-appb-T000001
 試験結果では、植毛層なしの試料片に対して全面に植毛層を設けた試料片では、静止摩擦係数・動摩擦係数が平行方向ではそれぞれ約80%、約49%、垂直方向では同約78%、約39%低減した。また、摩耗量は、植毛層なしでは4mg前後あったものが、植毛層ありでは0.1mg以下と計測誤差程度まで減少した。このことは、試験条件において植毛された短繊維の脱落は皆無に等しく、試料片のゴムの摩耗が防止されたことを示す。一方、ドット状の植毛層を設けた試料片の場合、摩擦係数は平行方向の場合で同約68%、約43%、垂直方向の場合で同約66%、約31%の減少と、摩擦係数の低減幅は小さくなるものの、摩耗量はやはりいずれも0.1mg以下であった。以上の結果から、ゴムの表面に設けた植毛層によりスリーブとの摩擦が低減され、マッキベン型流体圧式アクチュエータのより円滑な作動が期待できるだけでなく、弾性体チューブの耐摩耗性を大幅に向上できることが確認できた。なお、ガラス片を摩擦対象とした場合、植毛層なしの試料片に対して全面に植毛層を設けた試料片では、静止摩擦係数・動摩擦係数がそれぞれ約89%、約86%、ドット状の植毛層を設けた試料片では同約79%、約71%の低減となった。ちなみに、植毛層なしの試料片の場合の摩擦係数の標準偏差が大きいのは、製造工程に起因する凹凸を有するゴム板の表面が直接ガラス片に接触して摩擦されたため、試料片毎の表面状態のばらつきが反映されたものと考えられる。
 請求項4に記載した発明は、請求項1乃至3のいずれかに記載の弾性体チューブを駆動力源として有する流体圧式アクチュエータである。
 本発明によれば、流体圧式アクチュエータ、特にマッキベン型アクチュエータの耐久性の制約となる弾性体チューブの外周面とスリーブの内面との摩擦による弾性体チューブの損傷や摩耗を、弾性体チューブ自体に特段の設計変更を行うことなく効果的に低減させることができる。その結果、消耗部材としての弾性体チューブの耐久性を低コストで向上させ、アクチュエータのメンテナンスの負担を低減できるので、その普及促進に資するものである。
(第1実施形態)
 以下、本発明の実施形態を図面に基づいて説明する。図5は、本発明の第1実施形態に係る弾性体チューブ(実施形態ではウレタンゴム製のゴムチューブG)を適用した流体圧式アクチュエータの内部構造を示す斜視図であり、図6は、同断面図である。ゴムチューブGはその外周面にナイロン製の短繊維fを静電植毛して成る植毛層Fを有し、スリーブSに内装されている。図7の模式図(イ)に示すように、スリーブSはPET製フィラメント線sを3本平面に並べて成る緯糸と経糸を鋭角でメッシュに綾織りして成り、その内面は凹凸を有するため、植毛層Fを有しないゴムチューブGが印加されて膨張する際には、スリーブSの内面がゴムチューブGの表面を直接に押圧しつつ擦過するため、摩擦によりゴムチューブGが摩耗し、傷付くおそれがある。
 一方、本第1実施形態では、図7の模式図(ロ)に示すように、スリーブSの内面には短繊維fの先端が無数の「点」として接触する形となり、摩擦が低減される。また、図7の模式図(ハ)に示すように、個々の短繊維fは根元で固定されている反面、その先端は自由に全方位へ復元可能に傾斜するから、短繊維fの側面が線的にスリーブSの内面と接触し、いわば常時全方向に「いなす」形で摩擦が低減され、ゴムチューブG表面の損傷や摩耗が抑制される。さらに、短繊維fが十分に高密度に植毛されていれば、短繊維f同士が互いに支持し合う形となり、スリーブSの内面に押圧されても容易には傾斜しないため、植毛層FがゴムチューブGとスリーブSとの間で緩衝層としての役割を果たす。
 植毛層Fを形成する短繊維fの長さや太さは十分な植毛密度が確保できれば特に限定されないが、一般的なマッキベン型流体圧式アクチュエータに用いられているスリーブ(フィラメントsの直径が0.3mm程度、伸展時の開口率が約25%程度)に対しては、長さ0.5mm程度、直径は20μm程度の短繊維fを、少なくとも5,000本/平方cm以上の密度で植毛することが好適である。スリーブSのメッシュはアクチュエータの作動により拡大縮小を繰り返すため、短繊維fが長過ぎると拡大時にメッシュ内に進入した短繊維fが縮小時にメッシュに挟まれて引き抜かれるおそれがあり、また、植毛密度が粗いと植毛層Fにフィラメントsが食い込んで摩擦係数が高まり、耐摩耗性を損なうからである。
 なお、異なる長さの短繊維fを混在させ、均一の混在率で植毛層Fを形成することも技術上可能であり、現に実施されている。この場合、植毛層Fの表面への外圧により倒れ込む長い短繊維を短い短繊維が支持する形となり、植毛層F全体の復元力が向上することが知られており、かかる構成を採用することにより、植毛層Fの耐摩耗性をさらに高めることができる。
 (第2実施形態)
 図8は、本発明の第2実施形態に係るゴムチューブGを適用した流体圧式アクチュエータの内部構造を示す斜視図であり、図9は、同断面図である。本実施形態では、ゴムチューブG表面の植毛層Fを、軸線方向に沿って図10に示す拡大図の如く帯状に形成する。
 図11の模式図に示す通り、植毛層FはゴムチューブGの表面に接着剤により短繊維fを接着植毛するため接着層aが構成されるが、ゴムチューブGの伸縮に追従して高い伸縮性を発揮するアクリル系エマルジョンタイプやウレタン系のソルベントタイプの接着剤を用いても、ゴムと接着層の弾性が異なる場合には、アクチュエータの作動時によりゴムチューブGが伸縮を反復するうちに、薄い接着層aにクラックcが生じ、最終的にはそこから植毛層Fが剥離するおそれがある。
 本実施形態では、図12に示す拡大図の如く、帯状の植毛層Fを間隔gを空けて形成されていて連続していないため、ゴムチューブGの表面の伸縮による接着層a自体の引伸ばしの影響は低減され、クラックが生じにくくなる。また、植毛層FとスリーブSの内面との摩擦は主に軸線に沿った往復方向に生じ、周方向での摩擦は比較的小さいため、植毛層FをゴムチューブGの外周表面に軸線方向に沿って帯状に形成することにより、軸線方向の摩擦に対する耐摩耗性は維持しつつ、接着層aに周方向への引張力によるクラックが生じることを防ぐことができるため、植毛層Fの耐久性が向上する。なお、植毛層Fの帯の幅及び間隔は特に限定されないが、前述の一般的なマッキベン型流体圧式アクチュエータに用いられているスリーブSに適用する場合は、3mm程度の幅の帯を1mm程度の間隔で設けることが好適である。
(第3実施形態)
 本発明の第3実施形態は、ゴムチューブG表面に設ける植毛層Fを図13の拡大図に示す如く円形のドット状に形成したものであり、ドットの配置は、各ドットの中心が隣接するすべてのドットの中心と等距離としており、その他の構成は第2実施形態と共通である。かかる構成では、植毛層Fは全方位に接着層aの隙間を有するため、アクチュエータの作動時にゴムチューブGの部位によってその表面が異なる伸縮率で非線形に収縮しても、接着層aにクラックcが生じる可能性が低減され、第2実施形態よりもさらに植毛層Fの耐久性を向上させることができる。
(第1実施形態を適用した流体圧式アクチュエータでの耐久試験の結果)
 発明者は、本発明の効果を検証するため、本発明の第1実施形態に係る静電植毛済ゴム
チューブを実際に適用したマッキベン式流体圧式アクチュエータ装置により耐久試験を実施した。試験に使用したゴムチューブGの仕様、静電植毛の条件、流体圧式アクチュエータの仕様、及び耐久試験の条件は表2の通りである。
Figure JPOXMLDOC01-appb-T000002
また、図14は耐久試験に用いた流体圧式アクチュエータの構成部品の写真、図15は耐久試験後のゴムチューブGの写真、図16は静電植毛に用いた簡易静電植毛装置の写真、図17は耐久試験の実施状況を示す写真である。耐久試験は、静電植毛したゴムチューブGと、静電植毛していないゴムチューブG(対照群)各3本を用い、20kgの錘で伸長負荷を掛けた状態でエアコンプレッサーを接続した加圧装置により0.5MPaの気圧で3秒サイクル(加圧1.5秒、排気1.5秒)の引加をゴムチューブGからの空気漏れが発生するまで繰り返す方法で行った。
 耐久試験の結果は表3の通りである。対照群の3本のゴムチューブGを用いた流体圧式アクチュエータではいずれも5万回経過前にゴムチューブGにピンホールが発生して空気漏れを生じたのに対し、静電植毛したゴムチューブGを用いた流体圧式アクチュエータでは100万回以上経過後も空気漏れは生じず、植毛層Fによる耐久性向上の効果が明確に検証できた。前述の図15の写真からも明らかなように、静電植毛なしのゴムチューブGの表面には収縮時(すわなち膨張時)のスリーブSへの圧着によりスリーブSの内面の模様が転写しており、表面に高いストレスが掛かっていたことが分かるが、静電植毛したゴムチューブGでは100万回の試験後も植毛層Fに若干の摩耗が認められたものの、明らかな短繊維fの脱落(抜け)や植毛層Fのめくれは認められなかった。
Figure JPOXMLDOC01-appb-T000003
また、表4はゴムチューブGに引加する空気圧の変化に対する流体圧式アクチュエータの収縮量を計測して植毛層Fの有無による比較を行った結果を示すグラフである。植毛層Fなしに比べて植毛層Fありの方が収縮量が小さいものの、その差はごく僅かであり、0.5MPa以上の圧力においては収縮量はほぼ同じとなった。従って、ゴムチューブGに植毛層Fを設けても流体圧式アクチュエータの収縮特性にはほとんど影響を与えないことが確認できた。
Figure JPOXMLDOC01-appb-T000004
 以上、本発明に係る弾性体チューブの具体的な構成について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属するものである。
 本発明は、流体圧式アクチュエータ、特にマッキベン型アクチュエータの駆動体としての弾性体チューブ並びにこれを用いたアクチュエータに利用可能であり、かかるアクチュエータを利用した機械装置や機器、特に、比較的小さな要求出力で常時高頻度に作動し、かつ、メンテナンス負担の軽減が求められる作業用・介護用のパワードスーツ(人体装着型ロボット)やロボット義手・義足等の機器への適用において効果的である。本発明により、消耗部材としての弾性体チューブの耐久性を低コストで向上させ、アクチュエータのメンテナンスの負担を低減することにより、かかる機器の普及促進に資するものである。
一般的なマッキベン型流体圧式アクチュエータの構造斜視図 一般的なマッキベン型流体圧式アクチュエータの断面図 一般的なマッキベン型流体圧式アクチュエータの作動を示す図 一般的なマッキベン型流体圧式アクチュエータのスリーブの拡大図 第1実施形態に係るゴムチューブを適用した流体圧式アクチュエータの構造斜視図 第1実施形態に係るゴムチューブを適用した流体圧式アクチュエータの断面図 ゴムチューブとスリーブの接触状態の拡大模式図 第2実施形態に係るゴムチューブを適用した流体圧式アクチュエータの構造斜視図 第2実施形態に係るゴムチューブを適用した流体圧式アクチュエータの断面図 第2実施形態に係るゴムチューブ表面の拡大模式図 ゴムチューブ表面のクラック生成を示す模式図 第2実施形態に係るゴムチューブ表面の模式図 第3実施形態に係るゴムチューブ表面の拡大模式図 耐久試験に用いた流体圧式アクチュエータの構成部品の写真 耐久試験後のゴムチューブGの写真 静電植毛に用いた簡易静電植毛装置の写真 耐久試験の実施状況を示す写真
  a    接着層
  D 流体圧式アクチュエータの直径
  F    植毛層
  f    短繊維
  G    弾性体チューブ(ゴムチューブ)
  g 植毛層Fの間隔
  L 流体圧式アクチュエータの長さ
S    スリーブ
s フィラメント
  T    ターミナル

 

Claims (4)

  1.  空気又は液体等の流体の給排により駆動される流体圧式アクチュエータの駆動力源としての弾性体チューブであって、前記弾性体チューブの外周全面には合成樹脂製の短繊維を外周表面に対して垂直に静電植毛して成る耐摩耗植毛層を設けたことを特徴とする弾性体チューブ。
  2. 空気又は液体等の流体の給排により駆動される流体圧式アクチュエータの駆動力源としての弾性体チューブであって、前記弾性体チューブの外周表面には軸線方向に沿って多数の帯状に合成樹脂製の短繊維を外周表面に対して垂直に静電植毛して成る対摩耗植毛層を設けたことを特徴とする弾性体チューブ。
  3. 空気又は液体等の流体の給排により駆動される流体圧式アクチュエータの駆動力源としての弾性体チューブであって、前記弾性体チューブの外周全面には多数のドット状に合成樹脂製の短繊維を外周表面に対して垂直に静電植毛して成る対摩耗植毛層を設けたことを特徴とする弾性体チューブ。
  4. 請求項1乃至3のいずれかに記載の弾性体チューブを駆動力源として有する流体圧式アクチュエータ。

     
PCT/JP2017/005025 2016-02-14 2017-02-11 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ WO2017138663A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17750384.4A EP3415770B1 (en) 2016-02-14 2017-02-11 Elastic tube for fluid pressure actuator and actuator
CN201780011197.0A CN108713103B (zh) 2016-02-14 2017-02-11 流体压力式驱动器用弹性体管以及驱动器
US16/100,820 US10634171B2 (en) 2016-02-14 2018-08-10 Elastic tube for fluid pressure actuator and actuator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-025382 2016-02-14
JP2016025382A JP6108502B1 (ja) 2016-02-14 2016-02-14 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ
JP2017-020090 2017-02-07
JP2017020090A JP6154088B1 (ja) 2017-02-07 2017-02-07 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/100,820 Continuation US10634171B2 (en) 2016-02-14 2018-08-10 Elastic tube for fluid pressure actuator and actuator

Publications (1)

Publication Number Publication Date
WO2017138663A1 true WO2017138663A1 (ja) 2017-08-17

Family

ID=59563339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005025 WO2017138663A1 (ja) 2016-02-14 2017-02-11 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ

Country Status (4)

Country Link
US (1) US10634171B2 (ja)
EP (1) EP3415770B1 (ja)
CN (1) CN108713103B (ja)
WO (1) WO2017138663A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065860A1 (ja) * 2017-09-29 2019-04-04 株式会社クラレ 人工筋
EP3705734A4 (en) * 2017-10-30 2021-06-09 Bridgestone Corporation PNEUMATIC ACTUATOR
US20210395927A1 (en) * 2018-10-19 2021-12-23 Bridgestone Corporation Actuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10675959B2 (en) * 2017-05-15 2020-06-09 GM Global Technology Operations LLC Hierarchical inflatable structures and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206029A (ja) * 1988-02-12 1989-08-18 Toyoda Gosei Co Ltd 帯状ゴム製品の製造方法
JP2004085856A (ja) 2002-08-27 2004-03-18 Murata Mach Ltd 画像読取装置
JP2010127429A (ja) * 2008-11-28 2010-06-10 Univ Of Tokyo 流体アクチュエータ
JP2015108436A (ja) 2013-12-04 2015-06-11 株式会社第一医材社 流体圧式アクチュエータ
JP2015180829A (ja) 2014-03-06 2015-10-15 株式会社リコー 流体駆動型アクチュエータ、その製造方法、及びその駆動方法、駆動装置、並びに関節構造

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194702A (en) * 1962-01-03 1965-07-13 Gen Motors Corp Method of making self-lubricating bearing means
EP0123558B1 (en) * 1983-04-25 1990-11-14 Bridgestone Corporation Pneumatic actuator for manipulator
US5185402A (en) * 1990-11-26 1993-02-09 Lord Corporation Flock adhesive
JPH0527444U (ja) 1991-09-24 1993-04-09 エヌオーケー株式会社 バルブ
JPH0875083A (ja) * 1994-09-06 1996-03-19 Sekisui Chem Co Ltd 配管施工法及びそれに用いる流体管
JPH09229127A (ja) 1996-02-28 1997-09-02 Unisia Jecs Corp 減衰力可変型液圧緩衝器
US20050053758A1 (en) * 2001-10-25 2005-03-10 Smith Walter J. Method, apparatus and system for creating a brush seal
US7897236B2 (en) * 2002-06-10 2011-03-01 Playtex Products, Inc. Electrostatic flocking and articles made therefrom
WO2004085856A1 (ja) 2003-03-25 2004-10-07 Hitachi Medical Corporation 流体圧式アクチュエータ及びそれを用いた持続的他動運動装置
JP2006034461A (ja) 2004-07-23 2006-02-09 Olympus Corp 内視鏡洗滌消毒装置及び内視鏡用洗滌ブラシ
ITFI20050172A1 (it) * 2005-08-03 2007-02-04 Fintex & Partners Italia S P A Metodo per la produzione di un manufatto nastriforme per la produzione di articoli assorbenti e simili, manufatto cosi' ottenuto ed articolo assorbente comprendente detto manufatto
DE102010054665B3 (de) * 2010-12-15 2012-02-02 Abb Technology Ag Speichermodul für einen hydraulischen Federspeicherantrieb
US9440413B2 (en) * 2012-06-01 2016-09-13 University Of Massachusetts Panel for absorbing mechanical impact energy and method of manufacture
CN203176056U (zh) * 2013-02-05 2013-09-04 焦作市华科液压机械制造有限公司 一种数字电液推杆
DE102013104926A1 (de) * 2013-05-14 2014-11-20 Grammer Ag Fahrzeugschwingungsvorrichtung, Fahrzeugsitz und Fahrzeugkabine
CN103953606A (zh) * 2014-04-28 2014-07-30 于法周 一种整体式液压驱动装置
CN104196816B (zh) * 2014-08-26 2016-10-26 合肥工业大学 一种人工肌肉
CN204828129U (zh) * 2015-07-30 2015-12-02 中国舰船研究设计中心 一种动铁式电液集成直线驱动器
CN105292456A (zh) * 2015-11-24 2016-02-03 齐心 一种多旋翼无人飞行器
JP6082091B1 (ja) * 2015-12-03 2017-02-15 東海興業株式会社 長尺体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206029A (ja) * 1988-02-12 1989-08-18 Toyoda Gosei Co Ltd 帯状ゴム製品の製造方法
JP2004085856A (ja) 2002-08-27 2004-03-18 Murata Mach Ltd 画像読取装置
JP2010127429A (ja) * 2008-11-28 2010-06-10 Univ Of Tokyo 流体アクチュエータ
JP2015108436A (ja) 2013-12-04 2015-06-11 株式会社第一医材社 流体圧式アクチュエータ
JP2015180829A (ja) 2014-03-06 2015-10-15 株式会社リコー 流体駆動型アクチュエータ、その製造方法、及びその駆動方法、駆動装置、並びに関節構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415770A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065860A1 (ja) * 2017-09-29 2019-04-04 株式会社クラレ 人工筋
JPWO2019065860A1 (ja) * 2017-09-29 2020-04-23 株式会社クラレ 人工筋
EP3705734A4 (en) * 2017-10-30 2021-06-09 Bridgestone Corporation PNEUMATIC ACTUATOR
US11131329B2 (en) 2017-10-30 2021-09-28 Bridgestone Corporation Pneumatic actuator
US20210395927A1 (en) * 2018-10-19 2021-12-23 Bridgestone Corporation Actuator
US11821114B2 (en) * 2018-10-19 2023-11-21 Bridgestone Corporation Actuator

Also Published As

Publication number Publication date
EP3415770B1 (en) 2021-01-13
US20190040880A1 (en) 2019-02-07
CN108713103A (zh) 2018-10-26
US10634171B2 (en) 2020-04-28
EP3415770A1 (en) 2018-12-19
CN108713103B (zh) 2021-01-29
EP3415770A4 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2017138663A1 (ja) 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ
EP4234249A3 (en) Fabric material for medical devices
JP2021088999A (ja) 流体圧アクチュエータ
US9488255B2 (en) Ball screw, seal material, and seal structure
JP6108502B1 (ja) 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ
US20180252244A1 (en) Mckibben artificial muscle
US10280951B2 (en) Articulating devices
JP2015180829A (ja) 流体駆動型アクチュエータ、その製造方法、及びその駆動方法、駆動装置、並びに関節構造
JP6154088B1 (ja) 流体圧式アクチュエータ用弾性体チューブ及びアクチュエータ
JPWO2007058085A1 (ja) 流体圧式アクチュエータ
JP2020525714A5 (ja)
TW201723248A (zh) 纖維機械用皮帶
JP2017185079A (ja) 内視鏡用チャンネルチューブ
JPH0448592B2 (ja)
JP2010127429A (ja) 流体アクチュエータ
EP1865208A3 (de) Pneumatisches oder hydraulisches Auslenkelement
JP2018130772A (ja) 物体保持部材
JP2007032743A (ja) アクチュエータシステム、ロボットアームおよびリハビリテーションシステム
CN106239244A (zh) 工业用擦拭器及其制造方法、以及擦拭方法
Saito et al. Structure of a rubberless artificial muscle and evaluation of a lifetime
JP2000506107A (ja) コンベアベルト
WO2023171111A1 (ja) ロボットハンド
JP2015108436A (ja) 流体圧式アクチュエータ
JP7323551B2 (ja) アクチュエータ
WO2023171110A1 (ja) 流体圧アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750384

Country of ref document: EP

Effective date: 20180914