WO2017135134A1 - 溶融システム及び溶融システムの制御方法 - Google Patents

溶融システム及び溶融システムの制御方法 Download PDF

Info

Publication number
WO2017135134A1
WO2017135134A1 PCT/JP2017/002668 JP2017002668W WO2017135134A1 WO 2017135134 A1 WO2017135134 A1 WO 2017135134A1 JP 2017002668 W JP2017002668 W JP 2017002668W WO 2017135134 A1 WO2017135134 A1 WO 2017135134A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
melting
heat recovery
recovery unit
amount
Prior art date
Application number
PCT/JP2017/002668
Other languages
English (en)
French (fr)
Inventor
史樹 寶正
吉岡 洋仁
上林 史朗
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to EP17747292.5A priority Critical patent/EP3412969B1/en
Publication of WO2017135134A1 publication Critical patent/WO2017135134A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/12Sludge, slurries or mixtures of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a melting system including a melting furnace and an exhaust gas treatment device for purifying exhaust gas from the melting furnace, and a method for controlling the melting system.
  • a melting furnace is used to melt and reduce the volume of waste to be processed.
  • the melting process is a high temperature process in which an object to be processed is melted at about 1250 ° C. to 1400 ° C., and many heat recovery processes have been proposed.
  • the flue in order to recover heat from a high temperature exhaust gas of about 850 ° C. to 900 ° C. flowing out from the furnace body to the flue, the flue is provided with a multi-tube heat exchanger, and 40% of the heat input to the furnace 45% of the heat is recovered. Heat is efficiently recovered using a large temperature gradient between the heat-radiating medium and the heat-receiving medium.
  • the heat recovered by the heat exchanger in such a high temperature range is used for heating combustion air supplied to the furnace body or for heating boiler water.
  • a water cooling jacket is provided on the metal casing covering the furnace body.
  • the cooling water is guided to the water cooling jacket, heated to a high temperature, radiated by the cooling tower, and then circulated through the water cooling jacket. Due to the cooling of the furnace body, a heat loss of 20% to 25% of the heat input to the furnace occurs. Further, the exhaust gas from the chimney holds 10% of the heat input to the furnace and is released from the chimney.
  • Patent Document 1 proposes a heat recovery method in an ash melting furnace for using heat absorbed by cooling water when cooling an ash melting furnace provided in a garbage incinerator, and a heat recovery system thereof. .
  • cooling water is supplied to a water cooling wall provided in at least a part of an ash melting furnace attached to a waste incinerator to cool the ash melting furnace, and sensible heat of the cooling water and / or Alternatively, the feed water to the boiler provided in the garbage incinerator is heated by the latent heat, or the feed water to the boiler is heated and deaerated.
  • Patent Document 1 the technique disclosed in Patent Document 1 is premised on an ash melting furnace attached to a waste incinerator equipped with a boiler. Therefore, there is a problem that applicability is limited. In addition, if the cooling water supplied to the water-cooled wall boils, there is a problem that circulation of the cooling water in the water-cooled wall is delayed and the furnace wall is exposed to an abnormally high temperature, and there is room for further improvement in terms of heat recovery efficiency. was there.
  • waste heat recovery was not performed in a low temperature range where the exhaust gas temperature on the downstream side of the exhaust gas treatment apparatus was about 140 ° C to 200 ° C. That is, 50% or more of the heat input to the melting furnace was exhausted wastefully without being effectively used.
  • an object of the present invention is to provide a melting system and a method for controlling the melting system that contribute to economy by suppressing the generation of greenhouse gases by increasing the recovery efficiency of exhaust heat.
  • the first characteristic configuration of the melting system according to the present invention is the exhaust gas treatment for purifying the melting furnace and the exhaust gas from the melting furnace as described in claim 1 of the claims.
  • a first heat recovery section for recovering heat by supplying a heat medium to a cooling mechanism for cooling the furnace wall, and a low-temperature heat exchanger provided downstream of the exhaust gas treatment apparatus A second heat recovery section for recovering heat by supplying a heat medium, and a circulation path for circulating the heat medium recovered by the first heat recovery section and the second heat recovery section between the heat utilization facilities And a heat recovery amount adjusting mechanism that adjusts the amount of heat recovered by each heat recovery unit.
  • the recovered heat can be used effectively and stably by using a heat medium that can be used depending on the temperature range.
  • a heat medium is supplied to a high-temperature heat exchanger provided between the melting furnace and the exhaust gas treatment device.
  • a third heat recovery unit for recovering heat and the amount of heat recovered by each heat recovery unit is further adjusted by the recovery heat amount adjusting mechanism.
  • the third characteristic configuration includes a heat medium storage unit that temporarily stores a heat medium in the circulation path in addition to the first or second characteristic configuration described above. It is in.
  • the recovered heat can be used more stably by storing the excess heat medium in the heat medium storage section.
  • the heat utilization facility is a workpiece to be melted in the melting furnace. It is in the point comprised by the to-be-processed object dryer which dries.
  • a treatment dryer for drying the treatment is installed as heat utilization equipment, even sludge with a high water content can be dried using the recovered heat, and greenhouse gases are generated. It will be possible to reduce the amount of fossil fuel used.
  • the fifth feature configuration includes a heat source device that supplies or releases heat to the heat medium in addition to any of the first to fourth feature configurations described above. It is in.
  • the amount of heat recovered by the heat recovery unit is insufficient, the amount of heat held by the heat medium can be stabilized by providing the heat source device.
  • the sixth feature configuration is the same as that described in claim 6, in addition to the fifth feature configuration described above, the to-be-processed dryer is generated in a wastewater treatment facility for treating wastewater, and is separated into solid and liquid.
  • the heat source device is a combustor that uses the combustible gas generated in the wastewater treatment facility as a fuel.
  • the sludge having a high water content can be effectively dried by the treatment object dryer. And when the amount of heat recovered by the heat medium is insufficient, it is possible to make up for the insufficient amount of heat by burning the combustor using the carbon neutral combustible gas generated in the wastewater treatment facility as fuel. Become.
  • the seventh feature configuration of the combustor uses the combustible gas generated in the wastewater treatment facility as fuel in addition to the sixth feature configuration described above. It is in the point provided with the heat exchanger for drying which uses exhaust gas as a heating source.
  • the eighth feature configuration is the same as that described in claim 8, in addition to the fifth feature configuration described above, the to-be-processed dryer is generated in a wastewater treatment facility for treating wastewater, and is separated into solid and liquid.
  • the melting furnace is characterized in that the combustible gas generated in the wastewater treatment facility is used as fuel.
  • the organic sludge When the organic sludge is melted in the melting furnace, it can be melted using the heat generated by the sludge combustion. In this case, when the amount of heat for melting is insufficient, the amount of greenhouse gas generated can be suppressed by using carbon neutral combustible gas as fuel.
  • the ninth feature configuration is the high temperature heat exchange provided between the melting furnace and the exhaust gas treatment device in addition to any of the first to eighth feature configurations described above, as described in claim 9.
  • the melting treatment can be performed more stably.
  • a liquid is used as the heat medium, and the temperature of the heat medium after the heat recovery. Is that the amount of heat recovered in each heat recovery section is adjusted so that the temperature is lower than the boiling point temperature of the liquid.
  • the first characteristic configuration of the control method of the melting system according to the present invention is that, as described in claim 11, a furnace wall is provided in a melting facility including a melting furnace and an exhaust gas treatment device for purifying exhaust gas from the melting furnace.
  • a first heat recovery unit that recovers heat by supplying a heat medium to a cooling mechanism that cools the heat, and a second heat recovery that recovers heat by supplying the heat medium to a low-temperature heat exchanger provided downstream of the exhaust gas treatment device
  • the heat recovery amount by one heat recovery unit is that the flow rate of the heat medium supplied to each heat recovery unit is adjusted so that the heat recovery amount is at least equal to or greater than the recovery heat amount necessary for cooling the melting furnace.
  • the melting system can be stably operated without burning the furnace wall.
  • the heat medium is not vaporized in the first heat recovery unit, a stable flow of the heat medium can be secured in the first heat recovery unit. Therefore, it is possible to avoid the partial burning of the furnace wall due to the flow being inhibited.
  • the amount of heat recovered by the heat medium becomes a heat amount required by the heat utilization facility. This is to adjust the flow rate of the heat medium supplied to each heat recovery unit.
  • the melting system includes a high unit provided between the melting furnace and the exhaust gas treatment device.
  • a heat medium that further includes a third heat recovery unit that supplies the heat medium to the heat exchanger and recovers the heat, and supplies the heat recovery unit such that the amount of heat recovered by the heat medium becomes the amount of heat required by the heat utilization facility The point is to adjust the flow rate.
  • the fifth feature configuration is the high temperature heat exchange provided between the melting furnace and the exhaust gas treatment device in addition to any of the first to fourth feature configurations described above, as described in claim 15.
  • a fourth heat recovery unit for supplying the combustion air of the melting furnace to the preheater and preheating it so that the temperature of the combustion air preheated in the fourth heat recovery unit becomes a temperature necessary for melting of the melting furnace And adjusting the flow rate of the heat medium supplied to the fourth heat recovery section.
  • the sixth feature configuration further includes a heat source device that supplies or releases heat to the heat medium, as described in claim 16, In the case where excess or deficiency occurs in the amount of heat required by the utilization facility, the heat source device is adjusted so that the amount of heat required by the heat utilization facility is obtained.
  • the melting facility is sludge generated in a wastewater treatment facility for treating wastewater and separated into solid and liquid.
  • a sludge dryer equipped with a combustor that uses combustible gas generated in the wastewater treatment facility as fuel, and the combustor has the function of the heat source device.
  • the combustor is ignited as a drying heat source.
  • FIG. 1 is an explanatory view of a melting system according to the present invention.
  • FIG. 2 is an explanatory diagram of the melting furnace.
  • FIG. 3 is an explanatory view showing another aspect of the melting system according to the present invention.
  • FIG. 4 is an explanatory view showing another aspect of the melting system according to the present invention.
  • the melting system 100 includes a melting furnace 10 and an exhaust gas treatment device 30 that purifies the exhaust gas from the melting furnace 10.
  • a rotary surface melting furnace 10 is used as the melting furnace 10.
  • the present invention is not limited to the rotary surface melting furnace 10, and the present invention can be applied to other types of melting furnaces such as an electric surface melting furnace or a surface melting furnace using fuel. Is possible.
  • FIG. 2 shows a specific configuration of the rotary surface melting furnace 10.
  • the rotary surface melting furnace 10 has a furnace chamber 4 having a furnace ceiling 1 in which an auxiliary combustion burner 2 having an air supply mechanism 2a is installed in the center, and a furnace bottom 3 in which a tap outlet 3a is formed in the center.
  • a to-be-processed object accommodating part 7 that is configured and communicates with the furnace chamber 4 is provided around the furnace chamber 4.
  • sludge generated in wastewater treatment equipment that treats various wastewater including organic sludge generated by biological treatment of sewage or generated by various food processing, incineration ash generated in a waste incinerator, etc.
  • the wet granular material is put into the processing object container 7 and melted.
  • An inner cylinder 5 integrally formed around the furnace ceiling 1 and an outer cylinder 6 integrally formed around the furnace bottom 3 are arranged concentrically, and an annular shape is provided between the inner cylinder 5 and the outer cylinder 6.
  • a workpiece storage unit 7 is provided.
  • the workpiece accommodating portion 7 is provided with an upper cover sealed with the outer cylinder 6, and a hopper provided with a double damper mechanism is disposed on the upper cover.
  • the object to be processed is loaded by the conveyor.
  • the object to be processed accommodated in the object accommodating part 7 is placed under the inner cylinder 5. It is configured to be cut into a mortar shape in the furnace chamber 4 by the cutting blade 5a provided in the above.
  • the object to be processed cut out in the furnace chamber 4 is melted from the surface by the heat of the auxiliary burner 2 and falls into the lower water tank W from the tap outlet 3a formed in the furnace bottom 3.
  • a secondary combustion chamber 8 is formed below the tap outlet 3a, and the combustion gas is exhausted through a flue 11 that extends laterally from the side wall of the secondary combustion chamber 8.
  • the furnace ceiling 1, the furnace bottom part 3, the inner cylinder 5 and the outer cylinder 6 are constituted by fire walls in which fire bricks and the like are laminated, and the furnace walls around the furnace ceiling 1, the furnace bottom part 3, and the vicinity of the taphole near the furnace bottom part 3.
  • a metal water-cooling jacket 9 is disposed so as to cover the furnace wall (refractory wall) in the furnace chamber 4 from the outside so that heat can be recovered.
  • exhaust gas treatment facilities 30 such as a temperature reducing tower 30 a and a bag filter 30 b are arranged along the flue 11, and the purified exhaust gas is attracted by the induction blower 12 and exhausted from the chimney 13.
  • the melting system 100 is further provided with a first heat recovery unit 40, a second heat recovery unit 50, and a third heat recovery unit 60, and the first heat recovery unit 40, the second heat recovery unit 50, and the second heat recovery unit 50 are provided.
  • the circulation path 70 (70a, 70b, 70c) which circulates the heat medium heat-recovered by the 3 heat recovery part 60 between the heat utilization equipment 200 is provided.
  • normal-pressure water is used as a heat medium, and equipment that can use heat and hot water, such as a treatment object dryer, a heating, a hot water pool, a greenhouse, and a binary power generation device that dries a treatment object in a wet state.
  • equipment that can use heat and hot water such as a treatment object dryer, a heating, a hot water pool, a greenhouse, and a binary power generation device that dries a treatment object in a wet state.
  • the first heat recovery unit 40 is a part that recovers heat by supplying a heat medium to a cooling mechanism including a water cooling jacket 9 that cools a furnace wall that partitions a furnace chamber having a melting temperature of 1250 ° C. to 1400 ° C.
  • the second heat recovery unit 50 is a part that is provided on the downstream side of the exhaust gas treatment device 30 and supplies heat to the low-temperature heat exchanger 50a through which the exhaust gas that has decreased from 140 ° C. to 200 ° C. passes and recovers heat. .
  • the third heat recovery unit 60 is provided between the melting furnace 10 and the exhaust gas treatment device 30, and supplies heat medium to the high temperature heat exchanger 60a through which high temperature exhaust gas of 800 ° C. to 900 ° C. passes to recover heat. is there.
  • the first heat recovery section 40 that cools the furnace wall includes not only the water cooling jacket provided on the furnace ceiling 1 but also the cooling flow path provided on the furnace bottom 3, the cooling flow path provided on the side wall of the secondary combustion chamber 8, and slag discharge. It goes without saying that any or all of the cooling channels provided around the shed can be subject to heat recovery.
  • a recovered heat amount adjusting mechanism 80 (80a, 80b, 80c) that adjusts the amount of heat recovered by each heat recovery unit 40, 50, 60 and supplies the heat to the heat utilization facility 200 is provided.
  • the control valve 80a for adjusting the supply amount of the heat medium to the first heat recovery unit 40
  • the control valve 80b for adjusting the supply amount of the heat medium to the second heat recovery unit 50
  • the third heat recovery unit 60 It is the control valve 80c which adjusts the supply amount of the heat medium to.
  • the control unit 120 uses heat.
  • the temperature of the heat medium supplied to the facility 200 is grasped, and the opening degree of each control valve 80a, 80b, 80c is adjusted so as to reach the target temperature.
  • the control unit can be configured by installing a program for executing the control in a general-purpose computer in which a general-purpose motherboard and a memory board are connected by a bus, but can also be configured by a dedicated computer.
  • the heat medium supplied to the heat utilization facility 200 is radiated by the heat utilization facility 200 and then supplied to the circulation path 70 by a pump, and each heat recovery section 40 is recovered by the recovered heat amount adjusting mechanism 80 (80a, 80b, 80c).
  • the recovered heat amount adjusting mechanism 80 80a, 80b, 80c.
  • the heat medium of about 75 ° C. discharged from the heat utilization facility 200 is heated to about 90 ° C. by the heat recovery units 40, 50, 60 and supplied to the heat utilization facility 200. That is, the amount of heat recovered by each of the heat recovery units 40, 50, 60 is adjusted so that the temperature of the heat medium after heat recovery is lower than the boiling point of water, and heat exchange is performed while the heat medium remains in a liquid state. Therefore, the flow of the heat medium in the heat recovery unit is stabilized.
  • the recovery heat amount adjustment mechanism adjusts and controls the heat medium supply amount from the heat recovery amount in each heat recovery unit, the heat usage amount in the heat utilization facility, and the temperature of the heat medium and exhaust gas at the outlet of each heat recovery unit. Is configured to do.
  • the temperature is raised to about 90 ° C. by each of the heat recovery units 40, 50, 60 has been described.
  • heat recovery is performed at different temperatures by the heat recovery units 40, 50, 60, You may adjust each so that it may become the temperature of about 90 degreeC required by heat utilization equipment collectively.
  • FIG. 3 shows a case in which a sludge dryer is used as an example of an object dryer that is the heat utilization facility 200.
  • the sludge dryer is provided with a plurality of stages of conveyor mechanisms for conveying the sludge in the casing, and the sludge having a moisture content of 70% to 80%, which is introduced from the inlet of the casing, is heated by a heat medium of about 90 ° C. After being dried at a rate of 10% to 30%, it is discharged from an outlet formed on the bottom surface of the casing.
  • Wet ash generated in waste incinerators as sludge sludge generated in wastewater treatment equipment that treats wastewater, especially organic sludge generated in biological treatment equipment that biologically treats organic wastewater, This includes organic sludge generated during food processing.
  • a sludge dryer is installed as a heat utilization facility, even sludge with a high water content can be dried using the heat recovered by the melting system, reducing the amount of fossil fuel used that causes the generation of greenhouse gases. Can be reduced.
  • the sludge discharged from the sludge dryer is put into the hopper by the conveyor, and is put into the workpiece storage unit 7 through the double damper mechanism.
  • High-temperature heat exchangers 60a and 60b are connected in series between the melting furnace 10 and the exhaust gas treatment device (temperature reduction tower 30a).
  • a third heat recovery unit 60 is configured in which the above-described heat medium is heated by the upstream high-temperature heat exchanger 60a.
  • the 4th heat recovery part 90 which preheats the combustion air thrown into the furnace by the forced air blower 14 from the normal temperature (about 30 °) to about 250 ° C. is constituted by the downstream high temperature heat exchanger 60b. Yes.
  • the first to fourth heat exchangers recover 65% to 80% of the heat input to the melting furnace 10. Note that the heat input to the melting furnace is the total amount of heat (low heating value) of the object to be processed put into the melting furnace, and the heat of the combustion burner fuel and combustion air.
  • More stable melting in the furnace is achieved by preheating the combustion air to a temperature necessary for promoting the combustion of the object to be processed in the melting furnace by the fourth heat recovery unit 90 configured by the high-temperature heat exchanger 60b described above.
  • the amount of auxiliary fuel used can be further reduced.
  • the combustion air is also used for combustion of the burner 2 and is preheated, so that the amount of auxiliary fuel used can be reduced.
  • the circulation path 70 may be provided with a heat medium storage unit 70d for temporarily storing the heat medium.
  • a heat medium storage unit 70d for temporarily storing the heat medium.
  • the heat medium storage unit 70d also has a function of storing the amount of heat to be recovered and supplied, so that excessive and insufficient heat recovery and utilization can be absorbed and stably operated. Further, the heat medium storage unit 70d may be provided in any of the circulation paths.
  • a heat source device that supplies heat to the heat medium in case the combustion state of the melting furnace 10 fluctuates and a sufficient amount of heat cannot be supplied to the heat utilization facility 200.
  • a burner 2 provided on the furnace ceiling, a hot water boiler, a heating burner, an electric heater, hot water from binary power generation, or the like can be used.
  • a cooling tower, a chiller unit, or a temperature reducing tower that is an exhaust gas treatment facility can be used as the heat source device.
  • Such a melting system 100 is attached to a biological treatment facility (drainage treatment facility) for biologically treating organic wastewater, and a heat utilization facility 200 dries organic sludge generated by biological treatment (drainage treatment) and separated into solid and liquid.
  • the heat source device can be composed of a combustor that uses a combustible gas generated in a biological treatment facility as a fuel. Specifically, methane gas generated by anaerobic treatment of organic wastewater in a digestion tank provided in a biological treatment facility can be effectively used as a combustible gas.
  • FIG. 4 shows an example in which the combustor 110 is provided on the downstream side of the heat medium merging portion of the heat medium circulation path 70 that is heat-recovered by the heat-recovery portions 40, 50, 60. .
  • the control unit 120 includes temperature sensors T1, T2, T3 provided at the outlets of the heat recovery units 40, 50, 60, 90 and the exhaust gas outlets of the heat recovery units 40, 50, 60, 90 of the thermal melting furnace 10, respectively. Based on T10, T11, T12, T13 and the input signal from the temperature sensor T provided at the inlet of the heat utilization facility 200, the temperature of the heat medium and the temperature of the exhaust gas supplied to the heat utilization facility 200 are ascertained. The opening degree of each control valve 80a, 80b, 80c and the supply amount of the combustible gas to the combustor 110 are controlled so that the medium and the exhaust gas become the target temperature.
  • the heat source device 110 can be constituted by a heat exchanger for drying using the exhaust gas of the combustor using the combustible gas generated in the biological treatment facility as a fuel as a heating source.
  • power generation is performed using a gas turbine that uses combustible gas as a combustor, and the heat medium is heated with high-temperature exhaust gas discharged from the gas turbine.
  • the combustible gas generated in the biological treatment facility can be used as the fuel supplied to the auxiliary burner 2 of the melting furnace 10.
  • the organic sludge When the organic sludge is melted in the melting furnace, it can be melted using the heat generated by the combustion of the organic sludge. When the amount of heat necessary for melting is insufficient only by burning organic sludge, the amount of greenhouse gas generated can be suppressed by using carbon neutral combustible gas as fuel.
  • the first and second low-temperature heat recovery units 40 and 50 supply the heat medium to the high-temperature heat exchanger provided between the melting furnace and the exhaust gas treatment device and recover the heat.
  • the example provided with the part 60 was demonstrated, it comprised so that the heat collect
  • the third heat recovery unit 60 using a heat medium different from the heat medium circulating in the low-temperature heat recovery unit may be further provided so as to circulate the recovered heat to another heat utilization facility 200. Good. That is, the third heat recovery unit 60 may be configured to recover heat having a temperature higher than that of the low-temperature heat recovery units 40 and 50.
  • normal-pressure water is used as the heat medium, and the amount of heat recovered by each of the heat recovery units 40, 50, 60 so that the temperature of the heat medium after heat recovery is 90 ° C. below the boiling point of water.
  • pressurized water whose pressure is increased to 100 ° C. by pressurizing the circulation path.
  • a liquid such as oil can be used as the heat medium, and a gas such as air or steam can be used. That is, when recovering the heat generated and discarded in the melting system, a heat-utilizing medium and a temperature zone determined by the heat-utilizing equipment 200 are selected to cool the melting furnace, thereby obtaining a melting system with high heat recovery efficiency. realizable.
  • the method for controlling a melting system supplies a heat medium to a cooling mechanism for cooling a furnace wall in a melting facility including a melting furnace and an exhaust gas treatment device for purifying exhaust gas from the melting furnace.
  • a first heat recovery unit for recovering heat a second heat recovery unit for recovering heat by supplying a heat medium to a low-temperature heat exchanger provided downstream of the exhaust gas treatment device, a first heat recovery unit, and a second heat recovery unit
  • the flow rate of the heat medium supplied to each heat recovery unit is adjusted so as to be equal to or greater than the amount of recovered heat necessary for cooling.
  • the first heat recovery section sufficiently recovers heat so that the temperature of the furnace wall does not become abnormally high. That is, the melting system is stably operated by controlling the temperature of the furnace wall so that the furnace wall
  • the amount of heat recovered by each heat recovery unit is adjusted so that a liquid is used as the heat medium and the temperature of the heat medium after heat recovery is lower than the boiling point temperature of the liquid. Since the heat medium is not vaporized in the first heat recovery unit, the flow path is not blocked by the vaporized heat medium, and a stable flow of the heat medium can be secured in the first heat recovery unit. Therefore, the furnace wall is not insufficiently cooled due to the obstruction of the flow of the heat medium, and the occurrence of partial burning can be avoided.
  • the melting system further includes a third heat recovery unit that recovers heat by supplying a heat medium to a high-temperature heat exchanger provided between the melting furnace and the exhaust gas treatment device, and the amount of heat recovered by the heat medium is required by the heat utilization facility. It is preferable that the flow rate of the heat medium supplied to each heat recovery unit including the third heat recovery unit is adjusted so that the amount of heat is equal.
  • the apparatus further includes a fourth heat recovery section that preheats by supplying combustion air of the melting furnace to a high-temperature heat exchanger provided between the melting furnace and the exhaust gas treatment device, and for the combustion preheated by the fourth heat recovery section
  • the flow rate of the heat medium supplied to each heat recovery unit including the fourth heat recovery unit is adjusted so that the temperature of the air becomes the temperature necessary for melting the melting furnace, that is, the temperature necessary for promoting combustion in the melting furnace. It is preferable to configure.
  • a heat source device that supplies or releases heat to the heat medium is further provided, and when there is an excess or deficiency in the amount of heat required by the heat utilization facility, the amount of recovered heat required by each heat recovery unit is increased. It is preferable that the heat source device be adjusted so that the amount of heat required by the utilization facility is obtained.
  • the melting facility is a facility that melts organic sludge generated in a biological treatment facility that biologically treats organic wastewater and separated into solid and liquid, and has a combustor that uses combustible gas generated in the biological treatment facility as fuel.
  • the provided sludge dryer is provided as the heat utilization facility, the combustor has the function of a heat source device, and the combustion as the drying heat source when the amount of heat recovered by the heat medium is less than the amount of heat required by the heat utilization facility. It is preferably configured to ignite the vessel.
  • the treatment object drier is described as the heat utilization facility.
  • any heat utilization facility may be used as long as it uses heat, such as heating, a hot water pool, and a greenhouse.
  • a plurality of facilities with different conditions such as temperature may be heat utilization facilities.
  • the exhaust gas treatment device is constituted by a temperature reducing tower and a bag filter, but other devices such as a smoke washing device and a catalyst denitration device may be provided.
  • the second heat recovery unit may be downstream of any one of the apparatuses.
  • a second heat recovery unit may be provided between the bag filter and the smoke washing device in consideration of the temperature of the exhaust gas.
  • the second heat recovery unit is preferably provided downstream of the apparatus for neutralizing the acid gas.
  • the object to be treated has been described by taking organic sludge, sludge, and the like as examples, but dry incineration ash and fly ash, as well as waste plastic and waste, etc., can be combusted or melted. Any thing can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Abstract

排熱の回収効率の上昇により、温室効果ガスの発生を抑制し、経済性に資する溶融システム及び溶融システムの制御方法を提供する。 溶融炉10と溶融炉からの排ガスを浄化する排ガス処理装置30とを備えている溶融システム100であって、炉壁を冷却する冷却機構9に熱媒体を供給して熱回収する第1熱回収部40と、排ガス処理装置の下流側に備えた低温熱交換器50aに熱媒体を供給して熱回収する第2熱回収部50と、第1熱回収部40及び第2熱回収部40で熱回収された熱媒体を熱利用設備との間で循環供給する循環路70とを備え、各熱回収部40,50で回収する熱量を調整する回収熱量調整機構80を備えている。

Description

溶融システム及び溶融システムの制御方法
 本発明は、溶融炉と溶融炉からの排ガスを浄化する排ガス処理装置とを備えている溶融システム及び溶融システムの制御方法に関する。
 廃棄物等の被処理物を溶融処理して減容化するために溶融炉が用いられている。溶融処理は、被処理物を約1250℃から1400℃で溶融処理する高温プロセスであり、多くの熱回収プロセスが提案されている。
 例えば、炉本体から煙道に流出する約850℃から900℃の高温の排ガスから熱回収するために、煙道には多管式の熱交換器が設けられ、炉への入熱量の40%から45%の熱が回収されている。放熱側媒体と受熱側媒体との間の大きな温度勾配を利用して効率的に熱回収される。このような高温域で熱交換器によって回収された熱は炉本体に供給される燃焼用空気の加熱に用いられたり、ボイラ水の加熱に用いられたりしている。
 また、炉本体の焼損を回避するために、炉本体を覆う金属ケーシングに水冷ジャケットが設けられる。冷却水は、水冷ジャケットに導かれて高温に加熱され冷却塔で放熱された後に水冷ジャケットに循環されるように構成されている。この炉本体の冷却のために炉への入熱量の20%から25%の熱損失が発生することになる。さらに、煙突からの排ガスは、炉への入熱量の10%を保有し、煙突から放出されている。
 特許文献1には、ごみ焼却炉に併設された灰溶融炉を冷却する際に冷却水が吸収した熱を利用するための灰溶融炉における熱回収方法、およびその熱回収システムが提案されている。
 当該熱回収方法は、ごみ焼却炉に併設された灰溶融炉の少なくとも一部に設けられた水冷壁に冷却水を供給して、該灰溶融炉を冷却し、該冷却水の顕熱および/または潜熱によって、ごみ焼却炉に設けられたボイラへの給水を加熱するか、または該ボイラへの給水を加熱して脱気するように構成されている。
特開2001-241631号公報
 しかし、特許文献1に開示された技術は、ボイラを備えたごみ焼却炉に併設された灰溶融炉が前提となる。そのため、適用可能性が制限されるという問題がある。また、水冷壁に供給される冷却水が沸騰すると、冷却水の水冷壁内での循環が滞り、炉壁が異常な高温に晒されるという問題もあり、熱回収効率の観点でさらなる改良の余地があった。
 同様に、排ガス処理装置の下流側などの排ガス温度が140℃から200℃程度の低温域での廃熱回収も行なわれていなかった。つまり、溶融炉への投入熱量の50%以上が有効利用されることなく無駄に排熱されていた。
 ところで、下水処理等で発生した含水率70%から80%の汚泥を溶融炉で溶融処理するためには、事前に乾燥機を用いて含水率10%から30%に乾燥させる必要がある。しかし、高温域での熱回収を利用した従来の排熱回収プロセスでは、回収した熱量で乾燥機の必要熱量を賄うことができず、別途の補助燃料が必要であった。つまり、温室効果ガスの発生という問題のみならず経済性の観点からも排熱回収プロセスの改良が望まれていた。
 本発明の目的は、上述した問題点に鑑み、排熱の回収効率の上昇により、温室効果ガスの発生を抑制し、経済性に資する溶融システム及び溶融システムの制御方法を提供する点にある。
 上述の目的を達成するため、本発明による溶融システムの第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、溶融炉と前記溶融炉からの排ガスを浄化する排ガス処理装置とを備えている溶融システムであって、炉壁を冷却する冷却機構に熱媒体を供給して熱回収する第1熱回収部と、前記排ガス処理装置の下流側に備えた低温熱交換器に熱媒体を供給して熱回収する第2熱回収部と、前記第1熱回収部及び第2熱回収部で熱回収された熱媒体を熱利用設備との間で循環する循環路とを備え、各熱回収部で回収する熱量を調整する回収熱量調整機構を備えている点にある。
 循環路を介して第1熱回収部及び第2熱回収部と熱利用設備との間で熱媒体を循環し、回収熱量調整機構によって各熱回収部での熱回収量を調整することにより、低温域での熱交換であっても、その温度帯によって利用可能な熱媒体を用いて有効且つ安定的に回収熱を利用できるようになる。
 同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に熱媒体を供給して熱回収する第3熱回収部をさらに備え、前記回収熱量調整機構により各熱回収部で回収する熱量がさらに調整される点にある。
 低温域での熱交換に加えて、高温熱交換器を用いて高温域での熱交換を行なうことも可能になり、より安定的に回収熱を利用できるようになる。
 同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記循環路に熱媒体を一時貯留する熱媒体貯留部を備えている点にある。
 必要な熱媒体量の過不足が生じる場合であっても、熱媒体貯留部に余剰の熱媒体を貯留しておくことにより、より安定的に回収熱を利用できるようになる。
 同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記熱利用設備が、前記溶融炉で溶融処理する被処理物を乾燥処理する被処理物乾燥機で構成されている点にある。
 被処理物を乾燥処理する被処理物乾燥機を熱利用設備として設けると、含水率の高い汚泥等であっても、回収した熱を利用して乾燥させることができ、温室効果ガスの発生を招く化石燃料の使用量を低減することができるようになる。
 同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、熱媒体に熱を供給または放出する熱源装置を備えている点にある。
 熱回収部による熱回収量が不足するような場合でも、熱源装置を備えることにより熱媒体の保有する熱量を安定的させることができるようになる。
 同第六の特徴構成は、同請求項6に記載した通り、上述の第五の特徴構成に加えて、前記被処理物乾燥機は、排水を処理する排水処理設備で発生し、固液分離された汚泥を乾燥処理する設備であり、前記熱源装置は前記排水処理設備で生成された可燃性ガスを燃料とする燃焼器である点にある。
 被処理物乾燥機によって含水率の高い汚泥を効果的に乾燥処理することができる。そして、熱媒体による熱の回収量が不足する場合には、排水処理設備で生成されたカーボンニュートラルな可燃性ガスを燃料にして燃焼器を燃焼させることで、不足する熱量を補うことが可能になる。
 同第七の特徴構成は、同請求項7に記載した通り、上述の第六の特徴構成に加えて、前記熱源装置は前記排水処理設備で生成された可燃性ガスを燃料とする燃焼器の排ガスを加熱源とする乾燥用熱交換器を備えている点にある。
 可燃性ガスを燃料とした燃焼器の排ガスが保有する熱を利用して熱利用設備で不足する熱量を補うことも可能になる。
 同第八の特徴構成は、同請求項8に記載した通り、上述の第五の特徴構成に加えて、前記被処理物乾燥機は、排水を処理する排水処理設備で発生し、固液分離された汚泥を乾燥処理する設備であり、溶融炉は前記排水処理設備で生成された可燃性ガスを燃料とする点にある。
 溶融炉で有機性汚泥を溶融処理する際には、汚泥の燃焼により生じる熱を利用して溶融することが可能になる。その際に溶融のための熱量が不足するような場合には、カーボンニュートラルな可燃性ガスを燃料とすることで、温室効果ガスの発生量を抑制することができる。
 同第九の特徴構成は、同請求項9に記載した通り、上述の第一から第八の何れかの特徴構成に加えて、前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に前記溶融炉の燃焼用空気を供給して予熱する第4熱回収部を備え、前記第4熱回収部で予熱された燃焼用空気が前記溶融炉に供給される点にある。
 溶融炉と排ガス処理装置の間に備えた高温熱交換器に備えた第4熱回収部によって燃焼用空気を予熱することで、より安定的に溶融処理を行なうことができる。
 同第十の特徴構成は、同請求項10に記載した通り、上述の第一から第九の何れかの特徴構成に加えて、熱媒体に液体が用いられ、熱回収後の熱媒体の温度が液体の沸点温度未満となるように、各熱回収部で回収する熱量が調整される点にある。
 熱媒体が液体の状態を保ったままで熱交換されるので、熱回収部での熱媒体の流れが安定する。
 本発明による溶融システムの制御方法の第一の特徴構成は、同請求項11に記載した通り、溶融炉と前記溶融炉からの排ガスを浄化する排ガス処理装置とを備えた溶融設備に、炉壁を冷却する冷却機構に熱媒体を供給して熱回収する第1熱回収部と、前記排ガス処理装置の下流側に備えた低温熱交換器に熱媒体を供給して熱回収する第2熱回収部と、前記第1熱回収部及び第2熱回収部で熱回収された熱媒体を熱利用設備との間で循環する循環路と、を備えている溶融システムの制御方法であって、第1熱回収部による熱回収量は少なくとも溶融炉の冷却に必要な回収熱量以上となるように各熱回収部に供給する熱媒体の流量を調整する点にある。
 第1熱回収部で十分に熱回収されるので炉壁が焼損することのない状態で溶融システムが安定的に操炉されるようになる。
 同第二の特徴構成は、同請求項12に記載した通り、上述の第一の特徴構成に加えて、熱媒体に液体が用いられ、熱回収後の熱媒体の温度が液体の沸点温度未満となるように、各熱回収部で回収する熱量が調整される点にある。
 第1熱回収部で熱媒体が気化しないので、第1熱回収部で熱媒体の安定的な流れが確保できる。そのため、流れが阻害されることによる炉壁の部分的な焼損の発生も回避できる。
 同第三の特徴構成は、同請求項13に記載した通り、上述の第一または第二の特徴構成に加えて、熱媒体による回収熱量が前記熱利用設備で要求される熱量となるように各熱回収部に供給する熱媒体の流量を調整する点にある。
 同第四の特徴構成は、同請求項14に記載した通り、上述の第一から第三の特徴構成に加えて、前記溶融システムは、前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に熱媒体を供給して熱回収する第3熱回収部をさらに備え、熱媒体による回収熱量が前記熱利用設備で要求される熱量となるように各熱回収部に供給する熱媒体の流量を調整する点にある。
 同第五の特徴構成は、同請求項15に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に溶融炉の燃焼用空気を供給して予熱する第4熱回収部をさらに備え、前記第4熱回収部で予熱された燃焼用空気の温度が溶融炉の溶融に必要な温度となるように前記第4熱回収部に供給する熱媒体の流量を調整する点にある。
 同第六の特徴構成は、同請求項16に記載した通り、上述の第一から第五何れかの特徴構成に加えて、熱媒体に熱を供給または放出する熱源装置をさらに備え、前記熱利用設備で要求される熱量に過不足が生じる場合に、前記熱利用設備で要求される熱量となるように前記熱源装置を調整する点にある。
 同第七の特徴構成は、同請求項17に記載した通り、上述の第六の特徴構成に加えて、前記溶融設備は、排水を処理する排水処理設備で発生し、固液分離された汚泥を溶融する設備であり、前記排水処理設備で生成された可燃性ガスを燃料とする燃焼器を備えた汚泥乾燥機が前記熱利用設備として備えられ、前記燃焼器は前記熱源装置の機能を有し、各熱回収部の回収熱量が前記熱利用設備で要求される熱量に満たない場合に、乾燥熱源として前記燃焼器を点火する点にある。
 以上説明した通り、本発明によれば、排熱の回収効率の上昇により、温室効果ガスの発生を抑制し、経済性に資する溶融システム及び溶融システムの制御方法を提供することができるようになった。
図1は本発明による溶融システムの説明図である。 図2は溶融炉の説明図である。 図3は本発明による溶融システムの他の態様を示す説明図である。 図4は本発明による溶融システムの他の態様を示す説明図である。
 以下、本発明の溶融システム及び溶融システムの制御方法の実施形態を説明する。
 図1に示すように、溶融システム100は、溶融炉10と溶融炉10からの排ガスを浄化する排ガス処理装置30を備えている。本実施形態では、溶融炉10として回転式表面溶融炉10が用いられている。尚、本発明は回転式表面溶融炉10に対象を限るものではなく、電気式表面溶融炉や燃料を利用した表面溶融炉等、他のタイプの溶融炉であっても本発明を適用することは可能である。
 図2には、回転式表面溶融炉10の具体的な構成が示されている。回転式表面溶融炉10は、中央部に空気供給機構2aを備えた助燃バーナ2が設置された炉天井1と、中央部に出滓口3aが形成された炉底部3とで炉室4が構成され、炉室4の周囲に炉室4と連通する被処理物収容部7が設けられている。
 本実施形態では、汚水の生物処理で発生し或いは各種の食品加工で発生した有機性汚泥を含む様々な排水を処理する排水処理設備で発生した汚泥や、ごみ焼却炉で発生した焼却灰などの湿潤状態の粒状物が被処理物収容部7に投入されて溶融処理される。
 炉天井1の周囲に一体に形成された内筒5と炉底部3の周囲に一体に形成された外筒6とが同心円状に配置され、内筒5と外筒6との間に環状の被処理物収容部7が設けられている。
 図には示されていないが、被処理物収容部7には外筒6との間で水封された上カバーが設けられ、上カバーの上部に二重ダンパ機構を備えたホッパが配置され、コンベアによって被処理物が投入される。
 外筒6の下部に設けられた駆動機構によって回転駆動される外筒6と回転しない内筒5との相対回転によって、被処理物収容部7に収容された被処理物が内筒5の下部に備えた切出し羽根5aによって炉室4にすり鉢状に切り出されるように構成されている。
 炉室4に切り出された被処理物は助燃バーナ2の熱によりその表面から溶融し、炉底部3に形成された出滓口3aから下部の水槽Wに落下する。出滓口3aの下方に二次燃焼室8が形成され、燃焼ガスは二次燃焼室8の側壁から横方向に延出形成された煙道11を通って排気される。
 炉天井1、炉底部3、内筒5及び外筒6は耐火レンガ等が積層された耐火壁で構成され、炉天井1、炉底部3、炉底部3近傍の出滓口周辺等の炉壁には炉室4の中の炉壁(耐火壁)を外から覆うように金属製の水冷ジャケット9が配置され熱回収可能に構成されている。
 図1に戻り、煙道11に沿って減温塔30aやバグフィルタ30bなどの排ガス処理設備30が配置され、浄化された排ガスが誘引送風機12により誘引されて煙突13から排気される。
 当該溶融システム100には、第1熱回収部40と、第2熱回収部50と、第3熱回収部60とがさらに設けられ、第1熱回収部40、第2熱回収部50及び第3熱回収部60で熱回収された熱媒体を熱利用設備200との間で循環する循環路70(70a,70b,70c)が設けられている。
 本実施形態では、熱媒体として常圧の水が用いられ、湿潤状態の被処理物を乾燥させる被処理物乾燥機、暖房、温水プール、温室、バイナリ発電装置等の熱や温水利用可能な設備が熱利用設備200として利用可能に構成されている。
 第1熱回収部40は溶融温度が1250℃から1400℃の炉室を仕切る炉壁を冷却する水冷ジャケット9で構成される冷却機構に熱媒体を供給して熱回収する部位である。第2熱回収部50は排ガス処理装置30の下流側に備え、140℃から200℃の低温度に低下した排ガスが通過する低温熱交換器50aに熱媒体を供給して熱回収する部位である。そして、第3熱回収部60は溶融炉10と排ガス処理装置30の間に備え、800℃から900℃の高温排ガスが通過する高温熱交換器60aに熱媒体を供給して熱回収する部位である。
 炉壁を冷却する第1熱回収部40は、炉天井1に備えた水冷ジャケットのみならず炉底部3に備えた冷却流路、二次燃焼室8の側壁に備えた冷却流路、スラグ出滓口周辺に備えた冷却流路の何れかまたは全てを熱回収の対象とすることができることは言うまでもない
 各熱回収部40,50,60で回収する熱量を調整して熱利用設備200に供給する回収熱量調整機構80(80a,80b,80c)が設けられている。具体的に、第1熱回収部40への熱媒体の供給量を調整する制御弁80a、第2熱回収部50への熱媒体の供給量を調整する制御弁80b、第3熱回収部60への熱媒体の供給量を調整する制御弁80cである。
 制御部120が各熱回収部40,50,60の出口部に備えた温度センサT1,T2,T3及び熱利用設備200の入口部に備えた温度センサTからの入力信号に基づいて、熱利用設備200に供給される熱媒体の温度が把握され、目標温度となるように各制御弁80a,80b,80cの開度が調整されるように構成されている。制御部は、汎用のマザーボードとメモリボードをバスで接続した汎用コンピュータに、当該制御を実行するプログラムをインストールして構成することができるが、専用のコンピュータで構成することも可能である。
 つまり、熱利用設備200に供給された熱媒体は、熱利用設備200で放熱された後にポンプで循環路70に供給され、回収熱量調整機構80(80a,80b,80c)によって各熱回収部40,50,60での回収熱量を調整するための各熱回収部40,50,60への熱媒体の供給量が調整されるように構成されている。
 その結果、熱利用設備200から排出された約75℃前後の熱媒体は、各熱回収部40,50,60でそれぞれ約90℃前後に昇温されて、熱利用設備200に供給される。つまり、熱回収後の熱媒体の温度が水の沸点温度未満となるように、各熱回収部40,50,60で回収する熱量が調整され、熱媒体が液体の状態を保ったままで熱交換されるので、熱回収部での熱媒体の流れが安定する。
 特に、水冷ジャケット9を構成する流路中で熱媒体(水)が沸騰すると、熱媒体の流れが気体(蒸気)により阻害されて炉壁が冷却されず局所的に異常な高温となり、耐火壁が損傷する虞がある。しかし、熱媒体が液体の状態を保ったままで熱交換されることにより、炉壁が異常な高温となることが未然に抑制される。その結果、炉壁(耐火物)の損傷を防ぐことができる。
 つまり、回収熱量調整機構は、各熱回収部での熱回収量、熱利用設備での熱の利用量、各熱回収部出口の熱媒体や排ガスの温度から熱媒体の供給量を調整、制御するように構成されている。尚、本実施形態では、各熱回収部40,50,60でそれぞれ約90℃に昇温される例を説明したが、各熱回収部40,50,60でそれぞれ異なる温度で熱回収し、それぞれを併せて熱利用設備で必要な約90℃の温度になるように調整してもよい。
 図3には、熱利用設備200である被処理物乾燥機の一例として汚泥乾燥機が用いられた場合が示されている。汚泥乾燥機は、ケーシング内に汚泥を搬送するコンベア機構が複数段設けられ、ケーシングの投入口から投入された含水率70%から80%の汚泥が、約90℃の熱媒体によって加熱されて含水率10%から30%に乾燥処理された後に、ケーシングの底面に形成された排出口から排出される。汚泥としてごみ焼却炉で生じた湿灰や、排水を処理する排水処理設備で発生した汚泥、特に有機性排水を生物処理する生物処理設備で発生し、固液分離された有機性汚泥、各種の食品加工時に発生する有機性汚泥などが対象となる。
 汚泥乾燥機を熱利用設備として設けると、含水率の高い汚泥であっても、溶融システムで回収した熱を利用して乾燥させることができ、温室効果ガスの発生を招く化石燃料の使用量を低減することができるようになる。
 汚泥乾燥機から排出された汚泥は、上述したように、コンベアによってホッパに投入され、二重ダンパ機構を介して被処理物収容部7に投入される。
 溶融炉10と排ガス処理装置(減温塔30a)の間には高温熱交換器60a,60bが直列に接続されている。上流側の高温熱交換器60aによって上述の熱媒体が加熱される第3熱回収部60が構成されている。そして、下流側の高温熱交換器60bによって、押込み送風機14によって炉内に投入される燃焼用空気を、常温(約30°)から約250℃に予熱する第4熱回収部90が構成されている。第1から第4熱交換器によって、溶融炉10への入熱量のうち65%から80%の熱が回収されるようになる。尚、溶融炉への入熱とは、溶融炉へ投入される被処理物の持つ熱量(低位発熱量)と助燃バーナの燃料と燃焼空気の持つ熱量の合計である。
 上述した高温熱交換器60bで構成される第4熱回収部90によって、溶融炉内の被処理物の燃焼促進に必要な温度に燃焼用空気を予熱することで、炉内でより安定した溶融が行なわれ、補助燃料の使用量をより一層低減することができる。また、燃焼用空気はバーナ2の燃焼用にも用いられ、予熱されることで、補助燃料の使用量を低減することができる。
 図3に破線で示すように、循環路70に熱媒体を一時貯留する熱媒体貯留部70dを備えてもよい。熱媒体貯留部70dに余剰の熱媒体を貯留しておくことにより、各熱回収部40,50,60に必要な熱媒体量の過不足が生じる場合であっても、より安定的に回収熱を利用できるようになる。熱媒体貯留部70dは、回収し、供給する熱量を蓄える機能も有しており、熱の回収と利用の過不足を吸収し安定して運用できるようになる。また、熱媒体貯留部70dは、循環路の何れに設けてもよい。
 溶融炉10の燃焼状態が変動し、熱利用設備200に十分な熱量を供給できない場合に備えて、熱媒体に熱を供給する熱源装置を備えていることが好ましい。熱源装置として、例えば炉天井に備えたバーナ2、温水ボイラ、加熱バーナ、電気加熱器、バイナリ発電からの温水等を用いることができる。逆に熱媒体に熱を放出する必要がある場合には、熱源装置として冷却塔やチラーユニット、排ガス処理設備である減温塔を用いることもできる。
 この様な溶融システム100が有機性排水を生物処理する生物処理設備(排水処理設備)に併設され、熱利用設備200が生物処理(排水処理)で発生し固液分離された有機性汚泥を乾燥処理する汚泥乾燥機である場合には、熱源装置として生物処理設備で生成された可燃性ガスを燃料とする燃焼器で構成することができる。具体的に、生物処理設備に備えた消化槽で有機性排水を嫌気性処理することにより生じるメタンガスなどを可燃性ガスとして有効活用できる。
 図4には、熱媒体の循環路70のうち、各熱回収部40,50,60で熱回収された熱媒体の合流部より下流側に燃焼器110が設けられた例が示されている。
 制御部120が各熱回収部40,50,60,90の出口部及び熱溶融炉10の各熱回収部40,50,60,90の排ガス出口部に備えた温度センサT1,T2,T3,T10,T11,T12,T13及び熱利用設備200の入口部に備えた温度センサTからの入力信号に基づいて、熱利用設備200に供給される熱媒体の温度と排ガスの温度が把握され、熱媒体と排ガスが目標温度となるように各制御弁80a,80b,80cの開度及び燃焼器110への可燃性ガスの供給量が制御される。
 このような構成を採用すれば、各熱回収部40,50,60で十分な熱回収ができないような場合であっても、生物処理設備で生成されたカーボンニュートラルな可燃性ガスを燃料にして燃焼器を燃焼させることで、不足熱量を補うことが可能になる。
 また、熱源装置110として、生物処理設備で生成された可燃性ガスを燃料とする燃焼器の排ガスを加熱源とする乾燥用熱交換器で構成することも可能である。例えば、燃焼器として可燃性ガスを燃料とするガスタービンを用いて発電を行ない、ガスタービンから排出される高温の排ガスで熱媒体を加熱するのである。
 このような生物処理設備に併設された溶融システム100であれば、溶融炉10の助燃バーナ2に供給する燃料として、生物処理設備で生成された可燃性ガスを用いることも可能になる。
 溶融炉で有機性汚泥を溶融処理する際は、有機性汚泥の燃焼により生じる熱を利用して溶融することが可能になる。溶融のために必要な熱量が有機性汚泥の燃焼のみでは不足するような場合に、カーボンニュートラルな可燃性ガスを燃料とすることで、温室効果ガスの発生量を抑制することができる。
 上述した実施形態では、第1及び第2の低温熱回収部40,50に、溶融炉と排ガス処理装置の間に備えた高温熱交換器に熱媒体を供給して熱回収する第3熱回収部60を備えた例を説明したが、第3熱回収部を備えることなく、第1及び第2の低温熱回収部40,50のみで回収した熱を熱利用設備200に循環するように構成してもよい。この場合に、低温熱回収部を循環する熱媒体とは異なる熱媒体を利用した第3熱回収部60をさらに備えて回収した熱を他の熱利用設備200に循環するように構成してもよい。つまり、低温熱回収部40,50よりも高い温度の熱を回収するように第3熱回収部60を構成してもよい。
 上述した実施形態では熱媒体として常圧の水を用い、熱回収後の熱媒体の温度が水の沸点温度未満の90℃となるように、各熱回収部40,50,60で回収する熱量が調整される例を説明したが、各熱回収部40,50,60や溶融システムの機器で支障が生じないという条件の下では水の沸点温度以上に加熱することも可能である。さらに循環路を加圧して沸点温度を100℃以上とした加圧水を用いることも可能である。さらに熱媒体として水以外にオイル等の液体を用いることが可能であり、空気や蒸気等の気体を用いることも可能である。つまり、溶融システムで発生し廃棄される熱を回収するに際して、熱利用設備200により定まる熱利用可能な媒体、温度帯を選択して溶融炉を冷却することにより、熱回収効率のよい溶融システムを実現できる。
 以上説明したように、本発明による溶融システムの制御方法は、溶融炉と溶融炉からの排ガスを浄化する排ガス処理装置とを備えた溶融設備に、炉壁を冷却する冷却機構に熱媒体を供給して熱回収する第1熱回収部と、排ガス処理装置の下流側に備えた低温熱交換器に熱媒体を供給して熱回収する第2熱回収部と、第1熱回収部及び第2熱回収部で熱回収された熱媒体を熱利用設備との間で循環する循環路と、を備えている溶融システムの制御方法であって、第1熱回収部による熱回収量は少なくとも溶融炉の冷却に必要な回収熱量以上となるように各熱回収部に供給する熱媒体の流量を調整するように構成されている。このような溶融システムの制御方法によれば、炉壁の温度が異常に高くならないよう第1熱回収部で十分に熱回収される。つまり、炉壁が焼損することのない温度に制御され溶融システムが安定的に操炉されるようになる。
 このとき、熱媒体に液体が用いられ、熱回収後の熱媒体の温度が液体の沸点温度未満となるように、各熱回収部で回収する熱量が調整されることが好ましい。第1熱回収部で熱媒体が気化しないので、気化した熱媒体による流路の閉塞は起こらず、第1熱回収部で熱媒体の安定的な流れが確保できる。そのため、熱媒体の流れが阻害されることによる炉壁の冷却不足を生じることがなく、部分的な焼損の発生も回避できるようになる。
 そして、熱媒体による回収熱量が前記熱利用設備で要求される熱量となるように各熱回収部に供給する熱媒体の流量を調整することが好ましい。
 溶融システムは、溶融炉と排ガス処理装置の間に備えた高温熱交換器に熱媒体を供給して熱回収する第3熱回収部をさらに備え、熱媒体による回収熱量が熱利用設備で要求される熱量となるように第3熱回収部を含む各熱回収部に供給する熱媒体の流量を調整するように構成することが好ましい。
 また、溶融炉と排ガス処理装置の間に備えた高温熱交換器に溶融炉の燃焼用空気を供給して予熱する第4熱回収部をさらに備え、第4熱回収部で予熱された燃焼用空気の温度が溶融炉の溶融に必要な温度、つまり溶融炉内の燃焼促進に必要な温度となるように第4熱回収部を含む各熱回収部に供給する熱媒体の流量を調整するように構成することが好ましい。
 同熱媒体に熱を供給または放出する熱源装置をさらに備え、熱利用設備で要求される熱量に過不足が生じる場合に、各熱回収部で要求される回収熱量となるように、また、熱利用設備で要求される熱量となるように前記熱源装置を調整するように構成することが好ましい。
 溶融設備は、有機性排水を生物処理する生物処理設備で発生し、固液分離された有機性汚泥を溶融する設備であり、生物処理設備で生成された可燃性ガスを燃料とする燃焼器を備えた汚泥乾燥機が前記熱利用設備として備えられ、燃焼器は熱源装置の機能を有し、熱媒体による回収熱量が熱利用設備で要求される熱量に満たない場合に、乾燥熱源として前記燃焼器を点火するように構成されていることが好ましい。
 上述した実施例では、熱利用設備として被処理物乾燥機を説明したが、熱利用設備としては暖房、温水プール、温室など、熱を利用するものであれば、どのようなものでもよく、必要な温度等の条件の異なる複数の設備が熱利用設備であってもよい。
 上述した実施例では、排ガス処理装置は、減温塔とバグフィルタで構成したが、洗煙装置や触媒脱硝装置などの他の装置が設けられていてもよい。このように複数の装置がある場合は、第2熱回収部は何れかの装置の下流にあればよい。例えば、減温塔、バグフィルタ、洗煙装置がある排ガス処理設備の場合は、排ガスの温度を考慮してバグフィルタと洗煙装置の間に第2熱回収部を設けるとよい。尚、第2熱回収部の酸性ガスによる腐食を考慮すると、酸性ガスを中和する装置の下流に設けるのがよい構成である。
 上述した実施例では、被処理物として有機性汚泥、汚泥等で湿潤したものを例に挙げて説明したが、乾燥した焼却灰や飛灰、さらには廃プラスチックやごみ等、燃焼または溶融可能なものであればどのようなものでもよい。
 上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。
100:溶融システム
2:助燃バーナ
3:炉底部
4:炉室
5:内筒
6:外筒
7:被処理物収容部
8:二次燃焼室
9:水冷ジャケット
10:溶融炉
11:煙道
13:煙突
30:排ガス処理装置
30a:減温塔
30b:バグフィルタ
40:第1熱回収部
50:第2熱回収部
60:第3熱回収部
70:循環路
80:回収熱量調整機構
120:制御部
200:熱利用設備
 

Claims (17)

  1.  溶融炉と前記溶融炉からの排ガスを浄化する排ガス処理装置とを備えている溶融システムであって、
     炉壁を冷却する冷却機構に熱媒体を供給して熱回収する第1熱回収部と、前記排ガス処理装置の下流側に備えた低温熱交換器に熱媒体を供給して熱回収する第2熱回収部と、前記第1熱回収部及び第2熱回収部で熱回収された熱媒体を熱利用設備との間で循環する循環路とを備え、各熱回収部で回収する熱量を調整する回収熱量調整機構を備えている溶融システム。
  2.  前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に熱媒体を供給して熱回収する第3熱回収部をさらに備え、前記回収熱量調整機構により各熱回収部で回収する熱量がさらに調整される請求項1記載の溶融システム。
  3.  前記循環路に熱媒体を一時貯留する熱媒体貯留部を備えている請求項1または2記載の溶融システム。
  4.  前記熱利用設備が、前記溶融炉で溶融処理する被処理物を乾燥処理する被処理物乾燥機で構成されている請求項1から3の何れかに記載の溶融システム。
  5.  熱媒体に熱を供給または放出する熱源装置を備えている請求項1から4の何れかに記載の溶融システム。
  6.  前記被処理物乾燥機は、排水を処理する排水処理設備で発生し、固液分離された汚泥を乾燥処理する設備であり、前記熱源装置は前記排水処理設備で生成された可燃性ガスを燃料とする燃焼器である請求項5記載の溶融システム。
  7.  前記熱源装置は前記排水処理設備で生成された可燃性ガスを燃料とする燃焼器の排ガスを加熱源とする乾燥用熱交換器を備えている請求項6記載の溶融システム。
  8.  前記被処理物乾燥機は、排水を処理する排水処理設備で発生し、固液分離された汚泥を乾燥処理する設備であり、溶融炉は前記排水処理設備で生成された可燃性ガスを燃料とする請求項5記載の溶融システム。
  9.  前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に前記溶融炉の燃焼用空気を供給して予熱する第4熱回収部を備え、前記第4熱回収部で予熱された燃焼用空気が前記溶融炉に供給される請求項1から8の何れかに記載の溶融システム。
  10.  熱媒体に液体が用いられ、熱回収後の熱媒体の温度が液体の沸点温度未満となるように、各熱回収部で回収する熱量が調整される請求項1から9の何れかに記載の溶融システム。
  11.  溶融炉と前記溶融炉からの排ガスを浄化する排ガス処理装置とを備えた溶融設備に、炉壁を冷却する冷却機構に熱媒体を供給して熱回収する第1熱回収部と、前記排ガス処理装置の下流側に備えた低温熱交換器に熱媒体を供給して熱回収する第2熱回収部と、前記第1熱回収部及び第2熱回収部で熱回収された熱媒体を熱利用設備との間で循環する循環路と、を備えている溶融システムの制御方法であって、
     第1熱回収部による熱回収量は少なくとも溶融炉の冷却に必要な回収熱量以上となるように各熱回収部に供給する熱媒体の流量を調整する溶融システムの制御方法。
  12.  熱媒体に液体が用いられ、熱回収後の熱媒体の温度が液体の沸点温度未満となるように、各熱回収部で回収する熱量が調整される請求項11記載の溶融システムの制御方法。
  13.  熱媒体による回収熱量が前記熱利用設備で要求される熱量となるように各熱回収部に供給する熱媒体の流量を調整する請求項11または12記載の溶融システムの制御方法。
  14.  前記溶融システムは、前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に熱媒体を供給して熱回収する第3熱回収部をさらに備え、熱媒体による回収熱量が前記熱利用設備で要求される熱量となるように各熱回収部に供給する熱媒体の流量を調整する請求項11から13の何れかに記載の溶融システムの制御方法。
  15.  前記溶融炉と前記排ガス処理装置の間に備えた高温熱交換器に溶融炉の燃焼用空気を供給して予熱する第4熱回収部をさらに備え、前記第4熱回収部で予熱された燃焼用空気の温度が溶融炉の溶融に必要な温度となるように前記第4熱回収部に供給する熱媒体の流量を調整する請求項11から請求項14の何れかに記載の溶融システムの制御方法。
  16.  熱媒体に熱を供給または放出する熱源装置をさらに備え、前記熱利用設備で要求される熱量に過不足が生じる場合に、前記熱利用設備で要求される熱量となるように前記熱源装置を調整する請求項11から請求項15の何れかに記載の溶融システムの制御方法。
  17.  前記溶融設備は、排水を処理する排水処理設備で発生し、固液分離された汚泥を溶融する設備であり、前記排水処理設備で生成された可燃性ガスを燃料とする燃焼器を備えた汚泥乾燥機が前記熱利用設備として備えられ、前記燃焼器は前記熱源装置の機能を有し、各熱回収部の回収熱量が前記熱利用設備で要求される熱量に満たない場合に、乾燥熱源として前記燃焼器を点火する請求項16記載の溶融システムの制御方法。
PCT/JP2017/002668 2016-02-02 2017-01-26 溶融システム及び溶融システムの制御方法 WO2017135134A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17747292.5A EP3412969B1 (en) 2016-02-02 2017-01-26 Melting system and method for controlling melting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016017864A JP6629085B2 (ja) 2016-02-02 2016-02-02 溶融システム及び溶融システムの制御方法
JP2016-017864 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017135134A1 true WO2017135134A1 (ja) 2017-08-10

Family

ID=59500174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002668 WO2017135134A1 (ja) 2016-02-02 2017-01-26 溶融システム及び溶融システムの制御方法

Country Status (3)

Country Link
EP (1) EP3412969B1 (ja)
JP (1) JP6629085B2 (ja)
WO (1) WO2017135134A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056882A (zh) * 2019-04-14 2019-07-26 山西熔融环保科技有限公司 一种基于蓄热式燃烧的熔融盐垃圾处理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618213A (en) * 1979-07-23 1981-02-20 Ebara Infilco Co Ltd High-temperature melting treatment
JPS576223A (en) * 1980-06-11 1982-01-13 Ebara Infilco Co Ltd Incineration of sludge
JPH09101023A (ja) * 1995-10-03 1997-04-15 Kobe Steel Ltd プラズマ溶融炉の炉体冷却構造
JP2001121125A (ja) * 1999-10-29 2001-05-08 Toshiba Corp 熱分解処理システム
JP2002372219A (ja) * 2001-06-14 2002-12-26 Tsukishima Kikai Co Ltd 排ガス処理装置及びその方法
JP2011206696A (ja) * 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp 廃熱を利用した澱物乾燥装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955233U (ja) * 1982-09-27 1984-04-11 株式会社クボタ 溶融装置
JPS62294481A (ja) * 1986-06-13 1987-12-21 Kubota Ltd 汚泥焼却灰の溶融方法
JP2001241631A (ja) * 2000-02-29 2001-09-07 Nkk Corp 灰溶融炉における熱回収方法、およびその熱回収システム
JP2004093018A (ja) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd 焼却システム
JP2006317089A (ja) * 2005-05-13 2006-11-24 Sumitomo Metal Ind Ltd 可燃物のガス化溶融方法およびガス化溶融装置
JP2006349206A (ja) * 2005-06-13 2006-12-28 Kawasaki Heavy Ind Ltd 処理対象物供給方法および同装置ならびに反応炉システム
JP2010151432A (ja) * 2008-12-26 2010-07-08 Kobelco Eco-Solutions Co Ltd 廃棄物焼却施設の排熱を利用するための焼却排熱利用システム
JP2014009877A (ja) * 2012-06-29 2014-01-20 Babcock-Hitachi Co Ltd 排煙処理装置と方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618213A (en) * 1979-07-23 1981-02-20 Ebara Infilco Co Ltd High-temperature melting treatment
JPS576223A (en) * 1980-06-11 1982-01-13 Ebara Infilco Co Ltd Incineration of sludge
JPH09101023A (ja) * 1995-10-03 1997-04-15 Kobe Steel Ltd プラズマ溶融炉の炉体冷却構造
JP2001121125A (ja) * 1999-10-29 2001-05-08 Toshiba Corp 熱分解処理システム
JP2002372219A (ja) * 2001-06-14 2002-12-26 Tsukishima Kikai Co Ltd 排ガス処理装置及びその方法
JP2011206696A (ja) * 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp 廃熱を利用した澱物乾燥装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056882A (zh) * 2019-04-14 2019-07-26 山西熔融环保科技有限公司 一种基于蓄热式燃烧的熔融盐垃圾处理系统及方法
CN110056882B (zh) * 2019-04-14 2020-08-14 山西熔融环保科技有限公司 一种基于蓄热式燃烧的熔融盐垃圾处理系统及方法

Also Published As

Publication number Publication date
EP3412969A4 (en) 2019-07-17
EP3412969A1 (en) 2018-12-12
EP3412969B1 (en) 2020-12-09
JP2017138026A (ja) 2017-08-10
JP6629085B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
JP5289702B2 (ja) 熱利用システム及びその発停時運転方法、並びに熱処理システム
CN102656407B (zh) 用于从底灰回收热量的方法和装置
CN107923608B (zh) 废热发电系统
JP4920388B2 (ja) 乾燥機を備えた熱処理システム及びその運転方法
RU2508503C2 (ru) Способ эксплуатации установки для производства биоэтанола
JP2009287863A (ja) 加熱処理装置
JP2005321131A (ja) 汚泥焼却システム
WO2017135134A1 (ja) 溶融システム及び溶融システムの制御方法
JP7153431B2 (ja) ボイラの腐食防止装置及び腐食防止方法
JP2004277464A (ja) 有機物含有汚泥の炭化処理装置
JP2011111480A (ja) 炭化処理システム
US20050217545A1 (en) Method and apparatus for controlling combustion in a furnace
JP2006207969A (ja) 廃棄物処理設備
EP3106529B1 (en) Method and plant of treating and smelting metals
JP4524387B2 (ja) フライアッシュ処理装置
JP2008215663A (ja) キルン炉、廃棄物ガス化システム
JP2009138089A (ja) 多段スクリュー炭化装置
JP4449704B2 (ja) 燃焼方法及び装置
PL194866B1 (pl) Sposób i urządzenie do obróbki wilgotnego materiału trudnego do obróbki za pomocą spalania
JP2005114218A (ja) 流動焼却炉システムの運転方法
JP2006023052A (ja) 灰溶融炉の排ガス処理方法およびその処理設備
JP3958187B2 (ja) 廃棄物処理システム
JP6537490B2 (ja) 熱交換器
KR200409444Y1 (ko) 건류 또는 반건류식 소각로의 수냉식 1차연소실
JP2001124319A (ja) 廃棄物処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747292

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747292

Country of ref document: EP

Effective date: 20180903