WO2017131146A1 - 分離膜エレメント - Google Patents
分離膜エレメント Download PDFInfo
- Publication number
- WO2017131146A1 WO2017131146A1 PCT/JP2017/002906 JP2017002906W WO2017131146A1 WO 2017131146 A1 WO2017131146 A1 WO 2017131146A1 JP 2017002906 W JP2017002906 W JP 2017002906W WO 2017131146 A1 WO2017131146 A1 WO 2017131146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separation membrane
- sheet
- membrane element
- convex
- concavo
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 111
- 238000000926 separation method Methods 0.000 title claims abstract description 104
- 239000000463 material Substances 0.000 claims description 92
- 239000012466 permeate Substances 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 239000013505 freshwater Substances 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 238000000034 method Methods 0.000 description 17
- -1 polyethylene terephthalate Polymers 0.000 description 12
- 238000005259 measurement Methods 0.000 description 10
- 239000004745 nonwoven fabric Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 239000012530 fluid Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 3
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009292 forward osmosis Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/107—Specific properties of the central tube or the permeate channel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/103—Details relating to membrane envelopes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/08—Flow guidance means within the module or the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
- B01D2313/146—Specific spacers on the permeate side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/08—Fully permeating type; Dead-end filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/10—Cross-flow filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
Definitions
- the present invention relates to a separation membrane element used for separating components contained in fluid such as liquid and gas.
- Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore sizes and separation functions. These membranes are used for, for example, the production of drinking water from seawater, brine, water containing harmful substances, industrial ultrapure water, wastewater treatment and recovery of valuable materials. It is properly used depending on the separation component and separation performance.
- separation membrane elements There are various types of separation membrane elements, but they are common in that raw water is supplied to one side of the separation membrane and a permeated fluid is obtained from the other side.
- the separation membrane element includes a large number of bundled separation membranes so that the membrane area per one separation membrane element is increased, that is, the amount of permeate fluid obtained per one separation membrane element is large. It is formed to become.
- the separation membrane element various shapes such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed according to applications and purposes.
- spiral separation membrane elements are widely used for reverse osmosis filtration.
- the spiral separation membrane element includes a center tube and a laminate wound around the center tube.
- the laminated body includes a supply-side channel material that supplies raw water (that is, water to be treated) to the separation membrane surface, a separation membrane that separates components contained in the raw water, and a permeation side that is separated from the supply-side fluid through the separation membrane. It is formed by laminating a permeate-side channel material for guiding fluid to the central tube.
- the spiral separation membrane element is preferably used in that a large amount of permeated fluid can be taken out because pressure can be applied to the raw water.
- a polymer net is mainly used as a supply-side channel material in order to form a supply-side fluid channel.
- a stacked type separation membrane is used as the separation membrane.
- Laminate type separation membranes are laminated from the supply side to the permeate side, a separation functional layer made of a crosslinked polymer such as polyamide, a porous resin layer (porous support layer) made of a polymer such as polysulfone, polyethylene terephthalate, etc.
- a non-woven substrate made of the above polymer is provided.
- a knitted member called a tricot having a smaller interval than the supply side channel material is used for the purpose of preventing the separation membrane from dropping and forming the permeation side channel.
- Patent Document 1 proposes a separation membrane element including a flow path material in which yarns are arranged on a nonwoven fabric.
- Patent Document 2 proposes a separation membrane element in which a general film is imprint-molded to improve liquid permeability in the film surface direction such as dots.
- Patent Document 1 since a molten thermoplastic resin is impregnated and fixed to a sheet having holes on the surface thereof such as a nonwoven fabric, the manufacturing apparatus becomes large and the process becomes complicated. Further, when the flow path material is non-porous as in Patent Document 2, a space is not generated inside the flow path material, and as a result, the flow of liquid passing therethrough is limited, and the resulting separation membrane element is manufactured. There is a problem that the amount of water is low.
- an object of the present invention is to provide a separation membrane element loaded with a concavo-convex sheet material that achieves both stabilization of the production process of the separation membrane element and high water production of the separation membrane element.
- the permeation side flow passage material is at least one surface.
- a separation membrane element in which the concave and convex portions in the concave and convex portions are densely apertured regions, and the convex portions are coarsely apertured regions.
- a separation membrane element having a surface open area ratio of 50% or less in the recess.
- the convex portion in the cross section perpendicular to the longitudinal direction of the convex portion and passing through the center of the convex portion in the longitudinal direction, the convex portion with respect to the product of the width and height of the convex portion A separation membrane element having a cross-sectional area ratio of 0.55 or more and 0.99 or less is provided.
- a separation membrane element in which the irregularities in the permeate side channel material are arranged on one surface of the permeate side channel material.
- the cross-sectional shape of the flow path is high in uniformity, and the arrangement of the opening portions of the sheet is made appropriate to reduce the resistance of the flow path on the permeation side and roll-to-roll in the manufacturing process of the separation membrane element It is possible to achieve both suppression of wrinkles during conveyance by means of.
- FIG. 1 is a schematic view showing an example of the separation membrane element of the present invention.
- FIG. 2 is a perspective view showing an example of a permeation side channel material applicable to the present invention.
- FIG. 3 is a perspective view showing an example of a permeate-side channel material in which channels are arranged in one direction.
- FIG. 4 is an example of a cross-sectional view of an uneven sheet.
- FIG. 5 is an example of a cross-sectional view of a convex portion in the concave-convex sheet.
- the method of manufacturing the separation membrane element is not limited, but as shown in FIG. 1, the supply-side channel material 1 is sandwiched between the separation membranes 2 and the permeation-side channel material 3 is laminated to form a set of units.
- a separation membrane element 5 can be obtained by spirally surrounding the periphery of the element.
- the permeation-side flow path material 3 that supports the permeation side of the separation membrane that receives raw water is an apertured sheet-like material (hereinafter referred to as an uneven-sheet-like material) having at least one surface irregularity, and
- the convex part 6 is a close-opening area
- This uneven sheet material is a shaped sheet material.
- shaped means a mode in which the sheet-like material is deformed and fixed in that state, a mode in which an object made of the same or different material is joined to the surface of the sheet-like material,
- a shaped sheet-like material concave sheet material
- separation films such as an aspect of etching an object
- the irregularities in the permeate-side channel material may be arranged on one side (one side) of the permeate-side channel material, or may be arranged on both sides (both sides).
- the tightly-opened region in the concavo-convex sheet is the shortest distance between the periphery of an arbitrary opening and the periphery of the closest opening in the surface of the concavo-convex sheet. It is an area. That is, the number of holes present per unit area of the concavo-convex sheet is relatively large.
- the rough aperture region is a region where the shortest distance between the periphery of an arbitrary aperture portion and the periphery of the closest aperture portion exceeds 0.1 mm. That is, the number of holes present per unit area of the concavo-convex sheet is relatively small or there are no holes.
- the concave portion is a rough aperture region. Since the concave portion is a rough opening region, the rigidity of the uneven sheet-like material is made uniform and appropriate strength is expressed. The handleability of the sheet is improved, and the production loss of the uneven sheet is reduced.
- the hole can be a flow path, and the flow path in the planar direction in the concavo-convex sheet-like material is expanded, and as a result, the flow resistance is reduced. There is an effect of improving the amount of water produced by the element.
- the surface area ratio of the recesses is preferably 50% or less, more preferably 40% or less, and even more preferably, in order to make the rigidity of the uneven sheet-like material uniform and to develop appropriate strength. Is 5% or more and 30% or less.
- the thickness H0 of the concavo-convex sheet material in FIG. 4 is preferably 0.1 mm or more and 1 mm or less.
- Various methods such as an electromagnetic method, an ultrasonic method, a magnetic method, and a light transmission method are commercially available for measuring the thickness, but any method may be used as long as it is a non-contact type. Randomly measure at 10 locations and evaluate the average value. When it is 0.1 mm or more, it has strength as a permeate-side channel material, and can be handled without causing crushing or breaking of unevenness even when stress is applied.
- the number of separation membranes and flow passage materials that can be inserted into the element can be increased without impairing the surrounding property of the water collecting pipe when the thickness is 1 mm or less.
- the height H1 of the convex portion of the concavo-convex sheet material in FIG. 4 is preferably 0.05 mm or more and 0.8 mm or less.
- the groove width D of a recessed part is 0.02 mm or more and 0.8 mm or less.
- the height H1 of the convex portion and the groove width D of the concave portion can be measured by observing the cross section of the concavo-convex sheet material with a commercially available microscope or the like.
- the space formed by the height of the convex part, the groove width of the concave part, and the laminated separation membrane can be a flow path, and the pressure of the convex part and the groove width of the concave part are within the above ranges, While suppressing membrane dropping during filtration, it is possible to reduce the flow resistance and obtain a separation membrane element excellent in pressure resistance and fresh water generation performance.
- the width W of the convex part of the concavo-convex sheet-like material in FIG. 4 can be determined according to the operating pressure, and is not particularly limited.
- ⁇ Material for uneven sheet> As the form of the concavo-convex sheet, a knitted fabric, a woven fabric, a porous film, a nonwoven fabric, a net, or the like can be used. In particular, in the case of a nonwoven fabric, a space that becomes a flow path formed by fibers constituting the nonwoven fabric is widened, so that water easily flows and, as a result, the water-making ability of the separation membrane element is improved.
- the material of the polymer which is the material of the uneven sheet material, is not particularly limited as long as it retains the shape as the permeate-side channel material and has little elution of components into the permeated water.
- examples include polyamides such as nylon, polyesters, polyacrylonitriles, polyolefins such as polyethylene and polypropylene, polyvinyl chlorides, polyvinylidene chlorides, and polyfluoroethylenes. In view of strength and hydrophilicity that can withstand heat resistance, it is preferable to use polyolefin or polyester.
- the fibers may have, for example, a polypropylene / polyethylene core-sheath structure.
- the weight per unit area of the uneven sheet that is, the weight per unit area is preferably 15 g / m 2 or more and 150 g / m 2 or less.
- the basis weight is preferably 15 g / m 2 or more, more preferably 20 g / m 2 or more, and even more preferably 25 g / m 2 or more, the rigidity of the sheet tends to increase. Improved and uniform molding becomes possible.
- the basis weight of the uneven sheet is preferably 150 g / m 2 or less, more preferably 120 g / m 2 or less, and even more preferably 90 g / m 2 or less, even when the sheet is wound. Since the flexibility of the sheet-like material is ensured, it becomes difficult to break.
- the space between the convex portions adjacent to the convex portions can be a flow path of permeated water.
- the concavo-convex sheet material itself is shaped into a corrugated plate shape, a rectangular wave shape, and a triangular wave shape, or one surface of the concavo-convex sheet material is flat and the other surface is processed into an uneven shape, It may be formed by laminating other members on the surface of the concavo-convex sheet in a concavo-convex shape.
- One of the methods for forming a concavo-convex shape on the surface of a sheet-like material in order to constitute a flow path is imprint processing.
- a mold having an uneven shape heated to a temperature higher than the glass transition temperature of the polymer is press-fitted into the polymer heated to a temperature higher than the glass transition temperature of the polymer.
- the metal mold is generally made of metal, and has an uneven shape by cutting.
- the mold is cooled while pressure is applied, and the mold is removed from the polymer, thereby transferring irregularities opposite to the mold to the surface of the polymer on the surface of the sheet.
- an uneven sheet-like material in which columnar protrusions are formed in a dot shape as shown in FIG. 2 as the planar shape of the convex portion can be obtained.
- the dot arrangement is arranged in a staggered pattern, the stress when receiving the raw water is dispersed, which is advantageous for suppressing depression.
- FIG. 2 columnar protrusions having a circular cross section (a plane parallel to the sheet plane) are illustrated, but the cross sectional shape is not particularly limited, such as a polygon or an ellipse.
- the convex part of a different cross section may be mixed.
- channel as shown in FIG. 3 was located in a line in one direction, ie, the planar shape of a convex part, may be linear.
- the separation membrane used in the present invention can be produced by a known method.
- the separation membrane and the concavo-convex sheet thus obtained are placed so as to support the separation membrane by placing the concavo-convex sheet on the back side of the separation membrane and wound to obtain a separation membrane element.
- the sheet-like material that is, the concavo-convex sheet material before molding, may be the same as the weight of the sheet material after molding.
- the width and thickness are not particularly limited, but the width is preferably the same as that of the concavo-convex sheet, and the thickness is 3 after molding (that is, the farthest distance in the thickness direction of the concavo-convex sheet). It is preferable to use a material thicker than one part.
- any material that exhibits separation characteristics such as a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane, and a gas separation membrane can be used.
- the form of the separation membrane element is not particularly limited, but the uneven sheet-like material of the present invention particularly has its function for spiral type elements that require particularly excellent pressure resistance and liquid and gas passage properties. Can be demonstrated.
- FIG. 5 is a cross-sectional view of the convex portion (a plane perpendicular to the sheet plane).
- This cross section is perpendicular to the longitudinal direction of the convex portion and passes through the center of the convex portion in the longitudinal direction.
- the ratio of the cross sectional area S of the convex portion to the product of the width W and the height H1 of the convex portion is preferably 0.55 or more and 0.99 or less. It is more preferably 6 or more and 0.99 or less, and further preferably 0.7 or more and 0.99 or less.
- 0.6 ⁇ A ⁇ 0.99 More preferably, 0.7 ⁇ A ⁇ 0.99 It is particularly preferable to satisfy
- the width W is the maximum value of the width in the cross section
- the height H1 is the maximum value of the height in the cross section. Therefore, in the example of FIG. 4, the cross-sectional shape is a trapezoid, and the width W, that is, the maximum value of the width in the cross section corresponds to the length of the base of the trapezoid, and the height H1, that is, the maximum height in the cross section. The value corresponds to the height of the trapezoid.
- the cross-sectional shape is a shape that spreads in the thickness direction, that is, the bottom is the longest in the width of the cross-section.
- a cross-sectional area ratio A of 0.99 or less indicates that at least one of the width and the height is not constant in one cross-sectional shape of the convex portion. That is, in the cross section of the flow path material satisfying this equation, there is a portion recessed inward from the rectangular outer edge whose one side is W and whose side perpendicular to the length is H1.
- A is “1”.
- the right angle portion of the convex portion breaks the separation membrane during the pressurizing operation, and the separation characteristics are lost.
- the separation membrane can be stably supported during the pressurization operation, and the stress applied to the convex portion becomes uniform over the entire convex portion, so that the same Even under operating pressure, the deformation of the convex portion tends to be small.
- the ratio of the cross sectional area S of the convex portion to the product of the width W and the height H1 of the convex portion (cross sectional area ratio A) is 0.55 or more and 0.99 or less. It is preferable that it is 0.6 or more and 0.99 or less, and it is more preferable that it is 0.7 or more and 0.99 or less.
- the thickness H0 of the concavo-convex sheet-like material As for the thickness H0 of the concavo-convex sheet-like material, an arbitrary 30 points of the concavo-convex sheet-like material are measured using an ABS digimatic indicator (product number 547-301 manufactured by Mitutoyo Co., Ltd.), and the total value of each height is measured. The value obtained by dividing by the total number of locations (30 locations) was defined as the thickness H0 of the concavo-convex sheet. Further, the height H1 of the convex portion was analyzed using an accurate height measurement system KS-1100 manufactured by Keyence Corporation, and the average height difference was analyzed from the measurement result of 5 cm ⁇ 5 cm. Thirty points with a height difference of 10 ⁇ m or more were measured, and the value obtained by dividing the sum of the height values by the total number of measurement points (30 points) was defined as the height H1 of the convex portion.
- the width W of the convex portion is, for example, a distance connecting the middle of the highest position and the lowest position when the cross section of the convex portion is trapezoidal, and the groove width D of the concave portion is about two adjacent convex portions. It is the distance connecting the middle of the highest position and the lowest position.
- TDS removal rate 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in raw water) ⁇
- An imprinted sheet was obtained by imprinting a polypropylene / polyethylene core-sheath nonwoven fabric (Stratec manufactured by Idemitsu Unitech Co., Ltd.). Specifically, a polypropylene / polyethylene core-sheath nonwoven fabric is sandwiched between metal molds with grooves formed by cutting, held at 100 to 140 ° C./2 to 5 minutes / 15 MPa, cooled at 40 ° C., taken out from the mold and displayed. 1 and the uneven
- surface is a direction orthogonal to the longitudinal direction of a water collection pipe
- Example 1 A 15.2% by weight DMF solution of polysulfone on a non-woven fabric made of polyethylene terephthalate fibers (yarn diameter: 1 dtex, thickness: about 0.09 mm, density 0.80 g / cm 3 ) at a thickness of 180 ⁇ m at room temperature (25 ° C.)
- the porous support layer (thickness: 0.13 mm) consisting of a fiber-reinforced polysulfone support membrane is prepared by immediately immersing it in pure water and leaving it for 5 minutes and then immersing it in warm water at 80 ° C. for 1 minute. did.
- porous support layer roll was unwound, an aqueous solution of 1.4% by weight of m-PDA and 4.1% by weight of ⁇ -caprolactam was applied, and nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film. Thereafter, an n-decane solution at 25 ° C. containing 0.05% by weight of trimesic acid chloride was applied so that the surface was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute and drained. Thereafter, the membrane was washed with hot water at 90 ° C. for 2 minutes to obtain a separation membrane roll.
- the separation membrane thus obtained was folded and cut so that the effective area at the separation membrane element was 0.5 m 2, and the net (thickness: 0.5 mm, pitch: 3 mm ⁇ 3 mm, fiber diameter: 250 ⁇ m, One leaf having a width of 260 mm and a leaf length of 1200 mm was produced using a projected area ratio of 0.25) as a supply-side channel material.
- Examples 2 to 8 A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the uneven sheet was changed as shown in Tables 1 and 2. When the separation membrane element was put in a pressure vessel and each performance was evaluated under the above conditions, the results were as shown in Tables 1 and 2.
- Example 1 (Comparative Example 1) Except that the transmission side channel material was a continuous tricot (thickness: 260 ⁇ m, groove width: 400 ⁇ m, ridge width: 300 ⁇ m, groove depth: 105 ⁇ m, made of polyethylene terephthalate), all the same as Example 1. A separation membrane element was produced. When the separation membrane element was put in a pressure vessel and each performance was evaluated under the above-mentioned conditions, the results were as shown in Table 2. That is, tricot has a dense structure, a large flow resistance, and a low amount of water production.
- Example 2 A separation membrane element was produced in the same manner as in Example 1 except that hot melt (PHC-9275 manufactured by Sekisui Fuller Co., Ltd.) was fixed to the non-woven fabric and the uneven sheet-like material in Table 2 was used as the permeation side flow path material.
- PLC-9275 manufactured by Sekisui Fuller Co., Ltd.
- Table 2 the uneven sheet-like material in Table 2 was used as the permeation side flow path material.
- the separation membrane elements of Examples 1 to 8 of the present invention can obtain a sufficient amount of permeate having high removal performance even when operated at high pressure. It can be said that it has stable and excellent separation performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Nanotechnology (AREA)
Abstract
Description
分離膜エレメントの製造方法は限定されないが、図1に示すように、供給側流路材1を分離膜2で挟み込み、透過側流路材3を積層させて一組のユニットとし、集水管4の周囲にスパイラル状に巻囲して分離膜エレメント5を得ることができる。
凹凸シート状物における密開孔領域とは、凹凸シート状物の表面において、任意の開孔部の周辺と、最も近接する開孔部の周辺との最短距離が0.005mm以上0.1mm以下の領域である。すなわち、凹凸シート状物の単位面積あたりに存在する開孔数が、比較的多いことになる。
凹部の表面開孔率は、上述したように凹凸シート状物の剛性が均一化し、かつ適切な強度が発現させるため、好ましくは50%以下であり、より好ましくは40%以下であり、さらに好ましくは5%以上30%以下である。
凹凸シート状物における表面開孔率の測定方法としては、特に制限されないが、例えば、マイクロスコープ法が挙げられる。マイクロスコープ法では、例えばキーエンス社製高精度形状測定システムKS-1100を用い、倍率100倍で凹凸シート状物の表面から撮影し、テクスチャの数値をゼロにして画像を白黒化する。続いて、得られたデジタル画像を画像解析ソフト(ImageJ)で解析し、表面開孔率(%)=100×(開孔部の面積/切り出し面積)として算出することを30回繰り返し、その平均値を表面開孔率とすることができる。なお、この測定は凹凸シート状物の凸部または凹部に限定して実施することで、凸部及び凹部の表面開孔率をそれぞれ解析することができる。
図4における凹凸シート状物の厚みH0は、0.1mm以上1mm以下であることが好ましい。厚みの測定は、電磁式、超音波式、磁力式、及び光透過式等のさまざまな方式のフィルム膜厚測定器が市販されているが、非接触のものであればいずれの方式でもよい。ランダムに10ヶ所で測定を行いその平均値で評価する。0.1mm以上であることで透過側流路材としての強度を備え、応力が負荷されても凹凸の潰れや破れを引き起こすこと無く取り扱うことができる。また、厚みが1mm以下で集水管への巻囲性を損なうことなく、エレメント内に挿入できる分離膜や流路材数を増加させることができる。
図4における凹凸シート状物の凸部の高さH1は、0.05mm以上0.8mm以下であることが好ましい。また、凹部の溝幅Dは0.02mm以上0.8mm以下であることが好ましい。凸部の高さH1や凹部の溝幅Dは、凹凸シート状物の横断面を市販のマイクロスコープなどで観察することで測定することができる。
図4における凹凸シート状物の凸部の幅Wは、運転する圧力に応じて決定することができ、特に限定されない。
凹凸シート状物の形態としては、編み物や織物、多孔性フィルムや不織布、ネットなどを用いることができる。特に不織布の場合では、不織布を構成する繊維同士で形成された流路となる空間が広くなるため、水が流動しやすく、その結果、分離膜エレメントの造水能が向上するため好ましい。
シート状物が複数の繊維から構成される場合では、繊維が例えばポリプロピレン/ポリエチレン芯鞘構造を有するものを用いてもよい。
凹凸シート状物目付量、すなわち単位面積あたりの重量は15g/m2以上150g/m2以下であることが好ましい。目付量を好ましくは15g/m2以上、より好ましくは20g/m2以上、さらに好ましくは25g/m2以上とすることにより、シートの剛性が増す傾向にあるため、成形時のズレに対する耐性が向上し均一な成形が可能となる。
凹凸シート状物の両面に分離膜が配置された際、凸部と隣接する凸部の空間は、透過水の流路となることができる。流路は、凹凸シート状物自体が波板状、矩形波状、及び三角波状などに賦形加工されていたり、凹凸シート状物の一面が平坦で他の表面が凹凸状に加工されていたり、凹凸シート状物表面に他の部材が凹凸形状に積層されることによって形成されたものであってもよい。
流路を構成するため、シート状物表面に凹凸形状を形成する方法の一つにインプリント加工がある。インプリント加工とは、ポリマーのガラス転移温度以上に加熱したポリマーに、同じくポリマーのガラス転移温度以上に加熱した凹凸形状を持った金型を圧入する。なお、金型は金属製のものが一般的で、切削加工により凹凸形状が施されている。金型に圧力を加えた状態で冷却し、金型をポリマーから取り外すことによって、ポリマー表面に金型とは逆の凹凸をシート状物表面に転写する加工方法である。
また、図3に示すような溝が一方向に並んで連続した溝を有する凹凸形状、すなわち凸部の平面形状が直線状であってもよい。
図5は、凸部の横断面図(シート平面に対して垂直面)である。この横断面は、凸部の長手方向に垂直であって、長手方向において凸部の中心を通る。この横断面において、凸部の幅Wと高さH1との積に対する凸部の横断面積Sの比(横断面積比A)は、0.55以上0.99以下であることが好ましく、0.6以上0.99以下であることがより好ましく、0.7以上0.99以下であることがさらに好ましい。
A=S/(W×H1)
で表され、かつ
0.55≦A≦0.99
を満たすことが好ましく、
0.6≦A≦0.99
を満たすことがより好ましく、
0.7≦A≦0.99
を満たすことが特に好ましい。
凹凸シート状物の厚みH0については、ABSデジマチックインジケータ(ミツトヨ社製 品番547-301)を用いて凹凸シート状物の任意の30カ所を測定し、各高さの値を総和した値を測定総箇所(30箇所)の数で割って求めた値を凹凸シート状物の厚みH0とした。
また、凸部の高さH1はキーエンス社製高精度形状測定システムKS-1100を用い、5cm×5cmの測定結果から平均の高低差を解析した。10μm以上の高低差のある30箇所を測定し、各高さの値を総和した値を測定総箇所(30箇所)の数で割って求めた値を凸部の高さH1とした。
キーエンス社製高精度形状測定システムKS-1100を用いそれぞれ200箇所について測定し、その平均値を算出した(図4参照)。すなわち凸部の幅Wとは、例えば凸部の断面が台形の場合、最も高い位置と最も低い位置の中間同士を結んだ距離であり、凹部の溝幅Dとは隣接する2つの凸部について最も高い位置と最も低い位置の中間同士を結んだ距離のことである。
キーエンス社製高精度形状測定システムKS-1100を用いて、凹凸シート状物における任意の凸部について、図5に示すような凸部の横断面積を測定した。続いて、上述の方法で測定した凸部の幅、高さの積に対する横断面積の比率を算出し、任意の凸部30カ所の平均値を横断面積比とした。
キーエンス社製高精度形状測定システムKS-1100を用い、倍率100倍で凹凸シート状物の表面から撮影し、テクスチャの数値をゼロにして画像を白黒化した。続いて、得られたデジタル画像を画像解析ソフト(ImageJ)で解析し、凸部の表面開孔率(%)=100×(凸部の開孔部の面積/撮影した画像の凸部の総面積)として算出することを30回繰り返し、その平均値を凸部の表面開孔率とした。なお、凹部についても同様の手法で測定・算出した。
分離膜エレメントについて、供給水として、濃度200ppmかつpH6.5のNaCl水溶液を用い、運転圧力0.25MPa、温度25℃の条件下で15分間運転(回収率15%)した後に1分間のサンプリングを行い、膜の単位面積あたり、かつ1日あたりの透水量かつ1日あたりの透水量(ガロン)を造水量(GPD(ガロン/日))として表した。
造水量の測定における1分間の運転で用いた原水及びサンプリングした透過水について、TDS濃度を伝導率測定により求め、下記式からTDS除去率を算出した。
TDS除去率(%)=100×{1-(透過水中のTDS濃度/原水中のTDS濃度)}
ポリプロピレン/ポリエチレン芯鞘不織布(出光ユニテック社製 ストラテック)にインプリント加工を施し、凹凸シート状物を得た。具体的には切削加工により溝を形成した金属金型でポリプロピレン/ポリエチレン芯鞘不織布を挟み込み、100~140℃/2~5分間/15MPaで保圧し、40℃で冷却後に金型から取り出して表1及び表2に示す凹凸シート状物を得た。なお、表中のMDとは、スパイラル型エレメントにおいて集水管の長手方向に直行する方向である。
ポリエチレンテレフタレート繊維からなる不織布(糸径:1デシテックス、厚み:約0.09mm、密度0.80g/cm3)上にポリスルホンの15.2質量%のDMF溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、多孔性支持層(厚さ0.13mm)を作製した。
凹凸シート状物を表1及び2の通りにした以外は全て実施例1と同様にして、分離膜及び分離膜エレメントを作製した。
分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表1及び表2の通りであった。
透過側流路材を、連続形状を有するトリコット(厚み:260μm、溝幅:400μm、畦幅:300μm、溝深さ:105μm、ポリエチレンテレフタレート製)を用いたこと以外は全て実施例1と同様に分離膜エレメントを作製した。
分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表2の通りであった。すなわち、トリコットでは構造が緻密で有り流動抵抗が大きく、造水量が低い傾向にあった。
不織布にホットメルト(積水フーラー社製 PHC-9275)を固着し、表2の凹凸シート状物を透過側流路材として用いたこと以外は全て実施例1と同様に分離膜エレメントを作製した。
分離膜エレメントを圧力容器に入れて、上述の条件で各性能を評価したところ、結果は表2の通りであった。すなわち、凹部が密開孔領域であるため、加圧ろ過時に膜落ち込みとともに変形しやすく、流路を閉塞して透過側の流動抵抗が増加した。
2 分離膜
3 透過側流路材
4 集水管
5 分離膜エレメント
6 凸部
7 凹部
A 横断面積比
D 溝幅
H0 凹凸シート状物の厚み
H1 凹凸シート状物の凸部の高さ
S 凹凸シート状物の凸部の横断面積
W 凹凸シート状物の凸部の幅
Claims (4)
- 分離膜と、前記分離膜の透過側に配置された透過側流路材を有する分離膜エレメントにおいて、前記透過側流路材は少なくとも一方の面に凹凸を有する開孔シート状物であり、前記凹凸における凹部は粗開孔領域であり、凸部は密開孔領域である分離膜エレメント。
- 前記凹部における表面開孔率が50%以下である請求項1に記載の分離膜エレメント。
- 前記凸部の長手方向に垂直でありかつ長手方向において凸部の中心を通る横断面において、前記凸部の幅と高さとの積に対する、前記凸部の横断面積の比が、0.55以上0.99以下である請求項1または2に記載の分離膜エレメント。
- 前記透過側流路材における凹凸は、前記透過側流路材の一方の面に配置されている請求項1~3のいずれか1項に記載の分離膜エレメント。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187021472A KR20180103926A (ko) | 2016-01-29 | 2017-01-27 | 분리막 엘리먼트 |
US16/073,604 US20190046929A1 (en) | 2016-01-29 | 2017-01-27 | Separation membrane element |
JP2017506807A JP6245407B1 (ja) | 2016-01-29 | 2017-01-27 | 分離膜エレメント |
CN201780008115.7A CN108495702A (zh) | 2016-01-29 | 2017-01-27 | 分离膜元件 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-015153 | 2016-01-29 | ||
JP2016015153 | 2016-01-29 | ||
JP2016-088893 | 2016-04-27 | ||
JP2016088893 | 2016-04-27 | ||
JP2016-175320 | 2016-09-08 | ||
JP2016175320 | 2016-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017131146A1 true WO2017131146A1 (ja) | 2017-08-03 |
Family
ID=59398482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002906 WO2017131146A1 (ja) | 2016-01-29 | 2017-01-27 | 分離膜エレメント |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190046929A1 (ja) |
JP (1) | JP6245407B1 (ja) |
KR (1) | KR20180103926A (ja) |
CN (1) | CN108495702A (ja) |
WO (1) | WO2017131146A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112619424A (zh) * | 2021-01-25 | 2021-04-09 | 烟台金正环保科技有限公司 | 一种新型碟管式反渗透组件 |
CN112691548A (zh) * | 2021-01-25 | 2021-04-23 | 烟台金正环保科技有限公司 | 一种户外使用的碟管式反渗透膜芯 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038003A (ja) * | 1983-08-10 | 1985-02-27 | Toray Ind Inc | 液体分離装置 |
JPS6354915A (ja) * | 1986-08-26 | 1988-03-09 | Toray Ind Inc | 流体分離装置 |
JP2000042377A (ja) * | 1998-08-04 | 2000-02-15 | Nitto Denko Corp | 平膜状気液接触膜エレメント、平膜状気液接触膜モジュールおよびスパイラル型膜モジュール |
JP2006247453A (ja) * | 2005-03-08 | 2006-09-21 | Toray Ind Inc | 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法 |
WO2007114069A1 (ja) * | 2006-03-31 | 2007-10-11 | Toray Industries, Inc. | 液体分離素子、流路材およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054915A (ja) * | 1983-09-01 | 1985-03-29 | Tokuyama Soda Co Ltd | 球状塩基性炭酸マグネシウム及びその製造方法 |
CN1894029B (zh) * | 2003-12-15 | 2011-05-11 | 旭化成化学株式会社 | 多孔成形物及其生产方法 |
US20120261333A1 (en) * | 2011-04-13 | 2012-10-18 | Shane James Moran | Filter element for fluid filtration system |
CN103648621B (zh) * | 2011-07-07 | 2017-09-15 | 东丽株式会社 | 分离膜、分离膜元件以及分离膜的制造方法 |
US10183254B2 (en) * | 2014-12-26 | 2019-01-22 | Toray Industries, Inc. | Separation membrane element |
-
2017
- 2017-01-27 US US16/073,604 patent/US20190046929A1/en not_active Abandoned
- 2017-01-27 JP JP2017506807A patent/JP6245407B1/ja not_active Expired - Fee Related
- 2017-01-27 WO PCT/JP2017/002906 patent/WO2017131146A1/ja active Application Filing
- 2017-01-27 CN CN201780008115.7A patent/CN108495702A/zh active Pending
- 2017-01-27 KR KR1020187021472A patent/KR20180103926A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038003A (ja) * | 1983-08-10 | 1985-02-27 | Toray Ind Inc | 液体分離装置 |
JPS6354915A (ja) * | 1986-08-26 | 1988-03-09 | Toray Ind Inc | 流体分離装置 |
JP2000042377A (ja) * | 1998-08-04 | 2000-02-15 | Nitto Denko Corp | 平膜状気液接触膜エレメント、平膜状気液接触膜モジュールおよびスパイラル型膜モジュール |
JP2006247453A (ja) * | 2005-03-08 | 2006-09-21 | Toray Ind Inc | 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法 |
WO2007114069A1 (ja) * | 2006-03-31 | 2007-10-11 | Toray Industries, Inc. | 液体分離素子、流路材およびその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112619424A (zh) * | 2021-01-25 | 2021-04-09 | 烟台金正环保科技有限公司 | 一种新型碟管式反渗透组件 |
CN112691548A (zh) * | 2021-01-25 | 2021-04-23 | 烟台金正环保科技有限公司 | 一种户外使用的碟管式反渗透膜芯 |
CN112619424B (zh) * | 2021-01-25 | 2021-09-21 | 烟台金正环保科技有限公司 | 一种碟管式反渗透组件 |
CN112691548B (zh) * | 2021-01-25 | 2022-09-20 | 烟台金正环保科技有限公司 | 一种户外使用的碟管式反渗透膜芯 |
Also Published As
Publication number | Publication date |
---|---|
KR20180103926A (ko) | 2018-09-19 |
CN108495702A (zh) | 2018-09-04 |
JP6245407B1 (ja) | 2017-12-13 |
US20190046929A1 (en) | 2019-02-14 |
JPWO2017131146A1 (ja) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109715275B (zh) | 分离膜元件及其运转方法 | |
JP2006247453A (ja) | 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法 | |
WO2021039846A1 (ja) | 分離膜エレメント | |
JP6179403B2 (ja) | 分離膜および分離膜エレメント | |
JP2018015735A (ja) | 分離膜エレメント | |
JP2016144794A (ja) | 複合半透膜および複合半透膜エレメント | |
JP6245407B1 (ja) | 分離膜エレメント | |
JP7478510B2 (ja) | 分離膜エレメント | |
JP2018086638A (ja) | スパイラル型分離膜エレメント | |
JP6308331B2 (ja) | 分離膜エレメント | |
WO2018021387A1 (ja) | 分離膜エレメント | |
JP2022024469A (ja) | 分離膜エレメントおよびその運転方法 | |
JP2016068081A (ja) | 分離膜エレメント | |
JP2018043230A (ja) | 分離膜エレメント | |
JP2020011231A (ja) | 供給側流路材及び分離膜エレメント | |
JP2020138196A (ja) | 分離膜エレメント | |
JP2015142899A (ja) | 分離膜エレメント | |
JP2015085322A (ja) | 分離膜エレメント | |
JP2024149370A (ja) | スパイラル分離膜エレメント、それを用いた水処理装置、水処理方法 | |
JP2020069473A (ja) | 分離膜エレメント |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017506807 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744376 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187021472 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17744376 Country of ref document: EP Kind code of ref document: A1 |