WO2017133507A1 - 一种单管双腔注射泵、注射泵机构及其操作方法 - Google Patents

一种单管双腔注射泵、注射泵机构及其操作方法 Download PDF

Info

Publication number
WO2017133507A1
WO2017133507A1 PCT/CN2017/072006 CN2017072006W WO2017133507A1 WO 2017133507 A1 WO2017133507 A1 WO 2017133507A1 CN 2017072006 W CN2017072006 W CN 2017072006W WO 2017133507 A1 WO2017133507 A1 WO 2017133507A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
cavity
sleeve
pump
injection shaft
Prior art date
Application number
PCT/CN2017/072006
Other languages
English (en)
French (fr)
Inventor
项建龙
高波
Original Assignee
龙木信息科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610075723.7A external-priority patent/CN105715546B/zh
Priority claimed from CN201610078222.4A external-priority patent/CN105673384B/zh
Priority claimed from CN201610078208.4A external-priority patent/CN105477738B/zh
Application filed by 龙木信息科技(杭州)有限公司 filed Critical 龙木信息科技(杭州)有限公司
Priority to DE112017000634.1T priority Critical patent/DE112017000634B4/de
Priority to JP2018527955A priority patent/JP6484765B2/ja
Publication of WO2017133507A1 publication Critical patent/WO2017133507A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/04Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
    • F04B7/06Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports the pistons and cylinders being relatively reciprocated and rotated

Definitions

  • the invention belongs to the technical field of syringe pumps, and in particular relates to a single-tube double-cavity syringe pump, a syringe pump mechanism and an operation method thereof.
  • the traditional syringe pump on the market works in an intermittent manner. Intermittent means that when the syringe pump draws in the medium, it will lose its pumping capacity; when pumping out the medium, it will lose the ability to inhale the medium. If you need to work at the same time, you need two pumps to work together to achieve the function of continuous delivery of media. In order to maintain the high precision of the syringe pump, a wide range of output pressure, and at the same time to eliminate or greatly eliminate the defects of intermittent work, it is necessary to overcome the above-mentioned development of the syringe pump.
  • the present invention provides a single-tube dual-chamber syringe pump, a syringe pump mechanism, and an operation method thereof.
  • a first object of the present invention is to provide a single tube dual chamber syringe pump that achieves a continuous unidirectional output medium.
  • the utility model relates to a single-tube double-cavity injection pump, which comprises a pump body sleeve, a injection shaft, a casing and a sealing device; a pump sleeve bushing is provided with a sleeve medium inlet end and a sleeve medium outlet end; the injection shaft
  • the outer side wall is provided with two long-shaped grooves, one end of which is closed, the other end is open and the open end is flush with both ends of the injection shaft;
  • the injection shaft is arranged in the pump sleeve;
  • the pump body One end of the sleeve is sealingly connected with the sealing device; one end surface of the injection shaft, the inner side wall of the pump sleeve and the sealing device form a first cavity, the other end surface of the injection shaft, the inner side wall of the pump sleeve and the cylindrical hole on the housing
  • the inner bottom surface constitutes a second cavity, and the outer circumference of the injection shaft closely fits the inner circle of the
  • the sleeve medium inlet end and the sleeve medium outlet end of the pump body sleeve are disposed at a middle portion of the pump body sleeve, and the sleeve medium inlet end and the sleeve medium outlet end are symmetrically disposed.
  • the two grooves on the injection shaft are center-symmetrical with respect to the center of the axis of the injection shaft.
  • the injection shaft is provided with a through hole for connecting the screw rod, one end of the screw rod penetrates the through hole and the sealing device, and the screw rod is closely connected with the inner side wall of the injection shaft, and is sealingly connected with the sealing device.
  • the housing is disposed outside the sleeve of the pump body, and the housing is provided with an inlet and an outlet respectively communicating with the inlet end of the sleeve medium and the outlet end of the sleeve medium, and the medium inlet groove and the medium are disposed in the housing Outlet trough, respectively, and bushing media inlet
  • the outlet end of the sleeve and the medium of the bushing communicate with each other, and the inner wall of the cylindrical hole of the casing is sealed with the outer wall of the pump sleeve.
  • the inner bottom surface of the cylindrical bore serves to seal one end face of the pump body sleeve.
  • the sealing device is provided with a sealing ring, the sealing ring is tightly connected with the screw rod, and the sealing device and the housing are tightly assembled and connected by a fastener.
  • the sealing device is symmetrically provided with a medium overflow hole, so that the overflow medium can flow out through the overflow hole on the sealing device without directly reaching the motor through the screw.
  • the pump body sleeve and the injection shaft are made of ceramic.
  • the housing and the sealing device are made of metal, preferably metal aluminum and steel.
  • a second object of the present invention is to provide a method of operating the above described single-tube dual-chamber syringe pump.
  • the single-tube dual-cavity syringe pump of the invention has a simple structure, and the two groove openings on the injection shaft are respectively at two different end faces of the injection shaft, and the movement direction of the injection shaft is different according to the screw rod, so that one medium cavity is at the exit direction. While the end is injecting the medium, another medium chamber draws in the medium from the inlet end.
  • the invention reciprocates by the injection shaft and exchanges the corresponding relationship between the groove and the inlet and outlet of the sleeve medium during the turning, so that the injection pump has the ability to continuously output the medium in one direction; the invention can also be driven by the screw rod Accurate feed control for high-precision metering control.
  • the material of the pump body sleeve and the injection shaft of the invention is preferably ceramic, especially for a medium with high viscosity, capable of sealing with high precision to isolate two dielectric cavities, and having wear resistance and rotational sliding resistance. Small effect; the pump body sleeve and the injection shaft of the present invention can also adopt other materials and sealing methods, specifically: metal materials and rubber sealing technology, for mediums with high fluidity and low viscosity such as water, oil and gas.
  • a third object of the present invention is to provide a syringe pump mechanism including the above single-tube dual-chamber syringe pump, which can achieve injection The operation and operation of the pump achieves automation of the operation of the syringe pump mechanism.
  • the utility model relates to a single-tube double-cavity syringe pump, which comprises a single-tube double-cavity syringe pump, a screw motor, a clutch device, an induction device and a control device;
  • the single-tube double-cavity syringe pump comprises a pump body sleeve and an injection a shaft, a casing and a sealing device;
  • the pump body sleeve is provided with a bushing medium inlet end and a bushing medium outlet end;
  • the outer side wall of the injection shaft is provided with two elongated grooves, one end of each of the two grooves Closed, the other end is open and the open end is flush with the two ends of the injection shaft;
  • the injection shaft is arranged in the pump sleeve; the end of the pump sleeve is sealed with the sealing device; one end of the injection shaft, the pump sleeve
  • the inner side wall and the sealing device form a first cavity, the
  • the electromagnetic clutch assembly is respectively connected to the control device by a cable.
  • the electromagnetic clutch assembly can be used to adsorb the clutch plate and the two electromagnetic clutches after being energized.
  • the assembly is assembled and fixed by the clutch bracket and fastened with the screw motor; a rotor is arranged at the center of the electromagnetic clutch assembly 1 near the screw motor, and the rotor is assembled with the rotor of the screw motor to form a rotating pair, and the rotor of the motor rotates.
  • the rotor in the linkage electromagnetic clutch assembly rotates synchronously;
  • the sensing device comprises a screw sensor and a steering sensor, and the two sensors are respectively connected with the control device by a cable and perform signal transmission, and the screw sensor is disposed on the clutch bracket outside the electromagnetic clutch assembly,
  • the triggering sensor is disposed on the clutch bracket below the clutch piece, and the middle section of the screw rod has a single-sided flat wire shape, and the linear bottom edge of the sensor shielding piece inserted into the clutch sheet interlayer and the flat wire of the screw rod Face matching, making the clutch and screw structure Swivel joint, screw driven clutch plates when the rotation about the screw rotational movement synchronized with the sensor shielding piece with the steering sensor to trigger rotational position signal.
  • the two electromagnetic clutch assemblies in the clutch device are controlled by the controller, and any one of the electromagnetic clutch assemblies generates an electromagnetic field and the adsorption clutch is integrated with it.
  • the clutch plate is integrally integrated with the electromagnetic clutch assembly provided with the rotor, it is indirectly integrated with the rotor of the screw motor, and is rotated by the screw motor to drive the screw rod together with the injection shaft.
  • the screw motor rotates.
  • the clutch plate is attracted to the electromagnetic clutch assembly on the other side, it is indirectly integrated with the clutch bracket and remains relatively stationary, thereby preventing rotational movement of the screw and the injection shaft.
  • Both the lead screw sensor and the steering sensor of the sensing device of the present invention are optocoupler sensors.
  • the sensor shielding piece is semi-circular and fixedly disposed in the interlayer of the clutch piece; the radius thereof is larger than the radius of the clutch piece, so that the portion protruding outside the outer diameter of the clutch piece can block the steering sensor and trigger signal.
  • the screw motor rotates the clutch piece
  • the sensor shielding piece rotates accordingly; the radial bottom edges of the sensor shielding piece are respectively disposed on both sides of the outer diameter of the clutch piece, which become the two signal trigger points of the sensor, which are 180° apart;
  • the corresponding signal is triggered, which is used by the control device to determine the two stop positions during the steering.
  • the screw sensor of the invention is used for sensing the position of the screw rod moving in the axial direction; under the action of the screw motor, the screw rod is used as the shaft
  • the control device rotates the screw rod and the injection shaft by 180° by the linkage of the clutch device and the screw motor, and then drives the wire through the screw motor.
  • the rod moves axially in the opposite direction.
  • the syringe pump mechanism of the invention can precisely control the clutch device and the screw motor through the control device and the sensing device, alternately perform the steering action and push and pull the action of the injection shaft and the screw rod, realize the manipulation and operation of the syringe pump, and realize the injection. Automation of pump mechanism operation.
  • the control device controls the clutch device, the screw motor and the induction device to place the injection pump in the reset direction, and the reset direction is: the first cavity passes through the groove on the side of the injection shaft and communicates with the outlet end of the pump sleeve bushing medium, The second cavity is communicated with the inlet end of the pump sleeve bushing through the other side groove of the injection shaft, and the two grooves of the injection shaft are respectively opposite to the pump inlet end and the medium outlet end of the pump sleeve;
  • the controller locks the axial rotation degree of the screw through the clutch device, and moves the screw and the injection axial screw motor through the screw motor, the volume of the first cavity becomes smaller, and the medium in the cavity passes through the injection shaft.
  • the groove is pumped out; at the same time, the volume of the second cavity becomes larger, and the medium is sucked into the cavity through the injection shaft groove of the side;
  • the control device locks the axial rotation degree of the screw shaft again by the clutch device, and reversely runs the screw motor to push the screw rod and the injection shaft away from the screw motor direction, thereby changing the cavity on both sides of the injection shaft. Volume, such that one side of the cavity continues to pump out of the medium while the other side of the cavity draws in the medium;
  • a fourth object of the present invention is to provide another syringe pump mechanism including a single-tube dual-chamber syringe pump, which can also realize the operation and operation of the syringe pump to achieve automation of the operation of the syringe pump mechanism.
  • a syringe pump mechanism includes a single-tube dual-chamber syringe pump, a steering motor, a screw motor, a transmission device, an induction device, and a control device;
  • the single-tube dual-cavity syringe pump includes a pump body sleeve and a injection shaft a casing and a sealing device;
  • the pump body sleeve is provided with a bushing medium inlet end and a bushing medium outlet end;
  • the outer side wall of the injection shaft is provided with two elongated grooves, one end of which is closed The other end is open and the open end is flush with the two ends of the injection shaft;
  • the injection shaft is set on the pump shaft
  • One end of the pump sleeve is sealedly connected with the sealing device;
  • one end surface of the injection shaft, the inner side wall of the pump sleeve and the sealing device constitute a first cavity, the other end surface of the injection shaft, the inner side wall of the pump slee
  • the optocoupler shielding disk is semi-circular, and the two radial straight sides of the optocoupler shielding disk serve as two signal trigger points of the optocoupler sensor 2 for controlling the degree of rotation of the steering motor.
  • the screw of the single-tube double-cavity syringe pump passes through the screw motor and the gear one, and the gear one and the screw shaft constitute a rotating pair.
  • the portion of the screw that penetrates the gear is flat, and the through hole in the gear is rectangular, so that the gear and the screw constitute a rotating pair.
  • the screw motor under the action of the screw motor, the screw can move in the axial direction and slide axially in the gear-through hole, thereby driving the injection shaft to move in the axial direction.
  • the steering motor of the present invention is composed of a motor and a speed reducer; the steering motor, the transmission device and the screw rod are designed to constitute a steering mechanism for completing the steering motion; when the steering motor is in operation, the two gears in the transmission device are driven to drive The screw rotates with the injection shaft.
  • the optocoupler sensor is used for sensing the position of the screw rod moving in the axial direction; under the action of the screw motor, the screw rod moves outward in the axial direction, and the tail end of the screw rod triggers the optocoupler sensor 1 to trigger the signal, and the signal is controlled
  • the device is used to determine that the screw rod moves to a specific position;
  • the steering induction unit includes an optocoupler shielding disc and an optocoupler sensor 2, and the optocoupler shielding disc is semicircular, disposed at the other end of the gear connected to the steering motor; Under the action, the optocoupler shielding disk rotates accordingly; the two radial straight sides of the optocoupler shielding disk serve as two signal trigger points of the optocoupler sensor 2, which are separated by a 180° angle; when any one of them passes through the optocoupler sensor The corresponding signal is triggered, which is used by the control device to determine the two stop positions during the steering process.
  • the operation method of the above syringe pump mechanism includes the following steps:
  • the control device activates the steering device to operate and stops in the reset direction, and the stop position is coupled by the steering induction unit.
  • the radial straight edge of the shielding disk triggers the positioning of the optocoupler sensor;
  • the reset direction is: the groove of the first cavity through the side of the injection shaft communicates with the outlet end of the pump sleeve medium, and the second cavity passes through the injection shaft
  • the other side groove is in communication with the inlet end of the pump sleeve bushing medium, and the two grooves of the injection shaft are respectively opposite to the medium inlet end and the medium outlet end of the pump body sleeve;
  • the control device starts the screw motor to pull the screw rod, and the screw rod links the injection shaft to move the injection axial screw motor, the volume of the first cavity becomes smaller, the medium in the cavity is pumped out, and the volume of the second cavity becomes larger.
  • the medium is sucked into the cavity; when the screw motor pulls the injection shaft to the end surface of the sealing device, the tail end of the screw triggers the optocoupler sensor 1, and the control device controls the screw motor to stop working;
  • the control device starts the steering motor to run the linkage gear two rotations, the gear two linkage gear rotates, the gear and the linkage screw rotate, and the screw linkage injection shaft rotates to a direction of 180 degrees from the reset direction, at this time, the optocoupler blocks
  • the other radial straight edge of the disc triggers the optocoupler sensor to be positioned, so that the groove positions on both sides of the injection shaft are interchanged, and the cavity filled with the medium communicates with the outlet end of the pump sleeve bushing medium, and the original pump body bushing medium is communicated.
  • the cavity at the outlet end is converted into an inlet end of the medium of the pump body bushing;
  • the control device starts the screw motor and operates in the opposite direction, pushing the injection shaft away from the direction of the screw motor, so that one side cavity continues to pump out the medium while the other side cavity draws in the medium;
  • the above-mentioned syringe pump mechanism can accurately control the steering motor and the screw motor through the control device and the sensing device, alternately perform the steering action and push and pull the action of the injection shaft and the screw rod, realize the operation and operation of the syringe pump, and realize the syringe pump mechanism. Automated operation.
  • FIG. 1 is a schematic view showing the structure of a single-tube dual-chamber injection pump according to a first embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing the structure of a pump body bushing according to Embodiment 1 of the present invention.
  • Figure 3 is a schematic view showing the structure of an injection shaft according to Embodiment 1 of the present invention.
  • Figure 4 is a cross-sectional view showing the structure of an injection shaft according to Embodiment 1 of the present invention.
  • Figure 5 is a schematic view showing the structure of a casing of Embodiment 1 of the present invention.
  • Fig. 6 is a schematic view showing the structure of a syringe pump mechanism according to a second embodiment of the present invention.
  • Figure 7 is a top plan view of the syringe pump mechanism of Figure 6.
  • Figure 8 is a side elevational view of the syringe pump mechanism of Figure 6.
  • Figure 9 is a rear elevational view of the syringe pump mechanism of Figure 6.
  • Figure 10 is a cross-sectional view of the syringe pump mechanism of Figure 6.
  • Figure 11 is a schematic view showing the structure of a syringe pump mechanism according to a third embodiment of the present invention.
  • Figure 12 is a cross-sectional view of the syringe pump mechanism of Figure 11;
  • Figure 13 is a side elevational view of the syringe pump mechanism of Figure 11;
  • the single-tube dual-cavity syringe pump shown in Figures 1-5 includes a pump body sleeve 2, a injection shaft 3, a housing 1 and a sealing device 6.
  • the intermediate position of the pump body sleeve 2 is symmetrically provided with a sleeve medium inlet end 1-1 and a sleeve medium outlet end 1-2.
  • the outer side wall of the injection shaft 3 is provided with two elongated grooves, which are an injection shaft groove 3-1 and a injection shaft groove 3-2, respectively.
  • each of the two grooves is closed, the other end is open and the open end is flush with the two ends of the injection shaft 3, respectively, and the injection shaft groove 3-1 and the injection shaft groove 3-2 are at the center of the shaft of the injection shaft 3 Quasi-central symmetry.
  • One end of the housing 1 is provided with a cylindrical hole, the pump body sleeve 2 is disposed in the cylindrical hole, and the injection shaft 3 is disposed in the pump body sleeve 2.
  • One end of the pump body sleeve 2 is sealingly connected with the sealing device 6, so that one end surface of the injection shaft 3, the inner side wall of the pump body sleeve 2 and the sealing device 6 constitute a first cavity, and the other end surface of the injection shaft 3 and the pump body shaft
  • the inner side wall of the sleeve 2 and the inner bottom surface of the cylindrical hole in the housing 1 constitute a second cavity.
  • the injection shaft 3 is axially movable back and forth within the pump body sleeve 2, thereby changing the volume of the two chambers.
  • the center of the injection shaft 3 is provided with a through hole 3-3.
  • One end of the screw rod 7 penetrates through the through hole 3-3 and the sealing device 6.
  • the screw rod 7 is closely connected with the inner side wall of the injection shaft, and the screw rod 7 is sealingly connected with the sealing device 6. The rotation and movement of the injection shaft 3 are interlocked by the screw 7.
  • the housing 1 is disposed outside the pump body sleeve 2, and the housing 1 is provided with an inlet and an outlet respectively communicating with the sleeve medium inlet end 1-1 and the sleeve medium outlet end 1-2.
  • the housing 1 is provided with a medium inlet through groove and a medium outlet through groove, and communicates with the sleeve medium inlet end 1-1 and the sleeve medium outlet end 1-2, respectively.
  • the inner wall of the cylindrical bore of the casing 1 is sealed to the outer wall of the pump casing 2, and the inner bottom surface of the cylindrical bore of the casing 1 functions to seal one end face of the pump casing 2.
  • the sealing device 6 is provided with a sealing member 4 and a sealing ring 5, the sealing ring 5 is tightly connected with the screw rod 7, and the sealing device 6 is tightly assembled and connected with the housing 1 through the sealing member 4, thereby sealing the pump body sleeve 2 The role of an end face.
  • the sealing device 6 is also provided with a symmetrical dielectric overflow opening so that the overflowing medium can flow out through the overflow opening in the sealing device 6 without reaching the motor directly through the screw 7.
  • the pump body sleeve 2 and the injection shaft 3 are both ceramic materials, and the housing 1 and the sealing device 6 are made of a metal material such as aluminum or steel.
  • the inlet and outlet of the single-tube dual-chamber injection pump housing 1 are sealedly connected with the external medium input device and the medium output device; the two grooves of the injection shaft 3 are respectively opposite to the inlet end of the sleeve medium 1 -1 and the sleeve outlet end 1-2;
  • the syringe pump mechanism shown in Figure 6-10 uses single motor control, including single-tube dual-chamber syringe pump (single-tube dual-chamber syringe pump structure refer to Example 1), screw motor 8, clutch device, sensing device and control.
  • the screw motor 8 is connected to the single-tube double-cavity syringe pump and the clutch device on both sides by the screw rod 7.
  • the screw motor 8 is connected to a control device that controls the screw motor 8 to operate or stop.
  • the clutch device includes an electromagnetic clutch assembly 92 and an electromagnetic clutch assembly 92 disposed on opposite sides of the clutch plate 91 and the clutch plate 91.
  • the two electromagnetic clutch assemblies are respectively electrically connected to the control device, and the electromagnetic clutch assembly can adsorb the clutch plate after being energized.
  • the two electromagnetic clutch assemblies are assembled and fixed by the clutch bracket 10 and are fastened to the screw motor 8.
  • a rotor is disposed near the center of the electromagnetic clutch assembly 92 on the side of the screw motor 8.
  • the rotor is assembled with the rotor of the screw motor 8 to form a rotating pair, and the rotor in the interlocking electromagnetic clutch assembly 1 rotates synchronously when the motor rotor rotates.
  • the sensing device comprises two optocoupler sensors, respectively a steering sensor 102 and a lead screw sensor 101, and the two optocoupler sensors are respectively connected to the control device for signal transmission.
  • the screw sensor 101 is disposed on the clutch bracket outside the electromagnetic clutch assembly.
  • a section of the screw rod 7 engaged with the clutch device has a unilateral flat wire shape, and a straight bottom edge of the sensor shielding piece 94 inserted into the interlayer of the clutch piece 91 is matched with the flat surface of the screw rod 7, so that the clutch piece 91 and the screw rod 7 are formed.
  • the rotating pair rotates around the screw rod 7, the rotating rod 7 will drive the screw rod 7 to rotate synchronously, and the sensor shielding piece 94 is used to trigger the rotational position signal.
  • the steering sensor 102 is disposed on a clutch bracket below the sensor shielding piece 94.
  • the sensor shielding piece 94 is semi-circular and fixedly disposed in the interlayer of the clutch piece 91, and has a radius larger than the radius of the clutch piece 91, and a portion protruding from the outer diameter of the clutch piece 91 can block the steering sensor 102 to trigger a signal.
  • the sensor shielding piece 94 follows Rotating; the radial bottom edges of the sensor shielding piece 94 are respectively disposed on both sides of the outer diameter of the clutch piece 91, and become two signal triggering points of the steering sensor 102, which are in a 180° angle relationship, when any one side passes the steering sensor 102, that is, A corresponding signal is triggered which is used by the control device to determine the two stop positions during the steering.
  • the two electromagnetic clutch assemblies in the clutch device are controlled by a control device that maintains and has only one electromagnetic clutch assembly energized.
  • the electromagnetic clutch assembly When the electromagnetic clutch assembly is energized, an electromagnetic field is generated and the clutch plate 91 is integrated with it.
  • the clutch piece 91 When the clutch piece 91 is integrally integrated with the electromagnetic clutch assembly 92 provided with the rotor, it is indirectly integrated with the rotor of the screw motor 8, and is rotated by the screw motor 8 to drive the screw. 7 follows the screw shaft motor 8 in rotation with the injection shaft 3.
  • the clutch piece 91 is attracted to the electromagnetic clutch assembly 293 on the other side, it is indirectly integrated with the clutch holder 10 and remains relatively stationary, thereby preventing the rotational movement of the screw shaft 7 and the injection shaft 3.
  • the control device cooperates with the clutch device, the screw motor 8 and the sensing device to place the single-tube double-cavity syringe pump in the reset direction, that is, the recess of the first cavity and the medium end through the side of the injection shaft 3
  • the groove is connected while the second cavity on the other side communicates with the media inlet end through the other side groove of the injection shaft 3; the two grooves of the injection shaft 3 are respectively opposite to the medium inlet end and the medium outlet of the pump body sleeve end;
  • the control device energizes the electromagnetic clutch assembly 293, the clutch plate 91 is attracted to the electromagnetic clutch assembly 293, the clutch device locks the degree of freedom of axial rotation of the screw 7, and the screw 7 and the injection are pulled by the screw motor 8.
  • the shaft 3 moves in the direction of the screw motor 8, the volume of the first cavity becomes smaller, and the medium in the cavity (initially air or a mixture of air and medium) is pumped out through the outlet; meanwhile, the second cavity on the other side The volume of the body becomes larger, and the medium is drawn into the cavity through the inlet of the side;
  • the medium chamber communicating with the groove is filled with the medium and communicates with the outlet end of the medium; the other side groove which is opposite to the outlet end of the medium becomes the medium inlet end, and the medium communicating with the groove
  • the cavity has been evacuated and connected to the inlet end of the medium;
  • the control device 11 energizes the electromagnetic clutch assembly 293, and the clutch plate 91 is attracted to the electromagnetic clutch assembly 293, locking the degree of freedom of the axial rotation of the screw 7, and the screw 7 is reversely operated by the screw motor 8, and the screw 7 is driven. And the direction of the injection shaft 3 is pushed away from the screw motor 8, thereby changing the volume of the cavity on both sides of the injection shaft 3, so that one side cavity continues to pump out the medium while the other side The cavity draws in the medium while the control device begins to accumulate the strokes of the injection shaft 3 and the lead screw 7;
  • the control device stops the pumping action of the syringe pump; the control device performs the steering action, and the clutch device, the screw motor and the sensing device work together to set the syringe pump again. In the reset direction. In this cycle, the single-tube, two-chamber syringe pump mechanism continuously pumps the medium, except for a brief stop when performing the steering action.
  • the syringe pump mechanism shown in Fig. 11-13 adopts dual motor control, including single tube double cavity syringe pump (single tube double lumen syringe pump structure reference embodiment 1), steering motor 11, screw motor 8, transmission device 13 , sensing device and control device.
  • the screw motor 8 is connected to a control device that controls the operation of the screw motor 8.
  • the transmission device 13 includes a transmission bracket 131, a gear 132 and a gear 133. The two gears are disposed in the transmission bracket 131 and mesh with each other; the single-tube dual-chamber injection pump is coupled to the gear 132 by a screw motor 8.
  • the portion of the lead screw 7 extending through the gear 132 is flat, and the intermediate through hole of the gear 132 is rectangular, so that the gear 132 and the screw 7 constitute a rotating pair. Under the action of the screw motor 8, the screw 7 can be along the shaft. Moving inward and sliding in the axial direction of the gear-132 through hole, thereby driving the injection shaft 3 to move in the axial direction.
  • the steering motor 11 is composed of a motor and a speed reducer.
  • An induction device is disposed on the transmission bracket 131.
  • the sensing device includes a telescopic sensing unit and a steering sensing unit.
  • the telescopic sensing unit is an optocoupler sensor 141 for sensing a position signal of the screw rod 7 moving in the axial direction. Under the action of the screw motor 8, the screw rod 7 moves outward in the axial direction, and the tail end of the screw rod 7 triggers the optocoupler sensor 141 to trigger a signal which is used by the control device to determine that the screw rod 7 has moved to a specific position.
  • the steering sensing unit includes an optocoupler shielding disk 143 and an optocoupler sensor 142, and the optocoupler shielding disk 143 is semicircular, disposed outside the gear pair 133 connected to the output shaft of the steering motor 11; under the action of the steering motor 11, The optocoupler shield disk 143 is rotated accordingly.
  • the optocoupler sensor 142 is disposed under the optocoupler shielding plate 143.
  • the two radial straight sides of the optocoupler shielding plate 143 serve as two signal trigger points of the optocoupler sensor 142, 180° apart; When passing through the optocoupler sensor 142, a corresponding signal is triggered, which is used by the control device to determine the two stop positions during the steering.
  • the control device starts to turn the steering motor 11 to place the single-tube dual-chamber injection pump in the reset direction, which is positioned by one side of the optocoupler shielding disk of the steering induction unit.
  • the reset direction means that the first cavity communicates with the medium outlet end through the groove on the side of the injection shaft 3, while the other side second cavity communicates with the medium inlet end through the other side groove of the injection shaft 3; the injection shaft
  • the two grooves of 3 are opposite to the medium inlet end and the sleeve medium outlet end;
  • the control device starts the screw motor 8 to pull the injection shaft 3, so that the injection shaft 3 moves toward the screw motor 8, the first The volume of a cavity becomes smaller, and the medium in the cavity (initially air or a mixture of air and medium) is pumped out through the outlet; while the volume of the second cavity on the other side becomes larger, and the medium passes through the injection axis of the side. The groove is sucked into the cavity.
  • the screw motor 8 pulls the injection shaft 3 to move to the end surface of the sealing device 6, the tail end of the screw rod 7 triggers the optocoupler sensor 141, and the control device stops the screw motor 8 according to the trigger signal. ;
  • the control device activates the steering motor 11 to operate and stops in a direction opposite to the reset direction, which is positioned by the other side of the optocoupler shielding disk 143 of the steering induction unit.
  • the opposite direction to the reset direction is: the position after the steering movement is 180° based on the reset direction. At this time, the groove positions on both sides of the injection shaft 3 are replaced, and the groove on the side of the inlet end of the medium becomes positive.
  • the medium cavity communicating with the groove is filled with the medium and communicates with the outlet end of the medium; the other side groove which is opposite to the outlet end of the medium becomes the opposite end of the medium, and communicates with the groove
  • the medium chamber has evacuated the medium and communicated with the inlet end of the sleeve medium;
  • the control device starts the screw motor 8 to operate in the reverse direction, and pushes the injection shaft 3 away from the direction of the screw motor 8, thereby changing the volume of the cavity on both sides of the injection shaft 3, so that one side cavity continues to pump out the medium.
  • the other side cavity sucks in the medium, and the control device starts to accumulate the strokes of the injection shaft 3 and the screw rod 7;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Transmission Devices (AREA)
  • Reciprocating Pumps (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种单管双腔注射泵,包括泵体轴套(2)、注射轴(3)、壳体(1)和密封装置(6),壳体的一端设有圆柱孔,泵体轴套设于圆柱孔内,注射轴设于泵体轴套内。注射轴的外侧壁开设两条长条形的凹槽(3-1、3-2),两凹槽的一端均封闭,另一端均开放,且分别与注射轴两端齐平,注射轴的外壁与泵体轴套的内壁紧密贴合,泵体轴套上分别设有与两凹槽连通的介质进口端(1-1)和介质出口端(1-2),壳体上设有与泵体轴套的介质进口端、介质出口端相连通的进口和出口,泵体轴套的一端与密封装置密封连接。注射轴的一个端面、泵体轴套内侧壁和密封装置构成第一腔体,注射轴的另一个端面、泵体轴套内侧壁和壳体圆柱孔端面构成第二腔体,注射轴的泵体轴套内可沿轴向前后移动或转动。还涉及注射泵的使用方法、以及两种以不同驱动方式驱动的注射泵机构及其操作方法,从而实现介质的持续吸入和泵出。

Description

一种单管双腔注射泵、注射泵机构及其操作方法 技术领域
本发明属于注射泵技术领域,具体涉及一种单管双腔注射泵、注射泵机构及其操作方法。
背景技术
目前,市场上传统注射泵其工作方式是间歇性的。所谓间歇性是指注射泵吸入介质的时候,会失去泵出能力;而在泵出介质的时候,会失去吸入介质的能力。如果需要同时工作,则需要两个泵协同交替运作共同实现持续输送介质的功能。为了保持注射泵的高精度、宽泛的输出压强范围等特点,同时排除或者极大地消除其间歇性工作的缺陷,能克服上述不足的注射泵的开发是必要的。
发明内容
针对现有技术中存在的不足,本发明提供一种单管双腔注射泵、注射泵机构及其操作方法。
本发明的第一个目的是提供一种单管双腔注射泵,可实现持续单方向输出介质。
一种单管双腔注射泵,其特征在于,包括泵体轴套、注射轴、壳体和密封装置;泵体轴套上开设有轴套介质进口端和轴套介质出口端;注射轴的外侧壁开设有两条长条形的凹槽,两条凹槽的一端均封闭,另一端均开放且开放端分别与注射轴两端齐平;注射轴设于泵体轴套内;泵体轴套的一端与密封装置密封连接;注射轴的一个端面、泵体轴套内侧壁和密封装置构成第一腔体,注射轴的另一个端面、泵体轴套内侧壁和壳体上圆柱孔的内底面构成第二腔体,注射轴的外圆与泵体轴套的内圆紧密贴合,将第一腔体和第二腔体分隔开;注射轴能在泵体轴套内沿轴向前后运动,从而改变两个腔体的容积。
优选的,所述泵体轴套上的轴套介质进口端和轴套介质出口端设于泵体轴套的中部,且轴套介质进口端和轴套介质出口端对称设置。
优选的,所述注射轴上的两条凹槽以注射轴中轴的中心为准呈中心对称。
优选的,所述注射轴设有用于连接丝杆的通孔,丝杆的一端贯穿通孔和密封装置,丝杆与注射轴内侧壁紧密相连,与密封装置密封连接。
优选的,所述壳体设于泵体轴套外部,壳体上设有分别与轴套介质进口端、轴套介质出口端相连通的进口和出口,壳体内设有介质进口通槽和介质出口通槽,分别与轴套介质进口 端、轴套介质出口端连通,壳体的圆柱孔内壁与泵体轴套外壁密封。圆柱孔的内底面起到密封泵体轴套一个端面的作用。
优选的,所述密封装置内设有密封圈,密封圈与丝杆紧密连接,且密封装置与壳体通过紧固件密闭装配连接。
优选的,所述密封装置上对称设有介质溢流孔,可使溢流的介质能通过密封装置上的溢流孔流出,而不会直接通过丝杆到达电机。
优选的,所述泵体轴套和注射轴的材质为陶瓷。
优选的,所述壳体和密封装置的材质为金属,优选为金属铝和钢。
本发明的第二个目的是提供上述单管双腔注射泵的操作方法。
单管双腔注射泵的使用方法,其特征在于,包括以下步骤:
(1)单管双腔注射泵壳体上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;注射轴的两条凹槽分别正对轴套介质进口端和轴套介质出口端;
(2)通过丝杆推动注射轴,使得与轴套介质出口端经一侧凹槽连通的腔体的容积变小,腔体内介质经凹槽泵出;同时,与轴套介质进口端经另一侧凹槽连通的腔体的容积变大,介质经该侧的凹槽被吸入腔体;
(3)当丝杆推动注射轴移动至密封装置端面时,通过旋转丝杆将注射轴转动180°,使注射轴两侧凹槽位置互换,原来连通轴套介质进口端的一侧凹槽变成连通轴套介质出口端,此时与该凹槽连通的腔体内充满了介质,同时原来连通泵体轴套介质出口端的另一侧凹槽变成连通轴套介质进口端,与该凹槽连通的腔体已排空介质;
(4)反向拉动丝杆和注射轴,改变两侧介质腔体的容积,使一侧介质腔体继续泵出介质的同时,另一侧介质腔体吸入介质,如此循环往复。
本发明的单管双腔注射泵结构简单,且注射轴上的两条凹槽开口分别在注射轴的两个不同端面,结合丝杆拉动注射轴运动方向不同,使得一个介质腔体在向出口端注射介质的同时,另一个介质腔体从进口端吸入介质。本发明通过注射轴往复运动并在转向的时候对换凹槽与轴套介质进、出口的对应关系,使得注射泵具备持续单方向输出介质的能力;本发明还可以通过丝杆传动,通过高精度的进给控制,实现高精度的计量控制。本发明的泵体轴套和注射轴的材料以陶瓷为佳,尤其是针对高粘度的介质,能够以高精度配合起到密封作用以隔离两个介质腔体,并且有耐磨、转动滑动阻力小的效果;本发明的泵体轴套和注射轴也可以采用其他材料和密封方法,具体的:金属材料和橡胶密封技术,以针对水、清油和气体等流动性强、粘度低的介质。
本发明的第三个目的是提供一种包括上述单管双腔注射泵的注射泵机构,可实现对注射 泵的操控和运行,达到注射泵机构运行自动化。
一种单管双腔注射泵机构,其特征在于,包括单管双腔注射泵、丝杆电机、离合器装置、感应装置和控制装置;所述单管双腔注射泵包括泵体轴套、注射轴、壳体和密封装置;泵体轴套上开设有轴套介质进口端和轴套介质出口端;注射轴的外侧壁开设有两条长条形的凹槽,两条凹槽的一端均封闭,另一端均开放且开放端分别与注射轴两端齐平;注射轴设于泵体轴套内;泵体轴套的一端与密封装置密封连接;注射轴的一个端面、泵体轴套内侧壁和密封装置构成第一腔体,注射轴的另一个端面、泵体轴套内侧壁和壳体上圆柱孔的内底面构成第二腔体,注射轴的外圆与泵体轴套的内圆紧密贴合,将第一腔体和第二腔体分隔开;注射轴能在泵体轴套内沿轴向前后运动,从而改变两个腔体的容积;丝杆电机通过丝杆分别在两侧与单管双腔注射泵和离合器装置连接,离合器装置包括离合片以及离合片两侧相对设置的电磁离合器组件一、电磁离合器组件二,两电磁离合器组件分别与控制装置用电缆连接,电磁离合器组件通电后能吸附离合片,两电磁离合器组件通过离合器支架装配固定,并与丝杆电机紧固装配;靠近丝杆电机一侧的电磁离合器组件一的中心设有一转子,转子与丝杆电机的转子装配连接形成转动副,电机转子转动时联动电磁离合器组件中的转子同步转动;感应装置包括丝杆传感器和转向传感器,两传感器分别与控制装置用电缆连接并进行信号传输,丝杆传感器设于电磁离合器组件二外侧的离合器支架上,用于触发丝杆位置信号;转向传感器设于离合片下方的离合器支架上,丝杆的中间一段呈单边扁丝形,插入离合片夹层中的传感器遮挡片的直线底边与丝杆的扁丝面匹配,使离合片与丝杆构成转动副,离合片绕丝杆旋转时带动丝杆做同步的旋转运动,传感器遮挡片与转向传感器配合以触发旋转位置信号。
离合器装置中的两个电磁离合器组件受控制器控制,任何一个电磁离合器组件通电后将产生电磁场并吸附离合片与之结合成一体。当离合片与设置有转子的电磁离合器组件吸附成一体时,其间接地与丝杆电机的转子构成一体,并在丝杆电机的驱动下随之做旋转运动,从而带动丝杆和注射轴一起跟随丝杆电机旋转。当离合片与另一侧的电磁离合器组件吸附后,其间接地与离合器支架构成一体并保持相对静止,从而会阻止丝杆和注射轴的旋转运动。
本发明感应装置的丝杆传感器和转向传感器均为光耦传感器。
优选的,所述的传感器遮挡片为半圆形,固定设置在离合片的夹层中;其半径大于离合片的半径,因此其凸出在离合片外径之外的部分能够遮挡转向传感器从而触发信号。当丝杆电机转动离合片时,传感器遮挡片随之转动;传感器遮挡片的径向底边分别设置在离合片外径的两边,成为传感器的两个信号触发点,相距180°;当中其任意一条边经过转向传感器时,即触发相应的信号,此信号被控制装置用来判定转向过程中的两个停止位置。
本发明的丝杆传感器,用于感应丝杆沿轴向移动的位置;在丝杆电机的作用下丝杆做轴 向运动,当丝杆的裸露端(尾端)触发该丝杆传感器时,控制装置利用离合器装置和丝杆电机的联动,将丝杆和注射轴旋转180°,之后再通过丝杆电机驱动丝杆往相反方向做轴向运动。
本发明的注射泵机构通过控制装置和感应装置,能精确控制离合器装置和丝杆电机,交替执行转向动作和推拉注射轴和丝杆的动作,实现对该种注射泵的操控和运行,实现注射泵机构运行的自动化。
注射泵机构的操作方法,其特征在于,包括以下步骤:
(1)单管双腔注射泵壳体上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;
(2)控制装置控制离合器装置、丝杆电机和感应装置将注射泵置于复位方向,复位方向为:第一腔体经注射轴一侧的凹槽与泵体轴套介质出口端连通,同时第二腔体经注射轴的另一侧凹槽与泵体轴套介质进口端连通,注射轴的两凹槽分别正对泵体轴套介质进口端和介质出口端;
(3)控制器通过离合器装置锁住丝杆轴向转动自由度,并通过丝杆电机拉动丝杆和注射轴向丝杆电机方向移动,第一腔体容积变小,腔体内介质经注射轴凹槽泵出;同时第二腔体容积变大,介质经该侧的注射轴凹槽被吸入腔体;
(4)丝杆电机拉动注射轴移动接近密封装置的端面时,丝杆的尾部触发丝杆传感器,随即控制装置控制离合器装置、丝杆电机和转向传感器使得丝杆和注射轴绕轴向转动180°,注射轴两侧凹槽位置互换,充满了介质的腔体与泵体轴套介质出口端连通,原来连通泵体轴套介质出口端的腔体转换为连通泵体轴套介质进口端;
(5)控制装置通过离合器装置再次锁住丝杆轴向转动自由度,通过丝杆电机反向运转,将丝杆和注射轴推离丝杆电机方向,由此改变注射轴两侧腔体的容积,使一侧腔体继续泵出介质的同时另一侧腔体吸入介质;
(6)当注射轴被推离丝杆电机达到设定行程时,控制装置控制离合器装置、丝杆电机和感应装置将注射泵设置于复位方向上;如此循环往复至操作结束。
本发明的第四个目的是提供另外一种包含单管双腔注射泵的注射泵机构,同样可实现对注射泵的操控和运行,达到注射泵机构运行自动化。
一种注射泵机构,其特征在于,包括单管双腔注射泵、转向电机、丝杆电机、传动装置、感应装置和控制装置;所述单管双腔注射泵包括泵体轴套、注射轴、壳体和密封装置;泵体轴套上开设有轴套介质进口端和轴套介质出口端;注射轴的外侧壁开设有两条长条形的凹槽,两条凹槽的一端均封闭,另一端均开放且开放端分别与注射轴两端齐平;注射轴设于泵体轴 套内;泵体轴套的一端与密封装置密封连接;注射轴的一个端面、泵体轴套内侧壁和密封装置构成第一腔体,注射轴的另一个端面、泵体轴套内侧壁和壳体上圆柱孔的内底面构成第二腔体,注射轴的外圆与泵体轴套的内圆紧密贴合,将第一腔体和第二腔体分隔开;注射轴能在泵体轴套内沿轴向前后运动,从而改变两个腔体的容积;丝杆电机与控制装置连接,传动装置包括传动支架、齿轮一和齿轮二,两齿轮设置在传动支架内,且相互啮合;单管双腔注射泵通过丝杆电机与传动装置中的齿轮一相连接,丝杆在丝杆电机的作用下能轴向移动;转向电机的输出轴与齿轮二连接,齿轮二联动齿轮一,齿轮一径向联动丝杆;传动支架上设置感应装置,感应装置包括伸缩感应单元和转向感应单元;伸缩感应单元为光耦传感器一,用于感应丝杆沿轴向移动的位置;转向感应单元包括光耦遮挡盘和光耦传感器二,设于齿轮二的外侧;转向电机、丝杆电机、光耦传感器一和光耦传感器二与控制装置连接,控制装置用于控制转向电机和丝杆电机的运动。
优选的,所述光耦遮挡盘为半圆形,光耦遮挡盘的两个径向直边作为光耦传感器二的两个信号触发点,用于控制转向电机的旋转度数。
优选的,单管双腔注射泵的丝杆贯穿丝杆电机和齿轮一,齿轮一与丝杆构成转动副。具体地,丝杆贯穿齿轮一的部分呈扁形,齿轮一内的贯穿孔为矩形,从而使齿轮一与丝杆构成转动副。同时,在丝杆电机的作用下,丝杆能够沿轴向移动,并在齿轮一通孔中沿轴向滑动,从而带动注射轴沿轴向运动。
本发明中的转向电机由电机和减速器组成;转向电机、传动装置和丝杆的设计构成转向机构,用于完成转向运动;当转向电机工作时,带动传动装置中的两个齿轮,进而带动丝杆和注射轴一同旋转。
光耦传感器一用于感应丝杆沿轴向移动的位置;在丝杆电机的作用下丝杆沿轴向往外运动,丝杆的尾端触发光耦传感器一,从而触发信号,此信号被控制装置用来判定丝杆移动到达特定位置;转向感应单元包括光耦遮挡盘和光耦传感器二,且光耦遮挡盘为半圆形,设置在与转向电机相连的齿轮的另一端;在转向电机的作用下,光耦遮挡盘随之转动;光耦遮挡盘的两个径向直边作为光耦传感器二的两个信号触发点,相距180°转角关系;当中其任意一条边经过光耦传感器时,即触发相应的信号,此信号被控制装置用来判定转向过程中的两个停止位置。
上述注射泵机构的操作方法,包括以下步骤:
(1)单管双腔注射泵壳体上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;
(2)控制装置启动转向装置运转并停止在复位方向上,停止位置由转向感应单元的光耦 遮挡盘的径向直边触发光耦传感器二而定位;复位方向为:第一腔体经注射轴一侧的凹槽与泵体轴套介质出口端连通,同时第二腔体经注射轴的另一侧凹槽与泵体轴套介质进口端连通,注射轴的两凹槽分别正对泵体轴套介质进口端和介质出口端状态;
(3)控制装置启动丝杆电机拉动丝杆,丝杆联动注射轴使得注射轴向丝杆电机方向移动,第一腔体容积变小,腔体内介质泵出,同时第二腔体容积变大,介质被吸入腔体;丝杆电机拉动注射轴行走至密封装置的端面时,丝杆的尾端触发光耦传感器一,控制装置控制丝杆电机停止工作;
(4)控制装置启动转向电机运转联动齿轮二转动,齿轮二联动齿轮一转动,齿轮一联动丝杆转动,丝杆联动注射轴转动至与复位方向呈180度角的方向上,此时光耦遮挡盘的另一径向直边触发光耦传感器二而定位,使注射轴两侧凹槽位置互换,充满了介质的腔体与泵体轴套介质出口端连通,原来连通泵体轴套介质出口端的腔体转换为连通泵体轴套介质进口端;
(5)控制装置启动丝杆电机并反向运转,将注射轴推离丝杆电机方向,使一侧腔体继续泵出介质的同时另一侧腔体吸入介质;
(6)当注射轴被推离丝杆电机达到设定行程时,控制装置控制丝杆电机停止工作,然后启动转向装置运转并停止在复位方向上,如此循环往复至操作结束。
上述注射泵机构通过控制装置和感应装置,能精确控制转向电机和丝杆电机,交替执行转向动作和推拉注射轴和丝杆的动作,实现对该种注射泵的操控和运行,实现注射泵机构运行的自动化。
附图说明
图1是本发明实施例1单管双腔注射泵的结构示意图。
图2是本发明实施例1泵体轴套的结构剖面图。
图3是本发明实施例1注射轴的结构示意图。
图4是本发明实施例1注射轴的结构剖面图。
图5是本发明实施例1壳体结构示意图。
图6是本发明实施例2注射泵机构的结构示意图。
图7是图6所示注射泵机构的俯视图。
图8是图6所示注射泵机构的侧视图。
图9是图6所示注射泵机构的后视图。
图10是图6所示注射泵机构的剖面图。
图11是本发明实施例3注射泵机构的结构示意图。
图12是图11所示注射泵机构的的剖面图。
图13是图11所示注射泵机构的侧视图。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步描述说明。
实施例1
如图1-5所示的单管双腔注射泵,包括泵体轴套2、注射轴3、壳体1和密封装置6。泵体轴套2的中间位置对称设置有轴套介质进口端1-1和轴套介质出口端1-2。注射轴3的外侧壁开设有两条长条形的凹槽,分别为注射轴凹槽3-1和注射轴凹槽3-2。两条凹槽的一端均封闭,另一端均开放且开放端分别与注射轴3两端齐平,注射轴凹槽3-1、注射轴凹槽3-2以注射轴3中轴的中心为准呈中心对称。
壳体1的一端设有圆柱孔,泵体轴套2设于圆柱孔内,注射轴3设于泵体轴套2内。泵体轴套2的一端与密封装置6密封连接,使注射轴3的一个端面、泵体轴套2内侧壁以及密封装置6构成第一腔体,注射轴3的另一端面、泵体轴套2内侧壁以及壳体1上圆柱孔的内底面构成第二腔体。注射轴3能在泵体轴套2内沿轴向前后运动,从而改变两个腔体的容积。
注射轴3中心开设有通孔3-3,丝杆7的一端贯穿通孔3-3和密封装置6,丝杆7与注射轴内侧壁紧密相连,同时丝杆7与密封装置6密封连接。注射轴3的转动和移动由丝杆7联动。
壳体1设置于泵体轴套2外部,壳体1上设有分别与轴套介质进口端1-1和轴套介质出口端1-2相连通的进口和出口。壳体1内设有介质进口通槽和介质出口通槽,分别与轴套介质进口端1-1、轴套介质出口端1-2相连通。壳体1的圆柱孔内壁与泵体轴套2的外壁密封,壳体1圆柱孔的内底面起到密封泵体轴套2一个端面的作用。
密封装置6内设有密封挡片4和密封圈5,密封圈5与丝杆7紧密连接,密封装置6与壳体1通过密封挡片4密闭装配连接,起到密封泵体轴套2另一端面的作用。
密封装置6上还设有对称的介质溢流孔,使得溢流的介质能通过密封装置6上的溢流孔流出而不会直接通过丝杆7到达电机。
泵体轴套2和注射轴3均为陶瓷材料,壳体1和密封装置6均为金属材质,如铝材或钢材。
单管双腔注射泵的操作方法,具体步骤如下:
(1)单管双腔注射泵壳体1上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;将注射轴3的两条凹槽分别正对轴套介质进口端1-1和轴套介质出口端1-2;
(2)通过丝杆7推动注射轴3,使得与介质出口端1-2连通的腔体(第一腔体)容积变小,腔体内介质(初始的时候有空气或者空气与介质的混合体)经注射轴凹槽3-1泵出;同时与轴套介质进口端1-1连通的腔体(第二腔体)容积变大,介质经注射轴凹槽3-2被吸入相应的腔体内;
(3)当丝杆7推动注射轴3行走至密封装置6的端面时,通过旋转丝杆7将注射轴3转动180°,使得其两侧注射轴凹槽位置互换,原来连通轴套介质进口端1-1的注射轴凹槽3-2变成连通轴套介质出口端1-2,此时与该凹槽相通的腔体(第二腔体)内充满了介质,并与轴套介质出口端1-2连通;原来连通介质出口端1-2的注射轴凹槽3-1变成连通轴套介质进口端1-1,与该凹槽相通的腔体(第一腔体)已排空介质。
(4)反向拉动丝杆7和注射轴3,改变两侧腔体的容积,使一个腔体泵出介质的同时另一个腔体吸入介质。如此循环往复,除了在转换注射轴3凹槽位置时有短暂停止外,该单管双腔注射泵能持续不断泵出介质直至操作结束。
实施例2
如图6-10所示的注射泵机构,采用单电机控制,包括单管双腔注射泵(单管双腔注射泵结构参照实施例1)、丝杆电机8、离合器装置、感应装置和控制装置;丝杆电机8通过丝杆7分别与两侧的单管双腔注射泵、离合器装置连接。丝杆电机8与控制装置连接,控制装置控制丝杆电机8运行或停止。离合器装置包括离合片91和离合片91两侧相对设置的电磁离合器组件一92、电磁离合器组件二93,两电磁离合器组件分别与控制装置电连接,电磁离合器组件通电后能吸附离合片。两电磁离合器组件通过离合器支架10装配固定,并与丝杆电机8紧固装配。靠近丝杆电机8一侧的电磁离合器组件一92的中心设有一转子,转子与丝杆电机8的转子装配连接形成转动副,电机转子转动时联动电磁离合器组件一中的转子同步转动。
感应装置包括两个光耦传感器,分别为转向传感器102和丝杆传感器101,两光耦传感器分别与控制装置连接进行信号传输。丝杆传感器101设于电磁离合器组件二外侧的离合器支架上,当丝杆电机8驱动丝杆7轴向移动至设定位置时触发丝杆位置信号。
丝杆7与离合器装置配合的一段呈单边扁丝形,插入离合片91夹层中的传感器遮挡片94的直线底边与丝杆7的扁丝面匹配,使离合片91与丝杆7构成转动副,离合片91绕丝杆7旋转时将带动丝杆7作同步旋转运动,传感器遮挡片94用以触发旋转位置信号。转向传感器102设于传感器遮挡片94下方的离合器支架上。传感器遮挡片94为半圆形,固定设置在离合片91的夹层中,其半径大于离合片91的半径,其凸出于离合片91外径之外的部分能够遮挡转向传感器102从而触发信号,当丝杆电机8转动离合片91时,传感器遮挡片94随之 转动;传感器遮挡片94的径向底边分别设置在离合片91外径的两边,成为转向传感器102的两个信号触发点,相距180°转角关系,当任意一条边经过转向传感器102时,即触发相应的信号,此信号被控制装置用来判定转向过程中的两个停止位置。
离合器装置中的两个电磁离合器组件受控制装置控制,控制装置保持有且仅有一个电磁离合器组件通电,电磁离合器组件通电后将产生电磁场并吸附离合片91与之结合成一体。当离合片91与设有转子的电磁离合器组件一92吸附成一体时,其间接地与丝杆电机8的转子构成一体,并在丝杆电机8的驱动下随之做旋转运动,从而带动丝杆7和注射轴3一起跟随丝杆电机8旋转。当离合片91与另一侧的电磁离合器组件二93吸附后,其间接地与离合器支架10构成一体并保持相对静止,从而会阻止丝杆7和注射轴3的旋转运动。
本实施例注射泵机构的操作方法,包括如下步骤:
(1)单管双腔注射泵壳体1上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;
(2)控制装置通过离合器装置、丝杆电机8和感应装置的协同工作,将单管双腔注射泵置于复位方向上,即第一腔体与介质出端通过注射轴3一侧的凹槽连通,同时另一侧的第二腔体与介质进端通过注射轴3的另一侧凹槽连通;注射轴3的两条凹槽分别正对泵体轴套的介质进口端和介质出口端;
(3)控制装置对电磁离合器组件二93通电,离合片91吸附至电磁离合器组件二93,离合器装置锁住丝杆7轴向转动的自由度,并通过丝杆电机8拉动丝杆7和注射轴3向丝杆电机8的方向移动,第一腔体容积变小,腔体内介质(初始的时候有空气或者空气与介质的混合体)经出口泵出;同时,另一侧的第二腔体容积变大,且介质经该侧的入口被吸入腔体;
(4)当丝杆电机8拉动注射轴3轴向移动至接近密封装置6的端面时,丝杆7的尾端触发丝杆传感器101,丝杆传感器101将信号传递至控制装置,控制装置对电磁离合器组件一92通电,离合片91与电磁离合器组件一92吸附成一体时,其间接地与丝杆电机8的转子构成一体,并在丝杆电机8的驱动下随之做旋转运动,通过传感器遮挡片94触发转向传感器102,使得丝杆7和注射轴3绕轴向转动180度,注射轴3两侧凹槽位置完成对换,原来正对介质进口端的一侧凹槽变成正对介质出口端,此时与该凹槽相通的介质腔内充满了介质并与介质出口端连通;原来正对介质出口端的另一侧凹槽变成正对介质进口端,与该凹槽相通的介质腔已排空介质并与介质进口端连通;
(5)控制装置11对电磁离合器组件二93通电,离合片91吸附至电磁离合器组件二93,锁住丝杆7轴向转动的自由度,通过丝杆电机8反向运转,将丝杆7和注射轴3推离丝杆电机8的方向,由此改变注射轴3两侧腔体的容积,使一侧腔体继续泵出介质的同时,另一侧 腔体吸入介质,同时控制装置开始累计注射轴3和丝杆7的行程;
(6)当注射轴3被推离至设定行程时,控制装置停止注射泵的泵出动作;控制装置实施转向动作,通过离合器装置、丝杆电机和感应装置协同工作,再次将注射泵设置于复位方向上。如此循环往复,除了在执行转向动作时有短暂停止外,该单管双腔注射泵机构可持续不断泵出介质。
实施例3:
如图11-13所示的注射泵机构,采用双电机控制,包括单管双腔注射泵(单管双腔注射泵结构参照实施例1)、转向电机11、丝杆电机8、传动装置13、感应装置和控制装置。丝杆电机8与控制装置连接,控制装置控制丝杆电机8的运行。传动装置13包括传动支架131、齿轮一132和齿轮二133,两齿轮设置在传动支架131内,且相互啮合;单管双腔注射泵通过丝杆电机8与齿轮一132相连接。丝杆7贯穿齿轮一132的部分呈扁形,齿轮一132的中间通孔为矩形,从而使齿轮一132与丝杆7构成转动副,在丝杆电机8的作用下,丝杆7能够沿轴向移动,并在齿轮一132通孔中沿轴向滑动,从而带动注射轴3沿轴向运动。
转向电机11由电机和减速器组成。传动支架131上设置感应装置,感应装置包括伸缩感应单元和转向感应单元;伸缩感应单元为光耦传感器一141,用于感应丝杆7沿轴向移动的位置信号。在丝杆电机8的作用下丝杆7沿轴向往外运动,丝杆7的尾端触发光耦传感器一141,从而触发信号,此信号被控制装置用来判定丝杆7移动到达特定位置。转向感应单元包括光耦遮挡盘143和光耦传感器二142,且光耦遮挡盘143为半圆形,设置在与转向电机11输出轴相连的齿轮二133的外侧;在转向电机11的作用下,光耦遮挡盘143随之转动。光耦传感器二142设于光耦遮挡盘143的下方,光耦遮挡盘143的两个径向直边作为光耦传感器二142的两个信号触发点,相距180°;当任意一条径向直边经过光耦传感器二142时,即触发相应的信号,此信号被控制装置用来判定转向过程中的两个停止位置。
本实施例的注射泵机构的操作方法,包括如下步骤:
(1)单管双腔注射泵壳体1上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;
(2)控制装置启动转向电机11转动将单管双腔注射泵置于复位方向上,此停止位置由转向感应单元的光耦遮挡盘某一条边定位。复位方向是指:第一腔体与介质出口端通过注射轴3一侧的凹槽连通,同时另一侧第二腔体与介质进口端通过注射轴3的另一侧凹槽连通;注射轴3的两条凹槽分别正对介质进口端和轴套介质出口端;
(3)控制装置启动丝杆电机8拉动注射轴3,使得注射轴3向丝杆电机8方向移动,第 一腔体容积变小,腔体内介质(初始的时候有空气或者空气与介质的混合体)经出口泵出;同时另一侧的第二腔体容积变大,且介质经该侧的注射轴凹槽被吸入腔体,当丝杆电机8拉动注射轴3轴向移动至密封装置6的端面时,丝杆7尾端触发光耦传感器一141,控制装置根据此触发信号停止丝杆电机8;
(4)控制装置启动转向电机11运转,并停止在与复位方向相反的方向上,此停止位置由转向感应单元的光耦遮挡盘143的另一条边定位。所谓与复位方向相反的方向是:以复位方向为基准,转向运动180°后的位置,此时注射轴3两侧凹槽位置完成对换,原来正对介质进口端的一侧凹槽变成正对介质出口端,此时与该凹槽相通的介质腔内充满了介质并与介质出口端连通;原来正对介质出口端的另一侧凹槽变成正对介质进口端,与该凹槽相通的介质腔已排空介质并与轴套介质进口端连通;
(5)控制装置启动丝杆电机8反向运转,将注射轴3推离丝杆电机8的方向,由此改变注射轴3两侧腔体的容积,使一侧腔体继续泵出介质的同时另一侧腔体吸入介质,同时控制装置开始累计注射轴3和丝杆7的行程;
(6)当注射轴3被推离丝杆电机8达到设定行程时,控制装置停止丝杆电机8,然后启动转向电机11运行并再次停止在复位方向上,如此循环往复,除了转向装置执行转向动作时有短暂停止外,该单管双腔注射泵机构可持续不断泵出介质。

Claims (18)

  1. 一种单管双腔注射泵,其特征在于,包括泵体轴套、注射轴、壳体和密封装置;泵体轴套上开设有轴套介质进口端和轴套介质出口端;注射轴的外侧壁开设有两条长条形的凹槽,两条凹槽的一端均封闭,另一端均开放且开放端分别与注射轴两端齐平;注射轴设于泵体轴套内;泵体轴套的一端与密封装置密封连接;注射轴的一个端面、泵体轴套内侧壁和密封装置构成第一腔体,注射轴的另一个端面、泵体轴套内侧壁和壳体上圆柱孔的内底面构成第二腔体,注射轴的外圆与泵体轴套的内圆紧密贴合,将第一腔体和第二腔体分隔开;注射轴能在泵体轴套内沿轴向前后运动,从而改变两个腔体的容积。
  2. 根据权利要求1所述单管双腔注射泵,其特征在于,所述泵体轴套上的轴套介质进口端和轴套介质出口端设于泵体轴套的中部,且轴套介质进口端和轴套介质出口端对称设置。
  3. 根据权利要求1所述单管双腔注射泵,其特征在于,所述注射轴上的两条凹槽以注射轴中轴的中心为准呈中心对称。
  4. 根据权利要求1、2或3所述单管双腔注射泵,其特征在于,所述注射轴设有用于连接丝杆的通孔,丝杆的一端贯穿通孔和密封装置,丝杆与注射轴内侧壁紧密相连,与密封装置密封连接。
  5. 根据权利要求4所述单管双腔注射泵,其特征在于,所述壳体设于泵体轴套外部,壳体上设有分别与轴套介质进口端、轴套介质出口端相连通的进口和出口,壳体内设有介质进口通槽和介质出口通槽,分别与轴套介质进口端、轴套介质出口端连通,壳体的圆柱孔内壁与泵体轴套外壁密封。
  6. 根据权利要求5所述单管双腔注射泵,其特征在于,所述密封装置内设有密封圈,密封圈与丝杆紧密连接,且密封装置与壳体通过紧固件密闭装配连接。
  7. 根据权利要求6所述单管双腔注射泵,其特征在于,所述密封装置上对称设有介质溢流孔。
  8. 根据权利要求1所述单管双腔注射泵,其特征在于,所述泵体轴套和注射轴的材质为陶瓷。
  9. 根据权利要求1所述单管双腔注射泵,其特征在于,所述壳体和密封装置的材质为金属。
  10. 权利要求1-9所述单管双腔注射泵的使用方法,其特征在于,包括以下步骤:
    (1)单管双腔注射泵壳体上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;注射轴的两条凹槽分别正对轴套介质进口端和轴套介质出口端;
    (2)通过丝杆推动注射轴,使得与轴套介质出口端经一侧凹槽连通的腔体的容积变小,腔体内介质经凹槽泵出;同时,与轴套介质进口端经另一侧凹槽连通的腔体的容积变大,介质经该侧的凹槽被吸入腔体;
    (3)当丝杆推动注射轴移动至密封装置端面时,通过旋转丝杆将注射轴转动180°,使注射 轴两侧凹槽位置互换,原来连通轴套介质进口端的一侧凹槽变成连通轴套介质出口端,此时与该凹槽连通的腔体内充满了介质,同时原来连通泵体轴套介质出口端的另一侧凹槽变成连通轴套介质进口端,与该凹槽连通的腔体已排空介质;
    (4)反向拉动丝杆和注射轴,改变两侧介质腔体的容积,使一侧介质腔体继续泵出介质的同时,另一侧介质腔体吸入介质,如此循环往复。
  11. 一种单管双腔注射泵机构,其特征在于,包括单管双腔注射泵、丝杆电机、离合器装置、感应装置和控制装置;所述单管双腔注射泵包括泵体轴套、注射轴、壳体和密封装置;泵体轴套上开设有轴套介质进口端和轴套介质出口端;注射轴的外侧壁开设有两条长条形的凹槽,两条凹槽的一端均封闭,另一端均开放且开放端分别与注射轴两端齐平;注射轴设于泵体轴套内;泵体轴套的一端与密封装置密封连接;注射轴的一个端面、泵体轴套内侧壁和密封装置构成第一腔体,注射轴的另一个端面、泵体轴套内侧壁和壳体上圆柱孔的内底面构成第二腔体,注射轴的外圆与泵体轴套的内圆紧密贴合,将第一腔体和第二腔体分隔开;注射轴能在泵体轴套内沿轴向前后运动,从而改变两个腔体的容积;丝杆电机通过丝杆分别在两侧与单管双腔注射泵和离合器装置连接,离合器装置包括离合片以及离合片两侧相对设置的电磁离合器组件一、电磁离合器组件二,两电磁离合器组件分别与控制装置用电缆连接,电磁离合器组件通电后能吸附离合片,两电磁离合器组件通过离合器支架装配固定,并与丝杆电机紧固装配;靠近丝杆电机一侧的电磁离合器组件一的中心设有一转子,转子与丝杆电机的转子装配连接形成转动副,电机转子转动时联动电磁离合器组件中的转子同步转动;感应装置包括丝杆传感器和转向传感器,两传感器分别与控制装置用电缆连接并进行信号传输,丝杆传感器设于电磁离合器组件二外侧的离合器支架上,用于触发丝杆位置信号;转向传感器设于离合片下方的离合器支架上,丝杆的中间一段呈单边扁丝形,插入离合片夹层中的传感器遮挡片的直线底边与丝杆的扁丝面匹配,使离合片与丝杆构成转动副,离合片绕丝杆旋转时带动丝杆做同步的旋转运动,传感器遮挡片与转向传感器配合以触发旋转位置信号。
  12. 根据权利要求11所述注射泵机构,其特征在于,所述传感器遮挡片为半圆形,其半径大于离合片的半径,其凸出于离合片外径之外的部分能遮挡转向传感器而触发信号。
  13. 根据权利要求12所述注射泵机构,其特征在于,所述传感器遮挡片的径向底边分别设置在离合片外径的两边,成为转向传感器的两个信号触发点,两个信号触发点相距180°转角关系。
  14. 权利要求11-13所述注射泵机构的操作方法,其特征在于,包括以下步骤:
    (1)单管双腔注射泵壳体上的进口和出口均与外置的介质输入装置和介质输出装置密封连 接;
    (2)控制装置控制离合器装置、丝杆电机和感应装置将注射泵置于复位方向,复位方向为:第一腔体经注射轴一侧的凹槽与泵体轴套介质出口端连通,同时第二腔体经注射轴的另一侧凹槽与泵体轴套介质进口端连通,注射轴的两凹槽分别正对泵体轴套介质进口端和介质出口端;
    (3)控制器通过离合器装置锁住丝杆轴向转动自由度,并通过丝杆电机拉动丝杆和注射轴向丝杆电机方向移动,第一腔体容积变小,腔体内介质经注射轴凹槽泵出;同时第二腔体容积变大,介质经该侧的注射轴凹槽被吸入腔体;
    (4)丝杆电机拉动注射轴移动接近密封装置的端面时,丝杆的尾部触发丝杆传感器,随即控制装置控制离合器装置、丝杆电机和转向传感器使得丝杆和注射轴绕轴向转动180°,注射轴两侧凹槽位置互换,充满了介质的腔体与泵体轴套介质出口端连通,原来连通泵体轴套介质出口端的腔体转换为连通泵体轴套介质进口端;
    (5)控制装置通过离合器装置再次锁住丝杆轴向转动自由度,通过丝杆电机反向运转,将丝杆和注射轴推离丝杆电机方向,由此改变注射轴两侧腔体的容积,使一侧腔体继续泵出介质的同时另一侧腔体吸入介质;
    (6)当注射轴被推离丝杆电机达到设定行程时,控制装置控制离合器装置、丝杆电机和感应装置将注射泵设置于复位方向上;如此循环往复至操作结束。
  15. 一种单管双腔注射泵机构,其特征在于,包括单管双腔注射泵、转向电机、丝杆电机、传动装置、感应装置和控制装置;所述单管双腔注射泵包括泵体轴套、注射轴、壳体和密封装置;泵体轴套上开设有轴套介质进口端和轴套介质出口端;注射轴的外侧壁开设有两条长条形的凹槽,两条凹槽的一端均封闭,另一端均开放且开放端分别与注射轴两端齐平;注射轴设于泵体轴套内;泵体轴套的一端与密封装置密封连接;注射轴的一个端面、泵体轴套内侧壁和密封装置构成第一腔体,注射轴的另一个端面、泵体轴套内侧壁和壳体上圆柱孔的内底面构成第二腔体,注射轴的外圆与泵体轴套的内圆紧密贴合,将第一腔体和第二腔体分隔开;注射轴能在泵体轴套内沿轴向前后运动,从而改变两个腔体的容积;丝杆电机与控制装置连接,传动装置包括传动支架、齿轮一和齿轮二,两齿轮设置在传动支架内,且相互啮合;单管双腔注射泵通过丝杆电机与传动装置中的齿轮一相连接,丝杆在丝杆电机的作用下能轴向移动;转向电机的输出轴与齿轮二连接,齿轮二联动齿轮一,齿轮一径向联动丝杆;传动支架上设置感应装置,感应装置包括伸缩感应单元和转向感应单元;伸缩感应单元为光耦传感器一,用于感应丝杆沿轴向移动的位置;转向感应单元包括光耦遮挡盘和光耦传感器二,设 于齿轮二的外侧;转向电机、丝杆电机、光耦传感器一和光耦传感器二与控制装置连接,控制装置用于控制转向电机和丝杆电机的运动。
  16. 根据权利要求15所述注射泵机构,其特征在于,所述光耦遮挡盘为半圆形,光耦遮挡盘的两个径向直边作为光耦传感器二的两个信号触发点,用于控制转向电机的旋转度数。
  17. 根据权利要求15所述注射泵机构,其特征在于,所述单管双腔注射泵的丝杆贯穿丝杆电机和齿轮一,齿轮一与丝杆构成转动副。
  18. 根据权利要求15-17所述注射泵机构的操作方法,其特征在于,包括以下步骤:
    (1)单管双腔注射泵壳体上的进口和出口均与外置的介质输入装置和介质输出装置密封连接;
    (2)控制装置启动转向装置运转并停止在复位方向上,停止位置由转向感应单元的光耦遮挡盘的径向直边触发光耦传感器二而定位;复位方向为:第一腔体经注射轴一侧的凹槽与泵体轴套介质出口端连通,同时第二腔体经注射轴的另一侧凹槽与泵体轴套介质进口端连通,注射轴的两凹槽分别正对泵体轴套介质进口端和介质出口端状态;
    (3)控制装置启动丝杆电机拉动丝杆,丝杆联动注射轴使得注射轴向丝杆电机方向移动,第一腔体容积变小,腔体内介质泵出,同时第二腔体容积变大,介质被吸入腔体;丝杆电机拉动注射轴行走至密封装置的端面时,丝杆的尾端触发光耦传感器一,控制装置控制丝杆电机停止工作;
    (4)控制装置启动转向电机运转联动齿轮二转动,齿轮二联动齿轮一转动,齿轮一联动丝杆转动,丝杆联动注射轴转动至与复位方向呈180度角的方向上,此时光耦遮挡盘的另一径向直边触发光耦传感器二而定位,使注射轴两侧凹槽位置互换,充满了介质的腔体与泵体轴套介质出口端连通,原来连通泵体轴套介质出口端的腔体转换为连通泵体轴套介质进口端;
    (5)控制装置启动丝杆电机并反向运转,将注射轴推离丝杆电机方向,使一侧腔体继续泵出介质的同时另一侧腔体吸入介质;
    (6)当注射轴被推离丝杆电机达到设定行程时,控制装置控制丝杆电机停止工作,然后启动转向装置运转并停止在复位方向上,如此循环往复至操作结束。
PCT/CN2017/072006 2016-02-03 2017-01-22 一种单管双腔注射泵、注射泵机构及其操作方法 WO2017133507A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017000634.1T DE112017000634B4 (de) 2016-02-03 2017-01-22 Einzelrohr-Doppelkammer-Einspritzpumpe, Einspritzpumpe-Mechanismen, Einspritzpumpenantrieb und Verfahren zu deren Bedienung
JP2018527955A JP6484765B2 (ja) 2016-02-03 2017-01-22 シングルチューブダブルチャンバー噴射ポンプ、噴射ポンプ機構およびその操作方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610078222.4 2016-02-03
CN201610075723.7A CN105715546B (zh) 2016-02-03 2016-02-03 一种单电机单管双腔注射泵机构
CN201610078222.4A CN105673384B (zh) 2016-02-03 2016-02-03 一种双电机单管双腔注射泵机构
CN201610078208.4A CN105477738B (zh) 2016-02-03 2016-02-03 一种单管双腔注射泵及其使用方法
CN201610075723.7 2016-02-03
CN201610078208.4 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017133507A1 true WO2017133507A1 (zh) 2017-08-10

Family

ID=59500532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072006 WO2017133507A1 (zh) 2016-02-03 2017-01-22 一种单管双腔注射泵、注射泵机构及其操作方法

Country Status (3)

Country Link
JP (1) JP6484765B2 (zh)
DE (1) DE112017000634B4 (zh)
WO (1) WO2017133507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107795474A (zh) * 2017-11-29 2018-03-13 北京众驰伟业科技发展有限公司 一种微量自动注射泵

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200525101A (en) * 2003-12-23 2005-08-01 Chrysalis Tech Inc Piston pump useful for aerosol generation
JP4773595B2 (ja) * 1999-10-18 2011-09-14 東メンシステム株式会社 塗装装置
CN102794123A (zh) * 2007-08-02 2012-11-28 流体管理运转有限公司 双腔室的混合泵
CN103842650A (zh) * 2011-09-28 2014-06-04 森西勒Pat股份公司 流体分配系统
CN105477738A (zh) * 2016-02-03 2016-04-13 龙木信息科技(杭州)有限公司 一种单管双腔注射泵及其使用方法
CN105673384A (zh) * 2016-02-03 2016-06-15 龙木信息科技(杭州)有限公司 一种单管双腔注射泵机构(双电机)
CN105715546A (zh) * 2016-02-03 2016-06-29 龙木信息科技(杭州)有限公司 一种单电机单管双腔注射泵机构
CN205460177U (zh) * 2016-02-03 2016-08-17 龙木信息科技(杭州)有限公司 一种单管双腔注射泵

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1572245A (zh) 1968-02-16 1969-06-27
JPS59158387A (ja) 1983-02-28 1984-09-07 Denki Kagaku Keiki Co Ltd 送液方法
JPH0686870B2 (ja) 1986-07-09 1994-11-02 株式会社ニッテク 試薬分注装置
US5312233A (en) 1992-02-25 1994-05-17 Ivek Corporation Linear liquid dispensing pump for dispensing liquid in nanoliter volumes
DE19605747C2 (de) 1996-02-16 1998-08-06 Ferromatik Milacron Maschinenb Antriebseinheit für Plastifizier- und Einspritzeinheiten von Kunststoff-Spritzgießmaschinen
DE69703535T2 (de) 1997-06-05 2001-06-07 Sumitomo Heavy Industries, Ltd. Spritzgiessmaschine vom Typ mit eingebautem elektrischem Motor
DE10028066C1 (de) 2000-06-07 2001-12-20 Krauss Maffei Kunststofftech Einspritzaggregat für eine Spritzgießmaschine
DE10058866B4 (de) 2000-11-27 2005-02-10 Siemens Ag Einspritzaggregat für eine Spritzgiessmaschine
DE102008000112A1 (de) 2008-01-21 2009-07-23 Agilent Technologies Inc., Santa Clara Reziprozierender Hubkolben mit überlagerter Drehbewegung
WO2010088780A1 (de) 2009-02-05 2010-08-12 Dopag Dosiertechnik Und Pneumatik Ag Dosierventil mit elektromotorischem antrieb

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773595B2 (ja) * 1999-10-18 2011-09-14 東メンシステム株式会社 塗装装置
TW200525101A (en) * 2003-12-23 2005-08-01 Chrysalis Tech Inc Piston pump useful for aerosol generation
CN102794123A (zh) * 2007-08-02 2012-11-28 流体管理运转有限公司 双腔室的混合泵
CN103842650A (zh) * 2011-09-28 2014-06-04 森西勒Pat股份公司 流体分配系统
CN105477738A (zh) * 2016-02-03 2016-04-13 龙木信息科技(杭州)有限公司 一种单管双腔注射泵及其使用方法
CN105673384A (zh) * 2016-02-03 2016-06-15 龙木信息科技(杭州)有限公司 一种单管双腔注射泵机构(双电机)
CN105715546A (zh) * 2016-02-03 2016-06-29 龙木信息科技(杭州)有限公司 一种单电机单管双腔注射泵机构
CN205460177U (zh) * 2016-02-03 2016-08-17 龙木信息科技(杭州)有限公司 一种单管双腔注射泵

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107795474A (zh) * 2017-11-29 2018-03-13 北京众驰伟业科技发展有限公司 一种微量自动注射泵
CN107795474B (zh) * 2017-11-29 2024-03-08 北京众驰伟业科技发展有限公司 一种微量自动注射泵

Also Published As

Publication number Publication date
JP6484765B2 (ja) 2019-03-13
DE112017000634B4 (de) 2022-09-29
DE112017000634T5 (de) 2018-10-31
JP2019504235A (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2009132494A1 (zh) 计量泵及其驱动装置
CN104912419A (zh) 一种速度可调的关门器
CN105464919B (zh) 泵及应用该泵的自动投放系统
CN106523318A (zh) 一种双向活塞泵及其控制方法
WO2017133507A1 (zh) 一种单管双腔注射泵、注射泵机构及其操作方法
CN105673384A (zh) 一种单管双腔注射泵机构(双电机)
WO2021004105A1 (zh) 清洁设备
CN203297094U (zh) 一种不完全齿轮机构驱动的叶片差速泵
CN205460177U (zh) 一种单管双腔注射泵
CN111604282A (zh) 一种材料透气性检测箱
CN107968184B (zh) 一种用于对电池进行注液的注液泵
CN105715546A (zh) 一种单电机单管双腔注射泵机构
CN207892582U (zh) 一种钻井防喷装置
CN110230589A (zh) 偏心轮旋转挤压点滴泵
CN209990926U (zh) 一种方便流量调节的泵阀
CN208534746U (zh) 一种应用螺杆泵的清桶装置
CN205781218U (zh) 一种直行程电动执行器
CN105477738B (zh) 一种单管双腔注射泵及其使用方法
CN208651139U (zh) 具有定位功能的螺杆泵清桶装置
US7080975B2 (en) Integrated pump and ceramic valve
CN111734597A (zh) 一种往复式柱塞泵
CN109578238B (zh) 一种活塞式石油输送泵
CN103644113B (zh) 一种往复柱塞泵用直动圆柱导槽凸轮机构端式配流装置
CN220599946U (zh) 一种流速平稳的柱塞泵
CN215875549U (zh) 一种微量高精度真空吸注泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018527955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112017000634

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746827

Country of ref document: EP

Kind code of ref document: A1