WO2017131146A1 - 分離膜エレメント - Google Patents

分離膜エレメント Download PDF

Info

Publication number
WO2017131146A1
WO2017131146A1 PCT/JP2017/002906 JP2017002906W WO2017131146A1 WO 2017131146 A1 WO2017131146 A1 WO 2017131146A1 JP 2017002906 W JP2017002906 W JP 2017002906W WO 2017131146 A1 WO2017131146 A1 WO 2017131146A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
sheet
membrane element
convex
concavo
Prior art date
Application number
PCT/JP2017/002906
Other languages
English (en)
French (fr)
Inventor
洋帆 広沢
惠太 和田
聡子 森岡
高木 健太朗
山田 博之
箕浦 潔
啓史 長井
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020187021472A priority Critical patent/KR20180103926A/ko
Priority to US16/073,604 priority patent/US20190046929A1/en
Priority to JP2017506807A priority patent/JP6245407B1/ja
Priority to CN201780008115.7A priority patent/CN108495702A/zh
Publication of WO2017131146A1 publication Critical patent/WO2017131146A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/08Fully permeating type; Dead-end filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a separation membrane element used for separating components contained in fluid such as liquid and gas.
  • Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore sizes and separation functions. These membranes are used for, for example, the production of drinking water from seawater, brine, water containing harmful substances, industrial ultrapure water, wastewater treatment and recovery of valuable materials. It is properly used depending on the separation component and separation performance.
  • separation membrane elements There are various types of separation membrane elements, but they are common in that raw water is supplied to one side of the separation membrane and a permeated fluid is obtained from the other side.
  • the separation membrane element includes a large number of bundled separation membranes so that the membrane area per one separation membrane element is increased, that is, the amount of permeate fluid obtained per one separation membrane element is large. It is formed to become.
  • the separation membrane element various shapes such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed according to applications and purposes.
  • spiral separation membrane elements are widely used for reverse osmosis filtration.
  • the spiral separation membrane element includes a center tube and a laminate wound around the center tube.
  • the laminated body includes a supply-side channel material that supplies raw water (that is, water to be treated) to the separation membrane surface, a separation membrane that separates components contained in the raw water, and a permeation side that is separated from the supply-side fluid through the separation membrane. It is formed by laminating a permeate-side channel material for guiding fluid to the central tube.
  • the spiral separation membrane element is preferably used in that a large amount of permeated fluid can be taken out because pressure can be applied to the raw water.
  • a polymer net is mainly used as a supply-side channel material in order to form a supply-side fluid channel.
  • a stacked type separation membrane is used as the separation membrane.
  • Laminate type separation membranes are laminated from the supply side to the permeate side, a separation functional layer made of a crosslinked polymer such as polyamide, a porous resin layer (porous support layer) made of a polymer such as polysulfone, polyethylene terephthalate, etc.
  • a non-woven substrate made of the above polymer is provided.
  • a knitted member called a tricot having a smaller interval than the supply side channel material is used for the purpose of preventing the separation membrane from dropping and forming the permeation side channel.
  • Patent Document 1 proposes a separation membrane element including a flow path material in which yarns are arranged on a nonwoven fabric.
  • Patent Document 2 proposes a separation membrane element in which a general film is imprint-molded to improve liquid permeability in the film surface direction such as dots.
  • Patent Document 1 since a molten thermoplastic resin is impregnated and fixed to a sheet having holes on the surface thereof such as a nonwoven fabric, the manufacturing apparatus becomes large and the process becomes complicated. Further, when the flow path material is non-porous as in Patent Document 2, a space is not generated inside the flow path material, and as a result, the flow of liquid passing therethrough is limited, and the resulting separation membrane element is manufactured. There is a problem that the amount of water is low.
  • an object of the present invention is to provide a separation membrane element loaded with a concavo-convex sheet material that achieves both stabilization of the production process of the separation membrane element and high water production of the separation membrane element.
  • the permeation side flow passage material is at least one surface.
  • a separation membrane element in which the concave and convex portions in the concave and convex portions are densely apertured regions, and the convex portions are coarsely apertured regions.
  • a separation membrane element having a surface open area ratio of 50% or less in the recess.
  • the convex portion in the cross section perpendicular to the longitudinal direction of the convex portion and passing through the center of the convex portion in the longitudinal direction, the convex portion with respect to the product of the width and height of the convex portion A separation membrane element having a cross-sectional area ratio of 0.55 or more and 0.99 or less is provided.
  • a separation membrane element in which the irregularities in the permeate side channel material are arranged on one surface of the permeate side channel material.
  • the cross-sectional shape of the flow path is high in uniformity, and the arrangement of the opening portions of the sheet is made appropriate to reduce the resistance of the flow path on the permeation side and roll-to-roll in the manufacturing process of the separation membrane element It is possible to achieve both suppression of wrinkles during conveyance by means of.
  • FIG. 1 is a schematic view showing an example of the separation membrane element of the present invention.
  • FIG. 2 is a perspective view showing an example of a permeation side channel material applicable to the present invention.
  • FIG. 3 is a perspective view showing an example of a permeate-side channel material in which channels are arranged in one direction.
  • FIG. 4 is an example of a cross-sectional view of an uneven sheet.
  • FIG. 5 is an example of a cross-sectional view of a convex portion in the concave-convex sheet.
  • the method of manufacturing the separation membrane element is not limited, but as shown in FIG. 1, the supply-side channel material 1 is sandwiched between the separation membranes 2 and the permeation-side channel material 3 is laminated to form a set of units.
  • a separation membrane element 5 can be obtained by spirally surrounding the periphery of the element.
  • the permeation-side flow path material 3 that supports the permeation side of the separation membrane that receives raw water is an apertured sheet-like material (hereinafter referred to as an uneven-sheet-like material) having at least one surface irregularity, and
  • the convex part 6 is a close-opening area
  • This uneven sheet material is a shaped sheet material.
  • shaped means a mode in which the sheet-like material is deformed and fixed in that state, a mode in which an object made of the same or different material is joined to the surface of the sheet-like material,
  • a shaped sheet-like material concave sheet material
  • separation films such as an aspect of etching an object
  • the irregularities in the permeate-side channel material may be arranged on one side (one side) of the permeate-side channel material, or may be arranged on both sides (both sides).
  • the tightly-opened region in the concavo-convex sheet is the shortest distance between the periphery of an arbitrary opening and the periphery of the closest opening in the surface of the concavo-convex sheet. It is an area. That is, the number of holes present per unit area of the concavo-convex sheet is relatively large.
  • the rough aperture region is a region where the shortest distance between the periphery of an arbitrary aperture portion and the periphery of the closest aperture portion exceeds 0.1 mm. That is, the number of holes present per unit area of the concavo-convex sheet is relatively small or there are no holes.
  • the concave portion is a rough aperture region. Since the concave portion is a rough opening region, the rigidity of the uneven sheet-like material is made uniform and appropriate strength is expressed. The handleability of the sheet is improved, and the production loss of the uneven sheet is reduced.
  • the hole can be a flow path, and the flow path in the planar direction in the concavo-convex sheet-like material is expanded, and as a result, the flow resistance is reduced. There is an effect of improving the amount of water produced by the element.
  • the surface area ratio of the recesses is preferably 50% or less, more preferably 40% or less, and even more preferably, in order to make the rigidity of the uneven sheet-like material uniform and to develop appropriate strength. Is 5% or more and 30% or less.
  • the thickness H0 of the concavo-convex sheet material in FIG. 4 is preferably 0.1 mm or more and 1 mm or less.
  • Various methods such as an electromagnetic method, an ultrasonic method, a magnetic method, and a light transmission method are commercially available for measuring the thickness, but any method may be used as long as it is a non-contact type. Randomly measure at 10 locations and evaluate the average value. When it is 0.1 mm or more, it has strength as a permeate-side channel material, and can be handled without causing crushing or breaking of unevenness even when stress is applied.
  • the number of separation membranes and flow passage materials that can be inserted into the element can be increased without impairing the surrounding property of the water collecting pipe when the thickness is 1 mm or less.
  • the height H1 of the convex portion of the concavo-convex sheet material in FIG. 4 is preferably 0.05 mm or more and 0.8 mm or less.
  • the groove width D of a recessed part is 0.02 mm or more and 0.8 mm or less.
  • the height H1 of the convex portion and the groove width D of the concave portion can be measured by observing the cross section of the concavo-convex sheet material with a commercially available microscope or the like.
  • the space formed by the height of the convex part, the groove width of the concave part, and the laminated separation membrane can be a flow path, and the pressure of the convex part and the groove width of the concave part are within the above ranges, While suppressing membrane dropping during filtration, it is possible to reduce the flow resistance and obtain a separation membrane element excellent in pressure resistance and fresh water generation performance.
  • the width W of the convex part of the concavo-convex sheet-like material in FIG. 4 can be determined according to the operating pressure, and is not particularly limited.
  • ⁇ Material for uneven sheet> As the form of the concavo-convex sheet, a knitted fabric, a woven fabric, a porous film, a nonwoven fabric, a net, or the like can be used. In particular, in the case of a nonwoven fabric, a space that becomes a flow path formed by fibers constituting the nonwoven fabric is widened, so that water easily flows and, as a result, the water-making ability of the separation membrane element is improved.
  • the material of the polymer which is the material of the uneven sheet material, is not particularly limited as long as it retains the shape as the permeate-side channel material and has little elution of components into the permeated water.
  • examples include polyamides such as nylon, polyesters, polyacrylonitriles, polyolefins such as polyethylene and polypropylene, polyvinyl chlorides, polyvinylidene chlorides, and polyfluoroethylenes. In view of strength and hydrophilicity that can withstand heat resistance, it is preferable to use polyolefin or polyester.
  • the fibers may have, for example, a polypropylene / polyethylene core-sheath structure.
  • the weight per unit area of the uneven sheet that is, the weight per unit area is preferably 15 g / m 2 or more and 150 g / m 2 or less.
  • the basis weight is preferably 15 g / m 2 or more, more preferably 20 g / m 2 or more, and even more preferably 25 g / m 2 or more, the rigidity of the sheet tends to increase. Improved and uniform molding becomes possible.
  • the basis weight of the uneven sheet is preferably 150 g / m 2 or less, more preferably 120 g / m 2 or less, and even more preferably 90 g / m 2 or less, even when the sheet is wound. Since the flexibility of the sheet-like material is ensured, it becomes difficult to break.
  • the space between the convex portions adjacent to the convex portions can be a flow path of permeated water.
  • the concavo-convex sheet material itself is shaped into a corrugated plate shape, a rectangular wave shape, and a triangular wave shape, or one surface of the concavo-convex sheet material is flat and the other surface is processed into an uneven shape, It may be formed by laminating other members on the surface of the concavo-convex sheet in a concavo-convex shape.
  • One of the methods for forming a concavo-convex shape on the surface of a sheet-like material in order to constitute a flow path is imprint processing.
  • a mold having an uneven shape heated to a temperature higher than the glass transition temperature of the polymer is press-fitted into the polymer heated to a temperature higher than the glass transition temperature of the polymer.
  • the metal mold is generally made of metal, and has an uneven shape by cutting.
  • the mold is cooled while pressure is applied, and the mold is removed from the polymer, thereby transferring irregularities opposite to the mold to the surface of the polymer on the surface of the sheet.
  • an uneven sheet-like material in which columnar protrusions are formed in a dot shape as shown in FIG. 2 as the planar shape of the convex portion can be obtained.
  • the dot arrangement is arranged in a staggered pattern, the stress when receiving the raw water is dispersed, which is advantageous for suppressing depression.
  • FIG. 2 columnar protrusions having a circular cross section (a plane parallel to the sheet plane) are illustrated, but the cross sectional shape is not particularly limited, such as a polygon or an ellipse.
  • the convex part of a different cross section may be mixed.
  • channel as shown in FIG. 3 was located in a line in one direction, ie, the planar shape of a convex part, may be linear.
  • the separation membrane used in the present invention can be produced by a known method.
  • the separation membrane and the concavo-convex sheet thus obtained are placed so as to support the separation membrane by placing the concavo-convex sheet on the back side of the separation membrane and wound to obtain a separation membrane element.
  • the sheet-like material that is, the concavo-convex sheet material before molding, may be the same as the weight of the sheet material after molding.
  • the width and thickness are not particularly limited, but the width is preferably the same as that of the concavo-convex sheet, and the thickness is 3 after molding (that is, the farthest distance in the thickness direction of the concavo-convex sheet). It is preferable to use a material thicker than one part.
  • any material that exhibits separation characteristics such as a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane, and a gas separation membrane can be used.
  • the form of the separation membrane element is not particularly limited, but the uneven sheet-like material of the present invention particularly has its function for spiral type elements that require particularly excellent pressure resistance and liquid and gas passage properties. Can be demonstrated.
  • FIG. 5 is a cross-sectional view of the convex portion (a plane perpendicular to the sheet plane).
  • This cross section is perpendicular to the longitudinal direction of the convex portion and passes through the center of the convex portion in the longitudinal direction.
  • the ratio of the cross sectional area S of the convex portion to the product of the width W and the height H1 of the convex portion is preferably 0.55 or more and 0.99 or less. It is more preferably 6 or more and 0.99 or less, and further preferably 0.7 or more and 0.99 or less.
  • 0.6 ⁇ A ⁇ 0.99 More preferably, 0.7 ⁇ A ⁇ 0.99 It is particularly preferable to satisfy
  • the width W is the maximum value of the width in the cross section
  • the height H1 is the maximum value of the height in the cross section. Therefore, in the example of FIG. 4, the cross-sectional shape is a trapezoid, and the width W, that is, the maximum value of the width in the cross section corresponds to the length of the base of the trapezoid, and the height H1, that is, the maximum height in the cross section. The value corresponds to the height of the trapezoid.
  • the cross-sectional shape is a shape that spreads in the thickness direction, that is, the bottom is the longest in the width of the cross-section.
  • a cross-sectional area ratio A of 0.99 or less indicates that at least one of the width and the height is not constant in one cross-sectional shape of the convex portion. That is, in the cross section of the flow path material satisfying this equation, there is a portion recessed inward from the rectangular outer edge whose one side is W and whose side perpendicular to the length is H1.
  • A is “1”.
  • the right angle portion of the convex portion breaks the separation membrane during the pressurizing operation, and the separation characteristics are lost.
  • the separation membrane can be stably supported during the pressurization operation, and the stress applied to the convex portion becomes uniform over the entire convex portion, so that the same Even under operating pressure, the deformation of the convex portion tends to be small.
  • the ratio of the cross sectional area S of the convex portion to the product of the width W and the height H1 of the convex portion (cross sectional area ratio A) is 0.55 or more and 0.99 or less. It is preferable that it is 0.6 or more and 0.99 or less, and it is more preferable that it is 0.7 or more and 0.99 or less.
  • the thickness H0 of the concavo-convex sheet-like material As for the thickness H0 of the concavo-convex sheet-like material, an arbitrary 30 points of the concavo-convex sheet-like material are measured using an ABS digimatic indicator (product number 547-301 manufactured by Mitutoyo Co., Ltd.), and the total value of each height is measured. The value obtained by dividing by the total number of locations (30 locations) was defined as the thickness H0 of the concavo-convex sheet. Further, the height H1 of the convex portion was analyzed using an accurate height measurement system KS-1100 manufactured by Keyence Corporation, and the average height difference was analyzed from the measurement result of 5 cm ⁇ 5 cm. Thirty points with a height difference of 10 ⁇ m or more were measured, and the value obtained by dividing the sum of the height values by the total number of measurement points (30 points) was defined as the height H1 of the convex portion.
  • the width W of the convex portion is, for example, a distance connecting the middle of the highest position and the lowest position when the cross section of the convex portion is trapezoidal, and the groove width D of the concave portion is about two adjacent convex portions. It is the distance connecting the middle of the highest position and the lowest position.
  • TDS removal rate 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in raw water) ⁇
  • An imprinted sheet was obtained by imprinting a polypropylene / polyethylene core-sheath nonwoven fabric (Stratec manufactured by Idemitsu Unitech Co., Ltd.). Specifically, a polypropylene / polyethylene core-sheath nonwoven fabric is sandwiched between metal molds with grooves formed by cutting, held at 100 to 140 ° C./2 to 5 minutes / 15 MPa, cooled at 40 ° C., taken out from the mold and displayed. 1 and the uneven
  • surface is a direction orthogonal to the longitudinal direction of a water collection pipe
  • Example 1 A 15.2% by weight DMF solution of polysulfone on a non-woven fabric made of polyethylene terephthalate fibers (yarn diameter: 1 dtex, thickness: about 0.09 mm, density 0.80 g / cm 3 ) at a thickness of 180 ⁇ m at room temperature (25 ° C.)
  • the porous support layer (thickness: 0.13 mm) consisting of a fiber-reinforced polysulfone support membrane is prepared by immediately immersing it in pure water and leaving it for 5 minutes and then immersing it in warm water at 80 ° C. for 1 minute. did.
  • porous support layer roll was unwound, an aqueous solution of 1.4% by weight of m-PDA and 4.1% by weight of ⁇ -caprolactam was applied, and nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film. Thereafter, an n-decane solution at 25 ° C. containing 0.05% by weight of trimesic acid chloride was applied so that the surface was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute and drained. Thereafter, the membrane was washed with hot water at 90 ° C. for 2 minutes to obtain a separation membrane roll.
  • the separation membrane thus obtained was folded and cut so that the effective area at the separation membrane element was 0.5 m 2, and the net (thickness: 0.5 mm, pitch: 3 mm ⁇ 3 mm, fiber diameter: 250 ⁇ m, One leaf having a width of 260 mm and a leaf length of 1200 mm was produced using a projected area ratio of 0.25) as a supply-side channel material.
  • Examples 2 to 8 A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the uneven sheet was changed as shown in Tables 1 and 2. When the separation membrane element was put in a pressure vessel and each performance was evaluated under the above conditions, the results were as shown in Tables 1 and 2.
  • Example 1 (Comparative Example 1) Except that the transmission side channel material was a continuous tricot (thickness: 260 ⁇ m, groove width: 400 ⁇ m, ridge width: 300 ⁇ m, groove depth: 105 ⁇ m, made of polyethylene terephthalate), all the same as Example 1. A separation membrane element was produced. When the separation membrane element was put in a pressure vessel and each performance was evaluated under the above-mentioned conditions, the results were as shown in Table 2. That is, tricot has a dense structure, a large flow resistance, and a low amount of water production.
  • Example 2 A separation membrane element was produced in the same manner as in Example 1 except that hot melt (PHC-9275 manufactured by Sekisui Fuller Co., Ltd.) was fixed to the non-woven fabric and the uneven sheet-like material in Table 2 was used as the permeation side flow path material.
  • PLC-9275 manufactured by Sekisui Fuller Co., Ltd.
  • Table 2 the uneven sheet-like material in Table 2 was used as the permeation side flow path material.
  • the separation membrane elements of Examples 1 to 8 of the present invention can obtain a sufficient amount of permeate having high removal performance even when operated at high pressure. It can be said that it has stable and excellent separation performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Nanotechnology (AREA)

Abstract

本発明は、分離膜エレメントの製造工程安定化と、分離膜エレメントの高造水化を両立する、凹凸シート状物を装填した分離膜エレメントを提供することにある。本発明は、分離膜と、前記分離膜の透過側に配置された透過側流路材を有する分離膜エレメントにおいて、前記透過側流路材は少なくとも一方の面に凹凸を有する開孔シート状物であり、前記凹凸における凸部は密開孔領域であり、凹部は粗開孔領域である分離膜エレメントに関する。

Description

分離膜エレメント
 本発明は、液体及び気体等の流体に含まれる成分を分離するために使用される分離膜エレメントに関する。
 海水及びかん水などに含まれるイオン性物質を除くための技術においては、近年、省エネルギー及び省資源のためのプロセスとして、分離膜エレメントによる分離法の利用が拡大している。
 分離膜エレメントによる分離法に使用される分離膜は、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、及び正浸透膜に分類される。これらの膜は、例えば海水、かん水及び有害物を含んだ水などからの飲料水の製造、工業用超純水の製造、並びに排水処理及び有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。
 分離膜エレメントとしては様々な形態があるが、分離膜の一方の面に原水を供給し、他方の面から透過流体を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで、1個の分離膜エレメントあたりの膜面積が大きくなるように、つまり1個の分離膜エレメントあたりに得られる透過流体の量が大きくなるように形成されている。
 分離膜エレメントとしては、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、及び平膜集積型などの各種の形状が提案されている。
 例えば、逆浸透ろ過には、スパイラル型分離膜エレメントが広く用いられる。スパイラル型分離膜エレメントは、中心管と、中心管の周囲に巻き付けられた積層体とを備える。積層体は、原水(つまり被処理水)を分離膜表面へ供給する供給側流路材、原水に含まれる成分を分離する分離膜、及び分離膜を透過し供給側流体から分離された透過側流体を中心管へと導くための透過側流路材が積層されることで形成される。スパイラル型分離膜エレメントは、原水に圧力を付与することができるので、透過流体を多く取り出すことができる点で好ましく用いられている。
 スパイラル型分離膜エレメントでは、一般的に、供給側流体の流路を形成させるために、供給側流路材として、主に高分子製のネットが使用される。また、分離膜として、積層型の分離膜が用いられる。積層型の分離膜は、供給側から透過側に積層された、ポリアミドなどの架橋高分子からなる分離機能層、ポリスルホンなどの高分子からなる多孔性樹脂層(多孔性支持層)、ポリエチレンテレフタレートなどの高分子からなる不織布の基材を備えている。また、透過側流路材としては、分離膜の落ち込みを防ぎ、かつ透過側の流路を形成させる目的で、供給側流路材よりも間隔の細かいトリコットと呼ばれる編み物部材が使用される。
 近年、造水コストの低減への要求の高まりから、分離膜エレメントの高性能化が求められている。例えば、分離膜エレメントの分離性能の向上、及び単位時間あたりの透過流体量の増大のために、各流路材等の分離膜エレメント部材の性能向上が提案されている。
 具体的には、特許文献1では、糸を不織布上に配置した流路材を備えた分離膜エレメントが提案されている。特許文献2では、一般的なフィルムをインプリント成形し、ドットなど、フィルム表面方向における液体通過性を改善した分離膜エレメントが提案されている。
米国特許出願公開第2012-0261333号明細書 日本国特開2006-247453号公報
 しかし、特許文献1では、不織布など表面に孔を有するシートに、溶融した熱可塑性樹脂を含浸固定しているため、製造装置が大型化しプロセスが複雑になる。また、特許文献2のように流路材が非多孔性である場合、流路材の内部に空間が生じず、結果的に通過する液体の流れが制限され、得られた分離膜エレメントの造水量が低くなる問題がある。
 そこで、本発明では、分離膜エレメントの製造工程安定化と、分離膜エレメントの高造水化とを両立する、凹凸シート状物を装填した分離膜エレメントを提供することを目的とする。
 上記目的を達成するため、本発明によれば、分離膜と、前記分離膜の透過側に配置された透過側流路材を有する分離膜エレメントにおいて、前記透過側流路材は少なくとも一方の面に凹凸を有する開孔シート状物であり、前記凹凸における凹部は密開孔領域であり、凸部は粗開孔領域である分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記凹部における表面開孔率が50%以下である分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記凸部の長手方向に垂直でありかつ長手方向において凸部の中心を通る横断面において、前記凸部の幅と高さとの積に対する、前記凸部の横断面積の比が、0.55以上0.99以下である分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記透過側流路材における凹凸は、前記透過側流路材の一方の面に配置されている分離膜エレメントが提供される。
 本発明によって、流路断面形状の均一性が高く、またシートの開孔部の配置を適切化することで、透過側流路の抵抗低減と、分離膜エレメントの製造工程におけるロール・トゥ・ロールによる搬送時のシワ抑制とを両立することができる。
図1は、本発明の分離膜エレメントの一例を示す模式図である。 図2は、本発明に適用可能な透過側流路材の一例を示す斜視図である。 図3は、流路が一方向に並んでいる透過側流路材の一例を示す斜視図である。 図4は、凹凸シートの横断面図の一例である。 図5は、凹凸シートにおける凸部の横断面図の一例である。
 次に、本発明の分離膜エレメントの実施形態について、詳細に説明する。
 <分離膜エレメントの概要>
 分離膜エレメントの製造方法は限定されないが、図1に示すように、供給側流路材1を分離膜2で挟み込み、透過側流路材3を積層させて一組のユニットとし、集水管4の周囲にスパイラル状に巻囲して分離膜エレメント5を得ることができる。
 本発明において、原水を受圧する分離膜の透過側を支持する透過側流路材3は、少なくとも一方の面に凹凸を有する開孔シート状物(以下、凹凸シート状物という)であり、かつ凸部6は密開孔領域であり、凹部7は粗開孔領域である。この凹凸シート状物は、賦形されたシート状物である。
 ここで、「賦形された」とは、シート状物を変形させてその状態で固定する態様や、シート状物に同種または異種の素材からなる物体をその表面に接合させる態様や、シート状物をエッチングする態様など、賦形されたシート状物(凹凸シート状物)を分離膜で挟んだ場合に、凹凸シート状物と分離膜の間に流路空間が形成されるように処理されることを指す。つまり、シート状物を賦形することで、凹凸シート状物を得ることができる。
 上記透過側流路材における凹凸は、上記透過側流路材の一方の面(片面)に配置されていてもよいし、両方の面(両面)に配置されていてもよい。
 <密開孔領域と粗開孔領域>
 凹凸シート状物における密開孔領域とは、凹凸シート状物の表面において、任意の開孔部の周辺と、最も近接する開孔部の周辺との最短距離が0.005mm以上0.1mm以下の領域である。すなわち、凹凸シート状物の単位面積あたりに存在する開孔数が、比較的多いことになる。
 また、粗開孔領域とは、任意の開孔部の周辺と、最も近接する開孔部の周辺との最短距離が0.1mmを超える領域である。すなわち、凹凸シート状物の単位面積あたりに存在する開孔数が比較的少ない、または開孔が存在しないことになる。
 本発明の凹凸シート状物では、凹部が粗開孔領域である。凹部が粗開孔領域であることで、凹凸シート状物の剛性が均一化され、かつ適切な強度が発現されるため、凹凸シート状物の搬送におけるシワの発生が起こり難く、手動での凹凸シートの取扱い性が良好となり、凹凸シート状物の生産ロスが少なくなる。
 また、凹凸シート状物の凸部が密開孔領域であることで、穴が流路となることができ、凹凸シート状物における平面方向の流路が拡大し、その結果、流動抵抗低減によるエレメントの造水量が向上する効果がある。
(表面開孔率)
 凹部の表面開孔率は、上述したように凹凸シート状物の剛性が均一化し、かつ適切な強度が発現させるため、好ましくは50%以下であり、より好ましくは40%以下であり、さらに好ましくは5%以上30%以下である。
(表面開孔率の測定方法)
 凹凸シート状物における表面開孔率の測定方法としては、特に制限されないが、例えば、マイクロスコープ法が挙げられる。マイクロスコープ法では、例えばキーエンス社製高精度形状測定システムKS-1100を用い、倍率100倍で凹凸シート状物の表面から撮影し、テクスチャの数値をゼロにして画像を白黒化する。続いて、得られたデジタル画像を画像解析ソフト(ImageJ)で解析し、表面開孔率(%)=100×(開孔部の面積/切り出し面積)として算出することを30回繰り返し、その平均値を表面開孔率とすることができる。なお、この測定は凹凸シート状物の凸部または凹部に限定して実施することで、凸部及び凹部の表面開孔率をそれぞれ解析することができる。
 <凹凸シート状物の厚み>
 図4における凹凸シート状物の厚みH0は、0.1mm以上1mm以下であることが好ましい。厚みの測定は、電磁式、超音波式、磁力式、及び光透過式等のさまざまな方式のフィルム膜厚測定器が市販されているが、非接触のものであればいずれの方式でもよい。ランダムに10ヶ所で測定を行いその平均値で評価する。0.1mm以上であることで透過側流路材としての強度を備え、応力が負荷されても凹凸の潰れや破れを引き起こすこと無く取り扱うことができる。また、厚みが1mm以下で集水管への巻囲性を損なうことなく、エレメント内に挿入できる分離膜や流路材数を増加させることができる。
 <凹凸シート状物の凸部の高さ、凹部の溝幅>
 図4における凹凸シート状物の凸部の高さH1は、0.05mm以上0.8mm以下であることが好ましい。また、凹部の溝幅Dは0.02mm以上0.8mm以下であることが好ましい。凸部の高さH1や凹部の溝幅Dは、凹凸シート状物の横断面を市販のマイクロスコープなどで観察することで測定することができる。
 凸部の高さや凹部の溝幅、及び積層された分離膜とで形成される空間が流路となることができ、凸部の高さや凹部の溝幅が上記範囲であることで、加圧ろ過時の膜落込みを抑制しつつ、流動抵抗を低減し、耐圧性と造水性能に優れた分離膜エレメントを得ることができる。
 <凹凸シート状物の凸部の幅>
 図4における凹凸シート状物の凸部の幅Wは、運転する圧力に応じて決定することができ、特に限定されない。
 <凹凸シート状物の材料>
 凹凸シート状物の形態としては、編み物や織物、多孔性フィルムや不織布、ネットなどを用いることができる。特に不織布の場合では、不織布を構成する繊維同士で形成された流路となる空間が広くなるため、水が流動しやすく、その結果、分離膜エレメントの造水能が向上するため好ましい。
 また、凹凸シート状物の材料であるポリマーの材質については、透過側流路材としての形状を保持し、透過水中への成分の溶出が少ないものであるならば特に限定されない。例えば、ナイロン等のポリアミド系、ポリエステル系、ポリアクリロニトリル系、ポリエチレンやポリプロピレン等のポリオレフィン系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、及びポリフルオロエチレン系等の合成樹脂が挙げられるが、特に高圧化に耐えうる強度や親水性を考慮するとポリオレフィン系やポリエステル系を用いるのが好ましい。
 シート状物が複数の繊維から構成される場合では、繊維が例えばポリプロピレン/ポリエチレン芯鞘構造を有するものを用いてもよい。
 <凹凸シート状物の目付量>
 凹凸シート状物目付量、すなわち単位面積あたりの重量は15g/m以上150g/m以下であることが好ましい。目付量を好ましくは15g/m以上、より好ましくは20g/m以上、さらに好ましくは25g/m以上とすることにより、シートの剛性が増す傾向にあるため、成形時のズレに対する耐性が向上し均一な成形が可能となる。
 また、凹凸シート状物の目付量を好ましくは150g/m以下、より好ましくは120g/m以下、さらに好ましくは90g/m以下とすることにより、シート状物を巻きとった際でも凹凸シート状物の柔軟性が確保されるため、破壊が生じにくくなる。
 <凹凸シート状物による流路>
 凹凸シート状物の両面に分離膜が配置された際、凸部と隣接する凸部の空間は、透過水の流路となることができる。流路は、凹凸シート状物自体が波板状、矩形波状、及び三角波状などに賦形加工されていたり、凹凸シート状物の一面が平坦で他の表面が凹凸状に加工されていたり、凹凸シート状物表面に他の部材が凹凸形状に積層されることによって形成されたものであってもよい。
 <凹凸シート状物の成形方法>
 流路を構成するため、シート状物表面に凹凸形状を形成する方法の一つにインプリント加工がある。インプリント加工とは、ポリマーのガラス転移温度以上に加熱したポリマーに、同じくポリマーのガラス転移温度以上に加熱した凹凸形状を持った金型を圧入する。なお、金型は金属製のものが一般的で、切削加工により凹凸形状が施されている。金型に圧力を加えた状態で冷却し、金型をポリマーから取り外すことによって、ポリマー表面に金型とは逆の凹凸をシート状物表面に転写する加工方法である。
 シート状物にインプリント加工を施すことにより、凸部の平面形状として、図2に示すようなドット状に柱状の突起を成形した凹凸シート状物を得ることができる。ドットの配列は千鳥型に配置された場合は、原水を受圧する時の応力が分散され、陥没の抑制に有利である。なお、図2には断面(シート平面に対して平行面)が円である円柱状の突起を記載したが、多角形や楕円等、特に断面形状については限定しない。また、異なる断面の凸部が混在していてもよい。
 また、図3に示すような溝が一方向に並んで連続した溝を有する凹凸形状、すなわち凸部の平面形状が直線状であってもよい。
 本発明に用いる分離膜は、公知の方法により製造することができる。そうして得られた分離膜と、凹凸シート状物は、凹凸シート状物を分離膜の裏側にあてて、分離膜を支持するように配置し、巻囲をして分離膜エレメントを得る。
 シート状物、すなわち成形前の凹凸シート状物は、成形後のシート状物の重量と同等のものを用いるとよい。幅や厚みについては、特に限定されないが、幅については凹凸シート状物と同等であることが好ましく、厚みについては、成形後の厚み(すなわち、凹凸シートの厚み方向において、最も遠い距離)の3分の1より厚いものを用いることが好ましい。
 分離膜エレメントに装填される分離膜としては、逆浸透膜、限外ろ過膜、精密ろ過膜、及び気体分離膜など、分離特性を発現するものであれば用いることができる。
 また、分離膜エレメントの形態としては特に限定されないが、特に優れた耐圧性や、液体や気体の通過性が要求されるスパイラル型エレメントに対して、本発明の凹凸シート状物は、特にその機能を発揮することができる。
 <凹凸シート状物の凸部の横断面形状>
 図5は、凸部の横断面図(シート平面に対して垂直面)である。この横断面は、凸部の長手方向に垂直であって、長手方向において凸部の中心を通る。この横断面において、凸部の幅Wと高さH1との積に対する凸部の横断面積Sの比(横断面積比A)は、0.55以上0.99以下であることが好ましく、0.6以上0.99以下であることがより好ましく、0.7以上0.99以下であることがさらに好ましい。
 つまり、横断面積比Aは、
A=S/(W×H1)
で表され、かつ
0.55≦A≦0.99
を満たすことが好ましく、
0.6≦A≦0.99
を満たすことがより好ましく、
0.7≦A≦0.99
を満たすことが特に好ましい。
 なお、幅Wとは、断面における幅の最大値であり、高さH1とは断面における高さの最大値である。よって、図4の例では、横断面形状は台形であり、幅W、すなわち該断面における幅の最大値は台形の底辺の長さに相当し、高さH1、すなわち該断面における高さの最大値は台形の高さに相当する。なお、図4の例のように、横断面形状は厚み方向で広がる形状、つまり底辺が横断面の幅で最も長くなる。
 横断面積比Aが0.99以下であるということは、凸部の1つの横断面形状において、幅及び高さの少なくとも一方が一定でないことを示す。つまり、この式を満たす流路材の横断面では、一辺の長さがWであってそれに直交する辺の長さがH1である長方形の外縁よりも、内側に凹んだ部分が存在する。
 辺の長さがW及びH1である長方形の流路材では、Aは“1”である。この場合、凸部の角が直角に近いため、加圧運転時に凸部の直角部分が、分離膜を破断させ分離特性が失われる。
 これに対して、上述の要件を満たす凸部が設けられていると、加圧運転時に分離膜を安定に支持できると共に、凸部に負荷される応力が凸部全体に均一になるため、同じ運転圧力下においても凸部の変形が小さくなる傾向にある。このような理由から、凸部の横断面において、凸部の幅Wと高さH1との積に対する凸部の横断面積Sの比(横断面積比A)は、0.55以上0.99以下であることが好ましく、0.6以上0.99以下であることがより好ましく、0.7以上0.99以下であることがさらに好ましい。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
(凹凸シート状物の厚み及び凸部の高さ)
 凹凸シート状物の厚みH0については、ABSデジマチックインジケータ(ミツトヨ社製 品番547-301)を用いて凹凸シート状物の任意の30カ所を測定し、各高さの値を総和した値を測定総箇所(30箇所)の数で割って求めた値を凹凸シート状物の厚みH0とした。
 また、凸部の高さH1はキーエンス社製高精度形状測定システムKS-1100を用い、5cm×5cmの測定結果から平均の高低差を解析した。10μm以上の高低差のある30箇所を測定し、各高さの値を総和した値を測定総箇所(30箇所)の数で割って求めた値を凸部の高さH1とした。
(凹凸シート状物の凸部の幅及び凹部の溝幅)
 キーエンス社製高精度形状測定システムKS-1100を用いそれぞれ200箇所について測定し、その平均値を算出した(図4参照)。すなわち凸部の幅Wとは、例えば凸部の断面が台形の場合、最も高い位置と最も低い位置の中間同士を結んだ距離であり、凹部の溝幅Dとは隣接する2つの凸部について最も高い位置と最も低い位置の中間同士を結んだ距離のことである。
(凸部の横断面積比)
 キーエンス社製高精度形状測定システムKS-1100を用いて、凹凸シート状物における任意の凸部について、図5に示すような凸部の横断面積を測定した。続いて、上述の方法で測定した凸部の幅、高さの積に対する横断面積の比率を算出し、任意の凸部30カ所の平均値を横断面積比とした。
(凸部及び凹部の表面開孔率)
 キーエンス社製高精度形状測定システムKS-1100を用い、倍率100倍で凹凸シート状物の表面から撮影し、テクスチャの数値をゼロにして画像を白黒化した。続いて、得られたデジタル画像を画像解析ソフト(ImageJ)で解析し、凸部の表面開孔率(%)=100×(凸部の開孔部の面積/撮影した画像の凸部の総面積)として算出することを30回繰り返し、その平均値を凸部の表面開孔率とした。なお、凹部についても同様の手法で測定・算出した。
(造水量)
 分離膜エレメントについて、供給水として、濃度200ppmかつpH6.5のNaCl水溶液を用い、運転圧力0.25MPa、温度25℃の条件下で15分間運転(回収率15%)した後に1分間のサンプリングを行い、膜の単位面積あたり、かつ1日あたりの透水量かつ1日あたりの透水量(ガロン)を造水量(GPD(ガロン/日))として表した。
(除去率(TDS除去率))
 造水量の測定における1分間の運転で用いた原水及びサンプリングした透過水について、TDS濃度を伝導率測定により求め、下記式からTDS除去率を算出した。
 TDS除去率(%)=100×{1-(透過水中のTDS濃度/原水中のTDS濃度)}
(凹凸シート状物の作製)
 ポリプロピレン/ポリエチレン芯鞘不織布(出光ユニテック社製 ストラテック)にインプリント加工を施し、凹凸シート状物を得た。具体的には切削加工により溝を形成した金属金型でポリプロピレン/ポリエチレン芯鞘不織布を挟み込み、100~140℃/2~5分間/15MPaで保圧し、40℃で冷却後に金型から取り出して表1及び表2に示す凹凸シート状物を得た。なお、表中のMDとは、スパイラル型エレメントにおいて集水管の長手方向に直行する方向である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例1)
 ポリエチレンテレフタレート繊維からなる不織布(糸径:1デシテックス、厚み:約0.09mm、密度0.80g/cm)上にポリスルホンの15.2質量%のDMF溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、多孔性支持層(厚さ0.13mm)を作製した。
 その後、多孔性支持層ロールを巻き出し、m-PDAの1.4重量%、ε-カプロラクタム4.1重量%水溶液を塗布し、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.05重量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して液切りした。その後、90℃の熱水で2分間洗浄して分離膜ロールを得た。
 このように得られた分離膜を、分離膜エレメントでの有効面積が0.5mとなるように折り畳み断裁加工し、ネット(厚み:0.5mm、ピッチ:3mm×3mm、繊維径:250μm、投影面積比:0.25)を供給側流路材として幅260mmかつリーフ長1200mmで1枚のリーフを作製した。
 得られたリーフの透過側面に透過側流路材として表1に示す凹凸シート状物を積層し、ABS(アクリロニトリル-ブタジエン-スチレン)製集水管(幅:350mm、径:18mm、孔数10個×直線状1列)にスパイラル状に巻き付け、外周にさらにフィルムを巻き付けた。テープで固定した後に、エッジカット、端板の取り付けを行うことで、直径が2インチの分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表1の通りであった。
(実施例2~8)
 凹凸シート状物を表1及び2の通りにした以外は全て実施例1と同様にして、分離膜及び分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表1及び表2の通りであった。
(比較例1)
 透過側流路材を、連続形状を有するトリコット(厚み:260μm、溝幅:400μm、畦幅:300μm、溝深さ:105μm、ポリエチレンテレフタレート製)を用いたこと以外は全て実施例1と同様に分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表2の通りであった。すなわち、トリコットでは構造が緻密で有り流動抵抗が大きく、造水量が低い傾向にあった。
(比較例2)
 不織布にホットメルト(積水フーラー社製 PHC-9275)を固着し、表2の凹凸シート状物を透過側流路材として用いたこと以外は全て実施例1と同様に分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表2の通りであった。すなわち、凹部が密開孔領域であるため、加圧ろ過時に膜落ち込みとともに変形しやすく、流路を閉塞して透過側の流動抵抗が増加した。
 表1及び表2に示す結果から明らかなように、本発明の実施例1~8の分離膜エレメントは、高い圧力で運転しても、高い除去性能を有する充分な量の透過水を得ることができ、優れた分離性能を安定して備えていると言える。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2016年1月29日付で出願された日本特許出願(特願2016-015153)、2016年4月27日付で出願された日本特許出願(特願2016-088893)、及び2016年9月8日付で出願された日本特許出願(特願2016-175320)に基づいており、その全体が引用により援用される。
   1 供給側流路材
   2 分離膜
   3 透過側流路材
   4 集水管
   5 分離膜エレメント
   6 凸部
   7 凹部
   A 横断面積比
   D 溝幅
  H0 凹凸シート状物の厚み
  H1 凹凸シート状物の凸部の高さ
   S 凹凸シート状物の凸部の横断面積
   W 凹凸シート状物の凸部の幅

Claims (4)

  1.  分離膜と、前記分離膜の透過側に配置された透過側流路材を有する分離膜エレメントにおいて、前記透過側流路材は少なくとも一方の面に凹凸を有する開孔シート状物であり、前記凹凸における凹部は粗開孔領域であり、凸部は密開孔領域である分離膜エレメント。
  2.  前記凹部における表面開孔率が50%以下である請求項1に記載の分離膜エレメント。
  3.  前記凸部の長手方向に垂直でありかつ長手方向において凸部の中心を通る横断面において、前記凸部の幅と高さとの積に対する、前記凸部の横断面積の比が、0.55以上0.99以下である請求項1または2に記載の分離膜エレメント。
  4.  前記透過側流路材における凹凸は、前記透過側流路材の一方の面に配置されている請求項1~3のいずれか1項に記載の分離膜エレメント。
PCT/JP2017/002906 2016-01-29 2017-01-27 分離膜エレメント WO2017131146A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187021472A KR20180103926A (ko) 2016-01-29 2017-01-27 분리막 엘리먼트
US16/073,604 US20190046929A1 (en) 2016-01-29 2017-01-27 Separation membrane element
JP2017506807A JP6245407B1 (ja) 2016-01-29 2017-01-27 分離膜エレメント
CN201780008115.7A CN108495702A (zh) 2016-01-29 2017-01-27 分离膜元件

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-015153 2016-01-29
JP2016015153 2016-01-29
JP2016-088893 2016-04-27
JP2016088893 2016-04-27
JP2016-175320 2016-09-08
JP2016175320 2016-09-08

Publications (1)

Publication Number Publication Date
WO2017131146A1 true WO2017131146A1 (ja) 2017-08-03

Family

ID=59398482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002906 WO2017131146A1 (ja) 2016-01-29 2017-01-27 分離膜エレメント

Country Status (5)

Country Link
US (1) US20190046929A1 (ja)
JP (1) JP6245407B1 (ja)
KR (1) KR20180103926A (ja)
CN (1) CN108495702A (ja)
WO (1) WO2017131146A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619424A (zh) * 2021-01-25 2021-04-09 烟台金正环保科技有限公司 一种新型碟管式反渗透组件
CN112691548A (zh) * 2021-01-25 2021-04-23 烟台金正环保科技有限公司 一种户外使用的碟管式反渗透膜芯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038003A (ja) * 1983-08-10 1985-02-27 Toray Ind Inc 液体分離装置
JPS6354915A (ja) * 1986-08-26 1988-03-09 Toray Ind Inc 流体分離装置
JP2000042377A (ja) * 1998-08-04 2000-02-15 Nitto Denko Corp 平膜状気液接触膜エレメント、平膜状気液接触膜モジュールおよびスパイラル型膜モジュール
JP2006247453A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法
WO2007114069A1 (ja) * 2006-03-31 2007-10-11 Toray Industries, Inc. 液体分離素子、流路材およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054915A (ja) * 1983-09-01 1985-03-29 Tokuyama Soda Co Ltd 球状塩基性炭酸マグネシウム及びその製造方法
CN1894029B (zh) * 2003-12-15 2011-05-11 旭化成化学株式会社 多孔成形物及其生产方法
US20120261333A1 (en) * 2011-04-13 2012-10-18 Shane James Moran Filter element for fluid filtration system
CN103648621B (zh) * 2011-07-07 2017-09-15 东丽株式会社 分离膜、分离膜元件以及分离膜的制造方法
US10183254B2 (en) * 2014-12-26 2019-01-22 Toray Industries, Inc. Separation membrane element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038003A (ja) * 1983-08-10 1985-02-27 Toray Ind Inc 液体分離装置
JPS6354915A (ja) * 1986-08-26 1988-03-09 Toray Ind Inc 流体分離装置
JP2000042377A (ja) * 1998-08-04 2000-02-15 Nitto Denko Corp 平膜状気液接触膜エレメント、平膜状気液接触膜モジュールおよびスパイラル型膜モジュール
JP2006247453A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法
WO2007114069A1 (ja) * 2006-03-31 2007-10-11 Toray Industries, Inc. 液体分離素子、流路材およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619424A (zh) * 2021-01-25 2021-04-09 烟台金正环保科技有限公司 一种新型碟管式反渗透组件
CN112691548A (zh) * 2021-01-25 2021-04-23 烟台金正环保科技有限公司 一种户外使用的碟管式反渗透膜芯
CN112619424B (zh) * 2021-01-25 2021-09-21 烟台金正环保科技有限公司 一种碟管式反渗透组件
CN112691548B (zh) * 2021-01-25 2022-09-20 烟台金正环保科技有限公司 一种户外使用的碟管式反渗透膜芯

Also Published As

Publication number Publication date
KR20180103926A (ko) 2018-09-19
CN108495702A (zh) 2018-09-04
JP6245407B1 (ja) 2017-12-13
US20190046929A1 (en) 2019-02-14
JPWO2017131146A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
CN109715275B (zh) 分离膜元件及其运转方法
JP2006247453A (ja) 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法
WO2021039846A1 (ja) 分離膜エレメント
JP6179403B2 (ja) 分離膜および分離膜エレメント
JP2018015735A (ja) 分離膜エレメント
JP2016144794A (ja) 複合半透膜および複合半透膜エレメント
JP6245407B1 (ja) 分離膜エレメント
JP7478510B2 (ja) 分離膜エレメント
JP2018086638A (ja) スパイラル型分離膜エレメント
JP6308331B2 (ja) 分離膜エレメント
WO2018021387A1 (ja) 分離膜エレメント
JP2022024469A (ja) 分離膜エレメントおよびその運転方法
JP2016068081A (ja) 分離膜エレメント
JP2018043230A (ja) 分離膜エレメント
JP2020011231A (ja) 供給側流路材及び分離膜エレメント
JP2020138196A (ja) 分離膜エレメント
JP2015142899A (ja) 分離膜エレメント
JP2015085322A (ja) 分離膜エレメント
JP2024149370A (ja) スパイラル分離膜エレメント、それを用いた水処理装置、水処理方法
JP2020069473A (ja) 分離膜エレメント

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017506807

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187021472

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744376

Country of ref document: EP

Kind code of ref document: A1