WO2017135793A1 - 케이블형 이차전지 및 이의 제조방법 - Google Patents

케이블형 이차전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2017135793A1
WO2017135793A1 PCT/KR2017/001299 KR2017001299W WO2017135793A1 WO 2017135793 A1 WO2017135793 A1 WO 2017135793A1 KR 2017001299 W KR2017001299 W KR 2017001299W WO 2017135793 A1 WO2017135793 A1 WO 2017135793A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
cable
type secondary
polymer
Prior art date
Application number
PCT/KR2017/001299
Other languages
English (en)
French (fr)
Inventor
권요한
엄인성
김제영
육영지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018517250A priority Critical patent/JP6608049B2/ja
Priority to EP17747836.9A priority patent/EP3349294B1/en
Priority to US15/766,997 priority patent/US10923772B2/en
Priority to CN201780003435.3A priority patent/CN108140901B/zh
Publication of WO2017135793A1 publication Critical patent/WO2017135793A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cable-type secondary battery free of deformation, and more particularly, to a cable secondary battery and a method for manufacturing the same, which is easy to inject electrolyte.
  • a secondary battery is a device that converts external electrical energy into chemical energy and stores it and generates electricity when needed.
  • the term “rechargeable battery” is also used to mean that it can be charged multiple times.
  • Commonly used secondary batteries include lead storage batteries, nickel cadmium batteries (NiCd), nickel hydrogen storage batteries (NiMH), lithium ion batteries (Li-ion), and lithium ion polymer batteries (Li-ion polymer). Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
  • Secondary batteries are currently used where low power is used. Examples are devices, handhelds, tools, and uninterruptible power supplies that help start up the car. Recently, the development of wireless communication technology has led to the popularization of portable devices, and there is also a tendency to wirelessize many kinds of conventional devices, and the demand for secondary batteries is exploding. In addition, hybrid vehicles and electric vehicles have been put to practical use in terms of prevention of environmental pollution, and these next-generation vehicles employ technologies that use secondary batteries to reduce value, weight, and increase lifespan.
  • secondary batteries are cylindrical, rectangular or pouch type batteries. This is because the secondary battery is manufactured by mounting an electrode assembly composed of a negative electrode, a positive electrode, and a separator inside a pouch-shaped case of a cylindrical or rectangular metal can or an aluminum laminate sheet, and injecting an electrolyte into the electrode assembly. Therefore, since a certain space for mounting the secondary battery is essentially required, the cylindrical, square or pouch type of the secondary battery has a problem in that it acts as a limitation for the development of various types of portable devices. Accordingly, there is a need for a new type of secondary battery that is easily deformed.
  • a cable type secondary battery which is a battery having a very large ratio of length to cross sectional diameter.
  • Research and development is being made to apply such a cable-type secondary battery to a wearable application that can be worn on a body, a smart fabric, and the like, and a device capable of supplying power to these products needs to be developed accordingly.
  • the cable type secondary battery uses a polymer electrolyte to form an electrolyte layer, it is difficult to introduce electrolyte into the active material of the electrode, thereby increasing the resistance of the battery, thereby deteriorating capacity characteristics and cycle characteristics.
  • the problem to be solved by the present invention is to minimize the inner diameter of the cable-type secondary battery, to form a cable-type woven form of the battery cells, or to connect the plurality of batteries horizontally to form a sheet-type structure, such as smart fabric or wearable applications It can serve as a power source.
  • Another problem to be solved by the present invention is to facilitate the electrolyte injection of the cable-type secondary battery with a minimum internal diameter.
  • At least one internal electrode At least one internal electrode; A separation layer formed surrounding the outer surface of the inner electrode and preventing a short circuit of the electrode; A sheet-shaped external electrode formed to be spirally wound around the separation layer or the internal electrode; And a polymer electrolyte coating layer formed surrounding the sheet-shaped external electrode, wherein the external electrode includes an external current collector, an external electrode active material layer formed on one surface of the external current collector, and a second surface formed on the other surface of the external current collector.
  • a cable type secondary battery including a support layer, wherein the sheet-shaped external electrodes are spirally wound so as not to overlap each other, is provided.
  • the polymer electrolyte coating layer may include a polar linear polymer, an oxide-based linear polymer or a mixture thereof.
  • the polar linear polymer polyimide, polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride (polyvinylidene fluoride, PVDF), poly Polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-co-trichloroethylene, polyethyleneimine, polymethyl meta Polymethyl methacrylate, polybutyl acrylate, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyarylate ( polyarylate), polyurethane and poly-p-phenylene terephthalamide It may be any one or a mixture of two or more of those selected from a. Also.
  • the oxide-based linear polymer is any one selected from the group consisting of polyethylene oxide, polypropylene oxide, polyoxymethylene and polydimethylsiloxane, or a mixture of two or more thereof. Can be.
  • the internal electrode may be disposed in parallel contact with two or more wire-like internal electrodes, or two or more wire-like internal electrodes are twisted with each other.
  • the internal electrode may include an internal current collector and an internal electrode active material layer formed on the surface of the internal current collector.
  • the sheet-shaped external electrode may have a strip structure extending in one direction.
  • the sheet-shaped external electrodes may be formed by spirally winding so as not to overlap each other at intervals within two times the width of the sheet-shaped external electrodes.
  • the first support layer may be a polymer film.
  • the external electrode may further include a porous second support layer formed on the external electrode active material layer.
  • the second support layer may further include a conductive material coating layer having a conductive material and a binder.
  • the conductive material coating layer, the conductive material and the binder may be mixed in a weight ratio of 80:20 to 99: 1.
  • the second support layer may further include a porous coating layer formed of a mixture of inorganic particles and a binder polymer.
  • the inner electrode may be a cathode or an anode
  • the outer electrode may be an anode or a cathode corresponding to the inner electrode
  • it may further comprise a protective coating formed to surround the outer surface of the polymer electrolyte coating layer.
  • the present invention is one or more internal electrodes; A separation layer formed surrounding the outer surface of the inner electrode and preventing a short circuit of the electrode; And preparing an electrode assembly including a sheet-type external electrode formed by spirally wound around the separation layer or the internal electrode, wherein the sheet-type external electrode is formed by spirally winding not overlapping each other; Dipping the electrode assembly in an electrolyte bath to inject electrolyte; And forming a polymer coating layer by coating the outside of the electrode assembly into which the electrolyte is injected, to form a polymer coating layer.
  • the polymer coating layer may include a polar linear polymer, an oxide-based linear polymer or a mixture thereof.
  • the polar linear polymer polyimide, polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride (polyvinylidene fluoride, PVDF), poly Polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-co-trichloroethylene, polyethyleneimine, polymethyl meta Polymethyl methacrylate, polybutyl acrylate, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyarylate ( polyarylate), polyurethane and poly-p-phenylene terephthalamide It may be any one or a mixture of two or more of those selected from a. Also.
  • the oxide-based linear polymer is any one selected from the group consisting of polyethylene oxide, polypropylene oxide, polyoxymethylene and polydimethylsiloxane, or a mixture of two or more thereof. Can be.
  • the internal electrode may be disposed in parallel contact with two or more wire-like internal electrodes, or two or more wire-like internal electrodes are twisted with each other.
  • Cable type secondary battery by minimizing the inner diameter of the cable-type secondary battery, weaved form of the battery cells, or by connecting a plurality of batteries horizontally to form a sheet-type structure to form a smart fabric or It may serve as a power supply source such as a wearable application.
  • the cable-type secondary battery according to an embodiment of the present invention is easy to inject the electrolyte in the cable-type secondary battery with a minimum internal diameter, excellent capacity characteristics and cycle characteristics of the battery.
  • the cable-type secondary battery according to an embodiment of the present invention can greatly improve the flexibility of the electrode by introducing a support layer on at least one surface of the sheet-shaped electrode.
  • the support layer buffers even if there is no increase in the binder content of the electrode active material layer, thereby alleviating the occurrence of cracks in the electrode active material layer. It prevents the phenomenon that the electrode active material layer is detached. As a result, it is possible to prevent the battery from decreasing in capacity and improve the cycle life characteristics of the battery.
  • the electrolyte solution flows smoothly into the electrode active material layer, and the electrolyte solution is impregnated into the pores of the porous support layer to prevent an increase in resistance in the battery, thereby preventing the performance of the battery.
  • FIG. 1 is a cross-sectional view showing a cross section of a cable type secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section of a cable type secondary battery according to another embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a cable type secondary battery according to an embodiment of the present invention.
  • Figure 4 is a perspective view schematically showing a cable type secondary battery according to another embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing a cable type secondary battery according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a sheet type external electrode according to an exemplary embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a sheet type external electrode according to another exemplary embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a sheet type external electrode according to another exemplary embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a sheet type external electrode according to another exemplary embodiment of the present invention.
  • FIG. 10 is a view showing the side surface corresponding to the height of the sheet-shaped external electrode according to an embodiment of the present invention by hatching.
  • FIG. 11 is a cross-sectional view showing a cross section of a cable type secondary battery according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a cross section of a cable type secondary battery according to another embodiment of the present invention.
  • Example 13 is a graph showing the evaluation results of the life characteristics of the cable-type secondary battery according to Example 1, Example 2, Comparative Example 1, and Comparative Example 2.
  • At least one internal electrode At least one internal electrode; A separation layer formed surrounding the outer surface of the inner electrode and preventing a short circuit of the electrode; A sheet-shaped external electrode formed to be spirally wound around the separation layer or the internal electrode; And a polymer electrolyte coating layer formed surrounding the sheet-shaped external electrode, wherein the external electrode includes an external current collector, an external electrode active material layer formed on one surface of the external current collector, and a second surface formed on the other surface of the external current collector.
  • a cable type secondary battery including a support layer, wherein the sheet-shaped external electrodes are spirally wound so as not to overlap each other, is provided.
  • the diameter of the cable type battery according to the present invention may be reduced.
  • a cable type battery can be made thinner than a conventional cable type battery, and can be introduced into a smart fabric or wearable application by forming a cable type battery in a woven form or by connecting several cells horizontally to form a sheet type structure. have.
  • the electrolyte may be injected through the needle, but if the internal electrode is densely packed without the hollow as described above, the electrolyte may be injected using the needle as described above. Not easy to do Therefore, the present invention has been studied a method for resolving electrolyte solution when the internal electrode is not hollow, especially when the non-porous internal electrodes are densely packed with each other. To this end, the present inventors pass the electrode assembly through the electrolyte bath (Bath) so that the electrolyte is absorbed into the battery, and after impregnating the electrolyte bath, the polymer coating so as not to escape the electrolyte to encapsulate the electrode assembly I devised a plan.
  • the electrolyte bath Bath
  • the polymer electrolyte layer used in the encapsulation has an ion conductivity by absorbing the electrolyte like the polymer electrolyte.
  • the cable type secondary battery manufactured through this method can facilitate the injection of electrolyte in the cable type secondary battery having the non-porous type densely packed internal electrodes.
  • the polymer electrolyte coating layer is formed to surround the electrode assembly including the sheet-type external electrode, that is, the internal electrode and the external electrode.
  • At least one internal electrode at least one internal electrode; A separation layer formed surrounding the outer surface of the inner electrode and preventing a short circuit of the electrode; And a sheet-shaped external electrode formed to be spirally wound around the separation layer or the internal electrode.
  • a material serving as a separation layer is laminated on the external electrode to form a sheet-type separation layer-external electrode composite, wherein the sheet-type separation layer-external electrode composite is the It may be wound in a spiral to surround the internal electrode.
  • Figure 1 is a cross-section of the cable-type secondary battery according to an embodiment of the present invention is formed surrounding one or more internal electrodes 10, the outer surface of the internal electrode And an electrode assembly including a separation layer 20 that prevents short-circuit of the electrode, and a sheet-shaped external electrode 30 formed by spirally wound around the separation layer 20 and a polymer surrounding the outside of the electrode assembly.
  • 2 is a cross-sectional view of a cable-type secondary battery according to another embodiment of the present invention, having an electrolyte coating layer 40, and a structure in which a material serving as a separation layer is stacked on the external electrode as described above.
  • an electrode assembly including at least one internal electrode 10 and an external electrode 30 'which is a sheet-type separation layer-external electrode composite formed around the outer surface of the internal electrode and spirally wound. It is provided with a polymer electrolyte coating layer 40 surrounding the outside of the assembly and the electrode assembly.
  • the polymer used in the polymer electrolyte coating layer may include a polar linear polymer, an oxide-based linear polymer or a mixture thereof.
  • the polar linear polymer polyimide, polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride (polyvinylidene fluoride (PVDF), polyvinylidene fluoride- Polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-co-trichloroethylene, polyethylene imine, polymethyl methacrylate , Polybutyl acrylate, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl co-vinyl acetate, polyarylate, polyurethane and Any one selected from the group consisting of poly-p-phenylene terephthalamide It may be a mixture of two or more of these.
  • the electrolyte absorption rate may be further improved when the substitution rate of HFP is 5 to 20 mol%.
  • the oxide-based linear polymer is any one selected from the group consisting of polyethylene oxide, polypropylene oxide, polyoxymethylene, and polydimethylsiloxane, or two of them. It may be a mixture of the above.
  • the polymer electrolyte coating layer may have ion conductivity by absorbing an electrolyte solution like a polymer electrolyte.
  • the polymer electrolyte coating layer may encapsulate the outer surface of the electrode assembly at a low temperature, for example, 10 to 60 ° C. using a solvent having a high vapor pressure and rapidly evaporating a material such as acetone or acrylonitrile.
  • the thickness of the polymer electrolyte coating layer may be 1 to 100 ⁇ m.
  • the internal electrodes are one or more internal electrodes, in which one single or two or more internal electrodes are packed in contact with each other.
  • the plurality of wire type internal electrodes 10 are illustrated in FIG. 3. The wires may be disposed in contact with each other in parallel, or as illustrated in FIG. 4, the plurality of wire type internal electrodes 10 may be arranged in a twisted shape.
  • the twisted shape is not limited to a specific twisted shape, but the electrodes of several strands may be placed side by side in parallel to each other and then twisted together, or the electrodes of the several strands are crossed one by one, as if You can also braid your hair.
  • the inner diameter of the cable type battery according to the present invention can be made small.
  • the internal electrode includes an internal current collector and an internal electrode active material layer, wherein the internal current collector includes one or more wire-shaped internal current collectors spirally wound or two or more wire-shaped internal current collectors spirally wound to cross each other. It may include.
  • the inner electrode active material layer may be formed on the entire surface of the inner current collector, or may be formed surrounding the outer surface of the inner current collector in which the inner electrode active material layer is wound. More specifically, in relation to the structure in which the inner electrode active material layer is formed on the entire surface of the wire type current collector, one wire type internal electrode having a wire type current collector in which the internal electrode active material layer is formed on the surface of the wire type current collector is formed.
  • the two or more internal electrodes having two or more wire-like internal current collector formed on the surface of the internal electrode active material layer may be crossed and wound, and, if the two or more wire-like internal electrodes are wound together, the rate of the battery It is advantageous to improve the properties.
  • the outer surface of the wound inner current collector to the inner electrode active material layer It may be formed to surround.
  • the internal electrode may further include a polymer support layer formed on the surface of the internal electrode active material layer.
  • the polymer support layer When the polymer support layer is further included on the surface of the internal electrode active material layer of the internal electrode according to an embodiment of the present invention, cracks may occur on the surface of the internal electrode active material layer even if a cable type secondary battery is bent by an external force. This phenomenon is excellently prevented. As a result, the detachment phenomenon of the internal electrode active material layer may be further prevented, and thus the performance of the battery may be further improved.
  • the polymer support layer may have a porous structure. In this case, the electrolyte may be smoothly introduced into the internal electrode active material layer, thereby preventing an increase in electrode resistance.
  • the polymer support layer may include a polar linear polymer, an oxide-based linear polymer or a mixture thereof.
  • the polar linear polymer polyimide, polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride (polyvinylidene fluoride (PVDF), polyvinylidene fluoride- Polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-co-trichloroethylene, polyethylene imine, polymethyl methacrylate , Polybutyl acrylate, polyvinylpyrrolidone, polyvinylacetate, ethylene-vinyl acetate, polyarylate, polyurepan And poly p-phenylene terephthalamide (Poly-p-phenylene terephthalamide) any one selected from the group consisting of It may be a mixture of two or more of these.
  • the oxide-based linear polymer is any one selected from the group consisting of polyethylene oxide, polypropylene oxide, polyoxymethylene, and polydimethylsiloxane, or two of them. It may be a mixture of the above.
  • the polymer support layer may be a porous polymer layer having a pore size of 0.01 ⁇ m to 10 ⁇ m and a porosity of 5 to 95%.
  • porous structure of the porous polymer layer may be formed through phase separation or phase inversion by non-solvent in the manufacturing process.
  • polyvinylidene fluoride-hexafuluropropylene as a polymer is added to acetone acting as a solvent to prepare a solution having a solid content of 10% by weight. Thereafter, water or ethanol as a non-solvent may be added to the prepared solution by 2 to 10% by weight to prepare a polymer solution.
  • the phase inversion In the process of evaporation after coating of the polymer solution, the phase inversion, the area occupied by the non-solvent in the phase-separated portion of the non-solvent and the polymer becomes pores. Therefore, the pore size may be adjusted according to the degree of solubility of the nonsolvent and the polymer and the content of the nonsolvent.
  • the external electrode according to the present invention is wound in a spiral shape surrounding the separation layer or the internal electrode as shown in FIGS.
  • the present invention introduces a sheet-type external electrode formed by winding spirally around the outer surface of the separation layer or the internal electrode.
  • the sheet-shaped external electrode may be a sheet-shaped external electrode 30 wound around the separation layer 20 and spirally wound as shown in FIGS. 3 to 4.
  • the configuration that serves as a separation layer for separating the short circuit of the electrode and the configuration that serves as the electrode is a bonded structure to form an integrated structure, as shown in Figure 5 surrounds the outer surface of the internal electrode 10
  • It may also be a sheet-type external electrode 30 'which is a separation layer-external electrode composite formed by winding.
  • the spiral is represented in English as a spiral or helix, and is a shape that is twisted in a predetermined range, and generally refers to a shape similar to that of a general spring.
  • the external electrode may have a strip structure extending in one direction.
  • the external electrodes are spirally wound so as not to overlap each other.
  • the external electrodes may be spirally wound so as not to overlap each other at intervals within two times the width of the external electrodes so as not to deteriorate the performance of the battery.
  • the polymer electrolyte layer of the present invention is on the outer side of the first support layer of the external electrode, but is wound so that the sheet-shaped external electrode does not overlap, so that the polymer electrolyte layer is formed even between the spiral wounds. By being connected to the separation layer, it is possible to transfer the electrolyte to the internal electrode.
  • the polymer electrolyte layer also serves to integrate and adhere the sheet-type external electrode and the separation layer to each other, so that the separation layer and the external electrode are not spaced apart or detached from each other, thereby improving stability of preventing the short circuit between the internal electrode and the external electrode.
  • the external electrode may include an external current collector and an external electrode active material layer formed on one surface of the external current collector, and in this case, the external current collector may be a mesh current collector.
  • the external electrode may further include a first support layer formed on the other surface of the external current collector, wherein the first support layer may be a polymer film.
  • a 1st support layer can suppress the disconnection of an electrical power collector, and can further improve the flexibility of an electrical power collector.
  • 6 to 9 are cross-sectional views schematically showing the cross section of the external electrode.
  • the external electrode includes an external current collector 31, an external electrode active material layer 32 formed on one surface of the external current collector 31, and a first support layer formed on the other surface of the external current collector 31. 33).
  • the first support layer 33 may further suppress the disconnection of the external current collector 31, thereby further improving the flexibility of the external current collector 31.
  • the external electrode according to an embodiment of the present invention may further include a porous second support layer 34 formed on the external electrode active material layer 32 as shown in FIG.
  • the porous second support layer 34 has a buffering effect to alleviate the external force acting on the external electrode active material layer 32 even when an external force of bending or torsion acts on the electrode, thereby detaching the electrode active material layer 32. This prevents the phenomenon and improves the flexibility of the electrode.
  • the porous structure facilitates the inflow of the electrolyte into the electrode active material layer.
  • the second support layer itself is excellent in impregnation of the electrolyte, thereby securing ion conductivity, thereby preventing an increase in resistance inside the battery. Prevents battery deterioration.
  • a conductive material coating layer 35 including a conductive material and a binder is further included between the external electrode active material layer 32 and the second support layer 34 to improve conductivity of the electrode active material layer. By reducing the resistance of the electrode, it is possible to prevent the battery from deteriorating.
  • the conductive material coating layer may be formed on the second support layer 34 as well as between the external electrode active material layer 32 and the second support layer 34.
  • the second support layer 34 may further include a porous coating layer 36 formed of a mixture of inorganic particles and a binder polymer.
  • the inorganic particles are bound to each other by the binder polymer in a state of being filled and in contact with each other, thereby interstitial between the inorganic particles.
  • An interstitial volume is formed, and the interstitial volume between the inorganic particles becomes an empty space to form pores.
  • the binder polymer is attached to each other so that the inorganic particles are bound to each other, for example, the binder polymer is connected and fixed between the inorganic particles.
  • the pores of the porous coating layer is a pore formed by the interstitial volume between the inorganic particles becomes an empty space, which is an inorganic material that is substantially interviewed in a closed packed or densely packed by the inorganic particles It is a space defined by particles.
  • the inorganic particles and the binder polymer in the organic-inorganic porous coating layer may be formed by mixing in a weight ratio of 20:80 to 95: 5.
  • the inorganic particles in the organic-inorganic porous coating layer may be an inorganic particle having a dielectric constant of 5 or more, an inorganic particle having a lithium ion transfer ability, or a mixture thereof.
  • the inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT, where 0 ⁇ x ⁇ 1), and Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, where , 0 ⁇ x ⁇ 1), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO
  • the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium Aluminum Titanium Phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), lithium nitride (Li 3
  • the average particle diameter of the inorganic particles in the organic-inorganic porous coating layer may be 10 nm to 5 ⁇ m.
  • the binder polymer in the organic-inorganic porous coating layer polyvinylidene fluoride (polyvinylidene fluoride, PVDF), polyvinylidene fluoride-hexafluorofluoropropylene (polyvinylidene fluoride-co-hexafluoro propylene), polyvinylidene Polyvinylidene fluoride-co-trichloroethylene, polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone ), Polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butylate acetate butyrate), cellulose acetate propionate (cellulos e acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose,
  • the polymer layer is formed by encapsulating four surfaces corresponding to the height of the sheet type external electrode, and wraps the current collector layer exposed to the surface corresponding to the height of the sheet with an insulating material to prevent the internal short.
  • PVdF Polyvinylidene fluoride
  • PVdF-HFP poly (vinylidene fluoride-hexafluoropropylene)
  • PVdF-HFP polyacrylate
  • polyamide poly Polyimide
  • polyolefin e.g. polyethylene (PE), polypropylene (PP), polytetrafluoroethylene (PTFE)
  • polyurethane polyurethane
  • polyester e.g.
  • polyethylene terephthalate PET
  • PET Polyethylene oxide
  • PEO polyethyleneimine
  • SBR styrene butadiene rubber
  • polyacrylate polyamide, polyimide, polyvinylidene fluoride (PVdF), poly ( Vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), polyethylene oxide (PEO), styrene butadiene rubber (SBR) and the like may be used, but is not limited thereto.
  • an electrode active material slurry is coated on one surface of a current collector.
  • the first support layer may be pressed onto the other surface of the current collector in advance, or the first support layer may be pressed onto the other surface of the current collector after the slurry of the electric active material is applied.
  • the said 1st support layer suppresses the disconnection of the said electrical power collector, and improves the flexibility of the said electrical power collector further (S1).
  • the current collector is to collect electrons generated by the electrochemical reaction of the electrode active material or to supply the electrons required for the electrochemical reaction, stainless steel, aluminum, nickel, titanium, calcined carbon or copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste including carbon powder which is graphite, carbon black, or carbon nanotubes.
  • the electrode active material layer may detach from the current collector. Therefore, a large amount of binder component enters the electrode active material layer for electrode flexibility. However, such a large amount of binder swelling (swelling) phenomenon by the electrolyte solution, can be easily separated from the current collector, which may cause a decrease in battery performance.
  • the current collector may further include a primer coating layer composed of a conductive material and a binder.
  • the conductive material and the binder may be used the same kind as used in the formation of the conductive material coating layer to be described later.
  • the current collector may be a mesh current collector, and in order to further increase the surface area of the current collector, a plurality of recesses may be formed on at least one surface thereof.
  • the plurality of recesses may have a continuous pattern or an intermittent pattern. That is, it may have a recess of a continuous pattern formed in the longitudinal direction spaced apart from each other, or may have an intermittent pattern in which a plurality of holes are formed.
  • the plurality of holes may be circular or polygonal.
  • a porous second support layer may be formed on the coated electrode active material slurry (S2).
  • the second support layer may be a mesh type porous membrane or a nonwoven fabric.
  • the porous structure facilitates the inflow of the electrolyte into the electrode active material layer, and the second support layer itself is excellent in impregnation of the electrolyte, thereby securing ion conductivity, thereby preventing an increase in resistance inside the battery. Prevent degradation.
  • the first support layer and the second support layer each independently, high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene polyethylene terephthalate (polyethyleneterephthalate), polybutyleneterephthalate (polyester), polyester (polyester) , Polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenyl It may be formed of any one or a mixture of two or more selected from the group consisting of phenylsulfide (polyphenylenesulfide) and polyethylenenaphthalate (polyethylenenaphthalate).
  • the second support layer may further include a conductive material coating layer having a conductive material and a binder.
  • the conductive material coating layer prevents deterioration of battery performance by improving conductivity of the electrode active material layer to reduce resistance of the electrode.
  • the negative electrode since the conductivity of the negative electrode active material layer is relatively excellent, even if the conductive material coating layer is not included, the negative electrode exhibits similar performance to that in the case where a general negative electrode is used. This is particularly advantageous when applied to the positive electrode to reduce the resistance inside the battery because the performance degradation phenomenon can be intensified.
  • the conductive material coating layer, the conductive material and the binder may be mixed in a weight ratio of 80:20 to 99: 1.
  • the resistance of the electrode may be excessively increased, but when the content of the aforementioned numerical range is satisfied, the resistance of the electrode is prevented from being excessively increased.
  • the first support layer since the first support layer has a buffering effect that prevents the detachment phenomenon of the electrode active material layer, even if a relatively small amount of binder is included, the flexibility of the electrode is not significantly prevented.
  • the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotubes, and graphene, or a mixture of two or more thereof, but is not limited thereto. It is not.
  • the binder may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride trichloro Ethylene (polyvinylidene fluoride-co-trichloroethylene), polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate Cellulose acetate propionate, cyanoethylpullu Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrenebutadiene rubber
  • the resultant of the step (S1) or the step (S2) is pressed to form an integrated electrode active material layer by bonding on the current collector (S3).
  • the electrode active material slurry is coated on one surface of the current collector, dried to form an electrode active material layer, and then a second support layer is formed thereon through lamination or the like, the electrode active material layer and the second By hardening the electrode active material slurry binder component that allows the support layers to adhere to each other, strong adhesion between the two layers may not be maintained.
  • the porous support layer may be formed by coating a polymer solution on the electrode active material layer without using the porous second support layer prepared in advance as in the above-described manufacturing method.
  • the porous support formed by coating the polymer solution has poor mechanical properties as compared to the porous second support layer prepared by the preferred method of the present invention, and thus cannot effectively suppress the detachment of the electrode active material layer due to external force. .
  • a second support layer is formed on the top surface of the applied electrode active material slurry, and coated together through a coating blade, whereby the current collector and the first The electrode active material layer may be formed by adhering between the support layers.
  • the separation layer has a function of preventing a short circuit of the electrode, and is formed surrounding the outer surface of the internal electrodes.
  • an electrolyte layer or a separator may be used as the separation layer of the present invention.
  • Examples of the electrolyte layer serving as a passage for the ions include a gel polymer electrolyte using PEO, PVdF, PVdF-HFP, PMMA, PAN, or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); Etc.
  • the matrix of the solid electrolyte is preferably made of polymer or ceramic glass as a basic skeleton.
  • ions may move very slowly in terms of reaction rate, and therefore, it is preferable to use an electrolyte of a gel polymer having easier movement of ions than a solid.
  • the gel polymer electrolyte is not excellent in mechanical properties, it may include a support to compensate for this, and such a support may be a pore structure support or a crosslinked polymer. Since the electrolyte layer of the present invention may serve as a separator, a separate separator may not be used.
  • the electrolyte layer of the present invention may further include a lithium salt.
  • Lithium salts can improve ionic conductivity and reaction rate, non-limiting examples of which are LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloro available borane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate, etc. have.
  • the separator is not limited to a kind thereof, but a porous material made of a polyolefin-based polymer selected from the group consisting of ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer.
  • a polymer substrate A porous polymer substrate made of a polymer selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalate; A porous substrate formed of a mixture of inorganic particles and a binder polymer; Alternatively, a separator having a porous coating layer formed of a mixture of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate may be used.
  • the inorganic particles are bound to each other by the binder polymer in a state of being filled and in contact with each other, thereby interstitial volume between the inorganic particles Is formed, and the interstitial volume between the inorganic particles becomes an empty space to form pores. That is, the binder polymer is attached to each other so that the inorganic particles are bound to each other, for example, the binder polymer is connected and fixed between the inorganic particles.
  • the pores of the porous coating layer is a pore formed by the interstitial volume between the inorganic particles becomes an empty space, which is an inorganic material that is substantially interviewed in a closed packed or densely packed by the inorganic particles It is a space defined by particles.
  • the separator may have a form in which a liquid electrolyte is impregnated into the foam separation membrane.
  • the foam separator may be formed by mixing a foaming agent in the liquid phase of the polymer material constituting the porous substrate, preparing a coating solution, applying it to the outer surface of the internal electrode, and drying and foaming.
  • the foam separator is uniformly mixed with a blowing agent in the coating solution before foaming, the micropores are formed having a size between 30nm to 200nm and connected to each other, the liquid electrolyte may be injected into the foam separator according to the capillary effect of the pores. That is, when the electrolyte is absorbed in the foam separation membrane, the electrolyte is injected into the pores according to the cohesion force and the surface tension between the electrolytes. As a result, it is possible to further promote the injection of the electrolyte into the internal electrode in the cable-type secondary battery with a minimum internal diameter.
  • the polymer electrolyte layer may be connected to the separation layer through the wound gap, and as a result, lithium ions are transferred from the internal electrode to the external electrode and the polymer electrolyte layer.
  • the movement is smooth, and the capacity characteristics and cycle characteristics of the battery can be improved.
  • Cable type secondary battery according to an embodiment of the present invention has a horizontal cross section of a predetermined shape, it may have a linear structure elongated in the longitudinal direction with respect to the horizontal cross section.
  • the cable type secondary battery according to the exemplary embodiment of the present invention may have flexibility, and may be freely deformed.
  • the predetermined shape means that the shape is not particularly limited, and any shape that does not impair the essence of the present invention is possible.
  • the internal electrode may be a cathode or an anode
  • the external electrode may be an anode or a cathode corresponding to the internal electrode
  • the inner electrode active material may include a carbonaceous material such as natural graphite and artificial graphite; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And any one active material particles selected from the group consisting of metals (Me) and a composite of carbon or a mixture of two or more thereof, wherein the external electrode active material is LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , and LiNi 1- xy- z Co x M1 y M2 z O 2 (M1 and M2 are independently of each other Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and I
  • the internal electrode active material includes LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , and LiNi 1-xyz Co x M1 y M2.
  • z O 2 (M1 and M2 are each independently selected from Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and Mo, and x, y and z are each other Independently any active material particles selected from the group consisting of 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, and 0 ⁇ x + y + z ⁇ 1 as the atomic fraction of oxide composition elements; It includes a mixture of two or more of the above, wherein the external electrode active material, carbonaceous materials such as natural graphite, artificial graphite; Metals such as lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals; Oxides of the above metals; And it may include any one active material particles or a mixture of two or more thereof selected from the group consisting of a complex of the metals and carbon.
  • LTO lithium-
  • the electrode active material layer of the present invention functions to move ions through a current collector, and the movement of these ions is caused by interaction through occlusion of ions from the electrolyte layer and release of ions into the electrolyte layer.
  • the electrode active material layer may be classified into a negative electrode active material layer and a positive electrode active material layer.
  • the electrode active material layer includes an electrode active material, a binder, and a conductive material, and combines with the current collector to form an electrode.
  • deformation occurs, such as the electrode being folded or severely bent by an external force, detachment of the electrode active material occurs. Due to the detachment of the electrode active material, a decrease in battery performance and battery capacity occurs.
  • the spirally wound sheet-type external current collector since the spirally wound sheet-type external current collector has elasticity, it plays a role of dispersing the force during deformation due to external force, so that deformation of the electrode active material layer is less likely to occur, thereby preventing detachment of the active material.
  • a protective coating 50 may be further provided.
  • the protective coating protects the electrode against moisture and external shock in the air as an insulator.
  • a conventional polymer resin including a moisture barrier layer may be used.
  • aluminum or liquid crystal polymer (LCP) having excellent moisture barrier performance may be used as the moisture barrier layer, and the polymer resin may be PET, PVC, HDPE, or epoxy resin.
  • FIG. 11 which is a cross-sectional view of a cable type secondary battery according to an embodiment of the present invention, is formed to surround at least one wire type internal electrode 10 and an outer surface of the first internal electrode and prevent a short circuit of the electrode.
  • An electrode assembly including a separation layer 20 and a sheet-shaped external electrode 30 wound around the separation layer in a spiral shape; A polymer electrolyte coating layer 40 formed surrounding the electrode assembly; And it may have a protective coating 50 surrounding the outer surface of the polymer electrolyte coating layer.
  • FIG. 12 is a cross-sectional view of the cable-type secondary battery according to another embodiment of the present invention also has a role of a separation layer formed by winding one or more wire-shaped internal electrode 10, surrounding the outer surface of the first internal electrode
  • An electrode assembly including a sheet-shaped external electrode 30 'as a composite; A polymer electrolyte coating layer 40 formed surrounding the electrode assembly; And it may have a protective coating 50 surrounding the outer surface of the polymer electrolyte coating layer.
  • the diameter of the cable-type secondary battery according to an embodiment of the present invention may be 1.5mm or less, specifically 0.5mm to 1.5mm, more specifically 0.5mm to 1.3mm.
  • the internal electrode active material layer is densely packed with the wire-like internal current collectors formed on the surface to prepare the internal electrodes of the packed form.
  • an internal electrode active material layer on the surface of the wire-type internal current collector As a method of forming an internal electrode active material layer on the surface of the wire-type internal current collector, a general coating method may be applied. Specifically, an electroplating or an anodization process may be used.
  • the electrode slurry containing the active material is preferably manufactured using a method of coating using a comma coater or a slot die coater. In addition, in the case of the electrode slurry containing the active material, it is also possible to manufacture by using a method of extrusion coating using a dip coating or an extruder.
  • a separation layer sheet which prevents short circuit of the electrode is formed by winding the sheet so as to overlap half of the sheet on the outer surface of the inner electrode. If the sheet type external electrode can also serve as a separation layer, the separation layer sheet can be excluded from the winding step.
  • a sheet-type external electrode may be manufactured by performing the step of coating the external electrode active material slurry on the other surface of the external current collector and drying the external electrode active material layer to form an external electrode active material layer.
  • (S1) on one surface of the sheet-shaped outer current collector the step of forming a first support layer by pressing; (S2) applying the external electrode active material slurry to the other surface of the external current collector, and drying to form an external electrode active material layer; (S3) applying a conductive material slurry including a conductive material and a binder on the external electrode active material layer, and forming a porous second support layer on the conductive material slurry; And (S4) compressing the resultant of the step (S3) to form an integrated conductive layer by adhering between the external electrode active material layer and the second support layer to form a sheet type external electrode.
  • the sheet type external electrode is spirally wound around the separation layer or the outer surface of the internal electrode to form an electrode assembly.
  • the electrode assembly is immersed in the electrolyte bath to inject the electrolyte solution.
  • the said electrolyte solution uses the organic electrolyte solution containing the lithium salt which is a conventional electrolyte solution, and does not specifically limit a kind.
  • a polymer coating layer is formed on the electrode assembly.
  • the polymer is added to acetone or acetonitrile as a material that evaporates rapidly due to high vapor pressure as a solvent, and prepares a solution, and the polymer coating is performed so that the electrolyte solution does not escape to the outside of the electrode assembly at a temperature near 10 to 60 ° C. Proceed.
  • Such a coating layer has an ion conductivity by absorbing an electrolyte solution like a polymer electrolyte.
  • a protective coating to surround the outer surface of the polymer electrolyte coating layer.
  • the protective coating is formed on the outermost surface to protect the electrode against moisture and external shock in the air as an insulator.
  • a conventional polymer resin including a moisture barrier layer may be used as described above.
  • the composition of spherical graphite (16 ⁇ m), acetylene black, and KF1100 (PVdF) binder was 250: Cu wire, and the composition of N-methylpi was 81: 4: 15 (weight ratio).
  • the slurry prepared by mixing with a Rolidone (NMP) solvent was coated with an extruded coater to have a capacity of 3.8 mAh / cm 2 (400 ⁇ m thick with copper wire).
  • a binder solution in which PVdF-HFP (5% by weight of HFP in total) was dissolved in acetone at a concentration of 16.8% was coated to have a thickness of 10 ⁇ m to prepare a wire-type negative electrode having a thickness of 410 ⁇ m.
  • the slurry of LiCoO 2 , acetylene black and KF1100 (PVdF) binder was mixed with N-methylpyrrolidone (NMP) solvent in a composition (weight ratio) of 90: 4: 6 by aluminum foil (20 ⁇ m).
  • NMP N-methylpyrrolidone
  • the thickness of the positive electrode active material layer was 63 ⁇ m.
  • Nanofiber PET porosity 47%, air permeability 15sec / 100mL, pore size 2 ⁇ m was added to prepare a multi-layered anode having a multilayer shape.
  • the sheet-shaped external electrode obtained by slitting this multi-layered anode in a width of 3 mm was wound so as not to overlap the outer surface of the separation layer or the inner electrode helically to form an electrode assembly, to remove the active material near the end of 5 mm, and to connect the aluminum tab. .
  • a battery structure having a capacity per unit length of 12 mAh / cm with a total length of 10 cm was prepared.
  • an electrolyte of EC: PC: DEC (w / w%) was immersed in an electrolyte bath at a concentration of 1M LiPF 6 to inject the electrolyte solution.
  • a polyimide coating layer was formed on the electrode assembly.
  • Polyimide molecular weight 1.2 million
  • a polymer electrolyte coating layer was formed in the electrode assembly such that the electrolyte solution did not escape to the outside.
  • a protective coating was formed to surround the outer surface of the polymer electrolyte coating layer.
  • the protective coating is formed on the outermost surface to protect the electrode against moisture and external shock in the air as an insulator.
  • PET polymer resin including an aluminum layer as a moisture barrier layer was used as the protective coating.
  • the protective coating had a thickness of 64 ⁇ m.
  • the cable-type secondary battery was manufactured by sealing completely. The diameter of the cable type secondary battery thus obtained was about 1.19 mm.
  • a cable type secondary battery was manufactured in the same manner as in Example 1, except that an internal electrode was manufactured in the form of twisted wire-shaped negative electrode 4 strands.
  • a cable type secondary battery was manufactured in the same manner as in Example 1, except that an internal electrode was prepared by disposing one wire-type negative electrode.
  • a cable-type secondary battery was manufactured in the same manner as in Example 1 except that the sheet-shaped external electrode was manufactured without the PET layer on the aluminum foil.
  • the life characteristic evaluation was evaluated by connecting the positive electrode tab and the negative electrode tab to the charger / discharger while the battery was bent at 15 R (bend radius).
  • the cable-type secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were cut-off at 0.5 C to 4.2 V under constant current / constant voltage (CC / CV) conditions, and charged capacity to 0.05 C under CV conditions, and 0.5 C
  • the discharge capacity was measured by cutting off the discharge to 3.0V. This was repeated 1 to 200 cycles, the capacity retention ratio compared to the discharge capacity of the first cycle of the discharge capacity in each cycle measured is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 1개 이상의 내부전극; 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층; 상기 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극; 및 상기 시트형의 외부전극을 둘러싸며 형성된 고분자 전해질 코팅층;을 포함하고, 상기 시트형의 외부전극은, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지를 제공한다.

Description

케이블형 이차전지 및 이의 제조방법
본 발명은 변형이 자유로운 케이블형 이차전지에 관한 것으로, 더욱 자세하게는 전해액 주액이 용이한 케이블 이차전지 및 이의 제조방법에 관한 것이다.
본 출원은 2016년 2월 5일에 출원된 한국출원 제10-2016-0015239호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 이차 전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치를 말한다. 여러 번 충전할 수 있다는 뜻으로 "충전식 전지"(rechargeable battery)라는 명칭도 쓰인다. 흔히 쓰이는 이차전지로는 납 축전지, 니켈 카드뮴 전지(NiCd), 니켈 수소 축전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer)가 있다. 이차 전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.
이차 전지는 현재 낮은 전력을 사용하는 곳에 쓰인다. 이를테면 자동차의 시동을 돕는 기기, 휴대용 장치, 도구, 무정전 전원 장치를 들 수 있다. 최근 무선통신 기술의 발전은 휴대용 장치의 대중화를 주도하고 있으며, 종래의 많은 종류의 장치들을 무선화하는 경향도 있어, 이차전지에 대한 수요가 폭발하고 있다. 또한, 환경오염 등의 방지 측면에서 하이브리드 자동차, 전기 자동차가 실용화되고 있는데, 이들 차세대 자동차들은 이차전지를 사용하여 값과 무게를 줄이고 수명을 늘리는 기술을 채용하고 있다.
일반적으로 이차전지는 원통형, 각형 또는 파우치형의 전지가 대부분이다. 이는 이차전지는 음극, 양극 및 분리막으로 구성된 전극 조립체를 원통형 또는 각형의 금속캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극 조립체에 전해질을 주입시켜 제조하기 때문이다. 따라서, 이차전지 장착을 위한 일정한 공간이 필수적으로 요구되므로, 이러한 이차전지의 원통형, 각형 또는 파우치형의 형태는 다양한 형태의 휴대용 장치의 개발에 대한 제약으로 작용하게 되는 문제점이 있다. 이에, 형태의 변형이 용이한 신규한 형태의 이차전지가 요구되고 있다.
이러한 요구에 대하여, 단면적 직경에 대해 길이의 비가 매우 큰 전지인 케이블형 이차전지가 제안되었다. 이러한 케이블형 이차전지를 신체에 착용할 수 있는 웨어러블 어플리케이션이나, 스마트 패브릭 등에 적용하기 위한 연구 개발이 이루어 지고 있으며, 이러한 제품들의 전력을 공급할 수 있는 장치 역시 그에 맞춤형으로 전지가 개발될 필요성이 있다. 또한, 케이블형 이차전지는 전해질층을 형성하기 위하여 폴리머 전해질을 사용하게 되므로, 전극의 활물질으로의 전해질의 유입이 어려워 전지의 저항이 증가하여 용량 특성 및 사이클 특성이 저하되는 문제점이 있다.
따라서 본 발명이 해결하고자 하는 과제는 케이블형 이차전지의 내부 직경을 최소화 하여, 케이블 전지를 직조된 형태나, 여러 개의 전지를 수평으로 연결시켜 시트 타입의 구조체를 형성하여 스마트 패브릭 혹은 웨어러블 어플리케이션 등의 전력 공급원의 역할을 수행할 수 있도록 하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 과제는 내부 직경이 최소화된 케이블형 이차전지의 전해액 주액을 용이하게 하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 1개 이상의 내부전극; 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층; 상기 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극; 및 상기 시트형의 외부전극을 둘러싸며 형성된 고분자 전해질 코팅층;을 포함하고, 상기 외부전극은, 외부집전체, 상기 외부집전체의 일면에 형성된 외부전극 활물질층, 및 상기 외부집전체의 타면에 형성된 제1 지지층을 포함하고, 상기 시트형의 외부전극은, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 케이블형 이차전지가 제공된다.
본 발명의 바람직한 일 실시예 따르면, 상기 고분자 전해질 코팅층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함할 수 있다.
보다 구체적인 일 실시예에 따르면, 상기 극성 선형 고분자는, 폴리이미드(polyimide), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate), 폴리우레탄 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다. 또한. 상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 내부전극은 2개 이상의 와이어형 내부전극이 서로 평행하게 접촉하여 배치되거나, 2개 이상의 와이어형 내부전극이 서로 꼬여진 형태로 배치될 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 내부전극은 내부집전체 및 상기 내부집전체 표면에 형성된 내부전극 활물질층을 포함할 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 시트형의 외부전극은, 일측 방향으로 연장된 스트립 구조일 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 시트형의 외부전극은, 상기 시트형의 외부전극 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성될 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 제1 지지층은, 고분자 필름일 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 외부전극은, 상기 외부전극 활물질층상에 형성된 다공성의 제2 지지층을 더 포함할 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 제2 지지층상에, 도전재와 바인더를 구비하는 도전재 코팅층을 더 포함할 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 도전재 코팅층은, 도전재와 바인더가 80:20 내지 99:1의 중량비로 혼합될 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 제2 지지층상에, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 더 포함할 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 내부전극은, 음극 또는 양극이고, 상기 외부전극은, 상기 내부전극에 상응하는 양극 또는 음극일 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 고분자 전해질 코팅층의 외면을 둘러싸도록 형성된 보호피복을 더 포함할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 본 발명은 1개 이상의 내부전극; 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층; 및 상기 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극을 포함하는 전극 조립체를 준비하고, 상기 시트형의 외부전극은, 서로 겹치지 않도록 나선형으로 권선하여 형성되는 단계; 상기 전극 조립체를 전해액 배쓰에 담가 전해액을 주입시키는 단계; 및 상기 전해액이 주입된 전극 조립체의 외부를 고분자로 코팅하여, 고분자 코팅층을 형성시키는 단계;를 포함하는 것을 특징으로 하는 케이블 이차전지의 제조방법을 제공한다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 고분자 코팅층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함할 수 있다.
보다 구체적인 일 실시예에 따르면, 상기 극성 선형 고분자는, 폴리이미드(polyimide), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate), 폴리우레탄 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다. 또한. 상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 내부전극은 2개 이상의 와이어형 내부전극이 서로 평행하게 접촉하여 배치되거나, 2개 이상의 와이어형 내부전극이 서로 꼬여진 형태로 배치될 수 있다.
본 발명의 일 실시예에 따른 케이블형 이차전지는 케이블형 이차전지의 내부 직경을 최소화 하여, 케이블 전지를 직조된 형태나, 여러 개의 전지를 수평으로 연결시켜 시트 타입의 구조체를 형성하여 스마트 패브릭 혹은 웨어러블 어플리케이션 등의 전력 공급원의 역할을 수행할 수 있다.
또한, 본 발명의 일 실시예에 따른 케이블형 이차전지는 내부 직경을 최소화한 케이블형 이차전지에서 전해액 주입이 용이하여, 전지의 용량 특성 및 사이클 특성이 우수하다.
또한, 본 발명의 일 실시예에 따른 케이블형 이차전지는 시트형 전극의 적어도 일면에 지지층을 도입함으로써 전극의 유연성을 크게 향상시킬 수 있다. 그리고, 전극이 완전히 접히게 되는 등의 극심한 외력이 작용할 때, 전극 활물질층의 바인더 함량 증가가 없더라도 상기 지지층이 완충작용을 함으로써, 전극 활물질층의 크랙 발생을 완화시켜주며, 이로 인해, 집전체에서 전극 활물질층이 탈리되는 현상을 방지해 준다. 이로써, 전지의 용량 감소를 방지하고, 전지의 사이클 수명특성을 향상시킬 수 있다. 나아가, 다공성의 지지층을 구비함으로써 전극 활물질층으로의 전해액 유입이 원활하고, 상기 다공성 지지층의 기공으로 전해액이 함침됨으로써 전지 내의 저항증가를 방지하여, 전지의 성능 저하를 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따르는 케이블형 이차전지의 단면을 나타낸 단면도이다.
도 2는 본 발명의 또 다른 일 실시예에 따르는 케이블형 이차전지의 단면을 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따르는 케이블형 이차전지를 개략적으로 나타낸 사시도이다.
도 4은 본 발명의 또 다른 일 실시예에 따르는 케이블형 이차전지를 개략적으로 나타낸 사시도이다.
도 5는 본 발명의 또 다른 일 실시예에 따르는 케이블형 이차전지를 개략적으로 나타낸 사시도이다.
도 6은 본 발명의 일 실시예에 따르는 시트형 외부전극의 단면을 나타낸 도면이다.
도 7은 본 발명의 또 다른 일 실시예에 따르는 시트형 외부전극의 단면을 나타낸 도면이다.
도 8은 본 발명의 또 다른 일 실시예에 따르는 시트형 외부전극의 단면을 나타낸 도면이다.
도 9는 본 발명의 또 다른 일 실시예에 따르는 시트형 외부전극의 단면을 나타낸 도면이다.
도 10은 본 발명의 일 실시예에 따르는 시트형 외부전극의 높이에 해당하는 옆면을 빗금으로 도시한 도면이다.
도 11은 본 발명의 일 실시예에 따르는 케이블형 이차전지의 단면을 나타낸 단면도이다.
도 12는 본 발명의 또 다른 일 실시예에 따르는 케이블형 이차전지의 단면을 나타낸 단면도이다.
도 13은 실시예 1, 실시예 2, 비교예 1, 및 비교예 2에 따른 케이블형 이차전지의 수명특성 평가 결과를 나타내 그래프이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 기재된 구성은 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 측면에 따르면, 1개 이상의 내부전극; 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층; 상기 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극; 및 상기 시트형의 외부전극을 둘러싸며 형성된 고분자 전해질 코팅층;을 포함하고, 상기 외부전극은, 외부집전체, 상기 외부집전체의 일면에 형성된 외부전극 활물질층, 및 상기 외부집전체의 타면에 형성된 제1 지지층을 포함하고, 상기 시트형의 외부전극은, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 케이블형 이차전지가 제공된다.
이때 내부전극은 도 1과 같이 내부전극이 복수 개일 경우 서로 조밀하게 패킹되어 있는 형태를 가짐으로써, 본 발명에 따른 케이블형 전지의 직경을 작게 만들 수 있다. 이와 같은 케이블형 전지는 종래의 케이블형 전지보다 얇게 만들 수 있어, 케이블형 전지를 직조된 형태나, 여러 개의 전지를 수평으로 연결시켜 시트 타입의 구조체를 형성하여 스마트 패브릭 혹은 웨어러블 어플리케이션에 도입할 수 있다.
다만, 내부 전극에 중공이 있는 구조라면 니들(needle)을 통하여 전해액을 주액할 수 있지만, 상기와 같이 내부전극이 중공 없이 조밀하게 패킹되어 있는 구조라면, 앞선 방법과 같이 니들을 이용하여 전해액을 주액하기가 용이하지 않다. 따라서, 본 발명은 내부전극이 중공형이 아닌 경우, 특히 비중공형의 내부전극이 서로 조밀하게 패킹되어 있는 경우에 있어 전해액 주액 해결을 위한 방법을 연구하였다. 이를 위하여, 본 발명자들은 전극조립체를 전해액 배쓰(Bath)에 통과시켜 전해액이 전지 내부로 흡수되도록 하고, 전해액 배쓰 함침 이후, 전해액이 외부로 빠져나가지 않도록 고분자 코팅을 진행하여 상기 전극조립체를 캡슐레이션 시키는 방안을 고안하였다. 이때 캡슐레이션에 사용한 고분자 전해질층은 폴리머 전해질과 같이 전해액이 흡수되어 이온 전도성을 가진다. 이러한 방법을 통하여 제조된 케이블형 이차전지는, 비중공형의 조밀하게 패킹되어 있는 내부전극을 가진 케이블형 이차전지에서, 전해액 주입을 용이하게 할 수 있다.
이하 보다 각 구성에 대하여 보다 구체적으로 기재한다.
상기 고분자 전해질 코팅층은, 상기 시트형의 외부전극, 즉, 내부전극 및 외부전극을 포함한 전극조립체를 둘러싸며 형성되어 있다.
본 발명의 전극 조립체의 일 실시예에 따르면, 1개 이상의 내부전극; 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층; 및 상기 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극을 포함한다. 또 다른 전극 조립체의 일 실시예에 따르면, 분리층의 역할을 하는 물질이 상기 외부전극 상에 적층되어 시트형의 분리층-외부전극 복합체를 형성하고, 상기 시트형의 분리층-외부전극 복합체는, 상기 내부전극을 둘러싸도록 나선형으로 권선될 수 있다.
보다 구체적으로 본 발명에 따른 케이블형 전지를 살펴보면, 본 발명의 일 실시예에 따른 케이블형 이차전지의 단면인 도 1은, 1개 이상의 내부전극(10), 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층(20), 및 상기 분리층(20)을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극(30)을 포함하는 전극 조립체 및 상기 전극 조립체의 외부를 둘러싼 고분자 전해질 코팅층(40)을 구비하고 있고, 본 발명의 또 다른 일 실시예에 따른 케이블형 이차전지의 단면인 도 2는, 앞서 설명한 바와 같이 분리층 역할을 하는 물질이 상기 외부전극 상에 적층된 구조를 이루어, 1개 이상의 내부전극(10), 및 상기 내부전극의 외면을 둘러싸며 나선형으로 권선되어 형성된 시트형의 분리층-외부전극 복합체인 외부전극(30')를 포함하는 전극 조립체 및 상기 전극 조립체의 외부를 둘러싼 고분자 전해질 코팅층(40)을 구비하고 있다.
상기 고분자 전해질 코팅층에 사용되는 고분자는 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함할 수 있다.
이때, 상기 극성 선형 고분자는, 폴리이미드(polyimide), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate), 폴리우레탄 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
이 중에서, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-HFP)의 경우, HFP의 치환율이 5 내지 20 몰%인 경우 전해액 흡수율이 더 개선될 수 있다. 그리고, 상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 고분자 전해질 코팅층은 폴리머 전해질과 같이 전해액이 흡수되어 이온 전도성을 가질 수 있다.
이때, 상기 고분자 전해질 코팅층은 증기압이 높아 빠르게 증발되는 물질, 예를 들어 아세톤 또는 아크릴로니트릴 등을 용매로 하여 낮은 온도, 예를 들어 10 내지 60℃에서 전극 조립체의 외면을 캡슐화 시킬 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 상기 고분자 전해질 코팅층의 두께는 1 내지 100㎛일 수 있다.
또한, 상기 내부전극은 1개 이상의 내부전극으로서, 1개 단독 혹은 2개 이상의 내부전극이 서로 접촉하여 패킹되어 있는 형태로, 일 실시예에 따르면 도 3과 같이 복수개의 와이어형 내부전극(10)이 서로 평행하게 접촉하여 배치되거나, 도 4와 같이 복수개의 와이어형 내부전극(10)이 서로 꼬여진 형태로 배치될 수 있다.
상기 서로 꼬여진 형태는, 특정의 꼬인 형태로 한정하는 것은 아니지만, 여러 가닥의 전극을 서로 평행이 되도록 나란히 놓은 다음에 함께 비틀어서 꼴 수도 있고, 또는 여러 가닥의 전극을 서로 하나씩 엇갈려 놓으면서, 마치 긴 머리를 땋듯이 꼰 것을 사용할 수도 있다.
상기와 같이 내부전극이 서로 조밀하게 패킹되어 있는 형태를 가짐으로써, 본 발명에 따른 케이블형 전지의 내부 직경을 작게 만들 수 있다.
상기 내부전극은 내부집전체 및 내부전극 활물질층을 포함하는데, 상기 내부집전체는 나선형으로 권선된 하나 이상의 와이어형의 내부집전체 또는 서로 교차하도록 나선형으로 권선된 2개 이상의 와이어형 내부 집전체를 포함할 수 있다. 또한, 상기 내부전극 활물질층이 상기 내부집전체의 전 표면에 형성되거나, 또는 상기 내부전극 활물질층이 권선된 내부집전체의 외부면을 둘러싸며 형성될 수 있다. 보다 구체적으로 내부전극 활물질층이 와이어형 내부집전체 전표면에 형성된 구조와 관련하여, 와이어형 내부집전체의 표면에 내부전극 활물질층이 형성된 와이어형 내부집전체를 가지는 하나의 와이어형 내부전극을 가질 수 있고, 내부전극 활물질층이 표면에 형성된 둘 이상의 와이어형 내부집전체를 가지는 둘 이상의 내부전극이 교차하며 권선될 수 있으며, 이와 같이 둘 이상의 와이어형 내부전극이 함께 권선될 경우, 전지의 레이트 특성 향상에 유리하다.
그리고, 상기 내부전극의 내부전극 활물질층이 권선된 내부집전체의 외부면을 둘러싸며 형성된 구조와 관련하여, 내부집전체를 권선한 후, 상기 권선된 내부집전체의 외부면을 내부전극 활물질층이 둘러싸도록 형성될 수 있다.
또한, 상기 내부전극은, 상기 내부전극 활물질층의 표면에 형성된 고분자 지지층을 더 포함할 수 있다.
본 발명의 일 실시예에 따라 상기 내부전극의 내부전극 활물질층의 표면에 상기 고분자 지지층을 더 포함하게 되면, 케이블형 이차전지가 외력 등으로 굽힘이 일어나더라도 내부전극 활물질층의 표면에 크랙이 발생하는 현상이 탁월하게 방지된다. 이로써 내부전극 활물질층의 탈리 현상이 더욱 방지되어, 전지의 성능이 더 개선될 수 있다. 나아가, 상기 고분자 지지층은 다공성의 구조를 가질 수 있고, 이때, 내부전극 활물질층으로의 전해액 유입을 원활하도록 하여, 전극 저항의 증가를 방지할 수 있다.
여기서, 상기 고분자 지지층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함할 수 있다.
이때, 상기 극성 선형 고분자는, 폴리이미드(polyimide), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate), 폴리우레판 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 고분자 지지층은, 0.01 ㎛ 내지 10 ㎛의 기공 크기 및 5 내지 95 %의 기공도를 갖는 다공성 고분자층일 수 있다.
그리고, 상기 다공성 고분자층의 다공성 구조는, 그 제조과정에서 비용매(non-solvent)에 의한 상분리 또는 상전환을 통해 형성될 수 있다.
일 예로, 고분자인 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌을, 용매로서 작용하는 아세톤에 첨가하여, 10 중량%의 고형분 함량이 되는 용액을 준비한다. 그 후, 비용매로서 물 또는 에탄올을 상기 준비된 용액에 2 내지 10 중량%만큼 첨가하여 고분자 용액을 제조할 수 있다.
이러한 고분자 용액이 코팅된 후 증발되는 과정에서, 상전환이 되면서 비용매와 고분자의 상분리된 부분 중, 비용매가 차지하는 영역이 기공이 된다. 따라서, 비용매와 고분자의 용해도 정도와 비용매의 함량에 따라 기공의 크기를 조절할 수 있다.
또한, 본 발명에 따른 외부전극은 시트형으로 도 3 내지 도 5와 같이 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 있다.
종래의 와이어형 외부전극의 경우 활물질층이 딥코팅에 의해 형성되었기 때문에, 외부 구부림/비틀림 조건에서 보호 피복에 의해 그 형태가 보호받음에도 불구하고, 외부전극 활물질층의 표면에서 크랙이 발생할 가능성이 있어, 전극 유연성 측면에서 불리하게 작용하는 바, 본 발명에서는 분리층의 또는 내부전극의 외면을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극을 도입하였다.
본 발명의 일 실시예에 따르면, 상기 시트형의 외부전극은 도 3 내지 도 4와 같이 분리층(20)을 둘러싸며 나선형으로 권선된 시트형의 외부전극(30)일 수도 있고, 또 다른 본 발명의 일 실시예에 따라, 전극의 단락을 분리하는 분리층의 역할을 하는 구성과 전극 역할을 하는 구성이 접합하여 일체화된 구조가 된 경우, 도 5와 같이 내부전극(10)의 외면을 둘러싸며 나선형으로 권선되어 형성된 분리층-외부전극 복합체인 시트형의 외부전극(30')일수도 있다.
여기서, 상기 나선형이란 영문상으로 스파이럴(spiral) 또는 헬릭스(helix)로 표현되며, 일정 범위를 비틀려 돌아간 모양으로, 일반적인 스프링의 형상과 유사한 형상을 통칭한다.
상기 외부전극은, 일측 방향으로 연장된 스트립(strip, 띠) 구조일 수 있다.
그리고, 상기 외부전극은, 서로 겹치지 않도록 나선형으로 권선되어 형성된다. 이때, 상기 외부전극은, 전지의 성능이 저하되지 않도록 상기 외부전극 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성될 수 있다.
본 발명의 고분자 전해질층은 외부전극의 제1 지지층의 외측에 있으나, 시트형의 외부전극이 겹치지 않도록 권선되어 있으므로, 이 나선형으로 권선된 사이(틈)로도 고분자 전해질층이 형성되어, 고분자 전해질층이 분리층과 연결되므로써, 내부전극까지 전해액을 전달할 수 있게 된다.
또한 상기 고분자 전해질층이 시트형의 외부전극과 분리층을 서로 일체화 및 밀착시키는 역할도 하게 되어 분리층과 외부전극이 서로 이격되거나 탈리되지 않게 하여, 내부전극과 외부전극의 단락을 방지하는 안정성 개선 효과도 발휘할 수 있다. 이때, 상기 외부전극은, 외부집전체 및 상기 외부집전체의 일면에 형성된 외부전극 활물질층을 포함하고, 이때, 상기 외부집전체는, 메쉬형 집전체일 수 있다.
또한, 상기 외부전극은, 상기 외부집전체의 타면에 형성된 제1 지지층을 더 포함하고, 이때 상기 제1 지지층은, 고분자 필름일 수 있다. 이러한 제1 지지층은, 집전체의 단선을 억제하여, 집전체의 유연성을 더욱 향상시킬 수 있다.
도 6 내지 도 9는 외부전극의 단면을 개략적으로 나타낸 단면도이다.
도 6과 같이 상기 외부전극은 외부집전체(31) 및 상기 외부집전체(31)의 일면에 형성된 외부전극 활물질층(32), 및 상기 외부집전체(31)의 타면에 형성된 제1 지지층(33)을 포함한다. 이때, 상기 제1 지지층(33)은, 외부집전체(31)의 단선을 억제하여, 외부집전체(31)의 유연성을 더욱 향상시킬 수 있다.
또한, 본 발명의 일 실시예에 따른 외부전극은 도 7과 같이 상기 외부전극 활물질층상(32)에 형성된 다공성의 제2 지지층(34)을 더 포함할 수 있다.
상기 다공성의 제2 지지층(34)은, 전극에 구부림 또는 비틀림의 외력이 작용하더라도, 외부전극 활물질층(32)에 작용하는 외력을 완화시켜주는 완충작용을 함으로써, 전극 활물질층(32)의 탈리현상을 방지하여, 전극의 유연성을 향상시켜 준다. 또한, 다공성의 구조를 가짐으로써, 전극 활물질층으로의 전해액 유입을 원활하게 하며, 바람직하게는 제2 지지층 그 자체로도 전해액의 함침성이 뛰어나 이온 전도성이 확보되어 전지 내부의 저항증가를 방지하여 전지의 성능저하를 방지한다.
그리고, 도 8과 같이 추가적으로 상기 외부전극 활물질층(32)과 제2 지지층(34) 사이에, 도전재와 바인더를 구비하는 도전재 코팅층(35)을 더 포함하여, 전극 활물질층의 전도성을 향상시켜 전극의 저항을 감소시킴으로써 전지의 성능 저하를 방지할 수도 있다. 상기 도전재 코팅층은 상기 외부전극 활물질층(32)과 제2 지지층(34) 사이뿐만 아니라, 제2 지지층(34) 상에 형성될 수도 있다.
나아가 도 9와 같이, 상기 제2 지지층(34)상에, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층(36)을 더 포함할 수도 있다.
또한, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 상기 유무기 다공성 코팅층(36)에서는, 무기물 입자들은 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기물 입자들 사이에 인터스티셜 볼륨(interstitial volume)이 형성되고, 상기 무기물 입자 사이의 인터스티셜 볼륨(Interstitial Volume)은 빈 공간이 되어 기공을 형성한다.
즉, 바인더 고분자는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착, 예를 들어, 바인더 고분자가 무기물 입자 사이를 연결 및 고정시키고 있다. 또한, 상기 다공성 코팅층의 기공은 무기물 입자들 간의 인터스티셜 볼륨(interstitial volume)이 빈 공간이 되어 형성된 기공이고, 이는 무기물 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 무기물 입자들에 의해 한정되는 공간이다.
상기 유무기 다공성 코팅층 내의 상기 무기물 입자와 상기 바인더 고분자가 20:80 내지 95:5의 중량비로 혼합되어 형성될 수 있다.
이때, 상기 유무기 다공성 코팅층 내의 무기물 입자는, 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물일 수 있다. 여기서, 상기 유전율 상수가 5 이상인 무기물 입자는, BaTiO3, Pb(Zrx, Ti1-x)O3(PZT, 여기서, 0<x<1임), Pb1 - xLaxZr1 - yTiyO3(PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 여기서, 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, SiO2, AlOOH, Al(OH)3 및 TiO2로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다. 그리고, 상기 리튬 이온 전달 능력을 갖는 무기물 입자는, 리튬 포스페이트(Li3PO4), 리튬 티타늄 포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬 알루미늄 티타늄 포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy계열 글래스(0<x<4, 0<y<13), 리튬 란탄 티타네이트(LixLayTiO3 , 0<x<2, 0<y<3), 리튬 게르마니움 티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬 나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2(LixSiySz, 0<x<3, 0<y<2, 0<z<4)계열 글래스 및 P2S5(LixPySz, 0<x<3, 0<y<3, 0<z<7)계열 글래스로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 유무기 다공성 코팅층 내의 무기물 입자의 평균 입경이 10 nm 내지 5 ㎛일 수 있다.
한편, 상기 유무기 다공성 코팅층 내의 바인더 고분자는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있지만 이에만 한정하는 것은 아니다.
특히, 분리층과 외부전극이 일체화가 된 경우의 외부전극(30')은 바람직한 일 실시예에 따르면, 도 10의 빗금친 부분에 나타난 바와 같이(앞쪽의 두 면만 빗금으로 표시되었고, 뒤쪽의 두면은 표시되어 있지 아니함), 시트형 외부전극 높이에 해당하는 4개의 옆면이 전기 화학 반응이 일어나지 않는 고분자층으로 더 둘러 쌓일 수 있다. 이러한 고분자층은 시트형 외부전극의 높이에 해당되는 4개의 면을 캡슐화한 형태로서, 시트의 높이에 해당하는 면에 노출될 수 있는 집전체층을 절연 물질로 감싸서, 내부 쇼트를 막을 수 있다.
상기 전기 화학 반응이 일어나지 않는 고분자로서 폴리비닐리덴플루오라이드(PVdF), 폴리(비닐리덴플루오라이드-헥사플루오로프로필렌)(PVdF-HFP), 폴리아크릴레이트(Polyacrylate), 폴리아미드(Polyamide), 폴리이미드(Polyimide), 폴리올레핀(예를 들면, 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리테트라플루오로에틸렌(PTFE)), 폴리우레탄(Polyurethane), 폴리에스테르(예를 들면, 폴리에틸렌테레프탈레이트(PET)), 폴리에틸렌옥사이드(PEO), 폴리에틸렌이민(PEI), 스티렌부타디엔고무(SBR) 등이 있으며, 가장 바람직하게는 폴리아크릴레이트, 폴리아미드, 폴리이미드, 폴리비닐리덴플루오라이드(PVdF), 폴리(비닐리덴플루오라이드-헥사플루오로프로필렌)(PVdF-HFP), 폴리에틸렌옥사이드(PEO), 스티렌부타디엔고무(SBR) 등이 사용될 수 있으나, 이에 한정되지 아니한다.
제1 실시예에 따른 시트형 외부전극의 제조방법에 따르면, 우선, 집전체의 일면에, 전극 활물질 슬러리를 도포한다. 이때 미리 상기 집전체의 타면에, 제1 지지층을 압착하여 형성할 수 있고, 또는 상기 전글 활물질 슬러리를 도포한 후에 상기 집전체의 타면에, 제1 지지층을 압착하여 형성할 수 있다. 여기서, 상기 제1 지지층은, 상기 집전체의 단선을 억제하여, 상기 집전체의 유연성을 더욱 향상시킨다.(S1).
여기서, 상기 집전체는, 전극 활물질의 전기화학 반응에 의해 생성된 전자를 모으거나 전기화학 반응에 필요한 전자를 공급하는 역할을 하는 것으로, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조된 것일 수 있다.
전술한 바와 같이 이차전지에 구부림 또는 비틀림 등의 외력이 작용하게 되면, 전극 활물질층이 집전체에서 탈리하는 현상이 발생할 수 있다. 따라서, 전극 유연성을 위해 전극 활물질층에 다량의 바인더 성분이 들어가게 된다. 하지만, 이러한 다량의 바인더는 전해액에 의해 스웰링(swelling) 현상이 발생하여, 집전체에서 쉽게 떨어져 나갈 수 있어, 이로 인해 전지 성능 저하가 발생할 수 있다.
따라서, 전극 활물질층과 집전체간의 접착력 향상을 위해, 상기 집전체는, 도전재와 바인더로 구성된 프라이머 코팅층을 더 포함할 수 있다. 이때, 상기 도전재와 바인더는 후술하는 도전재 코팅층의 형성에 사용되는 것과 동일한 종류의 것이 사용될 수 있다.
그리고, 상기 집전체는 메쉬형의 집전체일 수 있으며, 집전체의 표면적을 더욱 증가시키기 위해, 적어도 일면에, 복수의 함입부가 형성될 수 있다. 이때, 상기 복수의 함입부는, 연속적인 패턴을 갖거나, 또는 단속적인 패턴을 가질 수 있다. 즉, 서로 이격되어 길이방향으로 형성된 연속적인 패턴의 함입부를 가지거나, 또는 복수개의 구멍들이 형성된 단속적인 패턴을 가질 수 있다. 상기 복수개의 구멍들은 원형일 수도 있고, 다각형일 수도 있다.
이어서, 선택적으로, 상기 도포된 전극 활물질 슬러리상에 다공성의 제2 지지층을 형성할 수 있다(S2). 여기서, 상기 제2 지지층은, 메쉬형 다공성 막 또는 부직포일 수 있다. 이와 같이 다공성의 구조를 가짐으로써, 전극 활물질층으로의 전해액 유입을 원활하게 하며, 제2 지지층 그 자체로도 전해액의 함침성이 뛰어나 이온 전도성이 확보되어 전지 내부의 저항증가를 방지하여 전지의 성능저하를 방지한다.
상기 제1 지지층 및 제2 지지층은, 각각 독립적으로 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide) 및 폴리에틸렌나프탈레이트(polyethylenenaphthalate)으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성될 수 있다.
한편, 상기 제2 지지층상에, 도전재와 바인더를 구비하는 도전재 코팅층을 더 포함할 수 있다. 상기 도전재 코팅층은, 전극 활물질층의 전도성을 향상시켜 전극의 저항을 감소시킴으로써 전지의 성능 저하를 방지한다.
음극의 경우 음극 활물질층의 전도성은 비교적 우수하기 때문에 상기 도전재 코팅층을 포함하지 않더라도, 일반적인 음극이 사용된 경우와 유사한 성능을 나타내지만, 양극의 경우에는 양극 활물질층의 전도성이 낮아 전극 저항 증가에 따른 성능 저하 현상이 심화될 수 있기 때문에, 전지 내부의 저항 감소를 위해 양극에 적용될 때 특히 유리하다.
이때, 상기 도전재 코팅층은, 상기 도전재와 상기 바인더가 80:20 내지 99:1의 중량비로 혼합된 것일 수 있다. 상기 바인더의 함량이 증가하게 되면, 전극의 저항이 과도하게 증가될 수 있지만, 전술한 수치범위의 함량을 만족하게 되면, 전극의 저항이 과도하게 증가하는 것을 방지하게 된다. 나아가 전술한 바와 같이 제1 지지층이 전극 활물질층의 탈리현상을 방지해 주는 완충작용을 하기 때문에, 비교적 소량의 바인더가 포함되더라도, 전극의 유연성 확보에는 크게 지장을 받지 않게 된다.
이때, 상기 도전재는, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있으나, 이에만 한정하는 것은 아니다.
그리고, 상기 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있지만 이에만 한정하는 것은 아니다.
이어서, 상기 (S1) 단계 또는 (S2) 단계의 결과물을 압착하여, 상기 집전체상에 접착하여 일체화된 전극 활물질층을 형성한다(S3). 한편, 상기 전극 활물질 슬러리를 상기 집전체의 일면에 코팅한 후, 건조시켜 전극 활물질층을 형성시킨 다음, 그 위에 제2 지지층을 라미네이션 등을 통해 형성시키는 경우에는, 상기 전극 활물질층과 상기 제2 지지층이 서로 접착하도록 해주는 전극 활물질 슬러리 바인더 성분이 경화됨으로써 상기 두 층간에 강한 접착력이 유지되지 않을 수도 있다.
또한, 상기 제조방법에서와 같이 미리 제조된 다공성의 제2 지지층을 사용하지 않고, 전극 활물질층에 고분자 용액을 코팅함으로써 다공성의 지지층을 형성할 수도 있다. 하지만, 고분자 용액을 코팅하여 형성시킨 다공성 지지체는 본 발명의 바람직한 제조방법에 의해 제조된 다공성 제2 지지층에 비해 기계적 물성이 열악하여, 외부 힘에 의한 전극활물질층의 탈리 현상을 효과적으로 억제할 수 없다.
하지만, 본 발명의 바람직한 제조방법에 따르면, 상기 바인더 성분이 경화되기 전에, 도포된 전극 활물질 슬러리의 상부면에 제2 지지층을 형성하여, 코팅 블레이드를 통해 함께 코팅함으로써, 상기 집전체와 상기 제1 지지층 사이에 접착하여 일체화된 전극 활물질층을 형성시킬 수 있다.
또한, 상기 분리층은 전극의 단락을 방지하는 기능을 하는 구성으로, 내부전극들의 외면을 둘러싸며 형성되어 있다.
본 발명의 분리층은 전해질층 또는 세퍼레이터를 사용할 수 있다.
이러한 이온의 통로가 되는 전해질층으로는 PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 등을 사용한다. 고체 전해질의 매트릭스(matrix)는 고분자 또는 세라믹 글라스를 기본골격으로 하는 것이 바람직하다. 일반적인 고분자 전해질의 경우에는 이온전도도가 충족되더라도 반응속도적 측면에서 이온이 매우 느리게 이동할 수 있으므로, 고체인 경우보다 이온의 이동이 용이한 겔형 고분자의 전해질을 사용하는 것이 바람직하다. 겔형 고분자 전해질은 기계적 특성이 우수하지 않으므로 이를 보완하기 위해서 지지체를 포함할 수 있고, 이러한 지지체로는 기공구조 지지체 또는 가교 고분자가 사용될 수 있다. 본 발명의 전해질층은 분리막의 역할이 가능하므로 별도의 분리막을 사용하지 않을 수 있다.
본 발명의 전해질층은, 리튬염을 더 포함할 수 있다. 리튬염은 이온 전도도 및 반응속도를 향상시킬 수 있는데, 이들의 비제한적인 예로는, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 등을 사용할 수 있다.
상기 세퍼레이터로는 그 종류를 한정하는 것은 아니지만 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 고분자 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈레이트로 이루어진 군에서 선택된 고분자로 제조한 다공성 고분자 기재; 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재; 또는 상기 다공성 고분자 기재의 적어도 일면상에 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 구비한 세퍼레이터 등을 사용할 수 있다.
이때, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 상기 다공성 코팅층에서는, 무기물 입자들은 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기물 입자들 사이에 인터스티셜 볼륨(interstitial volume)이 형성되고, 상기 무기물 입자 사이의 인터스티셜 볼륨(Interstitial Volume)은 빈 공간이 되어 기공을 형성한다. 즉, 바인더 고분자는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착, 예를 들어, 바인더 고분자가 무기물 입자 사이를 연결 및 고정시키고 있다. 또한, 상기 다공성 코팅층의 기공은 무기물 입자들 간의 인터스티셜 볼륨(interstitial volume)이 빈 공간이 되어 형성된 기공이고, 이는 무기물 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 무기물 입자들에 의해 한정되는 공간이다.
또한, 본 발명의 일 실시예에 따르면 상기 세퍼레이터는 발포 분리막에 액체 전해질이 함침된 형태일 수 있다.
상기 발포 분리막은 전술한 다공성 기재를 구성하는 고분자 물질의 액상에 발포제를 혼합하여 코팅액을 준비하고, 이를 내부전극의 외면에 도포한 후 건조 및 발포시켜 형성될 수 있다.
상기 발포제로는 아조(azo, -N=N-) 계열 화합물, 카보네이트 계열 화합물, 하이드라자이드 계열 화합물, 니트릴 계열 화합물, 아민 계열 화합물, 아마이드 계열 화합물 및 카바자이드 계열 화합물로 이루어진 군으로부터 선택되는 1종 이상의 발포제가 적용될 수 있다.
상기 발포 분리막은 발포전에 코팅액 내에 발포제를 균일하게 혼합함으로써, 30nm 내지 200nm사이의 크기를 갖고 서로 연결된 미세 기공이 생성되며, 이러한 기공의 모세관 효과에 따라 액체 전해질이 발포 분리막에 주입될 수 있다. 즉, 발포 분리막에 전해질이 흡습되면, 전해질 사이의 응집력 및 표면 장력에 따라 기공을 따라 전해질이 주입되는 시스템이 된다. 그 결과, 내부 직경을 최소화한 케이블형 이차전지에서 내부 전극으로의 전해액 주입을 더욱 촉진할 수 있게 된다.
또한, 전술한 바와 같이 시트형 외부전극이 겹치지 않도록 권취되어 있으므로, 이 권취된 틈을 통하여 고분자 전해질층이 분리층과 서로 연결될 수 있으며, 그 결과, 리튬 이온은 내부 전극에서 외부 전극과 고분자 전해질층까지 이동이 원활하게 이루어져, 전지의 용량 특성 및 사이클 특성이 개선될 수 있다.
본 발명의 일 실시예에 따른 케이블형 이차전지는 소정 형상의 수평 단면을 가지며, 수평 단면에 대한 길이방향으로 길게 늘어진 선형구조를 가질 수 있다. 본 발명의 일 실시예에 따른 케이블형 이차전지는, 가요성을 가질 수 있어, 변형이 자유로울 수 있다. 여기서, 소정의 형상이라 함은 특별히 형상을 제한하지 않는다는 것으로, 본 발명의 본질을 훼손하지 않는 어떠한 형상도 가능하다는 의미이다.
본 발명에서 상기 내부전극은, 음극 또는 양극일 수 있으며, 상기 외부전극은, 상기 내부전극과 상응하는 양극 또는 음극일 수 있다.
상기 내부전극이 음극이고, 상기 외부전극이 양극인 경우, 상기 내부전극 활물질은, 천연흑연, 인조흑연과 같은 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하고, 상기 외부전극 활물질은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, 및 LiNi1 -x-y- zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, 0 < x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
그리고, 상기 내부전극이 양극이고, 상기 외부전극이 음극인 경우, 상기 내부전극 활물질은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, 0 < x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하고, 상기 외부전극 활물질은, 천연흑연, 인조흑연과 같은 탄소질 재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류; 상기 금속류로 구성된 합금류; 상기 금속류의 산화물; 및 상기 금속류와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 전극 활물질층은 집전체를 통해서 이온을 이동시키는 작용을 하고, 이들 이온의 이동은 전해질층으로부터의 이온의 흡장 및 전해질층으로의 이온의 방출을 통한 상호작용에 의한다. 이러한 전극 활물질층은 음극 활물질층과 양극 활물질층으로 구분할 수 있다.
전극 활물질층은 전극 활물질, 바인더 및 도전재를 포함하며 집전체와 결합하여 전극을 구성한다. 전극이 외부의 힘에 의해서 접히거나 심하게 구부러지는 등의 변형이 일어나는 경우에는, 전극 활물질의 탈리가 발생하게 된다. 이러한 전극 활물질의 탈리로 인하여 전지의 성능 및 전지 용량의 저하가 발생하게 된다. 하지만, 나선형으로 권선된 시트형 외부집전체가 탄성을 가지므로 외부의 힘에 따른 변형시에 힘을 분산하는 역할을 하므로 전극 활물질층에 대한 변형이 적게 일어나고 따라서 활물질의 탈리를 예방할 수 있다.
본 발명의 케이블형 이차전지 일 실시예에 따르면, 보호피복(50)을 더 구비할 수 있으며, 도 11 및 도 12를 참고하면, 보호피복은 절연체로서 공기 중의 수분 및 외부충격에 대하여 전극을 보호하기 위해 최외각 외면에 형성한다. 상기 보호피복으로는 수분 차단층을 포함하는 통상의 고분자 수지를 사용할 수 있다. 이때, 상기 수분 차단층으로 수분 차단 성능이 우수한 알루미늄이나 액정고분자(LCP, liquid crystal polymer) 등이 사용될 수 있고, 상기 고분자 수지로는 PET, PVC, HDPE 또는 에폭시 수지 등이 사용될 수 있다.
보다 구체적으로 본 발명의 일 실시예에 따른 케이블형 이차전지의 단면도인 도 11은 1개 이상의 와이어형 내부전극(10), 상기 제1 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층(20), 및 상기 분리층을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극(30)을 포함하는 전극 조립체; 상기 전극조립체를 둘러싸며 형성된 고분자 전해질 코팅층(40); 및 상기 고분자 전해질 코팅층의 외면을 둘러싸는 보호피복(50)을 구비할 수 있다.
본 발명의 또 다른 일 실시예에 따른 케이블형 이차전지의 단면도인 도 12은 1개 이상의 와이어형 내부전극(10), 상기 제1 내부전극의 외면을 둘러싸며 권선되어 형성된 분리층의 역할도 구비하는 복합체로서의 시트형의 외부전극(30')을 포함하는 전극 조립체; 상기 전극조립체를 둘러싸며 형성된 고분자 전해질 코팅층(40); 및 상기 고분자 전해질 코팅층의 외면을 둘러싸는 보호피복(50)을 구비할 수 있다.
본 발명의 실시예에 따른 케이블형 이차전지의 직경은 1.5mm 이하, 상세하게는 0.5mm 내지 1.5mm, 더 상세하게는 0.5mm 내지 1.3mm일 수 있다.
이하에서는 일 실시예에 따른 케이블형 이차전지의 제조방법을 간략하게 살펴본다.
먼저, 내부전극 활물질층이 표면에 형성된 와이어형 내부집전체들을 서로 조밀하게 패킹시켜 패킹된 형태의 내부전극들을 준비한다.
상기 와이어형 내부집전체의 표면에 내부전극 활물질층을 형성하는 방법으로는 일반적인 코팅방법이 적용될 수 있으며, 구체적으로는 전기도금(electroplating) 또는 양극산화처리(anodic oxidation process) 방법이 사용 가능하지만, 활물질을 포함하는 전극슬러리를 콤마코터기(comma coater) 또는 슬롯다이코터기(slot die coater)를 이용하여 코팅하는 방법을 사용하여 제조하는 것이 바람직하다. 또한, 활물질을 포함하는 전극슬러리인 경우에는 딥코팅(dip coating) 또는 압출기를 사용하여 압출코팅하는 방법을 사용하여 제조하는 것도 가능하다.
이어서, 전극의 단락을 방지하는 분리층 시트를 상기 내부전극의 외면에 시트의 반씩 겹치도록 권선하여 형성시킨다. 만일 시트형의 외부전극이 분리층의 역할도 수행할 수 있다면, 상기 분리층 시트는 권선단계는 제외될 수 있다.
이어서, 시트형 외부전극을 형성한다.
본 발명의 일 실시예에 따르면, (S1) 시트형의 외부집전체의 일면에, 제1 지지층을 압착하여 형성하는 단계; (S2) 상기 외부집전체의 타면에, 외부전극 활물질 슬러리를 도포하고, 건조하여 외부전극 활물질층을 형성하는 단계;를 수행함으로써 시트형 외부전극을 제조할 수 있다.
본 발명의 다른 실시예에 따르면, (S1) 시트형의 외부집전체의 일면에, 제1 지지층을 압착하여 형성하는 단계; (S2) 상기 외부집전체의 타면에, 외부전극 활물질 슬러리를 도포하고, 건조하여 외부전극 활물질층을 형성하는 단계; (S3) 상기 외부전극 활물질층상에, 도전재와 바인더를 포함하는 도전재 슬러리를 도포하고, 상기 도전재 슬러리상에 다공성의 제2 지지층을 형성하는 단계; 및 (S4) 상기 (S3) 단계의 결과물을 압착하여, 상기 외부전극 활물질층과 상기 제2 지지층 사이에 접착하여 일체화된 도전층을 형성하는 단계;를 수행함으로써 시트형 외부전극을 제조할 수 있다.
이어서, 상기 시트형 외부전극을 상기 분리층 또는 내부전극의 외면에 나선형으로 권선하여 전극조립체를 형성한다.
이어서 전해액 주입단계로서, 상기 전극 조립체를 전해액 배쓰에 담가 전해액을 주입키게 된다. 상기 전해액은 종래의 전해액인 리튬염을 함유하는 유기 전해액을 사용하며, 종류를 특별히 한정하지 아니한다.
이어서, 상기 전극 조립체에 고분자 코팅층을 형성시킨다. 고분자는 용매로 증기압이 높아 빠르게 증발되는 물질로 아세톤 또는 아세토니트릴에 첨가하여, 용액을 준비하고, 이를 낮은 온도 보다 구체적으로 10 내지 60℃부근에서, 전극 조립체에 전해액이 외부로 빠져나가지 않도록 폴리머 코팅을 진행한다. 이러한 코팅층은 폴리머 전해질과 같이 전해액이 흡수되어 이온 전도성을 가진다.
이어서, 바람직한 일 실시예에 따르면, 고분자 전해질 코팅층의 외면을 감싸도록 보호피복을 형성한다. 상기 보호피복은 절연체로서 공기 중의 수분 및 외부충격에 대하여 전극을 보호하기 위해 최외면에 형성한다. 상기 보호피복으로는 전술한 바와 같이 수분 차단층을 포함하는 통상의 고분자 수지를 사용할 수 있다.
이어 완전히 밀봉하여 케이블형 이차전지를 제조한다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
먼저, 250 ㎛의 구리 와이어(Cu wire)에 구형화 흑연(16㎛), 아세틸렌 블랙(Acetylene black), KF1100(PVdF) 바인더의 조성이 81:4:15 (중량비)의 조성으로 N-메틸피롤리돈(NMP) 용매와 함께 믹싱하여 제조된 슬러리를 3.8mAh/cm2의 용량(구리 와이어 포함 두께 400㎛)을 가질 수 있도록 압출형 코터로 코팅하였다. 그 후 PVdF-HFP (전체 중 HFP가 5중량%)을 16.8%의 농도로 아세톤에 녹인 바인더 용액을 10㎛의 두께를 가질 수 있도록 코팅하여 410㎛의 두께를 가진 와이어형 음극을 제조하였다.
도 3에 도시된 바와 같이, 제조된 와이어형 음극 4가닥을 배치한 후 끝부분에 5mm정도의 길이는 활물질을 제거하고 니켈 탭(Ni tab)을 연결하여 내부전극을 제조하였다. 이어서, 전극의 단락을 방지하는 분리층 시트를 상기 내부전극의 외면에 시트의 반씩 겹치도록 권선하여 형성시켰다. 만일 시트형의 외부전극이 분리층의 역할도 수행할 수 있다면, 상기 분리층 시트의 권선단계는 제외될 수 있다.
이어서, 시트형 외부전극을 형성하였다.
LiCoO2, 아세틸렌 블랙, KF1100(PVdF) 바인더의 조성이 90:4:6 의 조성(중량비)으로 N-메틸피롤리돈(NMP) 용매와 함께 믹싱한 슬러리를 알루미늄 호일(Al foil)(20㎛)에 PET(12㎛)가 라미네이션(lamination)된 호일에 PET가 접합되어 있지 않은 면에 슬러리를 도포하여 3.3mAh/cm2의 용량 밀도를 가지는 양극을 제조하였다. 이때, 양극활물질층의 두께는 63㎛였다. 이 후, 여기에 도전재 40% 및 KF1100 60%의 조성으로 N-메틸피롤리돈(NMP) 용매와 함께 믹싱한 슬러리를 3㎛의 두께로 도포한 후 건조 전 두께 15㎛의 부직포(180nm 직경의 나노섬유 PET, 기공도 47%, 통기도 15sec/100mL, 기공 사이즈 2㎛)를 덧붙혀 멀티 레이어(multilayer)의 형상을 가진 다층형 양극을 제조하였다. 이러한 다층형 양극을 3mm 폭으로 슬리팅하여 얻은 시트형 외부전극을 상기 분리층 또는 내부전극의 외면에 나선형으로 겹치지 않도록 권선하여 전극조립체를 형성하고 끝부분 5mm 부근의 활물질을 제거하고 알루미늄 탭을 연결하였다. 총 10cm의 길이로 12mAh/cm의 단위 길이당 용량을 가지는 전지구조체를 제조하였다.
이어서 전해액 주입단계로서, 1M LiPF6의 농도로 EC:PC:DEC(w/w%)의 전해액을 상기 전극 조립체를 전해액 배쓰에 담가 전해액을 주입시켰다. 이어서, 상기 전극 조립체에 폴리이미드(polyimide) 코팅층을 형성시켰다. Polyimide(분자량 120만)을 아세토니트릴에 첨가하여, 12% 농도의 용액을 준비하고, 23℃부근에서, 전극 조립체에 전해액이 외부로 빠져나가지 않도록 고분자 전해질 코팅층(두께 50㎛)을 형성시켰다.
이어서, 상기 고분자 전해질 코팅층의 외면을 감싸도록 보호피복을 형성하였다. 상기 보호피복은 절연체로서 공기 중의 수분 및 외부충격에 대하여 전극을 보호하기 위해 최외면에 형성한다. 상기 보호피복으로 알루미늄층을 수분 차단층으로 포함하는 PET 고분자 수지를 사용하였다. 상기 보호피복의 두께는 64㎛이었다. 이어 완전히 밀봉하여 케이블형 이차전지를 제조하였다. 이렇게 얻어진 케이블형 이차전지의 직경은 약 1.19 mm이었다.
실시예 2
도 4에 도시된 바와 같이 와이어형 음극 4가닥을 꼬인 형태로 내부전극을 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 케이블형 이차전지를 제조하였다.
비교예 1
와이어형 음극 1가닥을 배치하여 내부전극을 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 케이블형 이차전지를 제조하였다.
비교예 2
시트형의 외부전극에서 알루미늄 호일에 PET 레이어가 없이 제작한 점을 제외하고는 실시예 1과 동일하게 케이블형 이차전지를 제조하였다.
수명 특성 평가
수명 특성 평가는, 전지를 15R(bend radius)로 굽힌 상태에서 충방전기에 양극 탭 및 음극 탭을 각각 연결하여 평가하였다. 실시예 1와 2, 및 비교예 1과 2의 케이블형 이차전지를 정전류/정전압(CC/CV) 조건에서 0.5C로 4.2V까지, CV조건에서 0.05C로 충전 용량 cut-off하고, 0.5C로 3.0V까지 방전 cut-off 하여서 그 방전 용량을 측정하였다. 이를 1 내지 200 사이클로 반복 실시하였고, 측정한 각 사이클에서의 방전 용량의 첫번째 사이클의 방전 용량에 대비한 용량 보유율을 도 13에 나타내었다.
[부호의 설명]
10: 내부전극
20: 분리층
30, 30': 시트형의 외부전극
40: 고분자 전해질 코팅층
100: 케이블형 이차전지
31: 외부전극 집전체
32: 외부전극 활물질층
33: 제1 지지층
34: 제2 지지층
35: 도전층
36: 유무기 다공성 코팅층
50: 보호피복

Claims (20)

1개 이상의 내부전극; 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층; 상기 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극; 및 상기 시트형의 외부전극을 둘러싸며 형성된 고분자 전해질 코팅층;을 포함하고,
상기 외부전극은, 외부집전체, 상기 외부집전체의 일면에 형성된 외부전극 활물질층, 및 상기 외부집전체의 타면에 형성된 제1 지지층을 포함하고,
상기 시트형의 외부전극은, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 케이블형 이차전지.
제1항에 있어서,
상기 고분자 전해질 코팅층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
제2항에 있어서,
상기 극성 선형 고분자는, 폴리이미드(polyimide), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate) 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
제2항에 있어서,
상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 내부전극은 2개 이상의 와이어형 내부전극이 서로 평행하게 접촉하여 배치되거나, 2개 이상의 와이어형 내부전극이 서로 꼬여진 형태로 배치된 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 내부전극은 내부집전체 및 상기 내부집전체 표면에 형성된 내부전극 활물질층을 포함한 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 시트형의 외부전극은, 일측 방향으로 연장된 스트립 구조인 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 시트형의 외부전극은, 상기 시트형의 외부전극 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 제1 지지층은, 고분자 필름인 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 외부전극은, 상기 외부전극 활물질층상에 형성된 다공성의 제2 지지층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
제10항에 있어서,
상기 제2 지지층상에, 도전재와 바인더를 구비하는 도전재 코팅층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
제11항에 있어서,
상기 도전재 코팅층은, 도전재와 바인더가 80:20 내지 99:1의 중량비로 혼합된 것을 특징으로 하는 케이블형 이차전지.
제10항에 있어서,
상기 제2 지지층상에, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 내부전극은, 음극 또는 양극이고, 상기 외부전극은, 상기 내부전극에 상응하는 양극 또는 음극인 것을 특징으로 하는 케이블형 이차전지.
제1항에 있어서,
상기 고분자 전해질 코팅층의 외면을 둘러싸도록 형성된 보호피복을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
1개 이상의 내부전극; 상기 내부전극의 외면을 둘러싸며 형성되고, 전극의 단락을 방지하는 분리층; 및 상기 분리층 또는 상기 내부전극을 둘러싸며 나선형으로 권선되어 형성된 시트형의 외부전극을 포함하는 전극 조립체를 준비하고, 상기 시트형의 외부전극은, 서로 겹치지 않도록 나선형으로 권선하여 형성되는 단계;
상기 전극 조립체를 전해액 배쓰에 담가 전해액을 주입시키는 단계; 및
상기 전해액이 주입된 전극 조립체의 외부를 고분자로 코팅하여, 고분자 코팅층을 형성시키는 단계;를 포함하는 것을 특징으로 하는 케이블형 이차전지의 제조방법.
제16항에 있어서,
상기 고분자 코팅층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지의 제조방법.
제17항에 있어서,
상기 극성 선형 고분자는, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate), 폴리우레탄 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
제17항에 있어서,
상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지의 제조방법.
제16항에 있어서,
상기 내부전극은 2개 이상의 와이어형 내부전극이 서로 평행하게 접촉하여 배치되거나, 2개 이상의 와이어형 내부전극이 서로 꼬여진 형태로 배치된 것을 특징으로 하는 케이블형 이차전지의 제조방법.
PCT/KR2017/001299 2016-02-05 2017-02-06 케이블형 이차전지 및 이의 제조방법 WO2017135793A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018517250A JP6608049B2 (ja) 2016-02-05 2017-02-06 ケーブル型二次電池及びその製造方法
EP17747836.9A EP3349294B1 (en) 2016-02-05 2017-02-06 Cable-type secondary battery and manufacturing method therefor
US15/766,997 US10923772B2 (en) 2016-02-05 2017-02-06 Cable-type secondary battery and method for manufacturing the same
CN201780003435.3A CN108140901B (zh) 2016-02-05 2017-02-06 线缆型二次电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0015239 2016-02-05
KR20160015239 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135793A1 true WO2017135793A1 (ko) 2017-08-10

Family

ID=59500851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001299 WO2017135793A1 (ko) 2016-02-05 2017-02-06 케이블형 이차전지 및 이의 제조방법

Country Status (6)

Country Link
US (1) US10923772B2 (ko)
EP (1) EP3349294B1 (ko)
JP (1) JP6608049B2 (ko)
KR (1) KR102157376B1 (ko)
CN (1) CN108140901B (ko)
WO (1) WO2017135793A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601624B1 (ko) * 2018-06-20 2023-11-10 주식회사 엘지에너지솔루션 개선된 전극 탭들 사이의 연결 구조를 갖는 전극 조립체
EP3734700A4 (en) 2018-07-26 2021-04-28 Lg Chem, Ltd. SEPARATOR AND ELECTROCHEMICAL DEVICE INCLUDING IT
KR102364463B1 (ko) * 2018-08-08 2022-02-16 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지
JP7184685B2 (ja) * 2019-03-20 2022-12-06 トヨタ自動車株式会社 二次電池
KR20210063129A (ko) * 2019-11-22 2021-06-01 주식회사 엘지에너지솔루션 플렉서블 이차전지
US11652240B1 (en) * 2019-12-03 2023-05-16 GRU Energy Lab Inc. Solid-state electrochemical cells comprising coated negative electrodes and methods of fabricating thereof
KR102455351B1 (ko) * 2020-10-13 2022-10-18 한국기계연구원 신축성 배터리
KR102578146B1 (ko) * 2020-11-20 2023-09-13 경희대학교 산학협력단 스마트 직물용 리튬이온전지의 제조방법
US12021197B2 (en) 2020-11-19 2024-06-25 University-Industry Cooperation Group Of Kyung Hee University Electrode for ion battery, manufacturing method thereof, and battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970072538A (ko) * 1996-04-19 1997-11-07 홍건희 고분자 전해질을 사용한 리튬 또는 리튬이온 이차전지
JP3998446B2 (ja) * 2001-10-04 2007-10-24 松下電器産業株式会社 アルカリ蓄電池
KR20130040159A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지
KR20130112697A (ko) * 2010-06-04 2013-10-14 히다치 조센 가부시키가이샤 금속공기전지
KR20150146433A (ko) * 2014-06-19 2015-12-31 주식회사 엘지화학 케이블형 이차전지

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221265A1 (en) * 2006-03-22 2007-09-27 Sion Power Corporation Rechargeable lithium/water, lithium/air batteries
KR20110127972A (ko) * 2010-05-20 2011-11-28 주식회사 엘지화학 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
KR101351902B1 (ko) * 2011-06-02 2014-01-22 주식회사 엘지화학 이차전지용 음극 및 이를 구비하는 이차전지
KR101547385B1 (ko) * 2012-04-30 2015-08-25 주식회사 엘지화학 주액공정을 포함하지 않는 이차전지의 제조방법
KR101470559B1 (ko) * 2012-08-30 2014-12-08 주식회사 엘지화학 케이블형 이차전지용 음극 및 그를 포함하는 케이블형 이차전지
WO2014182059A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 케이블형 이차전지
US9478363B2 (en) * 2013-08-28 2016-10-25 Florida State University Research Foundation, Inc. Flexible electrical devices and methods
KR102197996B1 (ko) * 2014-05-20 2021-01-04 삼성에스디아이 주식회사 이차전지 제조방법 및 이에 따라 제조된 이차전지
WO2015194909A1 (ko) 2014-06-19 2015-12-23 주식회사 엘지화학 케이블형 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970072538A (ko) * 1996-04-19 1997-11-07 홍건희 고분자 전해질을 사용한 리튬 또는 리튬이온 이차전지
JP3998446B2 (ja) * 2001-10-04 2007-10-24 松下電器産業株式会社 アルカリ蓄電池
KR20130112697A (ko) * 2010-06-04 2013-10-14 히다치 조센 가부시키가이샤 금속공기전지
KR20130040159A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지
KR20150146433A (ko) * 2014-06-19 2015-12-31 주식회사 엘지화학 케이블형 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349294A4 *

Also Published As

Publication number Publication date
US10923772B2 (en) 2021-02-16
EP3349294B1 (en) 2020-01-01
KR20170093755A (ko) 2017-08-16
JP6608049B2 (ja) 2019-11-20
US20180301762A1 (en) 2018-10-18
CN108140901A (zh) 2018-06-08
KR102157376B1 (ko) 2020-09-17
EP3349294A1 (en) 2018-07-18
EP3349294A4 (en) 2018-10-24
CN108140901B (zh) 2021-01-12
JP2018530882A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017135793A1 (ko) 케이블형 이차전지 및 이의 제조방법
WO2014182063A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182060A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182059A1 (ko) 케이블형 이차전지
WO2014182058A1 (ko) 케이블형 이차전지
WO2014182062A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014178590A1 (ko) 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2018034526A1 (ko) 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2014092471A1 (ko) 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182056A1 (ko) 케이블형 이차전지 및 그의 제조방법
WO2016068684A1 (ko) 다층형 케이블형 이차전지
WO2015080499A1 (ko) 케이블형 이차전지
WO2010076989A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2014182064A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2019050346A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지, 및 플렉서블 이차 전지
WO2017069586A1 (ko) 케이블형 이차전지
WO2019125085A1 (ko) 바이폴라 전극을 포함하는 플렉서블 이차전지
WO2016068683A1 (ko) 다층형 케이블형 이차전지
WO2017135790A1 (ko) 케이블형 이차전지
WO2020080905A1 (ko) 이차전지 패키징용 필름 및 이를 포함하는 이차전지
WO2015194909A1 (ko) 케이블형 이차전지
WO2017069585A1 (ko) 케이블형 이차전지
KR101735513B1 (ko) 바인더 필름을 포함하는 케이블 배터리 및 이의 제조 방법
WO2014058279A1 (ko) 케이블형 이차전지
WO2021101338A1 (ko) 플렉서블 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018517250

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 15766997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017747836

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE