WO2017130937A1 - 不均一系触媒構造体及びその製造方法 - Google Patents
不均一系触媒構造体及びその製造方法 Download PDFInfo
- Publication number
- WO2017130937A1 WO2017130937A1 PCT/JP2017/002267 JP2017002267W WO2017130937A1 WO 2017130937 A1 WO2017130937 A1 WO 2017130937A1 JP 2017002267 W JP2017002267 W JP 2017002267W WO 2017130937 A1 WO2017130937 A1 WO 2017130937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst structure
- heterogeneous catalyst
- heterogeneous
- reaction
- active metal
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000011777 magnesium Substances 0.000 claims abstract description 49
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 33
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000002923 metal particle Substances 0.000 claims abstract description 20
- 239000011164 primary particle Substances 0.000 claims abstract description 8
- 239000002638 heterogeneous catalyst Substances 0.000 claims description 92
- 239000002245 particle Substances 0.000 claims description 40
- 239000002994 raw material Substances 0.000 claims description 18
- 229910052707 ruthenium Inorganic materials 0.000 claims description 17
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 16
- 229910017604 nitric acid Inorganic materials 0.000 claims description 16
- 229910052697 platinum Inorganic materials 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 229910052703 rhodium Inorganic materials 0.000 claims description 13
- 229910052709 silver Inorganic materials 0.000 claims description 13
- 229910052741 iridium Inorganic materials 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 229910052763 palladium Inorganic materials 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052762 osmium Inorganic materials 0.000 claims description 10
- 229910052702 rhenium Inorganic materials 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 37
- 230000003197 catalytic effect Effects 0.000 abstract description 23
- 230000003647 oxidation Effects 0.000 abstract description 23
- 238000006243 chemical reaction Methods 0.000 description 57
- -1 hydrotalcite compound Chemical class 0.000 description 56
- 229910001701 hydrotalcite Inorganic materials 0.000 description 53
- 229960001545 hydrotalcite Drugs 0.000 description 53
- 229910052751 metal Inorganic materials 0.000 description 50
- 239000002184 metal Substances 0.000 description 50
- 239000000843 powder Substances 0.000 description 46
- 238000000034 method Methods 0.000 description 36
- 239000011259 mixed solution Substances 0.000 description 33
- 239000007789 gas Substances 0.000 description 32
- 229940091250 magnesium supplement Drugs 0.000 description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- 238000000629 steam reforming Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 20
- 239000001257 hydrogen Substances 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 239000003513 alkali Substances 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 229930195733 hydrocarbon Natural products 0.000 description 13
- 150000002430 hydrocarbons Chemical class 0.000 description 13
- 230000009467 reduction Effects 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 11
- 238000000748 compression moulding Methods 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 238000006356 dehydrogenation reaction Methods 0.000 description 8
- 159000000003 magnesium salts Chemical class 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- 238000006477 desulfuration reaction Methods 0.000 description 6
- 230000023556 desulfurization Effects 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 229910001593 boehmite Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000006011 modification reaction Methods 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 239000003915 liquefied petroleum gas Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- FOJJCOHOLNJIHE-UHFFFAOYSA-N aluminum;azane Chemical compound N.[Al+3] FOJJCOHOLNJIHE-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910001680 bayerite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- ZCLVNIZJEKLGFA-UHFFFAOYSA-H bis(4,5-dioxo-1,3,2-dioxalumolan-2-yl) oxalate Chemical compound [Al+3].[Al+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O ZCLVNIZJEKLGFA-UHFFFAOYSA-H 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- PJJZFXPJNUVBMR-UHFFFAOYSA-L magnesium benzoate Chemical compound [Mg+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 PJJZFXPJNUVBMR-UHFFFAOYSA-L 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000004337 magnesium citrate Substances 0.000 description 1
- 229960005336 magnesium citrate Drugs 0.000 description 1
- 235000002538 magnesium citrate Nutrition 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- UHNWOJJPXCYKCG-UHFFFAOYSA-L magnesium oxalate Chemical compound [Mg+2].[O-]C(=O)C([O-])=O UHNWOJJPXCYKCG-UHFFFAOYSA-L 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- JESHZQPNPCJVNG-UHFFFAOYSA-L magnesium;sulfite Chemical compound [Mg+2].[O-]S([O-])=O JESHZQPNPCJVNG-UHFFFAOYSA-L 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- PLSARIKBYIPYPF-UHFFFAOYSA-H trimagnesium dicitrate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PLSARIKBYIPYPF-UHFFFAOYSA-H 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/468—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/892—Nickel and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8926—Copper and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/51—Spheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0244—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
- C01B2203/0261—Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
Definitions
- the present invention is a heterogeneous catalyst structure that can be suitably used for steam reforming reaction, partial oxidation reaction, autothermal, methanation, CO modification, CO selective oxidation, desulfurization, dehydrogenation, cracking catalyst, etc. And a manufacturing method thereof.
- the present invention also relates to a heterogeneous catalyst structure composed of magnesium and aluminum having high catalytic activity that can be industrially produced, and particularly excellent in mechanical strength and oxidation resistance.
- heterogeneous catalysts can be easily separated from gas-phase or liquid-phase reaction fluids, and can be constantly held in the reactor to function as a catalyst, so that many petrochemical processes and organic chemicals are used. Is used in the manufacturing process.
- Heterogeneous catalysts are generally used in particle packed beds through which liquid and / or gaseous reactant mixtures pass at high temperature and pressure. Accordingly, heterogeneous catalyst materials are often provided as structures in order to balance catalyst activity and throughput.
- the structure has a spherical shape, a rod shape, a Raschig ring shape, a ring shape, and the like, and various catalyst structures are provided depending on the application.
- Heterogeneous catalysts are used for various reactions for industrial purposes. For example, it is widely used as a steam reforming reaction, partial oxidation reaction, autothermal, CO modification, CO selective oxidation, methanation, desulfurization, dehydrogenation, cracking catalyst, and the like, and has become an indispensable industrial material.
- the steam reforming reaction is performed according to the following reaction formula.
- the partial oxidation reaction is performed according to the following reaction formula.
- the autothermal reaction is a reaction that combines the steam reforming reaction and the partial oxidation reaction. By simultaneous progress of these two reactions, it is possible to carry out hydrogen production independently without requiring external heat supply. By using the steam reforming reaction in combination, it is an advantage that the amount of hydrogen production increases compared to a single partial oxidation reaction.
- the CO modification reaction is generally a reaction accompanying steam reforming, and by using this reaction, the amount of hydrogen produced can be further increased and the composition of the synthesis gas can be adjusted.
- This reaction is an exothermic reaction, and a catalyst such as Pt or Cu is mainly used.
- the CO selective oxidation reaction is an exothermic reaction and is used after steam reforming and CO modification reaction in household fuel cells. By selectively oxidizing CO contained in the synthesis gas, it can be reduced to 10 ppm or less in a domestic fuel cell.
- This reaction is an exothermic reaction, and precious metals such as Pt and Ru are mainly used as active metal species for the catalyst.
- Methanation is used for the purpose of reducing the CO concentration in the synthesis gas, similar to the CO selective oxidation reaction.
- Dehydrogenation reaction is a kind of oxidation reaction and is a reaction that removes hydrogen in or between molecules. In a narrow sense, a double bond is generated in a saturated hydrocarbon.
- Industrially important dehydrogenation reactions include selective dehydrogenation of aliphatic hydrocarbon compounds and catalytic reforming of petroleum and naphtha.
- the heterogeneous catalytic reaction proceeds on the catalyst surface. Therefore, in order to express a high catalytic activity, it is important to make the active metal to be supported into fine particles and increase the surface area.
- gases / liquids in heterogeneous catalytic reactions include kerosene, isooctane and gasoline, hydrocarbon-containing raw materials such as LPG, city gas, and butane, carbon monoxide, etc.
- raw materials often contain impurities such as oxygen and nitrogen in a small amount.
- Patent Documents 1 to 4 As a general heterogeneous catalyst, there are reports of catalysts in which an active metal is supported using alumina or magnesia as a molded body (Patent Documents 1 to 4).
- Patent Document 1 describes a steam reforming catalyst using hydrocarbons in the presence of a trace amount of oxygen gas.
- Porous ⁇ -alumina is used as a preferred catalyst carrier, and the supported Ru penetrates into the inside of the carrier that does not contribute to the catalytic action, resulting in insufficient catalytic activity. In order to sufficiently exhibit the catalytic action, it is necessary to greatly increase the loading amount.
- particle size of the supported Ru it can be inferred that it is difficult to support nano-sized particles, and it is thought that the catalytic activity is easily lost by impurity gases such as oxygen and sulfur components.
- Patent Document 2 describes a catalyst in which a porous carrier such as ⁇ -alumina is used and Ru is supported on the surface of the carrier. Although the catalytic activity is improved by supporting the active metal species on the surface of the porous carrier, it is difficult to say that the oxidation resistance is excellent because the Ru particle size is not controlled.
- Patent Document 3 describes a catalyst carrying Rh and Ru using magnesia as a carrier. However, there is no description about oxidation resistance, and it is surmised that the invention is not sufficient.
- Patent Document 4 describes a catalyst in which a carrier mainly composed of alumina or magnesia is loaded with one kind selected from nickel, iron, cobalt, and copper.
- the supported active metal particle diameter is 40 nm or more, and that not only sufficient catalytic activity is not obtained but also deterioration resistance such as oxidation resistance is low.
- An ⁇ -alumina structure is generally used as a heterogeneous catalyst support, but is sintered by high-temperature firing in order to increase mechanical strength. Therefore, the specific surface area is small, and it is very difficult to support the active metal with fine particles only near the support surface.
- the present invention is a heterogeneous catalyst structure that can be suitably used for steam reforming reaction, partial oxidation reaction, autothermal, methanation, CO modification, CO selective oxidation, desulfurization, dehydrogenation, cracking catalyst, etc. And an object of the present invention is to provide a manufacturing method thereof.
- Another object of the present invention is to provide a heterogeneous catalyst structure composed of magnesium and aluminum that has high catalytic activity that can be produced industrially and that is particularly excellent in mechanical strength and oxidation resistance.
- the present invention is a heterogeneous catalyst structure of 1 to 30 mm comprising a carrier having a dense internal structure containing magnesium and aluminum and catalytically active metal particles having a primary particle size of 0.5 to 20 nm, Heterogeneous system in which the catalytically active metal particles are present in the range of 5 to 200 ⁇ m from the support surface, with an Al / Al atomic ratio of 0.7-10, a BET specific surface area of 10-100 m 2 / g, an average crushing strength of 30 N
- This is a catalyst structure (Invention 1).
- the present invention is a particle in which the catalytically active metal species includes at least one of Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au. And a heterogeneous catalyst structure having a supported amount of 0.05 to 10 wt%. (Invention 2)
- the present invention is a method for producing a heterogeneous catalyst structure using a raw material solution containing 1 to 30 wt% of free nitric acid when supporting a raw material that can be a catalytically active metal species. (Invention 3)
- the heterogeneous catalyst structure of 1 to 30 mm according to the present invention has a dense internal structure, is composed of at least magnesium and aluminum, has a large BET specific surface area and mechanical strength, and has a primary particle diameter of 0.5 to 20 nm. Since the catalytically active metal particles are present in the range of 5 to 200 ⁇ m from the support surface, steam reforming reaction, partial oxidation reaction, autothermal reaction, CO modification reaction, CO selective oxidation reaction, methanation reaction, desulfurization and dehydration High catalytic activity and excellent oxidation resistance in elemental and decomposition reactions.
- the heterogeneous catalyst structure according to the present invention contains a large amount of magnesium, it is suitable as a catalyst for reforming hydrocarbons such as city gas, LPG, and biomass containing a large amount of sulfur components. is there.
- FIG. 2 is a stereoscopic microscope photograph of a cross section of a heterogeneous catalyst structure obtained in Example 1.
- FIG. 4 is a stereoscopic microscope photograph of a cross section of a heterogeneous catalyst structure obtained in Comparative Example 2.
- the heterogeneous catalyst structure according to the present invention will be described.
- the maximum size of the heterogeneous catalyst structure according to the present invention is 30 mm, and the minimum value is 1 mm.
- a shape in particular is not restrict
- the shape is spherical, cylindrical, hollow cylindrical, or the like.
- the size of the structure is usually 1 to 30 mm ⁇ , preferably 1.5 to 20 mm ⁇ , more preferably 2 to 10 mm ⁇ .
- the internal structure of the heterogeneous catalyst structure according to the present invention is dense in order to maintain mechanical strength.
- the term “dense” means that the gas does not pass through the heterogeneous catalyst structure (for example, hydrogen gas).
- the heterogeneous catalyst structure according to the present invention includes active metal particles and an oxide support.
- Elements constituting the oxide support are magnesium and aluminum.
- elements such as sodium, calcium, potassium, and silicon may be included, although not particularly limited.
- the composition of magnesium and aluminum in the heterogeneous catalyst structure according to the present invention is configured in a ratio of 0.7 to 10 in terms of Mg / Al atomic ratio. When it is less than 0.7, the BET specific surface area becomes small, and the catalytically active metal cannot be supported as nano-sized particles. Further, the mechanical strength of the structure exceeding 10 is lowered. It is preferably 0.8 to 5, more preferably 1.0 to 2.5.
- the BET specific surface area of the heterogeneous catalyst structure according to the present invention is 10 to 100 m 2 / g.
- the BET specific surface area is less than 10 m 2 / g, it means that the average pore diameter of the carrier is large, and the active species metal is not sufficiently dispersed and supported. Those exceeding 100 m 2 / g are not realistic because they cannot be industrially produced. It is preferably 15 to 90 m 2 / g, more preferably 20 to 80 m 2 / g.
- the average crushing strength (measured by the method described in Examples described later) of the heterogeneous catalyst structure according to the present invention is 30 N or more.
- the average crushing strength is less than 30 N, the structure is broken when used in a high temperature environment.
- it is 40N or more, More preferably, it is 50N or more.
- the catalytically active metal is supported on the surface of the structure, and the region thereof is at least in the range of 5 ⁇ m from the surface, and at most in the range of 200 ⁇ m from the surface (that is, in the range of 5 to 200 ⁇ m). ). In the case of 5 ⁇ m or less, the catalytically active metal cannot be supported as nano-sized particles. If it exceeds 200 ⁇ m, sufficient catalyst performance cannot be obtained.
- the thickness is preferably 5 to 150 ⁇ m, more preferably 5 to 100 ⁇ m.
- the primary particle diameter of the catalytically active metal supported on the heterogeneous catalyst structure according to the present invention is in the range of 0.5 to 20 nm. If it is less than 0.5 nm, it is difficult to mass-produce industrially. On the other hand, if it exceeds 20 nm, sufficient catalyst performance cannot be obtained, and oxidation resistance also decreases.
- the thickness is preferably 0.6 to 18 nm, more preferably 0.7 to 17 nm.
- the catalytically active metal particles of the heterogeneous catalyst structure in the present invention are at least one of Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au. It is preferable that it is the particle
- the catalytically active metal particles may be alloy particles as well as a single element, and may be a mixture of the particles. Therefore, the form other than the primary particle size is not particularly limited. It is used for many heterogeneous reactions and can express various catalytic activities.
- the amount of catalytically active metal supported on the heterogeneous catalyst structure in the present invention is 0.05 to 10 wt%. If it is less than 0.05 wt%, the oxidation resistance is extremely lowered and the durability of the catalyst cannot be maintained. When it exceeds 10 wt%, it becomes difficult to carry the primary particle diameter of the catalytically active metal particles at 20 nm or less.
- the catalyst layer volume ratio of the heterogeneous catalyst structure in the present invention is preferably 2 to 40%.
- the catalyst layer volume is based on the volume of the catalyst structure. If it exceeds 40%, the mechanical strength of the catalyst structure cannot be maintained. More preferably, it is 5 to 35%, and further preferably 5 to 30%.
- the method for producing a heterogeneous catalyst structure in the present invention is to produce a molded body of hydrotalcite compound powder containing magnesium and aluminum as precursors, and after calcining in the atmosphere, carrying a catalytically active metal, under a reducing atmosphere When the catalyst active metal is supported, a raw material solution containing 1 to 30 wt% free nitric acid is used.
- the hydrotalcite compound powder containing magnesium and aluminum in the present invention is a mixed solution in which an alkaline aqueous solution containing anions, a magnesium raw material, and an aluminum raw material are mixed with an aqueous solvent, and the pH value is in the range of 7.0 to 13.0. After that, the mixed solution can be aged in the temperature range of 50 to 300 ° C., then separated by filtration and dried.
- the aging time is not particularly limited, but is 1 to 80 hours, preferably 3 to 24 hours, more preferably 5 to 18 hours. Growth reactions over 80 hours are not industrial.
- the magnesium and aluminum raw materials are not particularly limited as long as they are water-soluble such as nitrates.
- magnesium raw material magnesium oxide, magnesium hydroxide, magnesium oxalate, magnesium sulfate, magnesium sulfite, magnesium nitrate, magnesium chloride, magnesium citrate, basic magnesium carbonate, magnesium benzoate and the like can be used.
- aluminum raw material aluminum oxide, aluminum hydroxide, aluminum acetate, aluminum chloride, aluminum nitrate, aluminum oxalate, basic ammonium aluminum, or the like can be used.
- the average plate surface diameter of the hydrotalcite compound powder particles containing magnesium and aluminum, which are precursors of the heterogeneous catalyst structure in the present invention is preferably 0.05 to 0.4 ⁇ m.
- the average plate surface diameter is less than 0.05 ⁇ m, it is difficult to filter and wash and industrial production is difficult. When it exceeds 0.4 ⁇ m, a heterogeneous catalyst structure can be produced. Have difficulty.
- the crystallite size D 006 of the hydrotalcite compound powder in the present invention is preferably 0.001 to 0.08 ⁇ m.
- the crystallite size D 006 is less than 0.001 ⁇ m, the viscosity of the aqueous suspension is very high and industrial production is difficult, and when it exceeds 0.08 ⁇ m, a heterogeneous catalyst structure is produced. Is difficult. More preferably, it is 0.002 to 0.07 ⁇ m.
- the BET specific surface area value of the hydrotalcite compound powder containing magnesium and aluminum in the present invention is preferably 3.0 to 300 m 2 / g.
- the specific surface area value is less than 3.0 m 2 / g, it is difficult to produce a porous structure, and when it exceeds 300 m 2 / g, the viscosity of the aqueous suspension is very high, Moreover, it is difficult to filter and wash, making it difficult to produce industrially. More preferably, it is 5.0 to 250 m 2 / g.
- the secondary agglomerated particle size of the hydrotalcite compound powder is 0.1 to 200 ⁇ m.
- the thickness is preferably 0.2 to 100 ⁇ m.
- the pulverization treatment can be performed using a general pulverizer (such as an atomizer, a yarya, or a Henschel mixer).
- a molding aid, a binder, water and alcohol as a dispersion medium are added to a hydrotalcite compound powder containing at least magnesium and aluminum, and a kneader (screw After kneading with a kneader or the like, it is molded.
- the molding method can be compression molding, press molding, or tableting.
- the clay-like kneaded product formed by the above method can be dried by a method such as natural drying, hot air drying, or vacuum drying.
- the support of the heterogeneous catalyst structure according to the present invention can be obtained by heat-treating the dried clay-like kneaded material in the air.
- the heat treatment is performed at 900 ° C to 1500 ° C.
- the heat treatment temperature is less than 900 ° C., a long heat treatment is necessary to maintain the crushing strength, which is not industrial.
- the pore of a porous structure will be crushed.
- the temperature is preferably 900 ° C to 1400 ° C, more preferably 1000 ° C to 1300 ° C.
- the heat treatment time is 1 to 72 hours. When the time is less than 1 hour, the crushing strength decreases. When the time exceeds 72 hours, the pores of the porous structure are crushed, and the heat treatment for a long time is not industrial.
- the time is preferably 2 to 60 hours, more preferably 3 to 50 hours.
- fatty acid cellulose, polyvinyl alcohol, starch, methylcellulose, maltose, carboxymethylcellulose and the like can be used, and two or more of them may be used in combination.
- the amount added is, for example, 1 to 50 parts by weight with respect to 100 parts by weight of the hydrotalcite compound powder containing magnesium and aluminum.
- Non-rehydratable alumina, ⁇ -alumina, aluminum salt, silica, clay, talc, bentonite, zeolite, cordierite, titania alkali metal salt, alkaline earth metal salt, rare earth metal salt, zirconia, mullite Sepiolite, montmorillonite, halosite, sapolite, stevensite, hectorite, silica alumina and the like can be used, and two or more of them may be used in combination.
- a salt other than an oxide it is important that the salt decomposes into an oxide upon firing.
- the amount added is, for example, 1 to 50 parts by weight with respect to 100 parts by weight of the hydrotalcite compound powder containing magnesium and aluminum.
- alcohols for example, monohydric alcohols such as ethanol and propanol, glycols such as ethylene glycol, propylene glycol, butanediol and polyethylene glycol, polyhydric alcohols such as glycerin, etc. can be used. More than one species may be used in combination.
- the addition amount is, for example, 50 to 150 parts by weight with respect to 100 parts by weight of hydrotalcite compound powder containing magnesium and aluminum.
- combustible substances wood chips, cork granules, coal powder, activated carbon, crystalline cellulose powder, starch, sucrose, gluconic acid, polyethylene glycol, polyvinyl alcohol, polyacrylamide, polyethylene, polystyrene, etc. and mixtures thereof are added. Also good. As the amount of the combustion substance added increases, the pore volume increases. However, if the amount is excessively added, the strength decreases, so the amount of addition may be adjusted in consideration of the strength.
- a method may be freely selected as necessary.
- the heterogeneous catalyst structure according to the first aspect of the present invention includes one or more selected from Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au.
- the method for supporting the catalytically active metal supported on the heterogeneous catalyst structure according to the present invention is not particularly limited.
- a heterogeneous catalyst structure composed of magnesium and aluminum is coated with a catalytically active metal by the usual precipitation method, heat impregnation method, room temperature impregnation method, vacuum impregnation method, equilibrium adsorption method, evaporation to dryness method, competitive adsorption method, ion exchange , Spray method and so on.
- a method of supporting by a spray method is preferable.
- Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au are not particularly limited as long as they are water-soluble such as nitrate.
- the heterogeneous catalyst structure according to the present invention includes one or more catalysts selected from Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au.
- concentration of free nitric acid in the solution adjusted when supporting the active metal is 1 to 30 wt%. When it is less than 1 wt%, the average particle diameter of the catalytically active metal becomes large. Moreover, when it exceeds 30 wt%, it is not industrial. Preferably it is 2 to 25 wt%, more preferably 3 to 20 wt%.
- the free nitric acid does not coordinate with the catalytically active metal, but indicates excessive nitric acid.
- the heterogeneous catalyst structure according to the present invention is one or more selected from Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au.
- a catalytically active metal After loading a catalytically active metal, it can be obtained by reduction treatment in the range of 200 ° C to 1000 ° C.
- the reduction temperature is less than 200 ° C.
- the catalytic activity metal is not metallized, so that the target catalytic activity of the present invention cannot be obtained.
- the temperature exceeds 1000 ° C. sintering of the catalytically active metal proceeds, so that sufficient catalytic activity and oxidation resistance cannot be exhibited.
- the temperature is preferably 300 to 900 ° C, more preferably 400 to 800 ° C.
- the atmosphere during the reduction is not particularly limited as long as it is a reducing atmosphere such as a gas containing hydrogen.
- the reduction treatment time is not particularly limited, but 0.5 to 20 hours is desirable. If it exceeds 20 hours, no merit can be found industrially. Preferably it is 1 to 10 hours.
- the present inventor presumes the reason why the heterogeneous catalyst structure according to the present invention has high catalytic activity and mechanical strength and high oxidation resistance as follows.
- the heterogeneous catalyst structure according to the present invention is produced by firing a molded hydrotalcite that is a layered double hydroxide as a precursor. Since the water in the hydrotalcite is dehydrated by the calcination and becomes an oxide composed of magnesium and aluminum containing a large amount of fine pores, the internal structure is dense, but the specific surface area is very large. Furthermore, when supporting a catalytically active metal, nitric acid is added during preparation of a solution containing the catalytically active metal to adjust the concentration of free nitric acid to produce a heterogeneous catalyst structure, thereby stabilizing the catalytically active metal ion in the solution. In addition, since the magnesium and aluminum in the vicinity of the support surface are dissolved to form micropores, the catalytically active metal can be supported in fine particles. As a result, high catalytic activity, mechanical strength, and oxidation resistance can be exhibited.
- the catalytically active metal particles supported on the heterogeneous catalyst structure according to the present invention are nano-sized particles, and are supported at 5 to 200 ⁇ m from the support surface. It is in the vicinity of the surface of the catalyst structure that contributes to the heterogeneous catalytic reaction, and the inside of the catalyst structure is dense and therefore hardly contributes to the reaction.
- the catalytic activity is remarkably increased even when the catalyst is supported in the same amount as the catalyst in which the catalytically active metal is supported up to the inside of the catalyst structure of the prior art. It is excellent and can exhibit high oxidation resistance.
- the heterogeneous catalyst structure according to the present invention can maintain a high specific surface area even when fired at a high temperature, the mechanical strength can be increased by sintering.
- the present invention is a heterogeneous catalyst structure comprising at least magnesium and aluminum.
- a steam reforming reaction partial oxidation reaction, autothermal, methanation, CO modification, CO selective oxidation, desulfurization, dehydrogenation, cracking catalyst, Since it has high catalytic activity and high oxidation resistance, it can be suitably used.
- a typical embodiment of the present invention is as follows.
- BET specific surface area value is B. E. T.A. Measured by the method.
- the mechanical strength measurement (crushing strength) of the heterogeneous catalyst structure was performed according to JIS Z 8841, and a value was obtained from an average of 100 using a digital force gauge.
- the particle size of catalytically active metals is an average value measured from an electron micrograph.
- the size of the metal fine particle shown above and exceeding 10 nm is “X-ray diffractometer D8 ADVANCE (manufactured by BRUKER)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, goniometer: wide angle goniometer.
- the particle size of the catalytically active metal (Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, Au) obtained from this X-ray diffractometer is an electron micrograph. It was the same as the primary particle size obtained more.
- the surface of the catalyst structure cut was observed with a stereomicroscope to qualitatively evaluate the denseness of the structure.
- the presence of the catalyst layer carrying the catalytically active metal was judged by the difference in color of the cross section. That is, the color of the layer in which the metal is supported on the white Mg—Al oxide carrier is different.
- the thickness of the catalyst layer was measured at 80 locations and indicated as an average value.
- Catalyst activity was evaluated from the conversion rate by analyzing the inflow gas such as hydrocarbons from the outflow gas composition at each temperature and time. Moreover, oxidation resistance was evaluated from the maintenance rate of the conversion rate with respect to the inflowing gas such as hydrocarbon containing oxygen.
- a typical embodiment of the present invention is as follows.
- Example 1 ⁇ Preparation of hydrotalcite compound powder> 352.0 g of MgSO 4 ⁇ 7H 2 O and 138.9 g of Al 2 (SO 4 ) 3 ⁇ 8H 2 O were dissolved in pure water to make 2000 ml. Separately, 2500 ml of an alkali mixed solution was prepared by combining 327.1 ml of NaOH (14 mol / L concentration) and 42.4 g of Na 2 CO 3 dissolved therein. The mixed solution of the magnesium salt and aluminum salt was added to this alkali mixed solution, and aging was performed at 80 ° C. for 6 hours to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder. The obtained hydrotalcite compound powder had a BET specific surface area of 45.2 m 2 / g.
- a Ru solution having a free nitric acid concentration of 1.2 wt% is prepared, spray-supported so that Ru becomes 1.0 wt% in terms of metal, dried at 60 ° C., and hydrogen / argon volume ratio is 50/50 at 400 ° C.
- Reduction treatment was performed for 3 hours in 50 gas streams to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure with a diameter of 2.1 mm ⁇ had a BET specific surface area of 43.1 m 2 / g, an Mg / Al ratio of 2.01, and an average crushing strength of 112.2 N.
- the Ru content was 1.03 wt%, the Ru particle diameter was 2.2 nm, Ru was present in a thickness range of 25 ⁇ m from the structure surface, and the catalyst layer was 25 ⁇ m.
- Table 1 shows a list of characteristics of the heterogeneous catalyst structure.
- FIGS. 1 and 2 show a stereoscopic micrograph of a cross section of a heterogeneous catalyst structure carrying an active metal. In the cross-sectional photograph, Example 1 and Comparative Example 2 are shown as representatives.
- the cross-sectional photograph of Example 1 showed a cross section of the structure having a diameter of about 2.1 mm ⁇ , and the white central portion was dense.
- a catalyst layer indicated by an arrow in the black part was observed. The light black part is also a catalyst layer, but the concentration of active metal particles is low.
- the performance evaluation of the heterogeneous catalyst structure was performed by filling the heterogeneous catalyst structure with 10 to 50 g of a stainless steel reaction tube having a diameter of 20 mm to produce a catalyst tube.
- a steam reforming reaction and methanation reaction in which oxygen is mixed are performed for 200 hours, and then an acceleration test is performed at a high space velocity to reduce the catalyst deterioration due to oxygen mixing. By verifying, oxidation resistance was evaluated.
- Cn conversion rate total hydrocarbon conversion rate
- city gas (13A) the conversion rate of C 2 or more hydrocarbons (ethane, propane, butane, pentane, etc.) contained in the raw material gas was calculated in mol as the 13A conversion rate.
- Table 2 shows the results of the 13A conversion rate in the steam reforming reaction mixed with oxygen. Even under a space velocity of 10,000 h ⁇ 1 , a conversion rate of 65% or more was exhibited.
- CO conversion rate shown in the table is calculated by the number of moles from the following formula.
- Table 3 shows the CO conversion rate in the methanation reaction mixed with oxygen.
- the heterogeneous catalyst prepared in Example 1, Example 2, Example 5, and Example 6 and the catalyst structure prepared in Comparative Example 1, Comparative Example 2, and Comparative Example 3 were used. .
- the examples showed a high CO conversion of 85% or more under any conditions.
- Example 2 ⁇ Preparation of hydrotalcite compound powder> 923.1 g of Mg (NO 3 ) 2 ⁇ 6H 2 O and 450.2 g of Al (NO 3 ) 3 ⁇ 9H 2 O were dissolved in pure water to make 5000 ml. Separately, 10000 ml of an alkali mixed solution was prepared by combining 1029 ml of NaOH (14 mol / L concentration) and 178.1 g of Na 2 CO 3 dissolved therein. The mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 60 ° C. for 4 hours to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder. The obtained hydrotalcite compound powder had a BET specific surface area of 98.2 m 2 / g.
- a mixed solution of Rh and Pt having a free nitric acid concentration of 6.0 wt% is prepared, spray-supported so that Rh is 0.3 wt% and Pt is 0.2 wt% in terms of metal, and after drying at 80 ° C., 300 Reduction treatment was performed for 1 hour in a 100% hydrogen gas stream at 0 ° C. to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure having a diameter of 3.2 mm ⁇ had a BET specific surface area of 92.3 m 2 / g, an Mg / Al ratio of 0.85, and an average crushing strength of 57.3 N.
- the Rh content is 0.31 wt%, the Rh particle diameter is 1.2 nm, the Pt content is 0.22 wt%, the Pt particle diameter is 0.8 nm, and the inside of the structure is dense.
- the catalyst layer composed of the body surface was 12 ⁇ m.
- Example 3 Preparation of hydrotalcite compound powder> MgCl 2 ⁇ 6H 2 O (1207.1 g) and AlCl 3 ⁇ 9H 2 O (188.6 g) were dissolved in pure water to make 10,000 ml. Separately, 15000 ml of an alkali mixed solution in which 1183 ml of NaOH (concentration of 14 mol / L) and 115.9 g of Na 2 CO 3 were dissolved was prepared. The mixed solution of the magnesium salt and aluminum salt was added to this alkali mixed solution, and aged for 4 hours at 90 ° C. to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder. The obtained hydrotalcite compound powder had a BET specific surface area of 66.2 m 2 / g.
- the kneaded clay-like kneaded product was formed into a spherical shape by a compression molding method, dried at 110 ° C., and heat-treated at 1180 ° C. for 6 hours.
- a mixed solution of Pd and Ir having a free nitric acid concentration of 12.0 wt% is prepared, spray supported so that Pd is 4.4 wt% and Ir is 3.8 wt% in terms of metal, dried at 55 ° C., 550 Reduction treatment was performed for 1 hour in a gas stream having a hydrogen / nitrogen volume ratio of 80/20 at 0 ° C. to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure having a diameter of 2.9 mm ⁇ had a BET specific surface area of 54.2 m 2 / g, an Mg / Al ratio of 3.58, and an average crushing strength of 157.6 N.
- the Pd content is 4.24 wt%
- the Pd particle diameter is 13.5 nm
- the Ir content is 3.64 wt%
- the Ir particle diameter is 10.2 nm
- the inside of the structure is dense
- the structure The catalyst layer composed of the body surface was 102 ⁇ m.
- Example 4 ⁇ Preparation of hydrotalcite compound powder> 704.0 g of MgSO 4 ⁇ 7H 2 O and 277.8 g of Al 2 (SO 4 ) 3 ⁇ 8H 2 O were dissolved in pure water to make 2000 ml. Separately, a mixed solution of 3000 ml of alkali was prepared by combining 563.1 ml of NaOH (14 mol / L concentration) and 181.7 g of Na 2 CO 3 . The mixed solution of the magnesium salt and aluminum salt was added to this alkali mixed solution, and aging was performed at 160 ° C. for 8 hours to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder. The obtained hydrotalcite compound powder had a BET specific surface area of 17.2 m 2 / g.
- the kneaded clay kneaded product was formed into a spherical shape by a compression molding method, dried at 100 ° C., and heat-treated at 1220 ° C. for 3 hours.
- a mixed solution of Ru and Pt with a free nitric acid concentration of 25.4 wt% is prepared, spray-supported so that Ru is 2.5 wt% and Pt is 1.1 wt% in terms of metal, dried at 45 ° C., and then 520 Reduction treatment was performed for 2 hours in a gas stream having a hydrogen / nitrogen volume ratio of 90/10 at a temperature of 0 ° C. to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure having a diameter of 3.3 mm ⁇ had a BET specific surface area of 21.1 m 2 / g, an Mg / Al ratio of 1.80, and an average crushing strength of 125.3 N.
- the Ru content is 2.47 wt%
- the Ru particle diameter is 9.2 nm
- the Pt content is 1.07 wt%
- the Pt particle diameter is 5.6 nm
- the inside of the structure is dense
- the catalyst layer composed of the body surface was 72 ⁇ m.
- Example 5 ⁇ Preparation of hydrotalcite compound powder> 150.2 g of MgSO 4 ⁇ 7H 2 O and 46.31 g of Al 2 (SO 4 ) 3 ⁇ 8H 2 O were dissolved in pure water to make 1500 ml. Separately, 2500 ml of an alkali mixed solution was prepared by combining 128.0 ml of NaOH (14 mol / L concentration) and 24.23 g of Na 2 CO 3 . The mixed solution of the magnesium salt and the aluminum salt was added to the alkali mixed solution, and the mixture was aged at 95 ° C. for 6 hours to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder. The obtained hydrotalcite compound powder had a BET specific surface area of 28.8 m 2 / g.
- a mixed solution of Ni and Co with a free nitric acid concentration of 16.2 wt% was prepared, and supported by an impregnation method so that Ni was 8.2 wt% and Co was 5.6 wt% in terms of metal, and dried at 120 ° C. Thereafter, reduction treatment was performed at 780 ° C. in a gas stream having a hydrogen / nitrogen volume ratio of 90/10 for 6 hours to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure having a diameter of 2.2 mm ⁇ had a BET specific surface area of 26.2 m 2 / g, an Mg / Al ratio of 8.32, and an average crushing strength of 88.5 N.
- the Ni content is 7.78 wt%
- the Ni particle diameter is 15.2 nm
- the Co content is 5.16 wt%
- the Co particle diameter is 13.2 nm
- the inside of the structure is dense
- the catalyst layer composed of the body surface was 146 ⁇ m.
- Example 6 Preparation of hydrotalcite compound powder> MgCl 2 ⁇ 6H 2 O 164.8 g and AlCl 3 ⁇ 9H 2 O 48.21 g were dissolved in pure water to make 1000 ml. Separately, an alkaline mixed solution of 2000 ml was prepared by combining 147.0 ml of NaOH (14 mol / L concentration) and 19.08 g of Na 2 CO 3 . The mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 80 ° C. for 4 hours to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder. The obtained hydrotalcite compound powder had a BET specific surface area of 38.2 m 2 / g.
- the kneaded clay-like kneaded product was formed into a spherical shape by a compression molding method, dried at 120 ° C., and heat-treated at 1120 ° C. for 6 hours.
- a mixed solution of Ru and Ni with a free nitric acid concentration of 22.5 wt% is prepared, and supported by a spray method so that Ru is 0.5 wt% and Ni is 3.0 wt% in terms of metal, and dried at 60 ° C. Thereafter, reduction treatment was performed at 820 ° C. in a gas stream having a hydrogen / argon volume ratio of 50/50 for 3 hours to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure having a diameter of 3.1 mm ⁇ had a BET specific surface area of 35.5 m 2 / g, an Mg / Al ratio of 2.01, and an average crushing strength of 102.3 N.
- the Ru content is 0.49 wt%
- the Ru particle diameter is 2.1 nm
- the Ni content is 2.99 wt%
- the Ni particle diameter is 5.5 nm
- the inside of the structure is dense
- the catalyst layer composed of the body surface was 38 ⁇ m.
- Example 7 ⁇ Preparation of hydrotalcite compound powder> 340.4 g of MgSO 4 ⁇ 7H 2 O and 101.8 g of Al 2 (SO 4 ) 3 ⁇ 8H 2 O were dissolved in pure water to make 1000 ml. Separately, a mixed solution of 2000 ml of alkali was prepared by combining 287.0 ml of NaOH (14 mol / L concentration) and 66.56 g of Na 2 CO 3 . The mixed solution of the magnesium salt and the aluminum salt was added to the alkali mixed solution and aged at 75 ° C. for 4 hours to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder. The obtained hydrotalcite compound powder had a BET specific surface area of 33.5 m 2 / g.
- hydrotalcite compound powder 136.1 g was mixed with 7.487 g of bayerite, 12.25 g of PVA, 38.12 g of water and 98.01 g of ethylene glycol, and kneaded with a screw kneader for 2 hours.
- the kneaded clay-like kneaded product was formed into a spherical shape by a compression molding method, dried at 80 ° C., and heat-treated at 1320 ° C. for 3 hours.
- a mixed solution of Ru and Ag with a free nitric acid concentration of 15.2 wt% is prepared, and supported by a spray method so that Ru is 1.5 wt% and Ag is 0.1 wt% in terms of metal, and dried at 60 ° C. Thereafter, reduction treatment was performed at 480 ° C. in a gas stream having a hydrogen / nitrogen volume ratio of 60/40 for 3 hours to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure having a diameter of 2.8 mm ⁇ had a BET specific surface area of 16.4 m 2 / g, an Mg / Al ratio of 2.54, and an average crushing strength of 202.9 N.
- the Ru content is 1.51 wt%
- the Ru particle diameter is 5.4 nm
- the Ag content is 0.1 wt%
- the Ag particle diameter is 6.2 nm
- the inside of the structure is dense
- the catalyst layer composed of the body surface was 23 ⁇ m.
- Example 8 ⁇ Preparation of hydrotalcite compound powder> Mg (NO 3 ) 2 ⁇ 6H 2 O 512.8 g and Al (NO 3 ) 3 ⁇ 9H 2 O 187.6 g were dissolved in pure water to make 2000 ml. Separately, a mixed solution of 3000 ml of alkali was prepared by combining 500.1 ml of NaOH (concentration of 14 mol / L) and 95.4 g of Na 2 CO 3 . The mixed solution of the magnesium salt and aluminum salt was added to this alkali mixed solution, and aging was performed at 80 ° C. for 6 hours to obtain a hydrotalcite compound. This was separated by filtration, dried and pulverized to obtain hydrotalcite compound powder.
- the obtained hydrotalcite compound powder had a BET specific surface area of 42.1 m 2 / g.
- ⁇ Adjustment of heterogeneous catalyst structure> 226.9 g of the obtained hydrotalcite compound powder was mixed with 17.02 g of ⁇ -alumina, 37.43 g of carboxymethylcellulose, 34.03 g of water and 170.2 g of ethylene glycol, and kneaded for 4 hours with a screw kneader.
- the kneaded clay-like kneaded product was molded into a spherical shape by a compression molding method, dried at 100 ° C., and heat-treated at 1100 ° C. for 6 hours.
- a mixed solution of Ru and Ag with a free nitric acid concentration of 8.2 wt% is prepared, supported by a spray method so that Rh is 0.5 wt% and Cu is 3.1 wt% in terms of metal, and dried at 80 ° C. Thereafter, reduction treatment was performed at 550 ° C. in a gas stream having a hydrogen / nitrogen volume ratio of 50/50 for 3 hours to obtain a heterogeneous catalyst structure.
- the obtained heterogeneous catalyst structure having a diameter of 2.8 mm ⁇ had a BET specific surface area of 37.5 m 2 / g, an Mg / Al ratio of 1.51, and an average crushing strength of 94.2 N.
- the Rh content is 0.48 wt%
- the Rh particle diameter is 2.1 nm
- the Cu content is 3.08 wt%
- the Cu particle diameter is 16.2 nm
- the inside of the structure is dense
- the catalyst layer composed of the body surface was 58 ⁇ m.
- Comparative Example 1 A mixture of 746.3 g of ⁇ -alumina and 87.2 g of PVA was granulated while spraying pure water with a rolling granulator to obtain a spherical ⁇ -alumina molded body. The obtained molded body was dried at 150 ° C. and heat-treated at 1130 ° C. for 8 hours. Next, it is supported by an impregnation method so that Pt is 4.2 wt% and Rh is 3.1 wt% in terms of metal, dried at 70 ° C., and reduced in a gas stream of 100% hydrogen at 350 ° C. for 2 hours. Treatment was performed to obtain a catalyst structure.
- the size of the obtained structure was 2.2 mm ⁇ , the BET was 45.2 m 2 / g, and the average crushing strength was 15.2N.
- the Pt content is 4.11 wt%, the Pt particle size is 25.5 nm, the Rh content is 2.92 wt%, the Rh particle size is 28.2 nm,
- the constituted catalyst layer was 322 ⁇ m.
- Comparative Example 2 256.2 g of magnesia, 198.1 g of ⁇ -alumina, 45.61 g of PVA, and 322.1 g of water were mixed and kneaded with a screw kneader for 3 hours.
- the kneaded clay-like kneaded product was formed into a spherical shape by a compression molding method, dried at 120 ° C., and heat-treated at 1230 ° C. for 4 hours.
- spray-supported Ru to 2.2 wt% in terms of metal dried at 60 ° C, and then reduced at 650 ° C for 2 hours in a gas stream with a hydrogen / argon volume ratio of 80/20, A catalyst structure was obtained.
- the size of the obtained structure was 2.1 mm ⁇ , the BET was 5.4 m 2 / g, the Mg / Al ratio was 1.93, and the average crushing strength was 23.3 N.
- the Ru content was 2.32 wt%, the Ru particle diameter was 23.1 nm, and the constituted catalyst layer was 431 ⁇ m.
- Ru erodes to the inside of the structure so that a white portion corresponding to the dense portion is not observed. This is presumably because the pores of the entire structure are too large.
- Comparative Example 3 ⁇ Adjustment of heterogeneous catalyst structure> Boehmite 41.59 g and PVA 15.13 g, and further water 34.03 g and 113.4 g were mixed in 189.1 g of the hydropodtalcite compound powder prepared in Example 1, and kneaded in a screw kneader for 3 hours. The kneaded clay-like kneaded product was formed into a spherical shape by a compression molding method, dried at 120 ° C., and fired at 830 ° C. for 2 hours. Subsequently, Ru was supported by 1.0 wt% in terms of metal, dried at 80 ° C., and then subjected to reduction treatment at 700 ° C.
- the obtained catalyst structure having a diameter of 3.1 mm ⁇ had a BET of 103.5 m 2 / g, an Mg / Al ratio of 1.25, and an average crushing strength of 11.4 N.
- the Ru content was 1.05 wt%, the Ru particle diameter was 22.4 nm, and the catalyst layer composed of the structure surface was 258 ⁇ m.
- the active metal particles are fixed in a very fine state near the surface of the catalyst support having a dense internal structure.
- a heterogeneous reaction such as steam reforming reaction, partial oxidation reaction, autothermal reaction, CO modification reaction, CO selective oxidation reaction, methanation reaction, and desulfurization, dehydrogenation, decomposition reaction, etc. It has excellent catalytic activity and oxidation resistance.
- the heterogeneous catalyst structure according to the present invention is composed of at least magnesium and aluminum, and has a large BET specific surface area and mechanical strength, but contains a large amount of magnesium, and therefore contains a large amount of sulfur component. It is also suitable as a catalyst for reforming hydrocarbons such as city gas, LPG, and biomass.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
CnHm + 2nH2O → nCO2 + (2n + m/2)H2
本発明に係る不均一系触媒構造体が高い触媒活性と機械的強度を有し、且つ高い耐酸化性を有する理由について、本発明者は次のように推定している。
MgSO4・7H2O 352.0gとAl2(SO4)3・8H2O 138.9gを純水で溶解させ2000mlとした。別にNaOH 327.1ml(14mol/L濃度)とNa2CO3 42.4gを溶解させたものを合わせた2500mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、80℃で6時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は45.2m2/gであった。
得られたハイドロタルサイト化合物粉末 151.3gにベーマイト 8.32gとPVA 12.1g、さらに水 27.23gとエチレングリコール 90.75gを混合し、スクリューニーダーで2時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、105℃で乾燥し、1120℃で4時間熱処理を行った。次いで遊離硝酸濃度1.2wt%のRu溶液を準備し、金属換算でRuを1.0wt%となるようにスプレー担持させ、60℃で乾燥後、400℃にて水素/アルゴン体積比が50/50のガス気流中において3時間還元処理を行い、不均一系触媒構造体を得た。得られた直径2.1mmφの不均一系触媒構造体のBET比表面積は43.1m2/gであり、Mg/Al比は2.01であり、平均圧壊強度は112.2Nであった。またRu含有量は1.03wt%であり、Ru粒子径は2.2nmであり、Ruは構造体表面から25μmの厚さの範囲に存在しており、触媒層は25μmであった。表1には不均一系触媒構造体の特性一覧を示す。また図1と2には活性金属を担持した不均一系触媒構造体断面の実体顕微鏡写真を示す。尚、断面写真には実施例1と比較例2を代表として示す。実施例1の断面写真は約直径2.1mmφの該構造体断面を示し、白色の中央部分は緻密であった。黒色部分の矢印で示される触媒層が観察された。薄い黒色部分もまた触媒層であるが、活性金属粒子の濃度が低い。
不均一系触媒構造体の性能評価は、不均一系触媒構造体を直径20mmのステンレス製反応管に10~50g充填して触媒管を作製して行った。不均一系触媒構造体の耐酸化性を検証するため、酸素を混入した水蒸気改質反応及びメタネーション反応を200時間行い、その後、高い空間速度にて加速度試験を行い、酸素混入に対する触媒劣化を検証することにより、耐酸化性を評価した。
酸素を混入した水蒸気改質反応では、製作した触媒管(反応器)に対して、原料ガス及び水蒸気を反応圧力0.01MPa、反応温度600℃、空間速度を1000h-1及び10000h-1として流通する評価を実施した。この時の水蒸気/炭素比(S/C)は3.0であり、原料ガスには酸素を6%混入した都市ガス(13A)を用い、200時間の水蒸気改質反応を実施した。
(CO+CO2)/(CO+CO2+CH4+C2H6+C3H8)
酸素を混入したメタネーション反応では、製作した触媒管(反応器)に対して、原料ガス及び水素を反応圧力0.01MPa、反応温度600℃、空間速度を5000h-1として流通する評価を実施した。この時の水素/一酸化炭素比(H2/CO)は3.0であり、原料ガスには酸素を6%混入したCOを用い、300時間の水蒸気改質反応を実施した。
Mg(NO3)2・6H2O 923.1gとAl(NO3)3・9H2O 450.2gを純水で溶解させ5000mlとした。別にNaOH 1029ml(14mol/L濃度)とNa2CO3 178.1gを溶解させたものを合わせた10000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、60℃で4時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は98.2m2/gであった。
得られたハイドロタルサイト化合物粉末 453.8gにベーマイト 49.91gとエチルセルロース 68.06g、さらに水 95.29gとプロピレングリコール 326.7gを混合し、ニーダーで1時間混練した。混練後の粘土状混練物をプレス成型により球状に成形後、95℃で乾燥し、950℃で12時間熱処理を行った。次いで遊離硝酸濃度6.0wt%のRhとPtの混合溶液を準備し、金属換算でRhを0.3wt%、Ptを0.2wt%となるようにスプレー担持させ、80℃で乾燥後、300℃にて100%水素ガス気流中において1時間還元処理を行い、不均一系触媒構造体を得た。得られた直径3.2mmφの不均一系触媒構造体のBET比表面積は92.3m2/gであり、Mg/Al比は0.85であり、平均圧壊強度は57.3Nであった。またRh含有量は0.31wt%であり、Rh粒子径は1.2nmであり、Pt含有量は0.22wt%、Pt粒子径は0.8nmであり、構造体内部は緻密であり、構造体表面から構成される触媒層は12μmであった。
MgCl2・6H2O 1207.1gとAlCl3・9H2O 188.6gを純水で溶解させ10000mlとした。別にNaOH 1183ml(14mol/L濃度)とNa2CO3 115.9gを溶解させたものを合わせた15000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、90℃で4時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は66.2m2/gであった。
得られたハイドロタルサイト化合物粉末 567.2gにギブサイト 5.672gとメチルセルロース 113.4g、さらに水 130.5gとグリセリン 397.0gを混合し、双腕ニーダーで4時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、110℃で乾燥し、1180℃で6時間熱処理を行った。次いで遊離硝酸濃度12.0wt%のPdとIrの混合溶液を準備し、金属換算でPdを4.4wt%、Irを3.8wt%となるようにスプレー担持させ、55℃で乾燥後、550℃にて水素/窒素体積比が80/20のガス気流中において1時間還元処理を行い、不均一系触媒構造体を得た。得られた直径2.9mmφの不均一系触媒構造体のBET比表面積は54.2m2/gであり、Mg/Al比は3.58であり、平均圧壊強度は157.6Nであった。またPd含有量は4.24wt%であり、Pd粒子径は13.5nmであり、Ir含有量は3.64wt%、Ir粒子径は10.2nmであり、構造体内部は緻密であり、構造体表面から構成される触媒層は102μmであった。
MgSO4・7H2O 704.0gとAl2(SO4)3・8H2O 277.8gを純水で溶解させ2000mlとした。別にNaOH 563.1ml(14mol/L濃度)とNa2CO3 181.7gを溶解させたものを合わせた3000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、160℃で8時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は17.2m2/gであった。
得られたハイドロタルサイト化合物粉末 302.5gにα―アルミナ 22.69gとメチルセルロース 19.66g、さらに水 96.81gとエチレングリコール 166.4gを混合し、スクリューニーダーで0.5時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、100℃で乾燥し、1220℃で3時間熱処理を行った。次いで遊離硝酸濃度25.4wt%のRuとPtの混合溶液を準備し、金属換算でRuを2.5wt%、Ptを1.1wt%となるようにスプレー担持させ、45℃で乾燥後、520℃にて水素/窒素体積比が90/10のガス気流中において2時間還元処理を行い、不均一系触媒構造体を得た。得られた直径3.3mmφの不均一系触媒構造体のBET比表面積は21.1m2/gであり、Mg/Al比は1.80であり、平均圧壊強度は125.3Nであった。またRu含有量は2.47wt%であり、Ru粒子径は9.2nmであり、Pt含有量は1.07wt%、Pt粒子径は5.6nmであり、構造体内部は緻密であり、構造体表面から構成される触媒層は72μmであった。
MgSO4・7H2O 150.2gとAl2(SO4)3・8H2O 46.31gを純水で溶解させ1500mlとした。別にNaOH 128.0ml(14mol/L濃度)とNa2CO3 24.23gを溶解させたものを合わせた2500mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、95℃で6時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は28.8m2/gであった。
得られたハイドロタルサイト化合物粉末 60.5gにマグネシア 39.33gとPVA 9.983g、さらに水 13.31gとプロピレングリコール 48.41gを混合し、双腕ニーダーで6時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、120℃で乾燥し、1050℃で12時間熱処理を行った。次いで遊離硝酸濃度16.2wt%のNiとCoの混合溶液を準備し、金属換算でNiを8.2wt%、Coを5.6wt%となるように含浸法にて担持させ、120℃で乾燥後、780℃にて水素/窒素体積比が90/10のガス気流中において6時間還元処理を行い、不均一系触媒構造体を得た。得られた直径2.2mmφの不均一系触媒構造体のBET比表面積は26.2m2/gであり、Mg/Al比は8.32であり、平均圧壊強度は88.5Nであった。またNi含有量は7.78wt%であり、Ni粒子径は15.2nmであり、Co含有量は5.16wt%、Co粒子径は13.2nmであり、構造体内部は緻密であり、構造体表面から構成される触媒層は146μmであった。
MgCl2・6H2O 164.8gとAlCl3・9H2O 48.21gを純水で溶解させ1000mlとした。別にNaOH 147.0ml(14mol/L濃度)とNa2CO3 19.08gを溶解させたものを合わせた2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、80℃で4時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は38.2m2/gであった。
得られたハイドロタルサイト化合物粉末 68.06gにベーマイト 3.743gとエチルセルロース 10.21g、さらに水 12.93gとエチレングリコール 51.04gを混合し、双腕ニーダーで3時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、120℃で乾燥し、1120℃で6時間熱処理を行った。次いで遊離硝酸濃度22.5wt%のRuとNiの混合溶液を準備し、金属換算でRuを0.5wt%、Niを3.0wt%となるようにスプレー法にて担持させ、60℃で乾燥後、820℃にて水素/アルゴン体積比が50/50のガス気流中において3時間還元処理を行い、不均一系触媒構造体を得た。得られた直径3.1mmφの不均一系触媒構造体のBET比表面積は35.5m2/gであり、Mg/Al比は2.01であり、平均圧壊強度は102.3Nであった。またRu含有量は0.49wt%であり、Ru粒子径は2.1nmであり、Ni含有量は2.99wt%、Ni粒子径は5.5nmであり、構造体内部は緻密であり、構造体表面から構成される触媒層は38μmであった。
MgSO4・7H2O 340.4gとAl2(SO4)3・8H2O 101.8gを純水で溶解させ1000mlとした。別にNaOH 287.0ml(14mol/L濃度)とNa2CO3 66.56gを溶解させたものを合わせた2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、75℃で4時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は33.5m2/gであった。
得られたハイドロタルサイト化合物粉末 136.1gにバイヤライト 7.487gとPVA 12.25g、さらに水 38.12gとエチレングリコール 98.01gを混合し、スクリューニーダーで2時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、80℃で乾燥し、1320℃で3時間熱処理を行った。次いで遊離硝酸濃度15.2wt%のRuとAgの混合溶液を準備し、金属換算でRuを1.5wt%、Agを0.1wt%となるようにスプレー法にて担持させ、60℃で乾燥後、480℃にて水素/窒素体積比が60/40のガス気流中において3時間還元処理を行い、不均一系触媒構造体を得た。得られた直径2.8mmφの不均一系触媒構造体のBET比表面積は16.4m2/gであり、Mg/Al比は2.54であり、平均圧壊強度は202.9Nであった。またRu含有量は1.51wt%であり、Ru粒子径は5.4nmであり、Ag含有量は0.1wt%、Ag粒子径は6.2nmであり、構造体内部は緻密であり、構造体表面から構成される触媒層は23μmであった。
Mg(NO3)2・6H2O 512.8gとAl(NO3)3・9H2O 187.6gを純水で溶解させ2000mlとした。別にNaOH 500.1ml(14mol/L濃度)とNa2CO3 95.4gを溶解させたものを合わせた3000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩の混合溶液を加え、80℃で6時間熟成を行ってハイドロタルサイト化合物を得た。これを濾別分離後、乾燥、粉砕しハイドロタルサイト化合物粉末を得た。得られたハイドロタルサイト化合物粉末のBET比表面積は42.1m2/gであった。
<不均一系触媒構造体の調整>
得られたハイドロタルサイト化合物粉末 226.9gにα―アルミナ 17.02gとカルボキシメチルセルロース 37.43g、さらに水 34.03gとエチレングリコール 170.2gを混合し、スクリューニーダーで4時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、100℃で乾燥し、1100℃で6時間熱処理を行った。次いで遊離硝酸濃度8.2wt%のRuとAgの混合溶液を準備し、金属換算でRhを0.5wt%、Cuを3.1wt%となるようにスプレー法にて担持させ、80℃で乾燥後、550℃にて水素/窒素体積比が50/50のガス気流中において3時間還元処理を行い、不均一系触媒構造体を得た。得られた直径2.8mmφの不均一系触媒構造体のBET比表面積は37.5m2/gであり、Mg/Al比は1.51であり、平均圧壊強度は94.2Nであった。またRh含有量は0.48wt%であり、Rh粒子径は2.1nmであり、Cu含有量は3.08wt%、Cu粒子径は16.2nmであり、構造体内部は緻密であり、構造体表面から構成される触媒層は58μmであった。
γ-アルミナ 746.3gにPVA 87.2gを混合したものを、転動造粒機にて純水をスプレーしながら造粒し、球状のγ-アルミナ成形体を得た。得られた成形体を150℃で乾燥し、1130℃で8時間熱処理を行った。次いで、金属換算でPtを4.2wt%、Rhを3.1wt%となるように含浸法にて担持させ、70℃で乾燥後、350℃にて100%水素のガス気流中において2時間還元処理を行い、触媒構造体を得た。得られた構造体の大きさは2.2mmφであり、BETは45.2m2/gであり、平均圧壊強度は15.2Nであった。またPtの含有量は4.11wt%であり、Pt粒子径は25.5nmであり、Rhの含有量は2.92wt%であり、Rhの粒子径は28.2nmであり、構造体表面から構成される触媒層は322μmであった。
マグネシア 256.2gとγ-アルミナ 198.1gとPVA 45.61gと水322.1gを混合し、スクリューニーダーで3時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、120℃で乾燥し、1230℃で4時間熱処理を行った。次いで、金属換算でRuを2.2wt%となるようにスプレー担持させ、60℃で乾燥後、650℃にて水素/アルゴン体積比が80/20のガス気流中において2時間還元処理を行い、触媒構造体を得た。得られた構造体の大きさは2.1mmφであり、BETは5.4m2/gであり、Mg/Al比は1.93であり、平均圧壊強度は23.3Nであった。またRu含有量は2.32wt%であり、Ru粒子径は23.1nmであり、構成される触媒層は431μmであった。図2に示す実体顕微鏡写真のとおり、緻密部分に相当する白色箇所が観察されないように、比較例2のサンプルはRuが構造体内部まで浸食しているのが分かる。これは構造体全体の細孔が大きすぎることが原因と推察される。
<不均一系触媒構造体の調整>
実施例1で作製したハイロドタルサイト化合物粉末 189.1gにベーマイト 41.59gとPVA 15.13g、さらに水 34.03gと113.4gを混合し、スクリューニーダーで3時間混練した。混練後の粘土状混練物を圧縮成形法により球状に成形後、120℃で乾燥し、830℃で2時間焼成をおこなった。次いで金属換算でRuを1.0wt%となるようにスプレー担持させ、80℃で乾燥後、700℃にて100%水素のガス急流下において1時間還元処理を行い、触媒構造体を得た。得られた直径3.1mmφの触媒構造体のBETは103.5m2/gであり、Mg/Al比は1.25であり、平均圧壊強度は11.4Nであった。またRu含有量は1.05wt%であり、Ru粒子径は22.4nmであり、構造体表面から構成される触媒層は258μmであった。
Claims (3)
- マグネシウムとアルミニウムを含む緻密な内部構造を有する酸化物担体と一次粒子径0.5~20nmの触媒活性金属粒子とから成る1~30mmの不均一系触媒構造体であって、Mg/Al原子比で0.7~10、BET比表面積が10~100m2/g、平均圧壊強度が30N以上であり、触媒活性金属粒子が酸化物担体表面から5~200μmの範囲に存在する不均一系触媒構造体。
- 前記触媒活性金属粒子がMn、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Ag、Re、Os、Ir、Pt、Auのうち少なくとも1種を含む粒子であり、該粒子の担持量が0.05~10wt%である請求項1記載の不均一系触媒構造体。
- 請求項1又は2記載の不均一系触媒構造体の製造方法であって、前記触媒活性金属粒子となり得る原料を担持する際、1~30wt%の遊離硝酸を含有する原料溶液を用いる不均一系触媒構造体の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17744167.2A EP3409361A4 (en) | 2016-01-26 | 2017-01-24 | CATALYST STRUCTURE OF A HETEROGENIC SYSTEM AND METHOD OF MANUFACTURING THEREOF |
JP2017564255A JP6933144B2 (ja) | 2016-01-26 | 2017-01-24 | 不均一系触媒構造体及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016011990 | 2016-01-26 | ||
JP2016-011990 | 2016-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130937A1 true WO2017130937A1 (ja) | 2017-08-03 |
Family
ID=59398837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002267 WO2017130937A1 (ja) | 2016-01-26 | 2017-01-24 | 不均一系触媒構造体及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3409361A4 (ja) |
JP (1) | JP6933144B2 (ja) |
WO (1) | WO2017130937A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019225715A1 (ja) * | 2018-05-23 | 2019-11-28 | 田中貴金属工業株式会社 | 水蒸気改質触媒 |
CN114849732A (zh) * | 2022-06-15 | 2022-08-05 | 东莞理工学院 | 一种卟啉单元修饰天然黏土担载Au-Cu复合催化剂及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003225566A (ja) * | 2002-02-01 | 2003-08-12 | Hiroshima Industrial Promotion Organization | 炭化水素分解用触媒及びその製造法 |
JP2007203159A (ja) * | 2006-01-31 | 2007-08-16 | Toyota Central Res & Dev Lab Inc | 炭化水素改質用触媒及びその製造方法、並びにその炭化水素改質用触媒を用いた水素の製造方法 |
JP2009173535A (ja) * | 2007-12-28 | 2009-08-06 | Toda Kogyo Corp | 多孔質成形体及びその製造方法、並びに触媒用担体及び触媒 |
JP2009233662A (ja) * | 2008-03-06 | 2009-10-15 | Toda Kogyo Corp | 炭化水素を分解する多孔質触媒体及びその製造方法、炭化水素から水素を含む混合改質ガスを製造する方法、並びに燃料電池システム |
JP2011056391A (ja) * | 2009-09-09 | 2011-03-24 | Toda Kogyo Corp | 炭化水素を分解する多孔質触媒体及びその製造方法、炭化水素から水素を含む混合改質ガスを製造する方法、並びに燃料電池システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201102502D0 (en) * | 2011-02-14 | 2011-03-30 | Johnson Matthey Plc | Catalysts for use in reforming processes |
-
2017
- 2017-01-24 WO PCT/JP2017/002267 patent/WO2017130937A1/ja active Application Filing
- 2017-01-24 JP JP2017564255A patent/JP6933144B2/ja active Active
- 2017-01-24 EP EP17744167.2A patent/EP3409361A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003225566A (ja) * | 2002-02-01 | 2003-08-12 | Hiroshima Industrial Promotion Organization | 炭化水素分解用触媒及びその製造法 |
JP2007203159A (ja) * | 2006-01-31 | 2007-08-16 | Toyota Central Res & Dev Lab Inc | 炭化水素改質用触媒及びその製造方法、並びにその炭化水素改質用触媒を用いた水素の製造方法 |
JP2009173535A (ja) * | 2007-12-28 | 2009-08-06 | Toda Kogyo Corp | 多孔質成形体及びその製造方法、並びに触媒用担体及び触媒 |
JP2009233662A (ja) * | 2008-03-06 | 2009-10-15 | Toda Kogyo Corp | 炭化水素を分解する多孔質触媒体及びその製造方法、炭化水素から水素を含む混合改質ガスを製造する方法、並びに燃料電池システム |
JP2011056391A (ja) * | 2009-09-09 | 2011-03-24 | Toda Kogyo Corp | 炭化水素を分解する多孔質触媒体及びその製造方法、炭化水素から水素を含む混合改質ガスを製造する方法、並びに燃料電池システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3409361A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019225715A1 (ja) * | 2018-05-23 | 2019-11-28 | 田中貴金属工業株式会社 | 水蒸気改質触媒 |
JPWO2019225715A1 (ja) * | 2018-05-23 | 2021-07-29 | 田中貴金属工業株式会社 | 水蒸気改質触媒 |
JP7121114B2 (ja) | 2018-05-23 | 2022-08-17 | 田中貴金属工業株式会社 | 水蒸気改質触媒 |
CN114849732A (zh) * | 2022-06-15 | 2022-08-05 | 东莞理工学院 | 一种卟啉单元修饰天然黏土担载Au-Cu复合催化剂及其制备方法 |
CN114849732B (zh) * | 2022-06-15 | 2023-08-22 | 东莞理工学院 | 一种卟啉单元修饰天然黏土担载Au-Cu复合催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3409361A4 (en) | 2019-07-17 |
JP6933144B2 (ja) | 2021-09-08 |
EP3409361A1 (en) | 2018-12-05 |
JPWO2017130937A1 (ja) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101523122B1 (ko) | 탄화수소를 분해하는 다공질 촉매체 및 그의 제조 방법, 탄화수소로부터 수소를 포함하는 혼합 개질 가스를 제조하는 방법, 및 연료 전지 시스템 | |
JP5110249B2 (ja) | 炭化水素を分解する触媒、該触媒を用いた炭化水素の分解方法及び水素の製造方法、並びに発電システム | |
EP2226308B1 (en) | Molded porous article, method for production thereof, catalyst carrier, and catalyst | |
US10010876B2 (en) | Catalyst for high temperature steam reforming | |
JP5477561B2 (ja) | 炭化水素を分解する多孔質触媒体及びその製造方法、炭化水素から水素を含む混合改質ガスを製造する方法、並びに燃料電池システム | |
US9034786B2 (en) | Catalysts for producing hydrogen and synthesis gas | |
KR102573127B1 (ko) | 메탄의 수증기 개질용 니켈계 촉매 및 이를 이용한 메탄의 수증기 개질 반응 | |
US20030230029A1 (en) | Suppression of methanation activity of platinum group metal water-gas shift catalysts | |
JP4488178B2 (ja) | メタン化触媒及びその製造方法、並びに該メタン化触媒を用いた一酸化炭素をメタン化する方法 | |
WO2017130937A1 (ja) | 不均一系触媒構造体及びその製造方法 | |
JP4525909B2 (ja) | 水性ガスシフト反応用触媒及びその製造方法、並びに水性ガスの製造方法 | |
JP4340892B2 (ja) | 炭化水素分解用触媒及びその製造法、該炭化水素分解用触媒を用いた水素の製造方法 | |
KR101451407B1 (ko) | 메탄의 자열 개질 반응용 촉매 조성물, 그 제조 방법, 및 이를 이용한 합성가스 제조 방법 | |
JP5619598B2 (ja) | 銅−亜鉛−アルミニウム触媒、その製造方法、一酸化炭素変成方法、及び水素製造方法 | |
JP5492620B2 (ja) | 一酸化炭素転化用触媒、その製造方法、一酸化炭素転化方法および燃料電池システム用水素の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744167 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017564255 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017744167 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017744167 Country of ref document: EP Effective date: 20180827 |