WO2017132965A1 - 一种数据传输系统、方法和装置 - Google Patents

一种数据传输系统、方法和装置 Download PDF

Info

Publication number
WO2017132965A1
WO2017132965A1 PCT/CN2016/073569 CN2016073569W WO2017132965A1 WO 2017132965 A1 WO2017132965 A1 WO 2017132965A1 CN 2016073569 W CN2016073569 W CN 2016073569W WO 2017132965 A1 WO2017132965 A1 WO 2017132965A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
layer
pdcp layer
pdu
remote
Prior art date
Application number
PCT/CN2016/073569
Other languages
English (en)
French (fr)
Inventor
马洁
蔺波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/073569 priority Critical patent/WO2017132965A1/zh
Priority to EP16888790.9A priority patent/EP3393200A1/en
Priority to CN201680077772.2A priority patent/CN108432338A/zh
Publication of WO2017132965A1 publication Critical patent/WO2017132965A1/zh
Priority to US16/036,728 priority patent/US10660008B2/en
Priority to US16/861,553 priority patent/US20200260355A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission system, method and apparatus.
  • the device-to-device (English name: device to device, English abbreviation: D2D) communication mode means that the user equipment (English name: user equipment, English abbreviation: UE) directly communicates with the user equipment.
  • Two UEs performing D2D communication are respectively marked as UE1 and UE2, and when UE1 is in the coverage area of the base station, UE2 can establish a connection with the base station through UE1.
  • the user equipment 1 may be referred to as a relay UE (English: relay UE), that is, a UE that provides a relay service; and the UE 2 is referred to as a remote UE or a remote UE.
  • the remote UE and the relay UE trust each other, that is, the relay UE can learn the communication content between the remote UE and the base station. In this way, if the information on the relay UE is stolen, the communication content between the remote UE and the base station may be leaked, that is, the security of data transmission is low.
  • Embodiments of the present invention provide a data transmission system, method, and apparatus for improving security of data transmission.
  • a data transmission system including: a first device, a relay user equipment UE, and a second device;
  • the first device is in the cellular network packet data convergence protocol PDCP layer of the first device, Performing security processing on the data to be transmitted according to the first policy of the sender, generating a protocol data unit PDU, and transmitting the PDU to the relay UE.
  • the first policy is a security processing policy negotiated between the first device and the second device. Transmitting data is data that the first device needs to transmit to the second device;
  • the relay UE receives the PDU sent by the first device, and sends the PDU to the second device;
  • the second device receives the PDU sent by the relaying UE, and performs security processing on the PDU according to the first policy of the receiving end at the PDCP layer of the second device to obtain data to be transmitted.
  • a data transmission method including:
  • the first device performs security processing on the data to be transmitted according to the first policy of the sender according to the first packet of the first packet, and the first data is the first device and the second device.
  • the data to be transmitted is data that the first device needs to transmit to the second device;
  • the first device sends the PDU to the second device by using the relay user equipment UE; wherein the second device includes a cellular network PDCP layer.
  • a data transmission method including:
  • the relay user equipment UE receives the PDU sent by the first device, where the PDU is the PDCP layer of the first device in the cellular network packet data convergence protocol of the first device, and performs security processing according to the first policy based on the sending end.
  • the first policy is a security processing policy negotiated by the first device and the second device, where the data to be transmitted is data that the first device needs to transmit to the second device;
  • the relaying UE sends the PDU to the second device; wherein the second device includes a cellular network PDCP layer.
  • a data transmission method including:
  • the second device receives the PDU forwarded by the relay user equipment UE from the first device;
  • the PDU is the PDU generated by the first device in the PDCP layer of the cellular data packet aggregation protocol of the first device according to the first policy of the sending end, and the first PDU is generated by the first device.
  • the second device negotiates a good security processing policy, where the data to be transmitted is data that the first device needs to transmit to the second device;
  • the second device performs security processing on the PDU in the PDCP layer of the second device according to the first policy of the receiving end to obtain data to be transmitted.
  • the cellular PDCP layer of the first device and the cellular PDCP layer of the second device are peered; the first device is a remote UE, and the second device is a base station; or, the first device It is a base station, and the second device is a remote UE.
  • any of the foregoing aspects describes a data transmission process in an uplink direction; if the first device is a base station and the second device is a remote UE, any of the foregoing Aspects describe data transmission in the downstream direction.
  • a data transmission system and method provided by an embodiment of the present invention by setting a peer-to-peer cellular network PDCP layer in a remote UE and a base station, and respectively in a cellular network PDCP layer of a remote UE and a cellular network PDCP layer of a base station, according to
  • the security processing policy negotiated between the remote UE and the base station securely processes the data to be transmitted between the remote UE and the base station to ensure the security of the communication data between the remote UE and the base station.
  • the sending, by the first device, the PDU to the relay UE may include: the first device sequentially routing the PDU through the cellular network PDCP layer of the first device and the first device After the protocol module of the first interface is sent to the relay UE.
  • the relaying the UE to the second device may include: relaying the PDU to the protocol module and the relay of the first interface of the relay UE. After the protocol module of the second interface of the UE is sent to the second device.
  • the second device receives the relay The PDU sent by the UE, and in the PDCP layer of the second device, according to the first policy of the receiving end, performing security processing on the PDU to obtain data to be transmitted, may include: receiving, by the second device, the relay UE The PDU is transmitted to the cellular network PDCP layer of the second device after passing the protocol module of the second interface of the second device; and in the cellular network PDCP layer of the second device, according to the first policy based on the receiving end The PDU is securely processed to obtain data to be transmitted.
  • the protocol module of the first interface of the relay UE is peered with the protocol module of the first interface of the first device
  • the protocol module of the second interface of the relay UE is peered with the protocol module of the second interface of the second device.
  • the first interface is a communication interface between the first device and the relay UE
  • the second interface is a communication interface between the relay UE and the second device.
  • This optional implementation provides a data stream transmission process and a system protocol stack.
  • the protocol module of the interface between the remote UE and the relay UE includes a media access control MAC layer and a physical PHY layer.
  • the interface may be the first interface or the second interface.
  • the first device sends the PDU to the cellular network PDCP layer of the first device and the protocol module of the first interface of the first device, and then sends the PDU to
  • the relaying the UE may include: the first device sequentially passes the PDU through the cellular network PDCP layer of the first device, the cellular network radio link control layer protocol RLC layer of the first device, and the protocol module of the first interface of the first device , sent to the relay UE.
  • the second device receives the PDU sent by the relay UE, and sequentially transmits the PDU through the protocol module of the second interface of the second device, and then transmits the PDU.
  • the cellular network PDCP layer of the second device may include: the second device receives the PDU sent by the relay UE, and sequentially passes the PDU through the protocol module of the second interface of the second device and the RLC layer of the second device Thereafter, it is transmitted to the cellular network PDCP layer of the second device.
  • the cellular network RLC layer of the first device is peered with the cellular network RLC layer of the second device.
  • the optional implementation may be applicable to a scenario in which the communication mode between the remote UE and the relay UE is the D2D communication mode.
  • the protocol module of the interface between the remote UE and the relay UE includes a MAC layer and a PHY layer, and is a specific implementation of a protocol module of an interface between the remote UE and the relay UE, but is not limited thereto, for example,
  • the protocol module of the interface includes an RLC layer, a MAC layer, and a PHY layer.
  • the protocol module of the interface between the remote UE and the relay UE includes a first PDCP layer, and is used to negotiate with the remote UE according to the remote UE.
  • the second strategy securely processes the data.
  • each device in the system may further implement the following function: the base station sends a first indication message to the remote UE and the relay UE, where the first indication message is used to indicate the receiving
  • the first PDCP layer is set up by the UE, and the remote UE receives the first indication message sent by the base station, and establishes a first PDCP layer in the remote UE according to the first indication message; the relay UE receives the first indication message sent by the base station, and And establishing, according to the first indication message, a first PDCP layer in the relay UE.
  • the first device is a remote UE
  • the method may further include: the remote UE receives the first indication message sent by the base station, where the first indication message is used to indicate the remote UE. Establishing a first PDCP layer; the remote UE establishes a first PDCP layer according to the first indication message.
  • the first device is a base station
  • the method may further include: the base station separately sending a first indication message to the remote UE and the relay UE, where the first indication message is used to indicate receiving The party establishes the first PDCP layer.
  • the method may further include: the relaying UE receiving the first indication message sent by the base station, where the first indication message is used to instruct the relaying UE to establish the first PDCP layer; The UE establishes a first PDCP layer according to the first indication message.
  • the optional implementation provides a configurable implementation of the first PDCP layer.
  • the base station can configure the first PDCP layer of the peer UE and the remote UE according to actual needs.
  • the security of the data transmission communication can be ensured, that is, the third party cannot steal the electromagnetic wave by means of monitoring the electromagnetic wave.
  • the protocol module of the interface between the relaying UE and the base station (the interface may be the first interface or the second interface) includes a second PDCP layer, and is configured to negotiate with the base station according to the third The policy securely processes the data.
  • each device in the system may further implement the following functions: the base station establishes a second PDCP layer, and sends a second indication message to the relay UE, where the second indication message is used to indicate The relaying UE establishes a second PDCP layer; the relaying UE receives the second indication message sent by the base station, and establishes a second PDCP layer in the relaying UE according to the second indication message.
  • the first device is a base station
  • the method may further include: the base station establishes a second PDCP layer; the base station sends a second indication message to the relay UE, where the second indication message is used to indicate The relay UE establishes a second PDCP layer.
  • the method may further include: the relaying UE receives the second indication message sent by the base station, where the second indication message is used to instruct the relaying UE to establish the second PDCP layer, and the relaying UE And establishing a second PDCP layer according to the second indication message.
  • the optional implementation manner provides a configurable implementation manner of the second PDCP layer.
  • the base station can configure the second PDCP layer of the peer base station and the relay UE according to actual needs, so that data can be guaranteed.
  • the security of the transmission communication between the two that is, the third party cannot steal the content of the interaction information between the remote UE and the relay UE by listening to electromagnetic waves.
  • the RRC layer of the first device is peered with the RRC layer of the second device, the RRC layer of the first device is above the PDCP layer of the first device, and the RRC layer of the second device is in the RRC of the second device. Above the layer.
  • each device in the system may further implement the following function: the first device generates an RRC message in the RRC layer of the radio resource control protocol of the first device, and sends the RRC message to the relay UE. Sending an RRC message; the relaying UE receives the RRC message, and sends the RRC message to the second device; the second device receives the RRC message sent by the relaying UE, and transmits the RRC message to the RRC layer of the second device.
  • the method may further include: the first device generates an RRC message in a radio resource control protocol RRC layer of the first device, and sends the RRC message to the relay UE by using the RRC message.
  • the first device generates an RRC message in a radio resource control protocol RRC layer of the first device, and sends the RRC message to the relay UE by using the RRC message.
  • the method may further include: the relaying UE receives the RRC message sent by the first device, where the RRC message is the RRC of the first device in the first device. Layer generated; the relay UE sends an RRC message to the second device.
  • the method may further include: receiving, by the second device, the RRC message from the first device that is forwarded by the relaying UE, and transmitting the RRC message to the second device RRC layer.
  • This optional implementation enables the base station to directly manage the remote UE.
  • an embodiment of the present invention provides a first device, where the first device has a function of implementing a first device side behavior in the method provided by any of the foregoing aspects.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the first device has a structure including a processor and a transmitter, the processor being configured to support the first device to perform a corresponding function in the above method.
  • the transmitter is configured to support communication between the first device and the relay UE.
  • the first device can also include a memory for coupling with a processor, Save the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a relay UE, where the relay UE has the function of implementing the behavior of the relay UE in the method provided by any of the foregoing aspects.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the relay UE includes a processor and a transmitter configured to support the relaying UE to perform the corresponding function in the above method.
  • the transmitter is configured to support relaying the UE with the first device, and relaying communication between the UE and the second device.
  • the relay UE may also include a memory for coupling with a processor that stores program instructions and data necessary to relay the UE.
  • the embodiment of the invention provides a second device, which has the function of implementing the behavior of the second device in the method provided by any of the above aspects.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the second device includes a processor and a transmitter, the processor being configured to support the second device to perform a corresponding function in the above method.
  • the transmitter is configured to support communication between the second device and the relay UE.
  • the second device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the second device.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the first device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the relay UE, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the second device, which is included for execution.
  • FIG. 1 is a schematic diagram of a system protocol stack provided by the prior art
  • FIG. 3 is a schematic diagram of a system protocol stack according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another system protocol stack according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another system protocol stack according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another system protocol stack according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another system protocol stack according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another system protocol stack according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another system protocol stack according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another system protocol stack according to an embodiment of the present disclosure.
  • FIG. 11 is an interaction diagram of a data transmission method according to an embodiment of the present invention.
  • FIG. 12 is an interaction diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 13 is an interaction diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 14 is an interaction diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 15 is an interaction diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 16 is an interaction diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 17 is an interaction diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 18 is an interaction diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a first device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another first device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a relay UE according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of another relay UE according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a second device according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of another second device according to an embodiment of the present invention.
  • the remote UE and the relay UE are mutually trusted.
  • the far end UE is invisible to the base station.
  • the communication mode between the remote UE and the relay UE is a D2D communication mode
  • the communication interface is a PC5 interface
  • the communication interface between the relay UE and the base station is a Uu interface as an example for description.
  • the system protocol stack in the prior art does not distinguish between the control plane protocol stack and the user plane protocol stack.
  • the remote UE protocol stack includes a protocol for interconnecting networks set up from the upper layer to the bottom layer (English full name: internet protocol, IP for short), and packet data convergence protocol for D2D communication mode (English name: packet) Data convergence protocol, English abbreviation: PDCP layer, radio link control layer protocol (English name: radio link control, English abbreviation: RLC) layer, media access control (English full name: media access control or medium access control, English abbreviation: MAC) layer, physical (English full name: physics, English abbreviation: PHY) layer; that is, the D2D-PDCP layer, the D2D-RLC layer, the D2D-MAC layer, and the D2D-PHY layer are sequentially arranged from the upper layer to the bottom layer.
  • the relay UE protocol stack includes: a D2D-PDCP layer, a D2D-RLC layer, a D2D-MAC layer, a D2D-PHY layer, and a Uu-PDCP layer of the Uu interface, Uu- of the PC5 interface and the remote UE protocol stack.
  • the base station protocol stack includes a Uu-PDCP layer that is peered with the relay UE by the Uu interface, Uu-RLC layer, Uu-MAC layer and Uu-PHY layer. It should be noted that the protocol stack shown in FIG. 1 further includes a radio resource control protocol (English full name: radio resource control, RRC) layer for implementing the relay UE and the base station, which is not shown in FIG. .
  • RRC radio resource control protocol
  • the relay UE protocol stack includes layers of each layer (except the IP layer) in the remote UE protocol stack, and therefore, the remote UE and the relay UE are mutually trusted.
  • the far-end UE protocol stack does not include a protocol stack that is equivalent to the base station protocol stack. Therefore, the far-end UE is invisible to the base station.
  • the relay UE can learn the communication content between the remote UE and the base station, if the information on the relay UE is stolen, the communication content between the remote UE and the base station may be caused. Leakage, so the security of data transmission is low.
  • the technical solution provided by the embodiment of the present invention provides a data transmission system, method, and apparatus, by setting a peer-to-peer cellular network PDCP layer in a remote UE and a base station, and respectively in a remote UE's cellular network PDCP.
  • the data to be transmitted between the remote UE and the base station is securely processed according to the security processing policy negotiated by the remote UE and the base station to ensure communication data between the remote UE and the base station. safety.
  • Code division multiple access (English full name: wideband code division multiple access, English abbreviation: WCDMA), time division multiple access (English full name: time division multiple access, English abbreviation: TDMA), frequency division multiple access (English full name: frequency division multiple access , English abbreviation: FDMA), orthogonal frequency-division multiple access (English: orthogonal): single carrier frequency division multiple access (English full name: single carrier FDMA, English abbreviation: SC-FDMA) Long-term evolution (English term: long term evolution, English abbreviation: LTE) system, And other such communication systems.
  • a base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station in GSM or CDMA (base transceiver station in English, BTS for short), or a base station in WCDMA (English: NodeB), or an evolved base station in LTE (English: NodeB) Or eNB or e-NodeB, evolutional NodeB), this application is not limited.
  • the user equipment may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with the wireless access network (English name: radio access network, English abbreviation: RAN) (the access part of the wireless communication network communicates with one or more core networks, and the wireless terminal can be a mobile terminal, such as a mobile phone ( Or a "cellular" telephone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • the wireless access network English name: radio access network, English abbreviation: RAN
  • RAN the access part of the wireless communication network communicates with one or more core networks
  • the wireless terminal can be a mobile terminal, such as a mobile phone ( Or a "cellular" telephone) and a computer with a mobile
  • Wireless terminal can also be called system, subscriber unit (English: subscriber unit), subscriber station (English: subscriber station), mobile station (English: mobile Station), mobile station (English: mobile), remote station (English: remote station), Point (English: access point), remote terminals (English: remote terminal), the access terminal (English: access terminal), a user terminal (England Text: user terminal), user agent (English: user agent), user equipment (English: user equipment).
  • the remote UE in the embodiment of the present invention may also be a wearable device (English name: wearable equipment), for example, Google glasses, smart bracelets, smart watches, and the like.
  • A/B may represent A or B
  • and/or herein is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, can indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • Multiple means two or more than two.
  • the "sender/receiver-based policies (including the first policy, the second policy, and the third policy)" in this document are security processing policies that need to be met by the communication data between the two parties.
  • the policy based on the sender includes an integrity protection policy and/or an encryption policy
  • the policy based on the receiver includes a corresponding integrity protection verification policy and/or a decryption policy. For example, if the first policy based on the sending end includes an encryption policy, the policy based on the receiving end includes a decryption policy; if the first policy based on the transmitting end includes an integrity protection policy, the policy based on the receiving end includes an integrity protection verification policy.
  • “Peer-to-peer layer” refers to two layers that are functionally identical, but in the course of one data transmission (including uplink data transmission and downlink data transmission), two peers The layer implements the reverse (or called relative) function. For example, if the RLC layer of the remote UE implements the function of encapsulation, the RLC layer in the relay UE that is peered with the RLC layer of the remote UE implements a decapsulation function.
  • “Security processing” herein includes: integrity protection processing and integrity protection verification processing, as well as encryption processing and decryption processing.
  • the integrity protection processing and the integrity protection verification processing are peer-to-peer, that is, in pairs. If the PDCP layer of the transmitting end performs integrity protection on one data packet, the PDCP of the receiving end is equivalent to the PDCP layer of the transmitting end. The layer performs integrity protection verification on the received data packet to obtain the data packet.
  • the encryption processing and the decryption processing are peer-to-peer, that is, in pairs. If the PDCP layer of the transmitting end encrypts a data packet, the PDCP layer of the receiving end that is equivalent to the PDCP layer of the transmitting end performs the received data packet. Decrypt processing to get the packet.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the embodiment of the present invention is described in the context of a 4G network in a wireless communication network. It should be noted that the solution in the embodiment of the present invention may also be applied to other wireless communication networks, and the corresponding names may also be used in other wireless communication networks. Replace the name of the corresponding function.
  • FIG. 2 it is a data transmission system provided by an embodiment of the present invention, where the system includes a first device, a relay UE, and a second device.
  • the first device is a remote UE, and the second device is a base station; or the first device is a base station, and the second device is a remote UE.
  • FIG. 2 shows a positional relationship between a remote UE, a relay UE, and a base station.
  • the location relationship shown in Figure 2 includes: the relay UE and the remote UE are both located in the cell coverage area, as shown in Figure 2 (1); the relay UE is located in the cell coverage area, and the remote UE is located outside the network coverage area, such as As shown in Figure 2 (2), the relay UE is located in the coverage area of the base station, and the remote UE is located in the coverage area of another cell, as shown in Figure 2 (3).
  • the UEA in FIG. 2 is a relay UE, and the UEB is a remote UE.
  • the communication mode between the remote UE and the relay UE may be a D2D communication mode, a Bluetooth communication mode, or a WiFi communication mode.
  • the communication mode between the remote UE and the relay UE may be a D2D communication mode as an example.
  • each device in the system performs the following functions:
  • the first device performs security processing on the PDCP layer of the first device according to the first policy of the sender, and generates a protocol data unit (English name: protocol data unit, PDU), and forwards the UE to the relay UE.
  • the PDU is sent.
  • the first policy is a security processing policy negotiated by the first device and the second device.
  • the data to be transmitted is data that the first device needs to transmit to the second device.
  • the relay UE receives the PDU sent by the first device, and sends the PDU to the second device.
  • the second device receives the PDU sent by the relaying UE, and performs security processing on the PDU according to the first policy of the receiving end at the PDCP layer of the second device to obtain data to be transmitted.
  • the cellular network PDCP layer of the first device is peered with the cellular network PDCP layer of the second device.
  • the data transmission process is a data transmission process in an uplink direction; if the first device is a base station and the second device is a remote UE, the data transmission process is The data transmission process in the downstream direction.
  • the data transmission system provided by the embodiment of the present invention provides a peer-to-peer cellular network PDCP layer in the remote UE and the base station, and respectively in the cellular network PDCP layer of the remote UE.
  • the data to be transmitted between the remote UE and the base station is securely processed according to the security processing policy negotiated by the remote UE and the base station to ensure the security of the communication data between the remote UE and the base station. Sex.
  • the first device is specifically configured to: send the PDU to the relay UE by the PDC layer of the first device and the protocol module of the first interface of the first device.
  • the relay UE is specifically configured to: after the PDU is sequentially transmitted through the protocol module of the first interface of the relay UE and the protocol module of the second interface of the relay UE, and then sent to the second device.
  • the second device is specifically configured to: receive the PDU sent by the relay UE, and transmit the PDU to the PDCP layer of the second device by using the protocol module of the second interface of the second device; and in the second device In the PDCP layer of the cellular network, the PDU is securely processed according to the first policy based on the receiving end, and the data to be transmitted is obtained.
  • the protocol module of the first interface of the relay UE is peered with the protocol module of the first interface of the first device
  • the protocol module of the second interface of the relay UE is peered with the protocol module of the second interface of the second device.
  • the first interface is a communication interface between the first device and the relay UE
  • the second interface is a communication interface between the relay UE and the second device.
  • FIG. 3 it is a schematic diagram of a system protocol stack provided in the optional implementation manner, including: a first device protocol stack, a relay UE protocol stack, and a remote UE protocol stack.
  • the protocol module of the first interface may be configured from the upper layer to the bottom layer: a first RLC layer, a first MAC layer, and a first PHY layer
  • the protocol module of the second interface may include
  • the bottom layer is sequentially disposed: a second RLC layer, a second MAC layer, and a second PHY layer, as shown in FIG. Figure 4 also shows the data stream transmission direction.
  • the first RLC layer of the relay UE implements a function of transmitting data to the second RLC layer of the relay UE
  • the second RLC layer of the relay UE implements the function of receiving data transmitted by the first RLC layer of the relay UE.
  • the protocol module of the interface between the remote UE and the relay UE includes a MAC layer and a PHY layer (shown as a first MAC layer and a first PHY in FIG. 5).
  • the first device may be a remote UE or a base station.
  • the first device may be a remote UE or a base station.
  • the remote UE and the base station may include a peer-to-peer cellular network RLC layer.
  • the data stream transmission direction is also shown in FIG.
  • the first MAC layer of the relay UE implements a function of transmitting data to the second RLC layer of the relay UE.
  • the second RLC layer of the relay UE implements receiving the relay UE.
  • the function of the data sent by the first MAC layer; in the downlink direction, the second RLC layer of the relay UE implements the function of transmitting data to the first MAC layer of the relay UE.
  • the first MAC layer of the relay UE is implemented.
  • the first device is specifically configured to: sequentially pass the PDU through a cellular network PDCP layer of the first device, a cellular network RLC layer of the first device, and a protocol module of the first interface of the first device.
  • the second device is specifically configured to: receive the PDU sent by the relay UE, and transmit the PDU through the protocol module of the second interface of the second device and the RLC layer of the second device, and then transmit the PDU.
  • the second device is specifically configured to: receive the PDU sent by the relay UE, and transmit the PDU through the protocol module of the second interface of the second device and the RLC layer of the second device, and then transmit the PDU.
  • the second device is specifically configured to: receive the PDU sent by the relay UE, and transmit the PDU through the protocol module of the second interface of the second device and the RLC layer of the second device, and then transmit the PDU.
  • the first PDCP layer is not set in the remote UE and the base station; optionally, the second PDCP may be set in the relay UE and the base station.
  • the first PDCP layer and the second PDCP layer see below.
  • the protocol module of the interface between the remote UE and the relay UE includes a first PDCP layer, where the interface may be the first interface or the second interface, that is, the In the selected implementation manner, the first device may be a remote UE or a base station.
  • the first PDCP layer is configured to perform security processing on the data according to the second policy negotiated by the remote UE and the relay UE.
  • a system protocol stack to which this alternative implementation applies is shown in Figure 6, and Figure 6 is drawn on the basis of Figure 4. Figure 6 also shows the data stream transmission direction.
  • the first PDCP layer of the relay UE implements a relay to the relay
  • the second RLC layer of the UE transmits the function of the data packet; in this case, the second RLC layer of the relay UE implements the function of receiving the data packet sent by the first PDCP layer of the relay UE.
  • the second RLC layer of the relay UE implements a function of transmitting a data packet to the first PDCP layer of the relay UE.
  • the first PDCP layer of the relay UE implements the second RLC layer that receives the relay UE. The function of the sent packet.
  • the optional implementation may be applicable to a scenario in which the communication mode between the remote UE and the relay UE is the D2D communication mode.
  • the remote UE and the relay UE include the first PDCP layer of the peer, so that the security of the data transmission communication between the two can be ensured, that is, the third party cannot monitor.
  • the electromagnetic wave steals the content of the interaction information between the remote UE and the relay UE.
  • the first PDCP layer of the remote UE and the first PDCP layer of the relay UE are configurable.
  • each device in the system further performs the following functions: the base station sends the remote UE and the relay UE respectively. Sending a first indication message, where the first indication message is used to indicate that the receiver establishes the first PDCP layer; the remote UE receives the first indication message sent by the base station, and establishes the first PDCP layer in the remote UE according to the first indication message.
  • the relaying UE receives the first indication message sent by the base station, and establishes the first PDCP layer in the relay UE according to the first indication message.
  • the remote PD and the relay UE are both configured with the first PDCP layer, or none of the first PDCP layer.
  • the triggering conditions for the base station to configure the first PDCP layer for the remote UE and the relay UE are not limited in this embodiment of the present invention.
  • the protocol module of the interface between the relay UE and the base station includes a second PDCP layer, where the interface may be the first interface or the second interface. That is to say, in this optional implementation, the first device may be a remote UE or a base station.
  • the second PDCP layer is configured to perform security processing on the data according to a third policy negotiated by the relay UE and the base station.
  • the system protocol stack to which the optional implementation is applicable is as shown in FIG. 7 or FIG. 8.
  • FIG. 7 is drawn on the basis of FIG. 4, and FIG. 8 is drawn on the basis of FIG. Also shown in Figure 7 and Figure 8 According to the direction of flow.
  • the first RLC layer of the relay UE implements a function of transmitting a data packet to the second PDCP layer of the relay UE; in this case, the second PDCP layer of the relay UE implements the receiving relay UE.
  • the second PDCP layer of the relay UE implements a function of transmitting a data packet to the first RLC layer of the relay UE.
  • the first RLC layer of the relay UE implements the second PDCP layer of the receiving relay UE.
  • the function of the sent packet in the uplink direction, the first RLC layer of the relay UE implements a function of transmitting a data packet to the second PDCP layer of the relay UE; in this case, the second PDCP layer of the relay UE implements the receiving relay UE.
  • the function of the sent packet in the uplink direction, the first RLC layer of the relay UE implements a function of transmitting a data packet to the second PDCP layer of the relay
  • the first PDCP layer of the relay UE further implements a function of transmitting a data packet to the second PDCP layer in the relay UE; in this case, the second PDCP layer of the relay UE also implements reception.
  • the second PDCP layer in the relay UE also implements a function of transmitting a data packet to the first PDCP layer of the relay UE; in this case, the first PDCP layer of the relay UE is also implemented in the relay UE.
  • the function of the second PDCP layer to send a data packet.
  • the relay UE protocol stack and the base station protocol stack include a peer second PDCP layer, so as to ensure the security of the data transmission communication between the two, that is, the third party cannot The content of the interaction information between the relay UE and the base station is stolen by intercepting electromagnetic waves.
  • the second PDCP layer of the relay UE and the second PDCP layer of the base station are configurable.
  • each device in the system further performs the following functions: the base station establishes a second PDCP layer, and forwards the UE to the relay UE.
  • Sending a second indication message where the second indication message is used to indicate that the relaying UE establishes the second PDCP layer; the relaying UE receives the second indication message sent by the base station, and establishes the second PDCP in the relay UE according to the second indication message.
  • the base station establishes a second PDCP layer, and forwards the UE to the relay UE.
  • Sending a second indication message where the second indication message is used to indicate that the relaying UE establishes the second PDCP layer
  • the relaying UE receives the second indication message sent by the base station, and establishes the second PDCP in the relay UE according to the second indication message.
  • the relaying UE and the base station are both configured with the second PDCP layer, or none of the second PDCP layer.
  • the triggering conditions for the base station to configure the second PDCP layer for the relay UE and the base station are not limited in the embodiment of the present invention.
  • each device in the system may further have the following function: the first device generates an RRC message in an RRC layer of the first device, and The relaying UE sends an RRC message; the relaying UE receives the RRC message, and sends the RRC message to the second device; the second device receives the RRC message sent by the relaying UE, and transmits the RRC message to the RRC layer of the second device;
  • the RRC layer of the device is peered with the RRC layer of the second device, the RRC layer of the first device is above the cellular network PDCP layer of the first device, and the RRC layer of the second device is above the RRC layer of the second device.
  • the RRC message may include, but is not limited to, an RRC request message, an RRC response message, an RRC acknowledgement message, an RRC indication message, and the like, for example, an RRC link request (English: RRC connection request) message, RRC link reestablishment (English: RRC connection reestablishment) Request message, security mode (English: security mode) request message, uplink direct transmission (English: uplink direction) request message, downlink direct transmission (English: downlink direction) request message, and the like.
  • RRC link request English: RRC connection request
  • RRC link reestablishment English: RRC connection reestablishment
  • security mode English: security mode
  • the PDCP layer of the cellular network is specifically configured to: process the RRC message, for example, add a sequence number (sequence number, English abbreviation: SN) SN or remove the SN to the RRC link setup request message. Or; send the packet to the following protocol layer without modifying the packet; or perform integrity protection or integrity protection verification on the control signaling.
  • process the RRC message for example, add a sequence number (sequence number, English abbreviation: SN) SN or remove the SN to the RRC link setup request message. Or; send the packet to the following protocol layer without modifying the packet; or perform integrity protection or integrity protection verification on the control signaling.
  • the system protocol stack shown in FIG. 9 can be referred to as a control plane protocol stack. Since the remote UE protocol stack and the base station protocol stack include a peer RRC layer, an RRC link between the remote UE and the base station can be implemented. So that the far end UE is visible to the base station. This enables the base station to directly manage the remote UE and configure the control plane parameters and user plane parameters of the RRC link for the remote UE.
  • the remote UE is like a direct connection (for example, directly connected through the Uu interface) to the UE on the base station; the core network manages the remote UE The management of the remote UE is the same as that of the core network without relaying the UE.
  • the base station configures the control plane parameter and the user plane parameter of the RRC link for the remote UE, which may include: on the control plane, the peer RRC layer and the cellular network PDCP layer are set between the remote UE and the base station, and the RRC layer
  • the parameter configuration of the access link of the remote UE and the bearer of the remote UE (including the accessed radio bearer and the base station to the bearer of the core network), and the security parameters of the transmission data and signaling of the remote UE to the base station are configured. Wait.
  • On the user plane for example, based on the user plane protocol stack as shown in FIG.
  • the remote UE forwards the data packet from the upper layer to the base station after being processed by the PDCP layer of the cellular network; Transmitting data, the base station sends the data packet from the core network to the PDCP layer of the cellular network for processing and then forwards to the remote UE through the relay UE.
  • the control plane protocol stack for the base station, the RRC context information of the remote UE, especially the security parameters, are directly managed by the base station.
  • the processing of the control signaling and the security processing of the data packet are only completed by the base station and the remote UE, thus ensuring that the remote UE performs information with the base station through any one of the relay UEs.
  • the relay UE cannot decrypt the content of the interactive information, thereby improving the security of data transmission.
  • the access network may be an evolved UMTS terrestrial radio access network (English name: E-UTRAN), where UMTS is a universal mobile communication system (English universal mobile system) Abbreviation for telecommunications system).
  • E-UTRAN evolved UMTS terrestrial radio access network
  • the remote UE protocol stack includes: an RRC layer, a cellular network PDCP layer, and a D2D protocol module.
  • the RRC layer performs the function of enabling the remote UE to directly link to the network device (for example, a subset of the base station) through the Uu interface, and at least includes: 1 establishing, releasing, and modifying the RRC link; 2 assigning, modifying, and obtaining the identity identifier.
  • Number (English full name: identity, English abbreviation: ID), for example, cell radio network temporary identifier (English full name: cell radio network temporary identifier, English abbreviation: C-RNTI); 3 establish, release, modify between the remote UE and the base station Signaling radio bearer (English name: signaling radio bearer, English abbreviation: SRB); 4 configure the security parameters between the remote UE and the base station, so as to carry out the security processing of signaling and data.
  • ID cell radio network temporary identifier
  • C-RNTI Cell radio network temporary identifier
  • SRB signaling radio bearer
  • Cellular PDCP layer implements RRC signaling integrity protection and/or integrity protection verification function, IP packet header compression and decompression functions (English name: robust header compressio, English abbreviation: ROHC), IP packet Encryption and/or decryption capabilities.
  • the D2D module includes:
  • D2D-PDCP layer implements the PDCP function at the D2D link level, at least implements header compression and decompression functions of IP data packets, and encryption and/or decryption functions of data packets.
  • the D2D-PDCP layer needs to perform the integrity protection function.
  • D2D-RLC layer the data transmission control layer of the D2D link, which implements packet encapsulation, cutting, recombination, retransmission, and flow control.
  • the D2D-MAC layer is the media access control layer of the D2D link.
  • the service data unit (English full name: service data unit, English abbreviation: SDU) that encapsulates the RLC becomes the function of the MAC PDU and the peer end of the D2D link.
  • Reliable transmission and retransmission functions such as hybrid automatic repeat request (English name: HARQ).
  • D2D-PHY layer a wireless signal that forms a MAC PDU from the D2D-MAC layer into the air according to the technical specifications of the physical layer of the D2D link, and/or, The wireless signal in the air is received, and the received correct data packet is delivered as a MAC PDU to the D2D-MAC layer.
  • the relay UE protocol stack includes a D2D module and a Uu interface module.
  • the D2D module is specifically a D2D module that is peered with the remote UE.
  • the D2D-PDCP layer in addition to the function of the D2D-PDCP layer in the remote UE protocol stack, may also have the following functions: sending data packets to the Uu-PDCP layer or the Uu-RLC layer in the relay UE protocol stack. Function, or receiving the function of the data packet transmitted by the Uu-PDCP or Uu-RLC layer in the relay UE protocol stack, and processing the received data packet to facilitate the function of transmitting to the remote UE through the D2D link .
  • the D2D-RLC layer in addition to the function of the D2D-RLC layer in the remote UE protocol stack, may also have the following functions: receiving a data packet sent by the Uu-PDCP layer or the Uu-RLC layer of the relay UE, and / Or, the data packet is transmitted to the Uu-PDCP layer or the Uu-RLC layer of the relay UE.
  • the D2D-MAC layer and the D2D-PHY layer have the same functions as the peer layers in the relay UE protocol stack.
  • the Uu module includes: a Uu-PDCP layer Uu-RLC layer, a Uu-MAC layer, and a Uu-PHY layer.
  • the Uu-PDCP module in the embodiment of the present invention is the same as the Uu-PDCP module included in the relay UE in the prior art (as shown in FIG. 1), but the Uu-PDCP module of the two transmits different contents. Specifically, the Uu-PDCP module included in the relay UE included in the prior art transmits the interaction information between the relay UE and the base station, and the Uu-PDCP module included in the relay UE in the embodiment of the present invention. The information transmitted between the remote UE and the base station is transmitted.
  • the PDCP layer (including the D2D-PDCP layer and the Uu-PDCP layer) of the relay UE in the embodiment of the present invention is different from the PDCP layer of the relay UE in the prior art in the relay in the embodiment of the present invention.
  • the uplink data packet of the PDCP layer of the UE is finally delivered to the PDCP layer of the base station, and the downlink data packet finally reaches the remote UE.
  • the PDCP layer of the cellular network; the uplink data packet of the PDCP layer of the relay UE in the prior art is finally delivered to the PDCP layer (not shown in FIG. 1) corresponding to the relay UE in the base station, and the downlink data packet Finally, the RLC layer of the remote UE is reached.
  • the Uu-PDCP layer of the relay UE in the embodiment of the present invention may further have the following functions: receiving a function of a data packet sent by a D2D-PDCP layer or a D2D-RLC layer of a relay UE, and/or a relay to a relay
  • the function of the data packet is transmitted by the D2D-PDCP layer or the D2D-RLC layer of the UE.
  • the Uu-RLC layer of the relay UE may also have the function of receiving a data packet transmitted by the D2D-PDCP layer of the relay UE, and/or a function of transmitting a data packet to the D2D-PDCP layer of the relay UE.
  • the base station protocol stack includes a radio bearer module (ie, a Uu module) that is peered with the relay UE protocol stack, and an RRC layer and a cellular network PDCP layer that are peered with the far end UE.
  • a radio bearer module ie, a Uu module
  • RRC layer and a cellular network PDCP layer that are peered with the far end UE.
  • the remote UE peer-to-peer cellular PDCP layer of the base station may have the following functions: receiving the function of the data packet sent by the Uu-PDCP layer or the Uu-RLC layer of the base station peering with the relay UE, and/or The function of the base station to transmit a data packet to the Uu-PDCP layer or the Uu-RLC layer that is equivalent to the relay UE.
  • the IP layer may be set on the PDCP layer of the cellular network of the remote UE.
  • the data transmission system may further include The service gateway (English name: serving gateway, English abbreviation: SGW), the SGW contains the IP layer that is equivalent to the IP layer of the remote UE.
  • SGW serving gateway
  • the IP layer of the remote UE is used to generate data to be transmitted in the uplink direction
  • the IP layer of the SGW is used to generate data to be transmitted in the downlink direction.
  • the uplink data transmission method provided by the embodiment of the present invention is as shown in the embodiment 1-4, wherein the first device in the embodiment refers to the remote UE in the embodiment 1-4, and the second device in the embodiment is in the embodiment. In 1-4, it refers to a base station.
  • FIG. 11 it is an uplink data transmission method provided by this embodiment.
  • Mutual map The method provided in this embodiment may be based on any one of the system protocol stacks shown in FIG. 3 to FIG. 5.
  • the specific example in this embodiment is described by taking the system protocol stack shown in FIG. 4 as an example.
  • the method shown in Figure 11 includes:
  • the remote UE performs security processing on the data to be transmitted according to the first policy of the sender, and generates a first PDU.
  • the first policy is a security processing policy that the remote UE negotiates with the base station, and the data to be transmitted is data that the remote UE sends to the base station.
  • the PDCP layer of the cellular UE of the remote UE receives the data to be transmitted sent by the IP layer, and performs security processing according to the first policy based on the sending end to generate the first PDU.
  • the base station obtains the security parameters of the remote UE according to the identifier of the remote UE, where the security parameter includes encryption. Algorithms, random numbers, integrity protection algorithms, etc.
  • the base station sends the obtained security parameter forming RRC message to the remote UE, and the remote UE confirms that the first policy is enabled.
  • the specific implementation is not limited to this.
  • the remote UE sends the first PDU to the relay UE.
  • the PDCP layer of the remote UE transmits the first PDU to the first RLC layer of the remote UE, and then the first PDU sequentially passes through the first RLC layer, the first MAC layer, and the first PHY of the remote UE.
  • the layer is finally sent to the air interface of the first interface of the remote UE, and the remote UE sends the first PDU transmitted by the first PHY layer to the relay UE in the air interface of the first interface.
  • the relay UE receives the first PDU sent by the remote UE.
  • the relay UE receives the first PDU sent by the remote UE on the air interface of the first interface.
  • the first PDU is sequentially forwarded by the first RL layer, the first MAC layer, and the first RLC layer, and then forwarded by the first RLC layer to the second RLC layer, and then sequentially through the second MAC layer.
  • a radio wave signal is generated.
  • the relay UE sends the first PDU to the base station.
  • the relay UE sends the radio wave signal generated according to the first PDU to the base station in the air interface of the second interface.
  • the base station receives the first PDU sent by the relay UE.
  • the base station receives the radio wave signal sent by the relay UE on the air interface of the second interface, and sequentially sends the radio wave signal to the second PHY layer, the second MAC layer, and the second RLC layer of the base station to generate the first PDU.
  • the method may further include: the second RLC layer of the base station transmitting the first PDU to the cellular network PDCP layer of the base station.
  • the base station performs security processing on the first PDU according to the first policy based on the receiving end, to obtain data to be transmitted.
  • the PDCP layer of the base station performs security processing on the first PDU according to the first policy of the receiving end to obtain data to be transmitted.
  • FIG. 12 it is an interaction diagram of an uplink data transmission method provided by this embodiment.
  • the method provided in this embodiment may be based on the system protocol stack shown in FIG. 6, that is, the first PDCP layer is provided in the remote UE protocol stack and the relay UE protocol stack.
  • the method shown in Figure 12 includes:
  • the method may further include: after the step of the specific example of S11, the method further includes: transmitting, by the cellular PDCP layer of the remote UE, the first PDU to the first PDCP layer of the remote UE.
  • the remote UE performs security processing on the first PDU according to the second policy based on the sending end.
  • the second policy is a security processing policy negotiated between the remote UE and the relay UE.
  • the first PDCP layer of the remote UE performs security processing on the first PDU according to the second policy based on the sending end.
  • the method may further include: the first PDCP layer of the remote UE sends the second PDU to the first RLC layer of the remote UE, and then the second PDU sequentially passes through the first RLC layer of the remote UE, The first MAC layer, the first PHY layer, is finally sent to the air interface of the first interface of the remote UE.
  • the remote UE sends the second PDU to the relay UE on the air interface of the first interface.
  • the relay UE receives the second PDU sent by the remote UE.
  • the relay UE receives the second PDU sent by the remote UE on the air interface of the first interface.
  • the second PDU is forwarded by the first RLC layer to the first PDCP layer of the relay UE after the first PHY layer, the first MAC layer, and the first RLC layer of the relay UE.
  • the relay UE performs security processing on the second PDU according to the second policy of the receiving end to obtain the first PDU.
  • the first PDCP layer of the relaying UE performs security processing on the second PDU according to the second policy of the receiving end to obtain the first PDU.
  • the method may further include: the first PDCP layer of the relaying UE sends the first PDU to the second RLC layer of the relay UE, and then the second MAC layer and the second PHY layer of the relay UE. After that, a radio wave signal is generated.
  • FIG. 13 is a schematic diagram of interaction of an uplink data transmission method provided by this embodiment.
  • the method provided in this embodiment may be based on the system protocol stack shown in FIG. 7, that is, the relay UE protocol stack and the base station protocol stack are provided with a second PDCP layer that is equivalent.
  • the method shown in Figure 13 includes:
  • the first PDU is sequentially forwarded to the middle by the first RLC layer of the relay UE after the first PHY layer, the first MAC layer, and the first RLC layer of the relay UE. Following the second PDCP layer of the UE.
  • the relay UE performs security processing on the first PDU according to the third policy based on the sending end, and generates a fourth PDU.
  • the third strategy is to relay the security processing policy negotiated between the UE and the base station.
  • the second PDCP layer of the relaying UE performs security processing on the first PDU according to the third policy based on the sending end to generate a fourth PDU.
  • the second PDCP layer of the relay UE forwards the fourth PDU to the second RLC layer of the relay UE, and then generates the radio signal after relaying the second MAC layer and the second PHY layer of the UE.
  • the relay UE sends a fourth PDU to the base station.
  • the relay UE sends the radio signal generated according to the fourth PDU to the base station in the air interface of the second interface.
  • S36 The base station receives the fourth PDU sent by the relay UE.
  • the base station receives the fourth PDU sent by the relay UE on the air interface of the second interface.
  • the fourth PDU is sequentially transmitted by the second RLC layer of the base station to the second PDCP layer of the base station after the second PHY layer, the second MAC layer, and the second RLC layer of the base station.
  • the base station performs security processing on the fourth PDU according to the third policy based on the receiving end, to obtain the first PDU.
  • the second PDCP layer of the base station performs security processing on the fourth PDU according to the third policy of the receiving end to obtain the first PDU.
  • the second PDCP layer of the base station transmits the first PDU to the cellular network PDCP layer of the base station.
  • FIG. 14 it is an interaction diagram of an uplink data transmission method provided by this embodiment.
  • the method provided in this embodiment may be based on the system protocol stack shown in FIG. 9, that is, the first PDCP layer is set in the remote UE protocol stack and the relay UE protocol stack, and the relay UE protocol stack and the base station protocol are used.
  • a second PDCP layer of peers is provided in the stack.
  • the method shown in Figure 14 includes:
  • the method may further include: after the step of the specific example of S25, the first PDCP layer of the relaying UE sends the first PDU to the second PDCP layer of the relay UE.
  • the embodiment of the present invention further provides a downlink data transmission method, as shown in Embodiment 5.
  • the first device in this embodiment specifically refers to a base station in Embodiment 5, and the second device in the present embodiment refers to a remote UE in Embodiment 5.
  • FIG. 15 is a schematic diagram of interaction of a downlink data transmission method provided by this embodiment.
  • the method provided by this embodiment may be based on the user plane protocol stack as shown in FIG.
  • the method shown in Figure 15 includes:
  • the base station performs security processing on the data to be transmitted according to the first policy based on the sending end, to obtain a third PDU.
  • the first policy is a security processing policy that is negotiated between the remote UE and the base station.
  • the data to be transmitted is data sent by the remote UE to the network side; the second transmission data is data sent by the network side to the remote UE.
  • the PDCP layer of the base station receives the data to be transmitted sent by the IP layer of the SGW, and performs security processing on the data to be transmitted to obtain a third PDU.
  • the process of receiving, by the cellular network PDCP layer of the base station, the data to be transmitted sent by the IP layer of the SGW may refer to the prior art.
  • the method may further include: transmitting, by the cellular network PDCP layer of the base station, a third PDU to the second RLC layer of the base station; then, the third PDU sequentially passes through the second RLC layer, the second MAC layer of the second base station, After the second PHY layer, a radio wave signal is generated.
  • the base station sends a third PDU to the relay UE.
  • the air interface of the second interface of the base station sends the radio wave signal generated according to the third PDU to the relay UE.
  • the relay UE receives the third PDU sent by the base station.
  • the air interface of the second interface of the relay UE receives the radio wave signal sent by the base station, and the radio wave signal sequentially generates the third PDU after the second PHY layer, the second MAC layer, and the second RLC layer of the relay UE.
  • the second RLC layer of the relay UE will The third PDU is sent to the first RLC of the relay UE, and then the third PDU is sequentially transmitted to the first RLC layer of the UE, the first MAC layer, the first PHY layer, and finally to the first interface of the relay UE. Empty mouth.
  • the relay UE sends the third PDU to the remote UE.
  • the relay UE sends the third PDU to the remote UE on the air interface of the first interface.
  • the remote UE receives the third PDU sent by the relay UE.
  • the remote UE receives the third PDU sent by the relay UE on the air interface of the first interface.
  • the third PDU passes through the first PHY layer, the first MAC layer, and the first RLC layer of the remote UE, the first RLC layer of the remote UE sends the third PDU to the cellular network of the remote UE.
  • PDCP layer the third PDU sent by the relay UE on the air interface of the first interface.
  • the remote UE performs security processing on the third PDU according to the first policy of the receiving end, and obtains data to be transmitted.
  • the PDCP layer of the remote UE is based on the first policy of the receiving end, and performs security processing on the third PDU to obtain data to be transmitted.
  • the downlink data transmission method is an inverse process of the uplink data transmission method. Similar to the foregoing uplink data transmission method, the data packet between the remote UE and the relay UE may be sent and received according to the second policy, and/or, The data packet between the relay UE and the remote UE can be sent and received according to the third policy.
  • the specific implementation process will not be described here. Those skilled in the art should be able to introduce a downlink data transmission method according to the uplink data transmission method provided above without any creative labor. I will not repeat them here.
  • FIG. 16 is a schematic diagram of interaction of a method for transmitting an uplink RRC message according to the embodiment.
  • the method provided by this embodiment may be based on the system protocol stack as shown in FIG.
  • the method shown in Figure 16 includes:
  • the remote UE sends an RRC message to the relay UE.
  • the RRC layer of the remote UE generates an RRC message and transmits the RRC message to the cellular network PDCP layer of the remote UE.
  • the PDCP layer of the remote UE may add an SN to the RRC message, and then, if the first policy is configured with integrity protection, the PDCP layer of the remote UE's cellular network The integrity protection process is performed on the RRC message after the SN is added, and the integrity-protected RRC message is sent to the first RLC layer of the remote UE. If the first policy is not configured with integrity protection, the remote UE is configured.
  • the PDCP layer of the cellular network directly sends the RRC message after the SN is added to the first RLC layer of the remote UE. Then, the RRC message after the SN is added sequentially passes through the first RLC layer, the first MAC layer, and the first end of the remote UE. After the PHY layer is finally sent to the air interface of the first interface of the remote UE, the remote UE sends an RRC message after adding the SN on the air interface.
  • the PDCP layer of the remote UE may directly forward the RRC message to the first RLC layer of the remote UE without performing any processing, and then the RRC message is sequentially After the first RLC layer, the first MAC layer, and the first PHY layer of the remote UE are finally sent to the air interface of the first interface of the remote UE, the remote UE sends an RRC message on the air interface.
  • the relay UE receives the RRC message sent by the remote UE.
  • the relay UE receives the RRC message after the SN is added by the remote UE on the air interface of the first interface.
  • the RRC message after the SN is added to the first PHY layer of the relay UE, the first MAC layer, and the first RLC layer, and then forwarded by the first RLC layer of the relay UE to the second UE of the relay UE.
  • the RLC layer and then, after relaying the second MAC layer and the second PHY layer of the UE, generates a radio wave signal.
  • the relay UE sends an RRC message to the base station.
  • the relay UE sends a radio wave signal to the base station on the air interface of the second interface.
  • the base station receives the RRC message sent by the relay UE.
  • the base station receives the radio wave signal on the air interface of the second interface, and then the radio wave signal sequentially passes through the second PHY layer, the second MAC layer, and the second RLC layer of the base station.
  • the RRC layer of the RRC layer base station of the base station that is peered with the remote UE performs an action corresponding to the RRC message.
  • the process of the uplink transmission method of the RRC message based on the control plane protocol stack shown in FIG. 7 can be obtained by combining the above embodiments 2-4 and the sixth embodiment, and details are not described herein again.
  • the downlink RRC message transmission method is the reverse process of the uplink RRC message transmission method, which can be obtained in combination with the foregoing embodiment 5 and the embodiment 6, and details are not described herein again.
  • An embodiment of the present invention further provides a method for configuring a first PDCP layer, as shown in FIG.
  • the base station sends a first indication message to the remote UE, where the indication message is used to enable the receiver to configure the first PDCP layer.
  • the remote UE receives the first indication message sent by the base station, and configures the first PDCP layer according to the first indication message.
  • the function that the first PDCP layer needs to implement in the control plane protocol stack and/or in the user plane protocol stack is configured, and the function can refer to the above.
  • the base station sends a first indication message to the relay UE, where the first indication message is used to enable the receiver to configure the second PDCP layer.
  • the relay UE receives the first indication message sent by the base station, and configures the second PDCP layer according to the first indication message.
  • the relay UE configures a function that the first PDCP layer needs to implement in the control plane protocol stack and/or in the user plane protocol stack, and the function may refer to the above.
  • the first PDCP layer in S71-S72 is peer-to-peer with the first PDCP layer in S73-S74.
  • the first PDCP is set in the remote UE and the relay UE.
  • the layers are equivalent, therefore, S71-S72 and S73-S74 are generally executed in pairs, that is, the system either performs S71-S72 and S73-S74, or does not execute S71-S72 and S73-S74, generally does not A group of executions S71-S72 and S73-S74 appears.
  • the sequence of S71-S72 and S73-S74 is not limited in the embodiment of the present invention.
  • S71-S72 may be executed first, and then S73-S74 may be executed; or S73-S74 may be executed first, and then S71-S72 may be executed; It is also possible to execute S73-S74 in the process of executing S71-S72.
  • the embodiment of the present invention further provides a method for configuring a second PDCP layer, as shown in FIG. 18, including:
  • the base station sends a second indication message to the relay UE, where the second indication message is used to enable the relay UE to configure the second PDCP layer.
  • the relay UE receives the second indication message sent by the base station, and configures the second PDCP layer according to the second indication message.
  • the relay UE configures a function that the second PDCP layer needs to implement in the control plane protocol stack and/or in the user plane protocol stack, and the function may refer to the above.
  • the base station configures the second PDCP layer.
  • the first PDCP layer in S81-S82 is peer-to-peer with the second PDCP layer in S83.
  • S81-S82 and S83 are generally performed in pairs, that is, the system performs either S81-S82 and S83, or Without performing S81-S82 and S83, it is generally not possible to perform one of S81-S82 and S83.
  • the sequence of S81-S82 and S83 is not limited in the embodiment of the present invention. For example, S81-S82 may be executed first, and then S83 may be executed; S83 may be executed first, then S81-S82 may be executed; and S81-S8 may also be executed. S83 is executed during the process of S82.
  • FIG. 19 it is a structure of a first device 19 according to an embodiment of the present invention.
  • the first device 19 is configured to perform the actions of the first device 19 of any of the methods provided above.
  • the first device 19 includes:
  • the processing unit 1901 is configured to perform security processing on the data to be transmitted according to the first policy of the sending end to generate a protocol data unit PDU in the PDCP layer of the first packet 19 of the first device 19, where the first policy is generated.
  • a security processing policy negotiated by the first device 19 and the second device, where the data to be transmitted is data that the first device 19 needs to transmit to the second device;
  • the sending unit 1902 is configured to send the PDU to the second device by using the relay user equipment UE, where the second device includes a cellular network PDCP layer that is equivalent to the cellular network PDCP layer of the first device 19 ;
  • the first device 19 is a remote UE, and the second device is a base station; or the first device 19 is a base station, and the second device is a remote UE.
  • the sending unit 1902 is specifically configured to: after the PDU is sequentially sent through the cellular network PDCP layer of the first device 19 and the protocol module of the first interface of the first device 19, to the Relaying the UE; wherein the first interface is a communication interface between the first device 19 and the relay UE.
  • the protocol module of the interface between the remote UE and the relay UE includes a media access control MAC layer and a physical PHY layer;
  • the sending unit 1902 is specifically configured to: sequentially pass the PDU through a cellular network PDCP layer of the first device 19, a cellular network radio link control layer protocol RLC layer of the first device 19, and the first device.
  • the protocol module of the first interface of 19 is sent to the relay UE; wherein the second device includes a cellular network RLC layer that is peered with the cellular network RLC layer of the first device 19.
  • the protocol module of the interface between the remote UE and the relay UE includes a first PDCP layer, configured to negotiate a second policy pair data according to the remote UE and the relay UE.
  • the first device 19 is the remote UE; as shown in FIG. 19, the first device 19 further includes:
  • the receiving unit 1903 is configured to receive a first indication message sent by the base station, where the first indication message is used to indicate that the remote UE establishes the first PDCP layer;
  • the processing unit 1901 is further configured to establish the first PDCP layer according to the first indication message.
  • the protocol module of the interface between the remote UE and the relay UE includes a first PDCP layer, configured to negotiate a second policy pair data according to the remote UE and the relay UE.
  • the first device 19 is the base station;
  • the sending unit 1902 is further configured to: send a first indication message to the remote UE and the relay UE, where the first indication message is used to indicate that the receiver establishes the first PDCP layer.
  • the protocol module of the interface between the relay UE and the base station includes a second PDCP layer, configured to perform security processing on the data according to the third policy negotiated by the relay UE and the base station;
  • the first device 19 is the base station;
  • the processing unit 1901 is further configured to: establish the second PDCP layer;
  • the sending unit 1902 is further configured to: send a second indication message to the relay UE, where the second indication message is used to indicate that the relay UE establishes the second PDCP layer.
  • the processing unit 1901 is further configured to: generate an RRC message in a radio resource control protocol RRC layer of the first device 19;
  • the sending unit 1902 is further configured to: send the RRC message to the second device by using the relay UE, where an RRC layer of the first device 19 is configured in a cellular network of the first device An upper layer of the PDCP layer, where the second device includes an RRC layer that is peered with the RRC layer of the first device 19.
  • the sending unit 1902 may be a transmitter
  • the receiving unit 1903 may be a receiver
  • the transmitter and the receiver may be integrated to form a transceiver
  • the processing unit 1901 may be embedded in hardware or independent of the first
  • the processor of a device may also be stored in the memory of the first device in software, so that the processor calls to perform operations corresponding to the above modules.
  • FIG. 20 is a schematic structural diagram of a first device 20 according to an embodiment of the present invention.
  • the first device 20 is operative to perform the actions of the first device 19 of any of the methods provided above.
  • the first device 20 includes a memory 2001, a receiver 2002, a transmitter 2003, a processor 2004, and a system bus 2005.
  • Receiver 2002, transmitter 2003, and processor 2004 are connected by the system bus connection 2005.
  • the memory 2001 is configured to store computer execution instructions, when the first device 20 is running, the processor 2004 executes the computer execution instructions stored by the memory 2001 to cause the first device 20 to perform the above provided
  • the action of the first device in any of the method embodiments.
  • the operations performed by the first device can be referred to the related descriptions in the foregoing, and are not described herein again.
  • FIG. 21 is a schematic structural diagram of a relay UE 21 according to an embodiment of the present invention.
  • the relay UE 21 is configured to perform the action of the relay UE in any of the methods provided above.
  • the relay UE21 includes:
  • the receiving unit 2101 is configured to receive a protocol data unit PDU that is sent by the first device, where the PDU is a PDCP layer of the first packet of the first device in the cellular network packet data convergence protocol of the first device, according to the first a PDU generated by the policy after the security processing of the transmission data; the first policy is a security processing policy negotiated by the first device and the second device, where the data to be transmitted is required to be transmitted by the first device Data to the second device;
  • the sending unit 2102 is configured to send the PDU to the second device, where the second device includes a cellular network PDCP layer that is peered with the cellular network PDCP layer of the first device;
  • the first device is a remote UE, and the second device is a base station; or the first device is a base station, and the second device is a remote UE.
  • the sending unit 2102 is specifically configured to: send the PDU to the second through the protocol module of the first interface of the relay UE 21 and the protocol module of the second interface of the relay UE 21
  • the first interface is a communication interface between the first device and the relay UE 21
  • the second interface is a communication interface between the relay UE 21 and the second device.
  • the protocol module of the interface between the remote UE and the relay UE 21 includes a first PDCP layer, configured to negotiate a second policy pair according to the remote UE and the relay UE 21. Carry out safe handling;
  • the receiving unit 2101 is further configured to receive a first indication message that is sent by the base station, where the first indication message is used to indicate that the relay UE21 establishes the first PDCP layer;
  • the relay UE 21 may further include: a processing unit 2103, configured to establish the first PDCP layer according to the first indication message.
  • the protocol module of the interface between the relay UE21 and the base station includes a second PDCP layer, configured to perform security processing on the data according to the third policy negotiated by the relay UE21 and the base station;
  • the receiving unit 2101 is further configured to receive a second indication message sent by the base station, where the second indication message is used to indicate that the relay UE21 establishes the second PDCP layer;
  • the relay UE 21 may further include: a processing unit 2103, configured to establish the second PDCP layer according to the second indication message.
  • the receiving unit 2101 is further configured to: receive a radio resource control protocol (RRC) message sent by the first device, where the RRC message is generated by the first device in an RRC layer of the first device. of;
  • RRC radio resource control protocol
  • the sending unit 2102 is further configured to send the RRC message to the second device, where the second device includes an RRC layer that is peered with the RRC layer of the first device.
  • the sending unit 2102 may be a transmitter and a receiving unit.
  • 2101 may be a receiver, the transmitter and receiver may be integrated to form a transceiver;
  • the processing unit 2103 may be embedded in hardware or in a processor independent of the relay UE, or may be stored in software as a relay. In the memory of the UE, so that the processor calls to perform the operations corresponding to the above modules.
  • FIG. 22 is a schematic structural diagram of a relay UE 22 according to an embodiment of the present invention.
  • the relay UE 22 is configured to perform the action of relaying the UE 19 in any of the methods provided above.
  • the relay UE 22 includes a memory 2201, a receiver 2202, a transmitter 2203, a processor 2204, and a system bus 2205.
  • the receiver 2202, the transmitter 2203, and the processor 2204 are connected by the system bus connection 2205.
  • the memory 2201 is configured to store computer execution instructions, when the relay UE 22 is running, the processor 2204 executes the computer execution instructions stored by the memory 2201 to cause the relay UE 22 to perform any of the above provided
  • the action of the relay UE in the method embodiment For details, the operations performed by the relaying UE can be referred to the related descriptions in the foregoing, and are not described herein again.
  • FIG. 23 it is a schematic structural diagram of a second device 23 according to an embodiment of the present invention.
  • the second device 23 is configured to perform the action of relaying a UE in any of the methods provided above.
  • the second device 23 includes:
  • the receiving unit 2301 is configured to receive a protocol data unit PDU that is forwarded by the relay user equipment UE from the first device, where the PDU is a PDCP layer of the cellular network packet data convergence protocol of the first device in the first device.
  • the first policy is a security processing policy negotiated by the first device and the second device 23, and the data to be transmitted is Is data that the first device needs to transmit to the second device 23;
  • the processing unit 2302 is configured to perform security processing on the PDU according to the first policy of the receiving end on the PDCP layer of the second device 23 The data to be transmitted;
  • the cellular network PDCP layer of the first device and the cellular network PDCP layer of the second device 23 are peered; the first device is a remote UE, and the second device 23 is a base station; or The first device is a base station and the second device 23 is a remote UE.
  • the processing unit 2302 is further configured to: after the PDU is sequentially sent by the protocol module of the second interface of the second device 23, to the cellular network PDCP layer of the second device 23, where The second interface is a communication interface between the relay UE and the second device 23.
  • the protocol module of the interface between the remote UE and the relay UE includes a media access control MAC layer and a physical PHY layer
  • the processing unit 2302 is specifically configured to: sequentially a protocol module of the second interface of the second device 23, and a cellular network RLC layer of the second device 23, and then transmitted to the cellular network PDCP layer of the second device 23; wherein the first device includes The cellular network RLC layer of the second device 23 is a peer-to-peer cellular network RLC layer.
  • the receiving unit 2301 is further configured to: receive a radio resource control protocol RRC message that is forwarded by the relay UE from the first device, and transmit the RRC message to the second device 23 An RRC layer, where the RRC layer of the second device 23 is disposed on an upper layer of the cellular network PDCP of the second device 23, and the first device includes an RRC peering with the RRC layer of the second device 23 Floor.
  • RRC radio resource control protocol
  • the receiving unit 2301 may be a receiver, and the processing unit 2302 may be embedded in the hardware of the second device in hardware or may be stored in the memory of the second device in software.
  • the processor calls to perform the operations corresponding to the above modules.
  • FIG. 24 is a schematic structural diagram of a second device 24 according to an embodiment of the present invention.
  • the second device 24 is operative to perform the actions of the second device 19 of any of the methods provided above.
  • the second device 24 includes a memory 2401, a receiver 2402, a processor 2403, and a system bus 2404. Receiver 2402 and processor 2403 pass the system The bus connection 2404 is connected.
  • the memory 2401 is configured to store computer execution instructions, and when the second device 24 is in operation, the processor 2403 executes the computer execution instructions stored by the memory 2401 to cause the second device 24 to perform the above provided
  • the action of the second device in any of the method embodiments. Specifically, the action performed by the second device can be referred to the related description in the foregoing, and details are not described herein again.
  • the processor in the foregoing first device, the relay UE, and the second device may be a processor, or may be a collective name of multiple processing elements.
  • the system bus can include a data bus, a power bus, a control bus, and a signal status bus.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to implement the solution of the embodiment. purpose.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

本发明公开了一种数据传输系统、方法和装置,应用于通信技术领域,用以提高数据传输的安全性。该系统包括:第一设备、中继用户设备UE和第二设备;第一设备在第一设备的蜂窝网PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理,生成PDU,并向中继UE发送PDU;其中,第一策略是第一设备与第二设备协商好的安全处理策略,待传输数据是第一设备需要传输给第二设备的数据;中继UE将PDU发送给第二设备;第二设备在第二设备的蜂窝网PDCP层,按照基于接收端的第一策略对PDU进行安全处理,得到待传输数据;其中,第一设备的蜂窝网PDCP层与第二设备的蜂窝网PDCP层对等;第一设备是远端UE,第二设备是基站;或者,第一设备是基站,第二设备是远端UE。。

Description

一种数据传输系统、方法和装置 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输系统、方法和装置。
背景技术
设备到设备(英文全称:device to device,英文简称:D2D)通信方式是指:用户设备(英文全称:user equipment,英文简称:UE)直接与用户设备进行通信的方式。将进行D2D通信的两个UE分别标记为UE1和UE2,则当UE1在基站的覆盖区域内时,UE2可以通过UE1与基站建立连接。该情况下,可以将用户设备1称为中继UE(英文:relay UE),即是提供中继服务的UE;将UE2称为远端UE或遥远UE。
在D2D通信方式中,远端UE与中继UE之间是互相信任的,即:中继UE可以获知远端UE与基站之间的通信内容。这样,若中继UE上的信息被窃取,则可能导致远端UE与基站之间的通信内容被泄露,也就是说,数据传输的安全性较低。
发明内容
本发明实施例提供一种数据传输系统、方法和装置,用以提高数据传输的安全性。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种数据传输系统,包括:第一设备、中继用户设备UE和第二设备;
第一设备在第一设备的蜂窝网分组数据汇聚协议PDCP层, 按照基于发送端的第一策略对待传输数据进行安全处理,生成协议数据单元PDU,并向中继UE发送该PDU;其中,第一策略是第一设备与第二设备协商好的安全处理策略,待传输数据是第一设备需要传输给第二设备的数据;
中继UE接收第一设备发送的该PDU,并将该PDU发送给第二设备;
第二设备接收中继UE发送的该PDU,并在第二设备的蜂窝网PDCP层,按照基于接收端的第一策略对该PDU进行安全处理,得到待传输数据。
第二方面,提供一种数据传输方法,包括:
第一设备在第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理,生成协议数据单元PDU;其中,第一策略是第一设备与第二设备协商好的安全处理策略,待传输数据是第一设备需要传输给第二设备的数据;
第一设备将该PDU经中继用户设备UE发送至第二设备;其中,第二设备中包含蜂窝网PDCP层。
第三方面,提供一种数据传输方法,包括:
中继用户设备UE接收第一设备发送的PDU;其中,该PDU是第一设备在第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理后,生成的该PDU;第一策略是第一设备与第二设备协商好的安全处理策略,待传输数据是第一设备需要传输给第二设备的数据;
中继UE向第二设备发送该PDU;其中,第二设备中包含蜂窝网PDCP层。
第四方面,提供一种数据传输方法,包括:
第二设备接收中继用户设备UE转发的来自第一设备的PDU; 其中,该PDU是第一设备在第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理后,生成的该PDU;第一策略是第一设备与第二设备协商好的安全处理策略,待传输数据是第一设备需要传输给第二设备的数据;
第二设备在第二设备的蜂窝网PDCP层,按照基于接收端的第一策略对该PDU进行安全处理,得到待传输数据。
在上述任一方面中,必选的,第一设备的蜂窝网PDCP层和第二设备的蜂窝网PDCP层对等;第一设备是远端UE,第二设备是基站;或者,第一设备是基站,第二设备是远端UE。
若第一设备是远端UE,第二设备是基站,则上述任一方面描述的是上行方向上的数据传输过程;若第一设备是基站,第二设备是远端UE,则上述任一方面描述的是下行方向上的数据传输。
本发明实施例提供的数据传输系统和方法,通过在远端UE和基站中设置对等的蜂窝网PDCP层,并分别在远端UE的蜂窝网PDCP层和基站的蜂窝网PDCP层中,按照远端UE与基站协商好的安全处理策略对远端UE与基站之间的待传输数据进行安全处理,保证远端UE与基站之间的通信数据的安全性。
可选的,在上述第一方面或第二方面中,第一设备向中继UE发送该PDU,可以包括:第一设备将该PDU依次经第一设备的蜂窝网PDCP层和第一设备的第一接口的协议模块之后,发送给中继UE。
对应地,在上述第一方面或第三方面中,中继UE将该PDU发送给第二设备,可以包括:中继UE将该PDU依次经中继UE的第一接口的协议模块和中继UE的第二接口的协议模块之后,发送给第二设备。
对应地,在上述第一方面或第四方面中,第二设备接收中继 UE发送的该PDU,并在第二设备的蜂窝网PDCP层中,按照基于接收端的第一策略,对该PDU进行安全处理,得到待传输数据,可以包括:第二设备接收中继UE发送的该PDU,并将该PDU经第二设备的第二接口的协议模块之后,传输至第二设备的蜂窝网PDCP层;并在第二设备的蜂窝网PDCP层中,按照基于接收端的第一策略,对该PDU进行安全处理,得到待传输数据。
其中,中继UE的第一接口的协议模块与第一设备的第一接口的协议模块对等,中继UE的第二接口的协议模块与第二设备的第二接口的协议模块对等,第一接口是第一设备与中继UE之间的通信接口,第二接口是中继UE与第二设备之间的通信接口。
该可选的实现方式提供了一种数据流的传输过程以及一种系统协议栈。
可选的,远端UE与中继UE之间的接口的协议模块包括媒体访问控制MAC层和物理PHY层。其中,该接口可以是第一接口也可以是第二接口。
在该可选的实现方式中,基于上述第一方面或第二方面,第一设备将该PDU依次经第一设备的蜂窝网PDCP层和第一设备的第一接口的协议模块之后,发送至中继UE,可以包括:第一设备将该PDU依次经第一设备的蜂窝网PDCP层、第一设备的蜂窝网无线链路控制层协议RLC层和第一设备的第一接口的协议模块之后,发送至中继UE。
在该可选的实现方式中,基于上述第一方面或第四方面,第二设备接收中继UE发送的该PDU,并将该PDU依次经第二设备的第二接口的协议模块之后,传输至第二设备的蜂窝网PDCP层,可以包括:第二设备接收中继UE发送的该PDU,并将该PDU依次经第二设备的第二接口的协议模块和第二设备的蜂窝网RLC层之后,传输至第二设备的蜂窝网PDCP层。
在该可选的实现方式中,第一设备的蜂窝网RLC层与第二设备的蜂窝网RLC层对等。
该可选的实现方式可以适用于远端UE与中继UE之间的通信方式是D2D通信方式的场景中。远端UE与中继UE之间的接口的协议模块包括MAC层和PHY层,是远端UE与中继UE之间的接口的协议模块的一种具体实现,但是,不限于此,例如,该接口的协议模块包括RLC层、MAC层和PHY层。
可选的,远端UE与中继UE的接口(该接口可以是第一接口也可以是第二接口)的协议模块包括第一PDCP层,用于按照远端UE与中继UE协商好的第二策略对数据进行安全处理。
在该可选的实现方式中,基于上述第一方面,系统中的各设备还可以实现以下功能:基站向远端UE和中继UE分别发送第一指示消息,第一指示消息用于指示接收方建立第一PDCP层;远端UE接收基站发送的第一指示消息,并根据第一指示消息,在远端UE中建立第一PDCP层;中继UE接收基站发送的第一指示消息,并根据第一指示消息,在中继UE中建立第一PDCP层。
在该可选的实现方式中,基于上述第二方面,第一设备是远端UE,方法还可以包括:远端UE接收基站发送的第一指示消息,第一指示消息用于指示远端UE建立第一PDCP层;远端UE根据第一指示消息,建立第一PDCP层。
在该可选的实现方式中,基于上述第二方面,第一设备是基站,方法还可以包括:基站向远端UE和中继UE分别发送第一指示消息,第一指示消息用于指示接收方建立第一PDCP层。
在该可选的实现方式中,基于上述第三方面,方法还可以包括:中继UE接收基站发送的第一指示消息,第一指示消息用于指示中继UE建立第一PDCP层;中继UE根据第一指示消息,建立第一PDCP层。
该可选的实现方式提供了一种第一PDCP层可配置的实现方式,具体实现时,基站可以根据实际需要为中继UE和远端UE配置对等的第一PDCP层。另外,中继UE和远端UE中设置有对等的第一PDCP层之后,能够保证数据传输通信在这两者之间的安全性,也就是说,第三方无法通过监听电磁波的方式窃取远端UE与中继UE之间的交互信息的内容。
可选的,中继UE与基站之间的接口(该接口可以是第一接口也可以是第二接口)的协议模块包括第二PDCP层,用于按照中继UE与基站协商好的第三策略对数据进行安全处理。
在该可选的实现方式中,基于第一方面,系统中的各设备还可以实现以下功能:基站建立第二PDCP层,并向中继UE发送第二指示消息,第二指示消息用于指示中继UE建立第二PDCP层;中继UE接收基站发送的第二指示消息,并根据第二指示消息,在中继UE中建立第二PDCP层。
在该可选的实现方式中,基于第二方面,第一设备是基站,方法还可以包括:基站建立第二PDCP层;基站向中继UE发送第二指示消息,第二指示消息用于指示中继UE建立第二PDCP层。
在该可选的实现方式中,基于第三方面,方法还可以包括:中继UE接收基站发送的第二指示消息,第二指示消息用于指示中继UE建立第二PDCP层;中继UE根据第二指示消息,建立第二PDCP层。
该可选的实现方式提供了一种第二PDCP层可配置的实现方式,具体实现时,基站可以根据实际需要为该基站和中继UE配置对等的第二PDCP层,这样,能够保证数据传输通信在这两者之间的安全性,也就是说,第三方无法通过监听电磁波的方式窃取远端UE与中继UE之间的交互信息的内容。
可选的,第一设备的RRC层与第二设备的RRC层对等,第一设备的RRC层在第一设备的蜂窝网PDCP层之上,第二设备的RRC层在第二设备的RRC层之上。
在该可选的实现方式中,基于上述第一方面,系统中的各设备还可以实现以下功能:第一设备在第一设备的无线资源控制协议RRC层中生成RRC消息,并向中继UE发送RRC消息;中继UE接收RRC消息,并将RRC消息发送给第二设备;第二设备接收中继UE发送的RRC消息,并传输至第二设备的RRC层。
在该可选的实现方式中,基于上述第二方面,方法还可以包括:第一设备在第一设备的无线资源控制协议RRC层中生成RRC消息,并将RRC消息经中继UE发送该第二设备。
在该可选的实现方式中,基于上述第三方面,方法还可以包括:中继UE接收第一设备发送的无线资源控制协议RRC消息;其中,RRC消息是第一设备在第一设备的RRC层生成的;中继UE向第二设备发送RRC消息。
在该可选的实现方式中,基于上述第四方面,方法还可以包括:第二设备接收中继UE转发的来自第一设备的无线资源控制协议RRC消息,并将RRC消息传输至第二设备的RRC层。
该可选的实现方式能够实现基站直接管理远端UE。
另一方面,本发明实施例提供了一种第一设备,该第一设备具有实现上述任一方面提供的方法中第一设备侧行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,第一设备的结构中包括处理器和发射器,所述处理器被配置为支持第一设备执行上述方法中相应的功能。所述发射器用于支持第一设备与中继UE之间的通信。所述第一设备还可以包括存储器,所述存储器用于与处理器耦合,其 保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种中继UE,该中继UE具有实现上述任一方面提供的方法中中中继UE行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,中继UE的结构中包括处理器和发射器,所述处理器被配置为支持中继UE执行上述方法中相应的功能。所述发射器用于支持中继UE与第一设备,以及中继UE与第二设备之间的通信。所述中继UE还可以包括存储器,所述存储器用于与处理器耦合,其保存中继UE必要的程序指令和数据。
再一方面,本发明实施例提供了一种第二设备,该第二设备具有实现上述任一方面提供的方法中中第二设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,第二设备的结构中包括处理器和发射器,所述处理器被配置为支持第二设备执行上述方法中相应的功能。所述发射器用于支持第二设备与中继UE之间的通信。所述第二设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第二设备必要的程序指令和数据。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第一设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述中继UE所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第二设备所用的计算机软件指令,其包含用于执行上 述方面所设计的程序。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,
图1为现有技术提供的一种系统协议栈的示意图;
图2为本发明实施例提供的技术方案所适用的一种系统架构图;
图3为本发明实施例提供的一种系统协议栈的示意图;
图4为本发明实施例提供的另一种系统协议栈的示意图;
图5为本发明实施例提供的另一种系统协议栈的示意图;
图6为本发明实施例提供的另一种系统协议栈的示意图;
图7为本发明实施例提供的另一种系统协议栈的示意图;
图8为本发明实施例提供的另一种系统协议栈的示意图;
图9为本发明实施例提供的另一种系统协议栈的示意图;
图10为本发明实施例提供的另一种系统协议栈的示意图;
图11为本发明实施例提供的一种数据传输方法的交互图;
图12为本发明实施例提供的另一种数据传输方法的交互图;
图13为本发明实施例提供的另一种数据传输方法的交互图;
图14为本发明实施例提供的另一种数据传输方法的交互图;
图15为本发明实施例提供的另一种数据传输方法的交互图;
图16为本发明实施例提供的另一种数据传输方法的交互图;
图17为本发明实施例提供的另一种数据传输方法的交互图;
图18为本发明实施例提供的另一种数据传输方法的交互图;
图19为本发明实施例提供的一种第一设备的结构示意图;
图20为本发明实施例提供的另一种第一设备的结构示意图;
图21为本发明实施例提供的一种中继UE的结构示意图;
图22为本发明实施例提供的另一种中继UE的结构示意图;
图23为本发明实施例提供的一种第二设备的结构示意图;
图24为本发明实施例提供的另一种第二设备的结构示意图。
具体实施方式
如背景技术中所述,远端UE与中继UE之间是互相信任的。另外,远端UE对于基站来说是不可见的。下面从系统协议栈的角度,对“远端UE与中继UE之间是互相信任的”和“远端UE对于基站来说是不可见的”进行说明。具体以远端UE与中继UE之间的通信方式是D2D通信方式,通信接口是PC5接口,中继UE与基站之间的通信接口是Uu接口为例进行说明。需要说明的是,现有技术中的系统协议栈不区分控制面协议栈和用户面协议栈。
如图1所示,是现有技术中提供的一种系统协议栈的示意图,包括远端UE协议栈、中继UE协议栈和基站协议栈。具体的:远端UE协议栈包括从上层至底层依次设置的网络之间互连的协议(英文全称:internet protocol,英文简称:IP)层、D2D通信方式下分组数据汇聚协议(英文全称:packet data convergence protocol,英文简称:PDCP)层、无线链路控制层协议(英文全称:radio link control,英文简称:RLC)层、媒体访问控制(英文全称:media access control或medium access control,英文简称:MAC)层、物理(英文全称:physics,英文简称:PHY)层;即从上层至底层依次设置的D2D-PDCP层、D2D-RLC层、D2D-MAC层、D2D-PHY层。中继UE协议栈包括:PC5接口的与远端UE协议栈对等的D2D-PDCP层、D2D-RLC层、D2D-MAC层、D2D-PHY层,以及Uu接口的Uu-PDCP层、Uu-RLC层、Uu-MAC层和Uu-PHY层;另外,还有设置在D2D-PDCP层与Uu-PDCP层之上的,起转发作用的IP-relay层。基站协议栈包括与Uu接口的与中继UE对等的Uu-PDCP层、 Uu-RLC层、Uu-MAC层和Uu-PHY层。需要说明的是,图1所示的协议栈中还包括用于实现中继UE与基站之间的无线资源控制协议(英文全称radio resource control,英文简称:RRC)层,图1中未示出。
根据图1可知:第一,中继UE协议栈中包含远端UE协议栈中的各层(除IP层外)对等的层,因此,远端UE与中继UE之间是互相信任的。第二,远端UE协议栈中不包含与基站协议栈对等的协议栈,因此,远端UE对于基站来说是不可见的。
如背景技术中所述,由于中继UE可以获知远端UE与基站之间的通信内容,这样,若中继UE上的信息被窃取,则可能导致远端UE与基站之间的通信内容被泄露,因此数据传输的安全性较低。
基于此,本发明实施例提供的技术方案提供了一种数据传输系统、方法和装置,通过在远端UE和基站中设置对等的蜂窝网PDCP层,并分别在远端UE的蜂窝网PDCP层和基站的蜂窝网PDCP层中,按照远端UE与基站协商好的安全处理策略对远端UE与基站之间的待传输数据进行安全处理,保证远端UE与基站之间的通信数据的安全性。
本发明实施例提供的技术方案可以应用于各种通信系统,例如当前2G,3G通信系统和下一代通信系统,例如码分多址(英文全称:code division multiple access,英文简称:CDMA)、宽带码分多址(英文全称:wideband code division multiple access,英文简称:WCDMA)、时分多址(英文全称:time division multiple access,英文简称:TDMA)、频分多址(英文全称:frequency division multiple access,英文简称:FDMA)、正交频分多址(英文:orthogonal frequency-division multiple access,英文简称:OFDMA)、单载波频分多址(英文全称:single carrier FDMA,英文简称:SC-FDMA),长期演进(英文全称:long term evolution,英文简称:LTE)系统, 以及其他此类通信系统。
基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(英文全称:base transceiver station,英文简称BTS),也可以是WCDMA中的基站(英文:NodeB),还可以是LTE中的演进型基站(英文:NodeB或eNB或e-NodeB,evolutional NodeB),本申请并不限定。
用户设备,可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(英文全称:radio access network,英文简称:RAN)(无线通信网络的接入部分与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文全称:personal communication service,英文简称:PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(英文全称:wireless local loop,英文简称:WLL)站、个人数字助理(英文全称:personal digital assistant,英文简称:PDA)等设备。无线终端也可以称为系统、订户单元(英文:subscriber Unit)、订户站(英文:subscriber station),移动站(英文:mobile station)、移动台(英文:mobile)、远程站(英文:remote Station)、接入点(英文:access point)、远程终端(英文:remote terminal)、接入终端(英文:access terminal)、用户终端(英 文:user terminal)、用户代理(英文:user agent)、用户设备(英文:user equipment)。
中继UE和远端UE的具体实现可以参考上述对用户设备的描述。需要说明的是,本发明实施例中的远端UE还可以是可穿戴设备(英文全称:wearable equipment),例如,谷歌眼镜(英文:google glass)、智能手环、智能手表等。
本发明的实施例中的“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
本文中的“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“多个”是指两个或多于两个。
在文中的“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本文中的“基于发送端/接收端的策略(包括第一策略、第二策略和第三策略)”,是收发双方预先约定好的二者之间的通信数据需要满足的安全处理策略。其中,基于发送端的策略包括完整性保护策略和/或加密策略,基于接收端的策略包括对应的完整性保护验证策略和/或解密策略。例如,若基于发送端的第一策略包括加密策略,则基于接收端的策略包括解密策略;若基于发送端的第一策略包括完整性保护策略,则基于接收端的策略包括完整性保护验证策略。
本文中所涉及的“层”,例如PDCP层、RRC层等均是逻辑功能模块。“对等的层”是指功能上相同的两个层,但是,在一次数据传输(包括上行数据传输和下行数据传输)过程中,对等的两个 层实现相反(或称为相对)的功能,例如,若远端UE的RLC层实现封装的功能,则中继UE中的与远端UE的RLC层对等的RLC层实现解封装的功能。
本文中的“安全处理”包括:完整性保护处理和完整性保护验证处理,以及加密处理和解密处理。其中,完整性保护处理与完整性保护验证处理是对等的,即成对出现,若发送端的PDCP层对一个数据包进行完整性保护,则接收端的与该发送端的该PDCP层对等的PDCP层对接收到的数据包进行完整性保护验证,以得到该数据包。加密处理和解密处理是对等的,即成对出现,若发送端的PDCP层对一个数据包进行加密处理,则接收端的与该发送端的该PDCP层对等的PDCP层对接收到的数据包进行解密处理,以得到该数据包。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例依托无线通信网络中4G网络的场景进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
如图2所示,是本发明实施例提供的一种数据传输系统,该系统包括第一设备、中继UE和第二设备。其中,第一设备是远端UE,第二设备是基站;或者第一设备是基站,第二设备是远端UE。
远端UE通过中继UE与基站进行连接,并通过中继UE与基站进行上行数据和/或下行数据的传输。图2示出了远端UE、中继UE和基站之间的位置关系。图2所示的位置关系包括:中继UE与远端UE均位于小区覆盖区域内,如图2(1);中继UE位于小区覆盖区域内,远端UE位于网络覆盖区域之外,如图2(2)所示;中继UE位于基站覆盖区域内,远端UE位于另一小区覆盖区域内,如图2(3)所示。图2中的UEA是中继UE,UEB是远端UE。
远端UE与中继UE之间的通信方式可以是D2D通信方式、蓝牙通信方式或WiFi通信方式等。本文中主要以远端UE与中继UE之间的通信方式可以是D2D通信方式为例进行说明。
在数据传输过程中,该系统中的各设备具体执行以下功能:
第一设备在第一设备的蜂窝网PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理,生成协议数据单元(英文全称:protocol data unit,英文简称:PDU),并向中继UE发送该PDU;其中,第一策略是第一设备与第二设备协商好的安全处理策略,待传输数据是第一设备需要传输给第二设备的数据。
中继UE接收第一设备发送的该PDU,并将该PDU发送给第二设备。
第二设备接收中继UE发送的该PDU,并在第二设备的蜂窝网PDCP层,按照基于接收端的第一策略对该PDU进行安全处理,得到待传输数据。其中,第一设备的蜂窝网PDCP层与第二设备的蜂窝网PDCP层对等。
若第一设备是远端UE,第二设备是基站,则上述数据传输过程是上行方向上的数据传输过程;若第一设备是基站,第二设备是远端UE,则上述数据传输过程是下行方向上的数据传输过程。
本发明实施例提供的数据传输系统,通过在远端UE和基站中设置对等的蜂窝网PDCP层,并分别在远端UE的蜂窝网PDCP层 和基站的蜂窝网PDCP层中,按照远端UE与基站协商好的安全处理策略对远端UE与基站之间的待传输数据进行安全处理,保证远端UE与基站之间的通信数据的安全性。
可选的,第一设备具体用于:将该PDU依次经第一设备的蜂窝网PDCP层和第一设备的第一接口的协议模块之后,发送给中继UE。该情况下,中继UE具体用于:将该PDU依次经中继UE的第一接口的协议模块和中继UE的第二接口的协议模块之后,发送给第二设备。第二设备具体用于:接收中继UE发送的该PDU,并将该PDU经第二设备的第二接口的协议模块之后,传输至第二设备的蜂窝网PDCP层;并在第二设备的蜂窝网PDCP层中,按照基于接收端的第一策略,对该PDU进行安全处理,得到待传输数据。
其中,中继UE的第一接口的协议模块与第一设备的第一接口的协议模块对等,中继UE的第二接口的协议模块与第二设备的第二接口的协议模块对等,第一接口是第一设备与中继UE之间的通信接口,第二接口是中继UE与第二设备之间的通信接口。
如图3所示,是该可选的实现方式中提供的系统协议栈的示意图,包括:第一设备协议栈、中继UE协议栈和远端UE协议栈。
结合图3,可选的,第一接口的协议模块可以包括从上层至底层依次设置的:第一RLC层、第一MAC层和第一PHY层,第二接口的协议模块可以包括从上层至底层依次设置的:第二RLC层、第二MAC层和第二PHY层,如图4所示。图4还示出了数据流传输方向。
在图4中,中继UE的第一RLC层实现向中继UE的第二RLC层传输数据的功能,中继UE的第二RLC层实现接收中继UE的第一RLC层传输数据的功能。
结合图3,可选的,远端UE与中继UE之间的接口的协议模块包括MAC层和PHY层(附图5中表示为第一MAC层和第一PHY 层);其中,该接口可以是第一接口也可以是第二接口,也就是说,在该可选的实现方式中,第一设备可以是远端UE,也可以是基站。该情况下,远端UE与基站中可以包含对等的蜂窝网RLC层,如图5所示,图5中还示出了数据流传输方向。
在图5中,上行方向上,中继UE的第一MAC层实现向中继UE的第二RLC层发送数据的功能,该情况下,中继UE的第二RLC层实现接收中继UE的第一MAC层发送的数据的功能;下行方向上,中继UE的第二RLC层实现向中继UE的第一MAC层发送数据的功能,该情况下,中继UE的第一MAC层实现接收中继UE的第二RLC层发送的数据的功能。
基于如图5所示的系统协议栈,第一设备具体用于:将PDU依次经第一设备的蜂窝网PDCP层、第一设备的蜂窝网RLC层和第一设备的第一接口的协议模块之后,发送至中继UE;第二设备具体用于:接收中继UE发送的PDU,并将PDU依次经第二设备的第二接口的协议模块和第二设备的蜂窝网RLC层之后,传输至第二设备的蜂窝网PDCP层。需要说明的是,在该可选的实现方式中中,远端UE与基站中一般不设置对等的第一PDCP层;可选的,中继UE与基站中可以设置对等的第二PDCP层。关于第一PDCP层与第二PDCP层的说明,参见下文。
在可选的实现方式1中,远端UE与中继UE的接口的协议模块包括第一PDCP层,其中,该接口可以是第一接口也可以是第二接口,也就是说,在该可选的实现方式中,第一设备可以是远端UE,也可以是基站。第一PDCP层用于按照远端UE与中继UE协商好的第二策略对数据进行安全处理。该可选的实现方式所适用的一种系统协议栈如图6所示,图6是在图4的基础上进行绘制的。图6还示出了数据流传输方向。
在图6中,上行方向上,中继UE的第一PDCP层实现向中继 UE的第二RLC层发送数据包的功能;该情况下,中继UE的第二RLC层实现接收中继UE的第一PDCP层发送的数据包的功能。下行方向上,中继UE的第二RLC层实现向中继UE的第一PDCP层发送数据包的功能;该情况下,中继UE的第一PDCP层实现接收中继UE的第二RLC层发送的数据包的功能。
该可选的实现方式可以适用于远端UE与中继UE之间的通信方式是D2D通信方式的场景中。该可选的实现方式中,远端UE与中继UE中包含对等的第一PDCP层,这样能够保证数据传输通信在这两者之间的安全性,也就是说,第三方无法通过监听电磁波的方式窃取远端UE与中继UE之间的交互信息的内容。
可选的,远端UE的第一PDCP层和中继UE的第一PDCP层是可配置的,该情况下,系统中的各设备还执行以下功能:基站向远端UE和中继UE分别发送第一指示消息,第一指示消息用于指示接收方建立第一PDCP层;远端UE接收基站发送的第一指示消息,并根据第一指示消息,在远端UE中建立第一PDCP层;中继UE接收基站发送的第一指示消息,并根据第一指示消息,在中继UE中建立第一PDCP层。
其中,远端UE与中继UE均配置第一PDCP层,或者均不配置第一PDCP层。本发明实施例对基站为远端UE和中继UE配置第一PDCP层的触发条件不进行限定。
在可选的实现方式2中,中继UE与基站之间的接口的协议模块包括第二PDCP层,其中,该接口可以是第一接口也可以是第二接口。也就是说,在该可选的实现方式中,第一设备可以是远端UE,也可以是基站。第二PDCP层用于按照中继UE与基站协商好的第三策略对数据进行安全处理。该可选的实现方式所适用的系统协议栈如图7或图8所示,其中,图7是在图4的基础上进行绘制的,图8是在图6的基础上进行绘制的,图7和图8中还示出了数 据流传输方向。
在图7中,上行方向上,中继UE的第一RLC层实现向中继UE的第二PDCP层发送数据包的功能;该情况下,中继UE的第二PDCP层实现接收中继UE的第一RLC层发送的数据包的功能。下行方向上,中继UE的第二PDCP层实现向中继UE的第一RLC层发送数据包的功能;该情况下,中继UE的第一RLC层实现接收中继UE的第二PDCP层发送的数据包的功能。
在图8中,上行方向上,中继UE的第一PDCP层还实现向中继UE中的第二PDCP层发送数据包的功能;该情况下,中继UE的第二PDCP层还实现接收中继UE的第一PDCP层发送的数据包的功能。下行方向上,中继UE中的第二PDCP层还实现向中继UE的第一PDCP层发送数据包的功能;该情况下,中继UE的第一PDCP层还实现向中继UE中的第二PDCP层发送数据包的功能。
该可选的实现方式中,中继UE协议栈与基站协议栈中包含对等的第二PDCP层,这样能够保证数据传输通信在这两者之间的安全性,也就是说,第三方无法通过监听电磁波的方式窃取中继UE与基站之间的交互信息的内容。
可选的,中继UE的第二PDCP层和基站的第二PDCP层是可配置的,该情况下,系统中的各设备还执行以下功能:基站建立第二PDCP层,并向中继UE发送第二指示消息,第二指示消息用于指示中继UE建立第二PDCP层;中继UE接收基站发送的第二指示消息,并根据第二指示消息,在中继UE中建立第二PDCP层。
其中,中继UE与基站均配置第二PDCP层,或者均不配置第二PDCP层。本发明实施例对基站为中继UE和基站配置第二PDCP层的触发条件不进行限定。
在一种可选的实现方式中,系统中的各设备还可以具有以下功能:所述第一设备在第一设备的RRC层中生成RRC消息,并向 中继UE发送RRC消息;中继UE接收RRC消息,并将RRC消息发送给第二设备;第二设备接收中继UE发送的RRC消息,并传输至第二设备的RRC层;其中,第一设备的RRC层与第二设备的RRC层对等,第一设备的RRC层在第一设备的蜂窝网PDCP层之上,第二设备的RRC层在第二设备的RRC层之上。
该可选的实现方式所适用的系统协议栈如图9所示,其中,图9基于图8进行绘制的。图9中还示出了数据流传输方向。
其中,RRC消息可以包括但不限于RRC请求消息、RRC应答消息、RRC确认消息、RRC指示消息等,例如,RRC链接请求(英文:RRC connection request)消息、RRC链接重建(英文:RRC connection reestablishment)请求消息、安全模式(英文:security mode)请求消息、上行直传(英文:uplink direction)请求消息、下行直传(英文:downlink direction)请求消息等。
该在可选的实现方式中,蜂窝网PDCP层具体用于:对RRC消息的处理,例如,对RRC链接建立请求消息添加序列号(英文全称:sequence number,英文简称:SN)SN或去掉SN的功能;或者,将数据包发送给下面的协议层,而不修改数据包;或者,对控制信令进行完整性保护或完整性保护验证。
如图9所示的系统协议栈可以称为是控制面协议栈,由于远端UE协议栈与基站协议栈中包含对等的RRC层,因此,能够实现远端UE与基站之间的RRC链接;从而使得远端UE对于基站来说是可见的。这样能够使基站直接管理远端UE,并为远端UE配置RRC链接的控制面参数和用户面参数。并且,对于核心网中的设备,例如移动管理实体(英文全称:mobile management entity,英文简称MME)、分组数据网网关(英文全称:packet data network gateway,英文简称PGW)、SGW等,来说,远端UE就如同直接连接(例如,直接通过Uu接口连接)到基站上的UE;核心网对远端UE的管理 与核心网不经过中继UE对远端UE的管理相同。
其中,基站为远端UE配置RRC链接的控制面参数和用户面参数,具体可以包括:在控制面上,远端UE与基站之间设置有对等的RRC层和蜂窝网PDCP层,RRC层负责管理远端UE的接入链接的参数配置和建立远端UE的承载(包括接入的无线承载和基站到核心网的承载),配置远端UE到基站的传输数据和信令的安全参数等。在用户面上,例如基于如图6所示的用户面协议栈,对于上行传输数据,远端UE将来自上层的数据包在蜂窝网PDCP层进行处理后经过中继UE转发到基站;对于下行传输数据,基站将来自核心网的数据包送到蜂窝网PDCP层进行处理然后经过中继UE转发到远端UE。
如图9所示的控制面协议栈,对于基站来说,远端UE的RRC的上下文信息,特别是安全参数,都是基站直接管理的。另外,控制信令的处理以及数据包的安全处理(包括完整性保护、加密解密等)都只有基站和远端UE参与完成,这样,保证了远端UE经过任何一个中继UE与基站进行信息交互的过程中,中继UE无法解密交互信息的内容,从而能够提高了数据传输的安全性。
示例的,假设远端UE与中继UE之间的通信接口是PC5接口,远端UE与中继UE之间的通信方式是D2D通信方式;中继UE与基站之间的通信接口是Uu接口,则基于图9的一种系统协议栈的示意图如图10所示。在图10中,接入网具体可以是演进的UMTS陆地无线接入网(英文全称:evolved UMTS terrestrial radio access network,英文简称:E-UTRAN),其中,UMTS是通用移动通信系统(英文universal mobile telecommunications system)的简称。
以图10为例对系统协议栈中的各层的功能进行示例性说明:
1、远端UE协议栈包括:RRC层、蜂窝网PDCP层和D2D协议模块。
RRC层:RRC层完成的功能是能够使远端UE直接通过Uu口链接到网络设备(例如基站的子集),至少包括:①建立、释放、修改RRC链接;②分配、修改、获得身份标识号码(英文全称:identity,英文简称:ID),例如小区无线网络临时标识(英文全称:cell radio network temporary identifier,英文简称:C-RNTI);③建立、释放、修改远端UE与基站之间的信令无线承载(英文全称:signaling radio bearer,英文简称:SRB);④配置远端UE与基站之间安全参数,以便后续进行信令和数据的安全处理。
蜂窝网PDCP层:实现RRC信令的完整性保护和/或完整性保护验证功能,IP数据包的头压缩、解压缩功能(英文全称:robust header compressio,英文简称:ROHC),IP数据包的加密和/或解密功能。
D2D模块包括:
D2D-PDCP层:实现D2D链路层面的PDCP功能,至少实现IP数据包的头压缩、解压缩功能,数据包的加密和/或解密功能。可选的,当D2D链路两端的设备有对等的控制模块的时,该控制模块进行信令配置数据的传递时,需要在D2D-PDCP层进行完整性保护的功能。
D2D-RLC层:即D2D链路的数据传输控制层,实现数据包的封装,切割,重组,重传,流控等。
D2D-MAC层:即D2D链路的媒体接入控制层,实现封装RLC的服务数据单元(英文全称:service data unit,英文简称:SDU)成为MAC PDU的功能,和D2D链路的对端实现可靠传输、重传的功能,例如混合自动重传请求(英文全称:hybrid automatic repeat request,英文简称:HARQ))功能等。
D2D-PHY层:即按照D2D链路的物理层的技术规范将来自D2D-MAC层的MAC PDU形成空中的无线信号进行发送,和/或, 接收空中的无线信号,并将接收到的正确的数据包做为MAC PDU递交给D2D-MAC层。
2、中继UE协议栈包括D2D模块和Uu接口模块。
D2D模块,具体是与远端UE对等的D2D模块。
D2D-PDCP层:除了具有远端UE协议栈中的D2D-PDCP层的功能之外,还可以具有以下功能:向中继UE协议栈中的Uu-PDCP层或Uu-RLC层发送数据包的功能,或者,接收中继UE协议栈中的Uu-PDCP或Uu-RLC层发送的数据包的功能,并对接收到的数据包进行处理,以便于通过D2D链路发送到远端UE的功能。
D2D-RLC层:除了具有远端UE协议栈中的D2D-RLC层的功能之外,还可以具有以下功能:接收中继UE的Uu-PDCP层或Uu-RLC层发送的数据包,和/或,向中继UE的Uu-PDCP层或Uu-RLC层发送数据包。
D2D-MAC层和D2D-PHY层与中继UE协议栈中对等的层的功能相同。
Uu模块包括:Uu-PDCP层Uu-RLC层、Uu-MAC层和Uu-PHY层。
本发明实施例中的Uu-PDCP模块与现有技术中的中继UE所包含的Uu-PDCP模块(如图1所示)相同,但是,二者的Uu-PDCP模块所传输的内容不同,具体的:现有技术中的中继UE所包含的Uu-PDCP模块中传输的是中继UE与基站之间的交互信息,而本发明实施例中的中继UE所包含的Uu-PDCP模块中传输的是远端UE与基站之间的交互信息。
本发明实施例中的中继UE的PDCP层(包括D2D-PDCP层和Uu-PDCP层)与现有技术中的中继UE的PDCP层的不同之处在于:本发明实施例中的中继UE的PDCP层的上行数据包最后会递交给基站的蜂窝网PDCP层,并且下行数据包最后会下达到远端UE的 蜂窝网PDCP层;而现有技术中的中继UE的PDCP层的上行数据包最后会递交给基站的中的与中继UE对应的PDCP层(图1中未示出),并且下行数据包最后会下达到远端UE的RLC层。
另外,本发明实施例中的中继UE的Uu-PDCP层还可以具有以下功能:接收中继UE的D2D-PDCP层或D2D-RLC层发送的数据包的功能,和/或,向中继UE的D2D-PDCP层或D2D-RLC层发送数据包的功能。中继UE的Uu-RLC层还可以具有以下功能:接收中继UE的D2D-PDCP层发送的数据包的功能,和/或,向中继UE的D2D-PDCP层发送数据包的功能。
3、基站协议栈包括与中继UE协议栈对等的无线承载模块(即Uu模块),以及与远端UE对等的RRC层和蜂窝网PDCP层。
其中,基站的远端UE对等的蜂窝网PDCP层可以具有以下功能:接收基站的与中继UE对等的Uu-PDCP层或Uu-RLC层发送的数据包的功能,和/或,向基站的与中继UE对等的Uu-PDCP层或Uu-RLC层发送数据包的功能。
需要说明的是,在图3-图8所示的任一种系统协议栈中,远端UE的蜂窝网PDCP层之上还可以设置IP层,该情况下,数据传输系统中,还可以包括服务网关(英文全称:serving gateway,英文简称:SGW),SGW中包含与远端UE的IP层对等的IP层。其中,远端UE的IP层用于生成上行方向上的待传输数据,SGW的IP层用于生成下行方向上的待传输数据。
本发明实施例提供的上行数据传输方法,如实施例1-4所示,其中,本文中的第一设备在实施例1-4中是指远端UE,本文中的第二设备在实施例1-4中是指基站。
实施例1
如图11所示,是本实施例提供的一种上行数据传输方法的交 互示意图。本实施例所提供的方法可以基于图3-图5所述的任一种系统协议栈,本实施例中的具体示例以基于图4所示的系统协议栈为例进行说明。图11所示的方法包括:
S11:远端UE按照基于发送端的第一策略对待传输数据进行安全处理,生成第一PDU。第一策略是远端UE与基站协商好的安全处理策略,待传输数据是远端UE发送至基站的数据。
具体的,远端UE的蜂窝网PDCP层接收IP层发送的待传输数据,并按照基于发送端的第一策略对待传输数据进行安全处理,生成第一PDU。
示例的,第一策略的协商过程的一种实现方法为:基站接收到远端UE发送的RRC链接建立请求之后,根据远端UE的标识获得远端UE的安全参数,其中,安全参数包括加密算法,随机数,完整性保护算法等。基站将获取的安全参数形成RRC消息发送给远端UE,远端UE收到后确认第一策略启用。当然,具体实现时,不限于此。
S12:远端UE向中继UE发送第一PDU。
具体的:远端UE的蜂窝网PDCP层将第一PDU发送给远端UE的第一RLC层,接着,第一PDU依次经远端UE的第一RLC层、第一MAC层、第一PHY层,最终被送到远端UE的第一接口的空口,远端UE在第一接口的空口向中继UE发送经第一PHY层传输后的第一PDU。
S13:中继UE接收远端UE发送的第一PDU。
具体的,中继UE在第一接口的空口接收远端UE发送的第一PDU。在该步骤之后,第一PDU依次经中继UE的第一PHY层、第一MAC层、第一RLC层之后,由第一RLC层转发至第二RLC层,再依次经第二MAC层、第二PHY层之后,生成电波信号。
S14:中继UE向基站发送第一PDU。
具体的,中继UE在第二接口的空口向基站发送根据第一PDU生成的电波信号。
S15:基站接收中继UE发送的第一PDU。
具体的,基站在第二接口的空口接收中继UE发送的电波信号,并将该电波信号依次经基站的第二PHY层、第二MAC层、第二RLC层之后,生成第一PDU。在该步骤之后,该方法还可以包括:基站的第二RLC层将第一PDU发送至基站的蜂窝网PDCP层。
S16:基站按照基于接收端的第一策略,对第一PDU进行安全处理,得到待传输数据。
具体的,基站的蜂窝网PDCP层按照基于接收端的第一策略,对第一PDU进行安全处理,得到待传输数据。
实施例2
如图12所示,是本实施例提供的一种上行数据传输方法的交互示意图。本实施例所提供的方法可以基于图6所示的系统协议栈,即远端UE协议栈与中继UE协议栈中设置有对等的第一PDCP层。图12所示的方法包括:
S21:与S11相同。其中,在S11的具体示例的步骤之后,该方法还可以包括:远端UE的蜂窝网PDCP层将第一PDU发送给远端UE的第一PDCP层。
S22:远端UE按照基于发送端的第二策略对第一PDU进行安全处理,。第二策略是远端UE与中继UE协商好的安全处理策略。
具体的:远端UE的第一PDCP层按照基于发送端的第二策略对第一PDU进行安全处理,。在该步骤之后,该方法还可以包括:远端UE的第一PDCP层将第二PDU发送给远端UE的第一RLC层,接着,第二PDU依次经远端UE的第一RLC层、第一MAC层、第一PHY层,最终被送到远端UE的第一接口的空口。
S23:远端UE向中继UE发送第二PDU。
具体的,远端UE在第一接口的空口将第二PDU发送给中继UE。
S24:中继UE接收远端UE发送的第二PDU。
具体的,中继UE在第一接口的空口接收远端UE发送的第二PDU。在该步骤之后,第二PDU依次经中继UE的第一PHY层、第一MAC层、第一RLC层之后,由第一RLC层转发至中继UE的第一PDCP层。
S25:中继UE按照基于接收端的第二策略对第二PDU进行安全处理,得到第一PDU。
具体的,中继UE的第一PDCP层按照基于接收端的第二策略对第二PDU进行安全处理,得到第一PDU。在该步骤之后,该方法还可以包括:中继UE的第一PDCP层将第一PDU发送给中继UE的第二RLC层,再依次经中继UE的第二MAC层、第二PHY层之后,生成电波信号。
S26-S28:与S14-S16相同。
实施例3
如图13所示,是本实施例提供的一种上行数据传输方法的交互示意图。本实施例所提供的方法可以基于图7所示的系统协议栈,即中继UE协议栈与基站协议栈中设置有对等的第二PDCP层。图13所示的方法包括:
S31-S33:与S11-S13相同。其中,在S13的具体实现所示的步骤之后,第一PDU依次经中继UE的第一PHY层、第一MAC层、第一RLC层之后,由中继UE的第一RLC层转发至中继UE的第二PDCP层。
S34:中继UE按照基于发送端的第三策略对第一PDU进行安全处理,生成第四PDU。第三策略是中继UE与基站协商好的安全处理策略。
具体的,中继UE的第二PDCP层按照基于发送端的第三策略对第一PDU进行安全处理,生成第四PDU。在该步骤之后,中继UE的第二PDCP层将第四PDU转发中继UE的至第二RLC层,再依次经中继UE的第二MAC层、第二PHY层之后,生成电波信号
S35:中继UE向基站发送第四PDU。
具体的,中继UE在第二接口的空口将根据第四PDU生成的电波信号发送至基站。
S36:基站接收中继UE发送的第四PDU。
具体的,基站在第二接口的空口接收中继UE发送的第四PDU。在该步骤之后,第四PDU依次经基站的第二PHY层、第二MAC层、第二RLC层之后,由基站的第二RLC层发送至基站的第二PDCP层。
S37:基站按照基于接收端的第三策略,对第四PDU进行安全处理,得到第一PDU。
具体的,基站的第二PDCP层按照基于接收端的第三策略,对第四PDU进行安全处理,得到第一PDU。在该步骤之后,基站的第二PDCP层将第一PDU发送至基站的蜂窝网PDCP层。
S38:与S16相同。
实施例4
如图14所示,是本实施例提供的一种上行数据传输方法的交互示意图。本实施例所提供的方法可以基于图9所示的系统协议栈,即远端UE协议栈与中继UE协议栈中设置有对等的第一PDCP层,且中继UE协议栈与基站协议栈中设置有对等的第二PDCP层。图14所示的方法包括:
S41-S45:与S21-S25相同。其中,在S25的具体示例的步骤之后,该方法还可以包括:中继UE的第一PDCP层将第一PDU发送给中继UE的第二PDCP层。
S46-410,与S34-S38相同。
本发明实施例还提供了下行数据传输方法,参见实施例5。其中,本文中的第一设备在实施例5中具体是指基站,本文中的第二设备在实施例5中是指远端UE。
实施例5
如图15所示,是本实施例提供的一种下行数据传输方法的交互示意图。本实施例所提供的方法可以基于如图4所示的用户面协议栈。图15所示的方法包括:
S51:基站按照基于发送端的第一策略对待传输数据进行安全处理,得到第三PDU。第一策略是远端UE与基站协商好的安全处理策略,待传输数据是远端UE发送至网络侧的数据;第二传输数据是网络侧发送至远端UE的数据。
具体的,基站的蜂窝网PDCP层接收到来自SGW的IP层发送的待传输数据,并对待传输数据进行安全处理,得到第三PDU。其中,基站的蜂窝网PDCP层接收到来自SGW的IP层发送的待传输数据的过程可以参考现有技术。
在该步骤之后,该方法还可以包括:基站的蜂窝网PDCP层向基站的第二RLC层发送第三PDU;接着,第三PDU依次经第二基站的第二RLC层、第二MAC层、第二PHY层之后,生成电波信号。
S52:基站向中继UE发送第三PDU。
具体的,基站的第二接口的空口向中继UE发送根据第三PDU生成的电波信号。
S53:中继UE接收基站发送的第三PDU。
具体的,中继UE的第二接口的空口接收基站发送的电波信号,该电波信号依次经中继UE的第二PHY层、第二MAC层,第二RLC层之后,生成第三PDU。在该步骤之后,中继UE的第二RLC层将 第三PDU发送至中继UE的第一RLC,接着,第三PDU依次经中继UE的第一RLC层、第一MAC层、第一PHY层,最后发送至中继UE的第一接口的空口。
S54:中继UE向远端UE发送第三PDU。
具体的,中继UE在第一接口的空口向远端UE发送第三PDU。
S55:远端UE接收中继UE发送的第三PDU。
具体的,远端UE在第一接口的空口接收中继UE发送的第三PDU。在该步骤之后,第三PDU依次经远端UE的第一PHY层、第一MAC层、第一RLC层之后,远端UE的第一RLC层将第三PDU发送至远端UE的蜂窝网PDCP层。
S56:远端UE基于接收端的第一策略,对第三PDU进行安全处理,得到待传输数据。
具体的,远端UE的蜂窝网PDCP层基于接收端的第一策略,对第三PDU进行安全处理,得到待传输数据。
需要说明的是,下行数据传输方法是上行数据传输方法的反过程,与上述上行数据传输方法类似,远端UE和中继UE之间的数据包可以按照第二策略进行收发,和/或,中继UE与远端UE之间的数据包可以按照第三策略进行收发。其具体的实现过程,此处不再赘述。本领域普通技术人员,应当能够根据上文提供的上行数据传输方法,在不付出创造性的劳动下,推出下行数据传输方法。在此不再赘述。
实施例6
如图16所示,是本实施例提供的一种上行RRC消息的传输方法的交互示意图。本实施例所提供的方法可以基于如图9所示的系统协议栈。图16所示的方法包括:
S61:远端UE向中继UE发送RRC消息。
具体的:远端UE的RRC层生成RRC消息,并传输给远端UE的蜂窝网PDCP层。远端UE的蜂窝网PDCP层接收到远端UE的RRC层发送的RRC消息之后,可以为RRC消息添加SN,然后,若第一策略配置了完整性保护,则远端UE的蜂窝网PDCP层还实现对添加SN后的RRC消息进行完整性保护处理,并将进行完整性保护后的RRC消息发送给远端UE的第一RLC层;若第一策略没有配置完整性保护,则远端UE的蜂窝网PDCP层,直接将添加SN后的RRC消息发送给远端UE的第一RLC层;接着,添加SN后的RRC消息依次经远端UE的第一RLC层、第一MAC层、第一PHY层之后,最终发送到远端UE的第一接口的空口,远端UE在该空口发送添加SN后的RRC消息。或者,远端UE的蜂窝网PDCP层接收到远端UE的RRC层发送的RRC消息之后,可以不进行任何处理,直接将RRC消息转发给远端UE的第一RLC层,接着,RRC消息依次经远端UE的第一RLC层、第一MAC层、第一PHY层之后,最终发送到远端UE的第一接口的空口,远端UE在该空口发送RRC消息。
S62:中继UE接收远端UE发送的RRC消息。
具体的,中继UE在第一接口的空口接收远端UE发送的添加SN后的RRC消息。在该步骤之后,添加SN后的RRC消息依次经中继UE的第一PHY层、第一MAC层、第一RLC层之后,由中继UE的第一RLC层转发至中继UE的第二RLC层,接着,依次经中继UE的第二MAC层、第二PHY层之后,生成电波信号。
S63:中继UE向基站发送RRC消息。
具体的,中继UE在第二接口的空口向基站发送电波信号。
S64:基站接收中继UE发送的RRC消息。
具体的,基站在第二接口的空口接收电波信号,接着,该电波信号依次经基站的第二PHY层、第二MAC层和第二RLC层,得 到添加SN后的RRC消息;再由该第二RLC层将添加SN后的RRC消息传输至基站的蜂窝网PDCP层,该蜂窝网PDCP层去掉SN,得到RRC消息,并将该RRC消息传输至基站的RRC层基站的与远端UE对等的RRC层。基站的RRC层基站的与远端UE对等的RRC层执行该RRC消息对应的动作。
需要说明的是,基于图7所示的控制面协议栈的RRC消息的上行传输方法的过程,可以结合上文的实施例2-4以及该实施例6得到,此处不再赘述。下行RRC消息传输方法是上行RRC消息传输方法的反过程,其可以结合上文的实施例5和该实施例6得到,此处不再赘述。
本发明实施例还提供了一种配置第一PDCP层的方法,如图17所示,包括:
S71:基站向远端UE发送第一指示消息,其中,该指示消息用于使接收方配置第一PDCP层。
S72:远端UE接收基站发送的第一指示消息,并根据第一指示消息,配置第一PDCP层。具体的,配置第一PDCP层在控制面协议栈和/或在用户面协议栈中需要实现的功能,该功能可以参考上文。
S73:基站向中继UE发送第一指示消息,其中,第一指示消息用于使接收方配置第二PDCP层。
S74:中继UE接收基站发送的第一指示消息,并根据第一指示消息,配置第二PDCP层。
具体的,中继UE配置第一PDCP层在控制面协议栈和/或在用户面协议栈中需要实现的功能,该功能可以参考上文。
S71-S72中的第一PDCP层与S73-S74中的第一PDCP层是对等的。
需要说明的是,由于远端UE与中继UE中设置的第一PDCP 层是对等的,因此,S71-S72与S73-S74一般是成对执行的,即:系统中要么执行S71-S72和S73-S74,要么不执行S71-S72和S73-S74,一般不会出现执行S71-S72和S73-S74中的一组。但是,本发明实施例对S71-S72与S73-S74的先后顺序不进行限定,例如,可以先执行S71-S72,再执行S73-S74;也可以先执行S73-S74,再执行S71-S72;还可以在执行S71-S72的过程中执行S73-S74。
本发明实施例还提供了一种配置第二PDCP层的方法,如图18所示,包括:
S81:基站向中继UE发送第二指示消息,其中,第二指示消息用于使中继UE配置第二PDCP层。
S82:中继UE接收基站发送的第二指示消息,并根据第二指示消息配置第二PDCP层。
具体的,中继UE配置第二PDCP层在控制面协议栈和/或在用户面协议栈中需要实现的功能,该功能可以参考上文。
S83:基站配置第二PDCP层。
S81-S82中的第一PDCP层与S83中的第二PDCP层是对等的。
需要说明的是,由于中继UE与基站中设置的第二PDCP层是对等的,因此,S81-S82与S83一般是成对执行的,即:系统中要么执行S81-S82和S83,要么不执行S81-S82和S83,一般不会出现执行S81-S82和S83中的一组。但是,本发明实施例对S81-S82与S83的先后顺序不进行限定,例如,可以先执行S81-S82,再执行S83;也可以先执行S83,再执行S81-S82;还可以在执行S81-S82的过程中执行S83。
另外需要说明的是,上述各方法实施例中的技术特征,在不冲突的情况下,可以进行组合,以生成新的技术方案。在此不再赘述。
如图19所示,是本发明实施例提供的一种第一设备19的结构 示意图,第一设备19用以执行上文提供的任一种方法中第一设备19的动作。该第一设备19包括:
处理单元1901,用于在所述第一设备19的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理,生成协议数据单元PDU;其中,所述第一策略是所述第一设备19与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备19需要传输给所述第二设备的数据;
发送单元1902,用于将所述PDU经中继用户设备UE发送至第二设备;其中,所述第二设备中包含与所述第一设备19的蜂窝网PDCP层对等的蜂窝网PDCP层;
其中,所述第一设备19是远端UE,所述第二设备是基站;或者,所述第一设备19是基站,所述第二设备是远端UE。
可选的,所述发送单元1902具体用于:将所述PDU依次经所述第一设备19的蜂窝网PDCP层和所述第一设备19的第一接口的协议模块之后,发送给所述中继UE;其中,所述第一接口是所述第一设备19与所述中继UE之间的通信接口。
可选的,所述远端UE与所述中继UE之间的接口的协议模块包括媒体访问控制MAC层和物理PHY层;
所述发送单元1902具体用于:将所述PDU依次经所述第一设备19的蜂窝网PDCP层、所述第一设备19的蜂窝网无线链路控制层协议RLC层和所述第一设备19的第一接口的协议模块之后,发送至所述中继UE;其中,所述第二设备中包含与所述第一设备19的蜂窝网RLC层对等的蜂窝网RLC层。
可选的,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;所述第一设备19是所述远端UE;如图19所示,所述第一设备19还包括:
接收单元1903,用于接收所述基站发送的第一指示消息,所述第一指示消息用于指示所述远端UE建立所述第一PDCP层;
所述处理单元1901还用于,根据所述第一指示消息,建立所述第一PDCP层。
可选的,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;所述第一设备19是所述基站;
所述发送单元1902还用于:向所述远端UE和所述中继UE分别发送第一指示消息,所述第一指示消息用于指示接收方建立所述第一PDCP层。
可选的,所述中继UE与所述基站之间的接口的协议模块包括第二PDCP层,用于按照所述中继UE与所述基站协商好的第三策略对数据进行安全处理;所述第一设备19是所述基站;
所述处理单元1901还用于:建立所述第二PDCP层;
所述发送单元1902还用于:向所述中继UE发送第二指示消息,所述第二指示消息用于指示所述中继UE建立所述第二PDCP层。
可选的,所述处理单元1901还用于:在所述第一设备19的无线资源控制协议RRC层中生成RRC消息;
所述发送单元1902还用于:将所述RRC消息经所述中继UE发送该所述第二设备;其中,所述第一设备19的RRC层设置在所述第一设备19的蜂窝网PDCP层的上层,所述第二设备中包含与所述第一设备19的RRC层对等的RRC层。
在硬件实现上,上述发送单元1902可以是发送器,接收单元1903可以是接收器,该发送器和接收器可以集成在一起构成收发器;处理单元1901可以以硬件形式内嵌于或独立于第一设备的处理器中,也可以以软件形式存储于第一设备的存储器中,以便于处理器调用执行以上各个模块对应的操作。
如图20所示,是本发明实施例提供的一种第一设备20的结构示意图。第一设备20用以执行上文提供的任一种方法中第一设备19的动作。该第一设备20包括:存储器2001、接收器2002、发送器2003、处理器2004和系统总线2005。接收器2002、发送器2003和处理器2004通过所述系统总线连接2005连接。
存储器2001用于存储计算机执行指令,当所述第一设备20运行时,所述处理器2004执行所述存储器2001存储的所述计算机执行指令,以使所述第一设备20执行上文提供的任一方法实施例中第一设备的动作。具体的,第一设备所执行的动作可以参见上文中的相关描述,此处不再赘述。
上述提供的第一设备19和第一设备20,所带来的有益效果可以参考上文方法实施例,此处不再赘述。
如图21所示,是本发明实施例提供的一种中继UE21的结构示意图,中继UE21用以执行上文提供的任一种方法中中继UE的动作。该中继UE21包括:
接收单元2101,用于接收第一设备发送的协议数据单元PDU;其中,所述PDU是所述第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理后,生成的PDU;所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
发送单元2102,用于向第二设备发送所述PDU;其中,所述第二设备中包含与所述第一设备的蜂窝网PDCP层对等的蜂窝网PDCP层;
其中,所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
可选的,所述发送单元2102具体用于:将所述PDU依次经所述中继UE21的第一接口的协议模块和所述中继UE21的第二接口的协议模块之后,发送至第二设备;其中,所述第一接口是所述第一设备与所述中继UE21之间的通信接口,所述第二接口是所述中继UE21与所述第二设备之间的通信接口。
可选的,所述远端UE与所述中继UE21之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE21协商好的第二策略对数据进行安全处理;
所述接收单元2101还用于,接收基站发送的第一指示消息,所述第一指示消息用于指示所述中继UE21建立所述第一PDCP层;
如图21所示,所述中继UE21还可以包括:处理单元2103,用于根据所述第一指示消息,建立所述第一PDCP层。
可选的,所述中继UE21与所述基站之间的接口的协议模块包括第二PDCP层,用于按照所述中继UE21与所述基站协商好的第三策略对数据进行安全处理;
所述接收单元2101还用于,接收所述基站发送的第二指示消息,所述第二指示消息用于指示所述中继UE21建立所述第二PDCP层;
如图21所示,所述中继UE21还可以包括:处理单元2103,用于根据所述第二指示消息,建立所述第二PDCP层。
可选的,所述接收单元2101还用于,接收所述第一设备发送的无线资源控制协议RRC消息;其中,所述RRC消息是所述第一设备在所述第一设备的RRC层生成的;
所述发送单元2102还用于,向所述第二设备发送所述RRC消息;其中,所述第二设备中包含与所述第一设备的RRC层对等的RRC层。
在硬件实现上,上述发送单元2102可以是发送器,接收单元 2101可以是接收器,该发送器和接收器可以集成在一起构成收发器;处理单元2103可以以硬件形式内嵌于或独立于中继UE的处理器中,也可以以软件形式存储于中继UE的存储器中,以便于处理器调用执行以上各个模块对应的操作。
如图22所示,是本发明实施例提供的一种中继UE22的结构示意图。中继UE22用以执行上文提供的任一种方法中中继UE19的动作。该中继UE22包括:存储器2201、接收器2202、发送器2203、处理器2204和系统总线2205。接收器2202、发送器2203和处理器2204通过所述系统总线连接2205连接。
存储器2201用于存储计算机执行指令,当所述中继UE22运行时,所述处理器2204执行所述存储器2201存储的所述计算机执行指令,以使所述中继UE22执行上文提供的任一方法实施例中中继UE的动作。具体的,中继UE所执行的动作可以参见上文中的相关描述,此处不再赘述。
上述提供的中继UE21和中继UE22,所带来的有益效果可以参考上文方法实施例,此处不再赘述。
如图23所示,是本发明实施例提供的一种第二设备23的结构示意图,第二设备23用以执行上文提供的任一种方法中中继UE的动作。该第二设备23包括:
接收单元2301,用于接收中继用户设备UE转发的来自第一设备的协议数据单元PDU;其中,所述PDU是所述第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理后,生成的PDU;所述第一策略是所述第一设备与所述第二设备23协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备23的数据;
处理单元2302,用于在所述第二设备23的蜂窝网PDCP层,按照基于接收端的所述第一策略对所述PDU进行安全处理,得到 所述待传输数据;
其中,所述第一设备的蜂窝网PDCP层和所述第二设备23的蜂窝网PDCP层对等;所述第一设备是远端UE,所述第二设备23是基站;或者,所述第一设备是基站,所述第二设备23是远端UE。
可选的,所述处理单元2302还用于,将所述PDU依次经所述第二设备23的第二接口的协议模块后,传输至所述第二设备23的蜂窝网PDCP层;其中,所述第二接口是所述中继UE与所述第二设备23之间的通信接口。
可选的,所述远端UE与所述中继UE之间的接口的协议模块包括媒体访问控制MAC层和和物理PHY层;所述处理单元2302具体用于,将所述PDU依次经所述第二设备23的第二接口的协议模块、所述第二设备23的蜂窝网RLC层之后,传输至所述第二设备23的蜂窝网PDCP层;其中,所述第一设备中包含与所述第二设备23的蜂窝网RLC层对等的蜂窝网RLC层。
可选的,所述接收单元2301还用于,接收所述中继UE转发的来自所述第一设备的无线资源控制协议RRC消息,并将所述RRC消息传输至所述第二设备23的RRC层;其中,所述第二设备23的RRC层设置在所述第二设备23的蜂窝网PDCP的上层,所述第一设备中包含与所述第二设备23的RRC层对等的RRC层。
在硬件实现上,上述接收单元2301可以是接收器,处理单元2302可以以硬件形式内嵌于或独立于第二设备的处理器中,也可以以软件形式存储于第二设备的存储器中,以便于处理器调用执行以上各个模块对应的操作。
如图24所示,是本发明实施例提供的一种第二设备24的结构示意图。第二设备24用以执行上文提供的任一种方法中第二设备19的动作。该第二设备24包括:存储器2401、接收器2402、处理器2403和系统总线2404。接收器2402和处理器2403通过所述系 统总线连接2404连接。
存储器2401用于存储计算机执行指令,当所述第二设备24运行时,所述处理器2403执行所述存储器2401存储的所述计算机执行指令,以使所述第二设备24执行上文提供的任一方法实施例中第二设备的动作。具体的,第二设备所执行的动作可以参见上文中的相关描述,此处不再赘述。
上述提供的第二设备23和第二设备24,所带来的有益效果可以参考上文方法实施例,此处不再赘述。
其中,上述第一设备、中继UE和第二设备中的处理器可以是一个处理器,也可以是多个处理元件的统称。系统总线可以包括数据总线、电源总线、控制总线和信号状态总线等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的 目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (38)

  1. 一种数据传输系统,其特征在于,包括:第一设备、中继用户设备UE和第二设备;
    所述第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理,生成协议数据单元PDU,并向所述中继UE发送所述PDU;其中,所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
    所述中继UE接收所述第一设备发送的所述PDU,并将所述PDU发送给所述第二设备;
    所述第二设备接收所述中继UE发送的所述PDU,并在所述第二设备的蜂窝网PDCP层,按照基于接收端的所述第一策略对所述PDU进行安全处理,得到所述待传输数据;
    其中,所述第一设备的蜂窝网PDCP层与所述第二设备的蜂窝网PDCP层对等;所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
  2. 根据权利要求1所述的系统,其特征在于,所述第一设备向所述中继UE发送所述PDU,包括:
    所述第一设备将所述PDU依次经所述第一设备的蜂窝网PDCP层和所述第一设备的第一接口的协议模块之后,发送给所述中继UE;
    所述中继UE将所述PDU发送给所述第二设备,包括:
    所述中继UE将所述PDU依次经所述中继UE的第一接口的协议模块和所述中继UE的第二接口的协议模块之后,发送给所述第二设备;
    所述第二设备接收所述中继UE发送的所述PDU,并在所述第二设备的蜂窝网PDCP层中,按照基于接收端的所述第一策略,对所述PDU进行安全处理,得到所述待传输数据,包括:
    所述第二设备接收所述中继UE发送的所述PDU,并将所述PDU经所述第二设备的第二接口的协议模块之后,传输至所述第二设备的蜂窝网PDCP层;并在所述第二设备的蜂窝网PDCP层中,按照基于接收端的所述第一策略,对所述PDU进行安全处理,得到所述待传输数据;
    其中,所述中继UE的第一接口的协议模块与所述第一设备的第一接口的协议模块对等,所述中继UE的第二接口的协议模块与所述第二设备的第二接口的协议模块对等,所述第一接口是所述第一设备与所述中继UE之间的通信接口,所述第二接口是所述中继UE与所述第二设备之间的通信接口。
  3. 根据权利要求1或2所述的系统,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括媒体访问控制MAC层和物理PHY层;所述第一设备将所述PDU依次经所述第一设备的蜂窝网PDCP层和所述第一设备的第一接口的协议模块之后,发送至所述中继UE,包括:
    所述第一设备将所述PDU依次经所述第一设备的蜂窝网PDCP层、所述第一设备的蜂窝网无线链路控制层协议RLC层和所述第一设备的第一接口的协议模块之后,发送至所述中继UE;
    所述第二设备接收所述中继UE发送的所述PDU,并将所述PDU依次经所述第二设备的第二接口的协议模块之后,传输至所述第二设备的蜂窝网PDCP层,包括:
    所述第二设备接收所述中继UE发送的所述PDU,并将所述PDU依次经所述第二设备的第二接口的协议模块和所述第二设备的蜂窝网RLC层之后,传输至所述第二设备的蜂窝网PDCP层。
  4. 根据权利要求1或2所述的系统,其特征在于,所述远端UE与所述中继UE的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;
    所述基站向所述远端UE和所述中继UE分别发送第一指示消息,所述第一指示消息用于指示接收方建立所述第一PDCP层;
    所述远端UE接收所述基站发送的所述第一指示消息,并根据所述第一指示消息,在所述远端UE中建立所述第一PDCP层;
    所述中继UE接收所述基站发送的所述第一指示消息,并根据所述第一指示消息,在所述中继UE中建立所述第一PDCP层。
  5. 根据权利要求2-4任一项所述的系统,其特征在于,所述中继UE与所述基站之间的接口的协议模块包括第二PDCP层,用于按照所述中继UE与所述基站协商好的第三策略对数据进行安全处理;
    所述基站建立所述第二PDCP层,并向所述中继UE发送第二指示消息,所述第二指示消息用于指示所述中继UE建立所述第二PDCP层;
    所述中继UE接收所述基站发送的所述第二指示消息,并根据所述第二指示消息,在所述中继UE中建立所述第二PDCP层。
  6. 根据权利要求1-5任一项所述的系统,其特征在于,
    所述第一设备在所述第一设备的无线资源控制协议RRC层中生成RRC消息,并向所述中继UE发送所述RRC消息;
    所述中继UE接收所述RRC消息,并将所述RRC消息发送给所述第二设备;
    所述第二设备接收所述中继UE发送的所述RRC消息,并传输至所述第二设备的RRC层;
    其中,所述第一设备的RRC层与所述第二设备的RRC层对等,所述第一设备的RRC层在所述第一设备的蜂窝网PDCP层之上,所述第二设备的RRC层在所述第二设备的RRC层之上。
  7. 一种数据传输方法,其特征在于,包括:
    第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理,生成协议数 据单元PDU;其中,所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
    所述第一设备将所述PDU经中继用户设备UE发送至第二设备;其中,所述第二设备中包含与所述第一设备的蜂窝网PDCP层对等的蜂窝网PDCP层;
    其中,所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
  8. 根据权利要求7所述的方法,其特征在于,所述第一设备向所述中继UE发送所述PDU,包括:
    所述第一设备将所述PDU依次经所述第一设备的蜂窝网PDCP层和所述第一设备的第一接口的协议模块之后,发送给所述中继UE;其中,所述第一接口是所述第一设备与所述中继UE之间的通信接口。
  9. 根据权利要求8所述的方法,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括媒体访问控制MAC层和物理PHY层;所述第一设备将所述PDU依次经所述第一设备的蜂窝网PDCP层和所述第一设备的第一接口的协议模块之后,发送至所述中继UE,包括:
    所述第一设备将所述PDU依次经所述第一设备的蜂窝网PDCP层、所述第一设备的蜂窝网无线链路控制层协议RLC层和所述第一设备的第一接口的协议模块之后,发送至所述中继UE;其中,所述第二设备中包含与所述第一设备的蜂窝网RLC层对等的蜂窝网RLC层。
  10. 根据权利要求8所述的方法,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;所述第一设备是所述远端UE,所述方法还包括:
    所述远端UE接收所述基站发送的第一指示消息,所述第一指示消息用于指示所述远端UE建立所述第一PDCP层;
    所述远端UE根据所述第一指示消息,建立所述第一PDCP层。
  11. 根据权利要求8所述的方法,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;所述第一设备是所述基站,所述方法还包括:
    所述基站向所述远端UE和所述中继UE分别发送第一指示消息,所述第一指示消息用于指示接收方建立所述第一PDCP层。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述中继UE与所述基站之间的接口的协议模块包括第二PDCP层,用于按照所述中继UE与所述基站协商好的第三策略对数据进行安全处理;所述第一设备是所述基站,所述方法还包括:
    所述基站建立所述第二PDCP层;
    所述基站向所述中继UE发送第二指示消息,所述第二指示消息用于指示所述中继UE建立所述第二PDCP层。
  13. 根据权利要求7-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第一设备的无线资源控制协议RRC层中生成RRC消息,并将所述RRC消息经所述中继UE发送该所述第二设备;其中,所述第一设备的RRC层设置在所述第一设备的蜂窝网PDCP层的上层,所述第二设备中包含与所述第一设备的RRC层对等的RRC层。
  14. 一种数据传输方法,其特征在于,包括:
    中继用户设备UE接收第一设备发送的协议数据单元PDU;其中,所述PDU是所述第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理 后,生成的PDU;所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
    所述中继UE向第二设备发送所述PDU;其中,所述第二设备中包含与所述第一设备的蜂窝网PDCP层对等的蜂窝网PDCP层;
    其中,所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
  15. 根据权利要求14所述的方法,其特征在于,所述中继UE向第二设备发送所述PDU,包括:
    所述中继UE将所述PDU依次经所述中继UE的第一接口的协议模块和所述中继UE的第二接口的协议模块之后,发送至第二设备;其中,所述第一接口是所述第一设备与所述中继UE之间的通信接口,所述第二接口是所述中继UE与所述第二设备之间的通信接口。
  16. 根据权利要求14或15所述的方法,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;所述方法还包括:
    所述中继UE接收所述基站发送的第一指示消息,所述第一指示消息用于指示所述中继UE建立所述第一PDCP层;
    所述中继UE根据所述第一指示消息,建立所述第一PDCP层。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述中继UE与所述基站之间的接口的协议模块包括第二PDCP层,用于按照所述中继UE与所述基站协商好的第三策略对数据进行安全处理;所述方法还包括:
    所述中继UE接收所述基站发送的第二指示消息,所述第二指示消息用于指示所述中继UE建立所述第二PDCP层;
    所述中继UE根据所述第二指示消息,建立所述第二PDCP层。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述方法还包括:
    所述中继UE接收所述第一设备发送的无线资源控制协议RRC消息;其中,所述RRC消息是所述第一设备在所述第一设备的RRC层生成的;
    所述中继UE向所述第二设备发送所述RRC消息;其中,所述第二设备中包含与所述第一设备的RRC层对等的RRC层。
  19. 一种数据传输方法,其特征在于,包括:
    第二设备接收中继用户设备UE转发的来自第一设备的协议数据单元PDU;其中,所述PDU是所述第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理后,生成的PDU;所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
    所述第二设备在所述第二设备的蜂窝网PDCP层,按照基于接收端的所述第一策略对所述PDU进行安全处理,得到所述待传输数据;
    其中,所述第一设备的蜂窝网PDCP层和所述第二设备的蜂窝网PDCP层对等;所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
  20. 根据权利要求19所述的方法,其特征在于,在所述第二设备接收所述中继UE转发的所述PDU之后,还包括:
    所述第二设备将所述PDU依次经所述第二设备的第二接口的协议模块后,传输至所述第二设备的蜂窝网PDCP层;其中,所述第二接口是所述中继UE与所述第二设备之间的通信接口。
  21. 根据权利要求20所述的方法,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括媒体访问控制MAC层和和物理PHY层,所述第二设备将所述PDU依次经所述第二设备的第 二接口的协议模块后,传输至所述第二设备的蜂窝网PDCP层,包括:
    所述第二设备将所述PDU依次经所述第二设备的第二接口的协议模块、所述第二设备的蜂窝网RLC层之后,传输至所述第二设备的蜂窝网PDCP层;其中,所述第一设备中包含与所述第二设备的蜂窝网RLC层对等的蜂窝网RLC层。
  22. 根据权利要求19-21所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述中继UE转发的来自所述第一设备的无线资源控制协议RRC消息,并将所述RRC消息传输至所述第二设备的RRC层;其中,所述第二设备的RRC层设置在所述第二设备的蜂窝网PDCP的上层,所述第一设备中包含与所述第二设备的RRC层对等的RRC层。
  23. 一种第一设备,其特征在于,包括:
    处理单元,用于在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理,生成协议数据单元PDU;其中,所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
    发送单元,用于将所述PDU经中继用户设备UE发送至第二设备;其中,所述第二设备中包含与所述第一设备的蜂窝网PDCP层对等的蜂窝网PDCP层;
    其中,所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
  24. 根据权利要求23所述的第一设备,其特征在于,
    所述发送单元具体用于:将所述PDU依次经所述第一设备的蜂窝网PDCP层和所述第一设备的第一接口的协议模块之后,发送给所述中继UE;其中,所述第一接口是所述第一设备与所述中继UE之 间的通信接口。
  25. 根据权利要求24所述的第一设备,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括媒体访问控制MAC层和物理PHY层;
    所述发送单元具体用于:将所述PDU依次经所述第一设备的蜂窝网PDCP层、所述第一设备的蜂窝网无线链路控制层协议RLC层和所述第一设备的第一接口的协议模块之后,发送至所述中继UE;其中,所述第二设备中包含与所述第一设备的蜂窝网RLC层对等的蜂窝网RLC层。
  26. 根据权利要求24所述的第一设备,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;所述第一设备是所述远端UE;所述第一设备还包括:
    接收单元,用于接收所述基站发送的第一指示消息,所述第一指示消息用于指示所述远端UE建立所述第一PDCP层;
    所述处理单元还用于,根据所述第一指示消息,建立所述第一PDCP层。
  27. 根据权利要求24所述的第一设备,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;所述第一设备是所述基站;
    所述发送单元还用于:向所述远端UE和所述中继UE分别发送第一指示消息,所述第一指示消息用于指示接收方建立所述第一PDCP层。
  28. 根据权利要求25-27任一项所述的第一设备,其特征在于,所述中继UE与所述基站之间的接口的协议模块包括第二PDCP层,用于按照所述中继UE与所述基站协商好的第三策略对数据进行安全 处理;所述第一设备是所述基站;
    所述处理单元还用于:建立所述第二PDCP层;
    所述发送单元还用于:向所述中继UE发送第二指示消息,所述第二指示消息用于指示所述中继UE建立所述第二PDCP层。
  29. 根据权利要求23-28任一项所述的第一设备,其特征在于,
    所述处理单元还用于:在所述第一设备的无线资源控制协议RRC层中生成RRC消息;
    所述发送单元还用于:将所述RRC消息经所述中继UE发送该所述第二设备;其中,所述第一设备的RRC层设置在所述第一设备的蜂窝网PDCP层的上层,所述第二设备中包含与所述第一设备的RRC层对等的RRC层。
  30. 一种中继用户设备UE,其特征在于,包括:
    接收单元,用于接收第一设备发送的协议数据单元PDU;其中,所述PDU是所述第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对待传输数据进行安全处理后,生成的PDU;所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
    发送单元,用于向第二设备发送所述PDU;其中,所述第二设备中包含与所述第一设备的蜂窝网PDCP层对等的蜂窝网PDCP层;
    其中,所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
  31. 根据权利要求30所述的中继UE,其特征在于,
    所述发送单元具体用于:将所述PDU依次经所述中继UE的第一接口的协议模块和所述中继UE的第二接口的协议模块之后,发送至第二设备;其中,所述第一接口是所述第一设备与所述中继UE之间的通信接口,所述第二接口是所述中继UE与所述第二设备之间的通 信接口。
  32. 根据权利要求30或31所述的中继UE,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括第一PDCP层,用于按照所述远端UE与所述中继UE协商好的第二策略对数据进行安全处理;
    所述接收单元还用于,接收所述基站发送的第一指示消息,所述第一指示消息用于指示所述中继UE建立所述第一PDCP层;
    所述中继UE还包括:
    处理单元,用于根据所述第一指示消息,建立所述第一PDCP层。
  33. 根据权利要求30-32任一项所述的中继UE,其特征在于,所述中继UE与所述基站之间的接口的协议模块包括第二PDCP层,用于按照所述中继UE与所述基站协商好的第三策略对数据进行安全处理;
    所述接收单元还用于,接收所述基站发送的第二指示消息,所述第二指示消息用于指示所述中继UE建立所述第二PDCP层;
    所述中继UE还包括:
    处理单元,用于根据所述第二指示消息,建立所述第二PDCP层。
  34. 根据权利要求30-33任一项所述的中继UE,其特征在于,
    所述接收单元还用于,接收所述第一设备发送的无线资源控制协议RRC消息;其中,所述RRC消息是所述第一设备在所述第一设备的RRC层生成的;
    所述发送单元还用于,向所述第二设备发送所述RRC消息;其中,所述第二设备中包含与所述第一设备的RRC层对等的RRC层。
  35. 一种第二设备,其特征在于,包括:
    接收单元,用于接收中继用户设备UE转发的来自第一设备的协议数据单元PDU;其中,所述PDU是所述第一设备在所述第一设备的蜂窝网分组数据汇聚协议PDCP层,按照基于发送端的第一策略对 待传输数据进行安全处理后,生成的PDU;所述第一策略是所述第一设备与所述第二设备协商好的安全处理策略,所述待传输数据是所述第一设备需要传输给所述第二设备的数据;
    处理单元,用于在所述第二设备的蜂窝网PDCP层,按照基于接收端的所述第一策略对所述PDU进行安全处理,得到所述待传输数据;
    其中,所述第一设备的蜂窝网PDCP层和所述第二设备的蜂窝网PDCP层对等;所述第一设备是远端UE,所述第二设备是基站;或者,所述第一设备是基站,所述第二设备是远端UE。
  36. 根据权利要求35所述的第二设备,其特征在于,
    所述处理单元还用于,将所述PDU依次经所述第二设备的第二接口的协议模块后,传输至所述第二设备的蜂窝网PDCP层;其中,所述第二接口是所述中继UE与所述第二设备之间的通信接口。
  37. 根据权利要求36所述的第二设备,其特征在于,所述远端UE与所述中继UE之间的接口的协议模块包括媒体访问控制MAC层和和物理PHY层;
    所述处理单元具体用于,将所述PDU依次经所述第二设备的第二接口的协议模块、所述第二设备的蜂窝网RLC层之后,传输至所述第二设备的蜂窝网PDCP层;其中,所述第一设备中包含与所述第二设备的蜂窝网RLC层对等的蜂窝网RLC层。
  38. 根据权利要求35-37所述的第二设备,其特征在于,
    所述接收单元还用于,接收所述中继UE转发的来自所述第一设备的无线资源控制协议RRC消息,并将所述RRC消息传输至所述第二设备的RRC层;其中,所述第二设备的RRC层设置在所述第二设备的蜂窝网PDCP的上层,所述第一设备中包含与所述第二设备的RRC层对等的RRC层。
PCT/CN2016/073569 2016-02-04 2016-02-04 一种数据传输系统、方法和装置 WO2017132965A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/073569 WO2017132965A1 (zh) 2016-02-04 2016-02-04 一种数据传输系统、方法和装置
EP16888790.9A EP3393200A1 (en) 2016-02-04 2016-02-04 Data transmission system, method, and device
CN201680077772.2A CN108432338A (zh) 2016-02-04 2016-02-04 一种数据传输系统、方法和装置
US16/036,728 US10660008B2 (en) 2016-02-04 2018-07-16 Data transmission system, method, and apparatus
US16/861,553 US20200260355A1 (en) 2016-02-04 2020-04-29 Data transmission system, method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073569 WO2017132965A1 (zh) 2016-02-04 2016-02-04 一种数据传输系统、方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/036,728 Continuation US10660008B2 (en) 2016-02-04 2018-07-16 Data transmission system, method, and apparatus

Publications (1)

Publication Number Publication Date
WO2017132965A1 true WO2017132965A1 (zh) 2017-08-10

Family

ID=59500347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073569 WO2017132965A1 (zh) 2016-02-04 2016-02-04 一种数据传输系统、方法和装置

Country Status (4)

Country Link
US (2) US10660008B2 (zh)
EP (1) EP3393200A1 (zh)
CN (1) CN108432338A (zh)
WO (1) WO2017132965A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171017A1 (zh) * 2021-02-10 2022-08-18 华为技术有限公司 一种通信方法、装置及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3393200A1 (en) * 2016-02-04 2018-10-24 Huawei Technologies Co., Ltd. Data transmission system, method, and device
WO2017146779A1 (en) * 2016-02-26 2017-08-31 Intel Corporation Dmrs for 5g things communication system
EP3413485B1 (en) * 2016-04-06 2022-06-01 Sony Group Corporation Wireless communication devices, network connection nodes, systems, and methods
JP6937286B2 (ja) * 2018-11-30 2021-09-22 株式会社東芝 無線中継装置および無線中継方法
CA3125218A1 (en) * 2018-12-28 2020-02-20 Zte Corporation Configuration of user plane functions for wireless systems
US11251988B2 (en) * 2019-01-30 2022-02-15 Cisco Technology, Inc. Aggregating bandwidth across a wireless link and a wireline link
US11489769B2 (en) 2019-03-20 2022-11-01 Cisco Technology, Inc. Virtualized radio access network architecture for applications requiring a time sensitive network
CN112351431B (zh) * 2019-08-09 2023-06-30 华为技术有限公司 一种安全保护方式确定方法及装置
US11012430B1 (en) * 2019-11-04 2021-05-18 Sprint Communications Company L.P. User equipment relay mediated network channels with blockchain logging
CN115769668A (zh) * 2020-06-09 2023-03-07 哲库科技有限公司 用于高吞吐量和低延迟数据传输的模块化5gue层2数据栈解决方案
CN114071803A (zh) * 2020-07-31 2022-02-18 中国移动通信有限公司研究院 数据传输方法、终端及网络侧设备
CN116367137A (zh) * 2021-12-27 2023-06-30 华为技术有限公司 建立连接的方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059049A1 (zh) * 2010-11-02 2012-05-10 中国移动通信集团公司 一种数据传输方法、设备及系统
CN102724666A (zh) * 2011-03-31 2012-10-10 中国移动通信集团公司 一种终端数据中继方法、装置和系统
CN102957475A (zh) * 2011-08-19 2013-03-06 辉达公司 无线通信系统和方法
CN103297961A (zh) * 2012-03-05 2013-09-11 上海贝尔股份有限公司 一种用于设备间安全通信的设备与系统
EP2833694A2 (en) * 2013-07-29 2015-02-04 HTC Corporation Method of relay discovery and communication in a wireless communications system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111710A2 (en) * 2005-11-22 2007-10-04 Motorola Inc. Method and apparatus for providing a key for secure communications
CN1859098A (zh) * 2006-03-08 2006-11-08 华为技术有限公司 在无线接入系统中实现eap认证中继的方法
TW200803371A (en) * 2006-05-05 2008-01-01 Interdigital Tech Corp Ciphering control and synchronization in a wireless communication system
US20080226074A1 (en) * 2007-03-15 2008-09-18 Interdigital Technology Corporation Method and apparatus for ciphering packet units in wireless communications
CN101841920B (zh) * 2009-03-17 2013-06-05 华为技术有限公司 一种无线中继系统和无线中继系统的通信方法
US8881305B2 (en) * 2009-07-13 2014-11-04 Blackberry Limited Methods and apparatus for maintaining secure connections in a wireless communication network
CN102469509A (zh) * 2010-11-02 2012-05-23 中国移动通信集团公司 一种数据传输方法、装置及系统
US20130016649A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated System design for user equipment relays
WO2014139109A1 (zh) * 2013-03-13 2014-09-18 华为技术有限公司 数据的传输方法、装置和系统
EP3120515B1 (en) * 2014-03-17 2020-07-08 Telefonaktiebolaget LM Ericsson (publ) Improved end-to-end data protection
EP3216309B1 (en) * 2014-11-07 2020-03-25 Nokia Solutions and Networks Oy Data forwarding support in dual connectivity
EP3393200A1 (en) * 2016-02-04 2018-10-24 Huawei Technologies Co., Ltd. Data transmission system, method, and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059049A1 (zh) * 2010-11-02 2012-05-10 中国移动通信集团公司 一种数据传输方法、设备及系统
CN102724666A (zh) * 2011-03-31 2012-10-10 中国移动通信集团公司 一种终端数据中继方法、装置和系统
CN102957475A (zh) * 2011-08-19 2013-03-06 辉达公司 无线通信系统和方法
CN103297961A (zh) * 2012-03-05 2013-09-11 上海贝尔股份有限公司 一种用于设备间安全通信的设备与系统
EP2833694A2 (en) * 2013-07-29 2015-02-04 HTC Corporation Method of relay discovery and communication in a wireless communications system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3393200A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171017A1 (zh) * 2021-02-10 2022-08-18 华为技术有限公司 一种通信方法、装置及系统

Also Published As

Publication number Publication date
US10660008B2 (en) 2020-05-19
US20180343600A1 (en) 2018-11-29
CN108432338A (zh) 2018-08-21
EP3393200A4 (en) 2018-10-24
US20200260355A1 (en) 2020-08-13
EP3393200A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2017132965A1 (zh) 一种数据传输系统、方法和装置
CN110463270B (zh) 用于动态数据中继的系统和方法
WO2020029938A1 (zh) 安全会话方法和装置
US10342061B2 (en) Radio communication system and control method
WO2019214729A1 (zh) 数据处理的方法和设备
WO2018176416A1 (zh) 中继通信方法、装置和系统
WO2018228342A1 (zh) 切换控制方法及装置
WO2020052531A1 (zh) 获取安全上下文的方法和装置
WO2018058687A1 (zh) 一种处理控制信令的方法、设备及系统
WO2019242749A1 (zh) 一种切换方法及装置
TW201735715A (zh) 用於中繼傳輸的方法和裝置以及中繼終端設備
EP3840518B1 (en) Rrc connection method and terminal
WO2019019023A1 (zh) 切换方法、接入网设备和终端设备
WO2018127018A1 (zh) 多链接通信方法、设备和终端
WO2014166053A1 (zh) 一种通讯方法和终端
JP7301849B2 (ja) 中継伝送方法及び中継ノード
CN108781403B (zh) 终端设备、接入网设备、空口配置方法和无线通信系统
US20150296495A1 (en) Radio communication system and communication control method
WO2020001141A1 (zh) 一种信令处理方法、节点及装置
KR102104844B1 (ko) 데이터 전송 방법, 제1 장치 및 제2 장치
CN104429109B (zh) 一种通信方法及装置
WO2014040259A1 (zh) 一种rrc连接重建方法、设备和网络系统
US10455472B2 (en) Device and method of handling data transmissions in a wireless communication system
CN104936269B (zh) 一种传输心跳消息的方法和装置
WO2020029414A1 (zh) 无线通信方法、通信设备、芯片和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016888790

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888790

Country of ref document: EP

Effective date: 20180719

NENP Non-entry into the national phase

Ref country code: DE