WO2017130326A1 - エネルギー管理装置、電力情報表示方法及びプログラム - Google Patents

エネルギー管理装置、電力情報表示方法及びプログラム Download PDF

Info

Publication number
WO2017130326A1
WO2017130326A1 PCT/JP2016/052337 JP2016052337W WO2017130326A1 WO 2017130326 A1 WO2017130326 A1 WO 2017130326A1 JP 2016052337 W JP2016052337 W JP 2016052337W WO 2017130326 A1 WO2017130326 A1 WO 2017130326A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
time
measurement
measurement data
predetermined period
Prior art date
Application number
PCT/JP2016/052337
Other languages
English (en)
French (fr)
Inventor
遠藤 聡
矢部 正明
聡司 峯澤
一郎 丸山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017563457A priority Critical patent/JP6385599B2/ja
Priority to PCT/JP2016/052337 priority patent/WO2017130326A1/ja
Publication of WO2017130326A1 publication Critical patent/WO2017130326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to an energy management device, a power information display method, and a program.
  • Patent Document 1 a technique for measuring power values of a plurality of power lines with one power measuring device is known.
  • HEMS Home Energy Management System
  • EV-PCS power conditioning system
  • EV electric vehicle
  • EV-PCS in order to control charging and discharging of a storage battery mounted on the EV, it is necessary to measure the power of purchased or sold power, generated power, discharged or charged power.
  • HEMS the power consumed by the power measuring device is measured.
  • the power measurement interval in other words, the power measurement sampling interval is not necessarily the same. Have difficulty.
  • This invention was made in order to solve the said subject, and it aims at providing the energy management apparatus etc. which can use effectively the measurement result of the electric power by a several measuring device.
  • an energy management device provides: First measurement data including each measured power of one or a plurality of power lines included in the first power line group is acquired from the first measurement apparatus, and then transferred from the second measurement apparatus to the second power line group.
  • Measurement data acquisition means for acquiring second measurement data including each measured power of one or a plurality of power lines included; A first time at which the first power that is the total power of the first power line group changes is detected from the first measurement data for a predetermined period, and the second time for the predetermined period.
  • Time difference calculation for detecting a second time at which the second power, which is the total power of the second power line group, changes from the measured data, and calculating a time difference between the first time and the second time Means, Displays power information obtained by correcting one of each measurement time of the first measurement data for the predetermined period and each measurement time of the second measurement data for the predetermined period based on the time difference.
  • Information output means for outputting to the apparatus.
  • FIG. (1) for demonstrating a time difference.
  • FIG. (2) for demonstrating a time difference.
  • FIG. (3) for demonstrating a time difference.
  • FIG. (4) for demonstrating a time difference.
  • FIG. (5) for demonstrating a time difference.
  • FIG. 1 is a diagram showing an overall configuration of an energy management system 1 according to an embodiment of the present invention.
  • the energy management system 1 is a so-called HEMS (Home Energy Management System) that manages electric power used in a general household.
  • the energy management system 1 includes an energy management device 2, an operation terminal 3, a power measurement device 4, an EV-PCS 5, and a PV-PCS 6.
  • the energy management device 2 is installed at an appropriate location in the house H, monitors the power consumed in the house H, that is, the demand area, and displays the power consumption status via the operation terminal 3. In addition, the energy management device 2 performs operation control, operation state monitoring, and the like of a plurality of devices 7 (devices 7-1, 7-2,). Details of the energy management device 2 will be described later.
  • the operation terminal 3 (display device) includes an input device such as a push button, a touch panel, and a touch pad, an output device such as an organic EL display and a liquid crystal display, and a communication interface, for example, a mobile phone such as a smartphone or a tablet terminal. Equipment.
  • the operation terminal 3 communicates with the energy management apparatus 2 in accordance with a well-known communication standard such as Wi-Fi (registered trademark), Wi-SUN (registered trademark), or a wired LAN.
  • the operation terminal 3 receives an operation from the user and transmits information indicating the received operation content to the energy management apparatus 2.
  • the operation terminal 3 receives the information transmitted from the energy management device 2 and presented to the user, and displays the received information.
  • the operation terminal 3 plays a role as an interface (user interface) with the user.
  • the power measuring device 4 measures the value of power transmitted through the power line D2 (first power line group) of the house H at regular time intervals (every 30 seconds in the present embodiment).
  • the power line D2 is disposed between the EV-PCS 5 and the distribution board 9.
  • the power measuring device 4 is connected to a CT (Current Transformer) 1 connected to the power line D2 via a communication line.
  • CT1 is a sensor that measures an alternating current.
  • the power measuring device 4 measures the power value of the power line D2 based on the measurement result of CT1.
  • the power measuring device 4 includes a wireless communication interface and is connected to the energy management device 2 through a wireless network (not shown) constructed in the house H so as to be communicable.
  • This wireless network is, for example, a network conforming to ECHONET Lite.
  • the power measuring device 4 may be of a specification that is connected to this wireless network via an external communication adapter (not shown).
  • the power measurement device 4 In response to the request from the energy management device 2, the power measurement device 4 generates measurement data storing the measured power value of the power line D ⁇ b> 2 and transmits the measurement data to the energy management device 2. Specifically, as shown in FIG. 2, the measurement data stores the device ID of the power measurement device 4 and the power data.
  • the device ID is an ID (identification) for identifying devices connected to the energy management apparatus 2 (EV-PCS5, PV-PCS6, devices 7-1, 7-2,).
  • the device ID of the power measuring device 4 is “10”.
  • the power line ID of the power line D2 and the measured power value of the power line D2 are stored.
  • the power line ID is an ID for identifying the power line.
  • the power line ID of the power line D2 is “02”.
  • EV-PCS 5 is a power conditioning system for EV (electric vehicle) 10.
  • the EV-PCS 5 controls charging and discharging of the storage battery 11 mounted on the EV 10.
  • the EV-PCS 5 supplies power from the commercial power supply 8 and the PV-PCS 6 to the storage battery 11 via the power line D4 when the storage battery 11 is charged. Further, the EV-PCS 5 supplies power from the storage battery 11 to the distribution board 9 via the power lines D4 and D2 when the storage battery 11 is discharged.
  • the EV-PCS 5 performs charging and discharging control, so that electric power transmitted through each of the power lines D1, D3, and D4 (second power line group) at regular intervals (in this embodiment, every 30 seconds). The value of is measured.
  • the power line D1 is disposed between the commercial power supply 8 and the EV-PCS 5
  • the power line D3 is disposed between the PV-PCS 6 and the EV-PCS 5
  • the power line D4 is disposed between the EV-PCS 5 and the EV 10. It is arranged.
  • the EV-PCS 5 is connected to each of the CTs 2 to 4 connected to the power lines D1, D3, and D4 via communication lines.
  • the EV-PCS 5 measures the power value of the power line D1 based on the measurement result of CT2.
  • the EV-PCS 5 measures the power values of the power lines D3 and D4 based on the measurement results of CT3 and 4.
  • the EV-PCS 5 is connected to the energy management apparatus 2 so as to be communicable via a dedicated communication line.
  • the EV-PCS 5 In response to the request from the energy management device 2, the EV-PCS 5 generates measurement data that stores the measured power values of the power lines D 1, D 3, and D 4 and transmits the measurement data to the energy management device 2.
  • the EV-PCS 5 may communicate with the energy management device 2 via the above-described wireless network built in the house H.
  • the measurement data generated by the EV-PCS 5 stores the device ID of the EV-PCS 5 and power data 1 to 3 as shown in FIG.
  • the device ID of the EV-PCS 5 is “11”.
  • the power data 1 to 3 include the power line IDs of the power lines D1, D3, and D4 (in this embodiment, “01”, “03”, and “04”) and the measured power values of the power lines D1, D3, and D4. Stored.
  • PV-PCS 6 is a power conditioning system for PV (solar power generation).
  • the PV-PCS 6 converts the electricity generated by the PV panel 12 from DC power to AC power and supplies it to the EV-PCS 5 through the power line D3.
  • the electric power supplied from the PV-PCS 6 is supplied to the distribution board 9 or used to charge the storage battery 11 by the EV-PCS 5.
  • the power supplied from the PV-PCS 6 may be supplied to the commercial power supply 8 by the EV-PCS 5 (so-called power sale).
  • the power measuring device 4 corresponds to the first measuring device of the present invention
  • the EV-PCS 5 corresponds to the second measuring device of the present invention.
  • the device 7 (devices 7-1, 7-2,...) Is an electric device such as an air conditioner, an illuminator, a floor heating system, a refrigerator, an IH (Induction Heating) cooker, a television, a water heater, and the like.
  • the devices 7-1, 7-2,... are installed in the house H (including the site), and are connected to the power lines D5, D6,.
  • Each device 7 is communicably connected to the energy management apparatus 2 via the wireless network (not shown).
  • Each device 7 may have a specification that is connected to this wireless network via an external communication adapter (not shown).
  • the energy management device 2 includes a CPU (Central Processing Unit) 20, a communication interface 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and a secondary storage device 24. With. These components are connected to each other via a bus 25.
  • the CPU 20 controls the energy management device 2 in an integrated manner. Details of functions realized by the CPU 20 will be described later.
  • the communication interface 21 includes a NIC (Network Interface Card controller) for wireless communication or wired communication with the power measuring device 4 and the devices 7-1, 7-2,..., And wireless communication or wired communication with the operation terminal 3 and EV-PCS 5.
  • NIC Network Interface Card controller
  • ROM 22 stores a plurality of firmware and data used when executing these firmware.
  • the RAM 23 is used as a work area for the CPU 20.
  • the secondary storage device 24 includes an EEPROM (Electrically-Erasable-Programmable-Read-Only Memory), a readable / writable nonvolatile semiconductor memory such as a flash memory, a hard disk drive, and the like. As shown in FIG. 5, the secondary storage device 24 stores a measurement history DB 240 and a priority level table 241. In addition to this, the secondary storage device 24 is used when a program for monitoring the power consumed in the home, a program for controlling the operation of each device 7, and the execution of these programs. Store the data.
  • EEPROM Electrically-Erasable-Programmable-Read-Only Memory
  • a readable / writable nonvolatile semiconductor memory such as a flash memory, a hard disk drive, and the like.
  • the secondary storage device 24 stores a measurement history DB 240 and a priority level table 241.
  • the secondary storage device 24 is used when a program for monitoring the power consumed in the home, a program for controlling the operation of each device 7,
  • the measurement history DB (measurement history database) 240 is measurement data (that is, first measurement data) sent from each of the power measurement device 4 (first measurement device) and the EV-PCS 5 (second measurement device). And the second measurement data) are stored in the database.
  • the priority level table 241 will be described later.
  • the energy management apparatus 2 includes a user interface unit 200, a measurement data acquisition unit 201, a time difference calculation unit 202, a power information generation unit 203, and a display instruction unit 204, as shown in FIG. Prepare.
  • a user interface unit 200 receives measurement data from the main storage device 2 and a measurement data from the main storage device 2 and a measurement data from the main storage device 2 .
  • a time difference calculation unit 202 calculates the time difference calculation unit 202
  • a power information generation unit 203 includes a display instruction unit 204, as shown in FIG. Prepare.
  • Each of these functional units is realized by the CPU 20 executing one or a plurality of programs stored in the secondary storage device 24.
  • the user interface unit 200 performs user interface processing via the operation terminal 3. That is, the user interface unit 200 receives an operation from the user via the operation terminal 3. In addition, the user interface unit 200 transmits information to be presented to the user to the operation terminal 3.
  • the measurement data acquisition unit 201 performs processing for acquiring the above-described measurement data from the power measurement device 4 and the EV-PCS 5. Specifically, the measurement data acquisition unit 201 requests the power measurement device 4 and the EV-PCS 5 to transmit measurement data at regular time intervals (in this embodiment, every 30 seconds). The measurement data acquisition unit 201 acquires measurement data (first measurement data) sent from the power measurement device 4 in response to such a request, and measures the received time of the acquired first measurement data as a measurement time. And then stored in the measurement history DB 240. Similarly, the measurement data acquisition unit 201 acquires the second measurement data sent from the EV-PCS 5 in response to the above request, and uses the received second measurement data as the measurement time. After the assignment, it is stored in the measurement history DB 240.
  • the time difference calculation unit 202 changes the total power of the first power line group (power of the power line D2) based on the history of the first measurement data and the history of the second measurement data stored in the measurement history DB 240. And the time difference (time shift) between the time when the total power of the second power line group (the total power of the power lines D1, D3, and D4) changes is calculated. Hereinafter, this time difference will be described.
  • the power measurement interval in other words, the power measurement sampling interval is the same (30 seconds) in this embodiment.
  • the power measuring device 4 and the EV-PCS 5 are physically separated, and it is difficult for both of them to measure accurately and constantly in synchronization.
  • the power measuring device 4 and the EV-PCS 5 measure power at the timing shown in FIG. 7, the transition of the power on the power lines D1 to D3 is as shown in FIG. Further, the transition of the total power of the second power line group is as shown in FIG. In the examples shown in FIGS. 8 and 9, it is assumed that the storage battery 11 is not charged and discharged.
  • the power value of the power line D1 at the time of power sale is handled as a negative number.
  • the energy management device 2 acquires measurement data every 30 seconds from each of the power measurement device 4 and the EV-PCS 5, and based on the acquired time (measurement data reception time), the power line D1
  • the transition is as shown in FIG. 10
  • the transition of the total power of the second power line group is as shown in FIG.
  • the total power of the first power line group (power of the power line D2) and the total power of the second power line group are theoretically at the same time when neither the storage battery 11 is charged nor discharged, Should be the same value.
  • the power measurement device 4 and the EV-PCS 5 measure power asynchronously, if no measures are taken, the transition of the total power of the first power line group displayed on the energy management device 2 and the As shown in FIG. 11, there is a time lag (time difference) in power change between the two power line groups and the transition of the total power. As described above, if the power information is displayed with a time difference, the user may feel uncomfortable or uneasy.
  • the time difference calculation unit 202 calculates the above time difference as follows. First, the time difference calculation unit 202 reads from the measurement history DB 240 the first measurement data history and the second measurement data history for a predetermined period to be displayed.
  • the time difference calculation unit 202 detects a time (first time) when the total power (first power) of the first power line group changes. More specifically, first, the time difference calculation unit 202 includes each power value (that is, the power value of the power line D2) included in the plurality of read first measurement data and the measurement given to each first measurement data. The first time is detected based on the time. Specifically, when the time difference calculation unit 202 detects a change such that the amount of change (absolute value) in the power value per predetermined time (for example, 30 seconds) exceeds a predetermined threshold (for example, 300 W). The measurement time of the first measurement data corresponding to the change is acquired as the first time. Note that the threshold value may be dynamically changed according to the size of the load in the house.
  • the time difference calculation unit 202 detects a time (second time) when the total power (second power) of the second power line group changes. More specifically, first, the time difference calculation unit 202 calculates the total power value (that is, the total power value of the power lines D1, D3, and D4) for each of the read second measurement data. At that time, the time difference calculation unit 202 treats the power value of the power line D1 as a negative number when selling power, and treats the power value of the power line D4 as a negative number when charging the storage battery 11.
  • the time difference calculation unit 202 uses the same method as the detection of the first time described above based on each calculated total power value and the measurement time assigned to each second measurement data to generate the second time Is detected.
  • the time difference calculation unit 202 calculates a time difference between the detected first time and second time. For example, the transition of the total power of the first power line group and the transition of the total power of the second power line group based on the measurement data acquired from the power measuring device 4 and the EV-PCS 5 are shown as in FIG.
  • the time difference calculation unit 202 acquires 12:13:30 as the first time, and acquires 12:13:00 as the second time (see FIG. 12). As a result, the time difference calculation unit 202 calculates “+30 seconds”, which is the difference time between the first time and the second time, as the time difference.
  • the power information generation unit 203 displays power information indicating the transition of the power of each power line and the power of a plurality of power lines as appropriate (for example, the total power of the second power line group described above) on the same time axis. Generate. At that time, the power information generation unit 203 corrects the measurement time of each measurement data corresponding to one of the power measurement device 4 and the EV-PCS 5 with the calculated time difference. Note that the power information generation unit 203 performs correction when the calculated time difference is within a predetermined time (for example, within 60 seconds).
  • the time difference calculation unit 202 calculates the measurement time (reception time) of all measurement data corresponding to one of the power measurement device 4 and the EV-PCS 5 among the measurement data to be displayed. Correction is performed based on the time difference.
  • the power information generation unit 203 refers to the priority level table 241 stored in the secondary storage device 24 as to which measurement time of the measurement data of the power measurement device 4 and EV-PCS 5 is the correction target. To decide.
  • the priority level table 241 is a data table in which priority levels of devices that measure power (in this embodiment, the power measuring device 4 and the EV-PCS 5) are defined.
  • each record of the priority level table 241 includes two items of a device ID and a priority level as shown in FIG.
  • the priority level of the power measurement device 4 is “1”
  • the priority level of the EV-PCS 5 is “2”
  • the EV-PCS 5 has a higher priority than the power measurement device 4. It is shown.
  • the priority level is determined based on the measurement accuracy in the specifications of each device and the sampling interval of power measurement. That is, a higher priority level (a larger numerical value) is given to a device with higher measurement accuracy or a device with a shorter sampling interval.
  • the determination of the priority level and the setting of data in the priority level table 241 are performed by a person in charge of construction when the energy management system 1 is installed, for example.
  • the power information generation unit 203 determines that the time (first time) when the first power (power of the power line D2) changes is the second power (power line).
  • the measurement time (reception time) of the first measurement data is corrected so as to coincide with the time (second time) when the total power of D1, D3, and D4 changes.
  • the power information generation unit 203 subtracts the calculated time difference (30 seconds) from the measurement times of all the first measurement data to be displayed. In this way, the measurement times of all measurement data corresponding to the power measurement device 4 to be displayed are corrected.
  • the display instruction unit 204 (information output unit) instructs the operation terminal 3 to display the power information generated by the power information generation unit 203. As a result, an example of the power information displayed on the operation terminal 3 is shown in FIG.
  • FIG. 15 is a flowchart showing a procedure of power information display processing executed by the energy management device 2. This power information display process is repeatedly executed at regular time intervals (in this embodiment, every 30 seconds).
  • the measurement data acquisition unit 201 acquires measurement data from the power measurement device 4 (step S101). Further, the measurement data acquisition unit 201 acquires measurement data from the EV-PCS 5 (step S102). The measurement data acquisition unit 201 stores the acquired measurement data in the measurement history DB 240 after giving the received time as the measurement time.
  • the time difference calculation unit 202 calculates the time difference described above (step S103).
  • the power information generation unit 203 corrects either the measurement time of the measurement data corresponding to the power measurement device 4 or the measurement time of the measurement data corresponding to the EV-PCS 5 based on the calculated time difference (step S104). .
  • the power information generation unit 203 generates power information indicating the power transition corresponding to the power measuring device 4 and the power transition corresponding to the EV-PCS 5 on the same time axis (step S105).
  • the display instruction unit 204 instructs the operation terminal 3 to display the generated power information (step S106).
  • the energy management device 2 includes the power transition corresponding to the power measurement device 4 (based on the measurement of the power measurement device 4), the EV-PCS 5 Is displayed on the operation terminal 3, the time difference between the times of the power changes is calculated. Then, the energy management device 2 calculates the time difference between the measurement time (reception time) of the measurement data corresponding to the power measurement device 4 and the measurement time (reception time) of the measurement data corresponding to EV-PCS5. Correct based on. Thereby, the inconsistency at the time of displaying the transition of the electric power measured with the different apparatus on the same time axis can be reduced. Therefore, it is possible to present a variety of information related to the power usage state to the user without giving the user a sense of incongruity or anxiety, thereby improving convenience.
  • the power measurement device 4 measures only the power of the power line D2, but may further measure the power of another power line. In this case, the power measurement device 4 generates measurement data that stores the measured power values of the plurality of power lines, and transmits the measurement data to the energy management device 2.
  • the power is measured by a device other than the power measuring device 4 and the EV-PCS 5, and measurement data storing the measured power value is transmitted to the energy management device 2.
  • Other devices in this case include, for example, the PV-PCS 6, a stationary storage battery system, a smart meter, and the like, both of which are not shown, and any of them can be the first measuring device or the second measuring device.
  • each other device is set with reference to the measurement time (reception time) of measurement data corresponding to the measurement of the device with the highest priority set in the priority level table 241. What is necessary is just to correct the measurement time (reception time) of the measurement data corresponding to.
  • sampling intervals of the power measuring device 4 and the EV-PCS 5 need not be the same.
  • the energy management device 2 calculates the above-described time difference by handling the reception time of measurement data as the measurement time corresponding to the measurement data, and generates power information.
  • the time difference may be calculated and the power information may be generated by handling the time information as the measurement time.
  • the energy management device 2 may switch whether or not to display the power information with the measurement time corrected in accordance with a user operation. Alternatively, the energy management device 2 may allow the above switching in the maintenance mode, and prohibit the switching in a case other than the maintenance mode.
  • the operation of the device 7 or the like may be controlled using the measurement data with the measurement time corrected.
  • the operation terminal 3 has played a role of an interface between the energy management device 2 and the user.
  • the energy management device 2 has an input device for accepting an operation from the user and a user.
  • An output device for presenting information may be included.
  • FIG. 16 shows the overall configuration of the energy management system 1 in this case.
  • a router 13 is a broadband router, and is connected to the energy management apparatus 2 via a LAN cable so as to be communicable.
  • the communication interface 21 of the energy management apparatus 2 further includes a NIC for wide area communication, and is connected to the wide area network N via the router 13 to perform data communication with the server 14.
  • the server 14 is a so-called cloud server for HEMS that is managed by a vendor or the like of the energy management device 2.
  • the energy management device 2 periodically transmits the first measurement data and the second measurement data respectively acquired from the power measurement device 4 and the EV-PCS 5 to the server 14.
  • the server 14 has a function equivalent to that of the time difference calculation unit 202 and / or the power information generation unit 203. Based on the first measurement data and the second measurement data sent from the energy management device 2, the server 14 performs the above-described process for calculating the time difference and the process for generating the power information, and the process result is energy managed. You may make it transmit to the apparatus 2.
  • the case where the energy management device 2 is installed in the house H has been described.
  • a device having a function equivalent to that of the energy management device 2 may be installed outside the house H.
  • FIG. 17 shows the overall configuration of the energy management system 1 in this case.
  • the energy management apparatus 2 is not installed in the house H.
  • the router 13 and the server 14 cooperate to play the role of the energy management device 2.
  • one or more programs stored in the secondary storage device 24 are executed by the CPU 20, thereby realizing each functional unit (see FIG. 6) of the energy management device 2.
  • all or a part of the functional units of the energy management device 2 may be realized by dedicated hardware.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the present invention is not limited to a house, and can be employed in an energy management system installed in, for example, an office building or a factory.
  • the program executed by the energy management device 2 is a CD-ROM (Compact Disc Read Only Memory), DVD (Digital Versatile Disc), MO (Magneto-Optical Disk), USB (Universal Serial Bus). It is also possible to store and distribute in a computer-readable recording medium such as a memory or a memory card. And it is also possible to make the said computer function as the energy management apparatus 2 in the said embodiment by installing this program in specific or a general purpose computer.
  • the above program may be stored in a disk device or the like included in a server device on a communication network such as the Internet, and may be downloaded onto a computer, for example, superimposed on a carrier wave. Or you may achieve the above-mentioned process by starting and executing, transferring a program via a communication network. Furthermore, the above-described processing may be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via a communication network.
  • the present invention can be suitably employed in a system that manages power used in a building.
  • 1 energy management system 1 energy management system, 2 energy management device, 3 operation terminal, 4 power measurement device, 5 EV-PCS, 6 PV-PCS, 7 (7-1, 7-2, ...) equipment, 8 commercial power supply, 9 power distribution Panel, 10 EV, 11 storage battery, 12 PV panel, 13 router, 14 server, 20 CPU, 21 communication interface, 22 ROM, 23 RAM, 24 secondary storage device, 25 bus, 200 user interface unit, 201 measurement data acquisition unit 202, time difference calculation unit, 203 power information generation unit, 204 display instruction unit, 240 measurement history DB, 241 priority level table, D1-D6 power line

Abstract

エネルギー管理装置(2)は、電力計測装置(4)から、電力線(D2)の計測された電力を含む第1の計測データを取得し、EV-PCS(5)から、複数の電力線(D1,D3,D4)の計測された各電力を含む第2の計測データを取得する。エネルギー管理装置(2)は、予め定めた期間分の第1の計測データから電力線(D2)の電力である第1の電力が変化する第1の時刻を検出し、予め定めた期間分の第2の計測データから、複数の電力線(D1,D3,D4)の総電力である第2の電力が変化する第2の時刻を検出し、第1の時刻と第2の時刻との時間差を算出する。そして、エネルギー管理装置(2)は、予め定めた期間分の第1の計測データの各計測時刻と、予め定めた期間分の第2の計測データの各計測時刻の何れか一方を、算出した時間差に基づいて補正した電力情報を操作端末(3)に出力する。

Description

エネルギー管理装置、電力情報表示方法及びプログラム
 本発明は、エネルギー管理装置、電力情報表示方法及びプログラムに関する。
 特許文献1に開示されるように、1つの電力計測装置で複数の電力線の電力値を計測する技術が知られている。
特開2013-210288号公報
 ところで、近年、一般家庭において、いわゆるHEMS(Home Energy Management System)と称されるエネルギー管理システムの導入が進展している。また、HEMSと電気自動車(EV)用のパワーコンディショニングシステム(EV-PCS)等の他のシステムを連係させて、家庭内のエネルギー管理を行う技術も知られている。
 例えば、EV-PCSにおいては、EVに搭載されている蓄電池の充電及び放電の制御を行うため、買電又は売電の電力、発電電力、放電又は充電の電力を計測する必要がある。一方、HEMSにおいても電力計測装置により、宅内において消費される電力等を計測する。
 電力計測装置とEV-PCSにおいて、電力計測の間隔、換言すると、電力計測のサンプリング間隔は必ずしも同一とはいえず、仮に同一であったとしても、正確に同期させて計測させるようにするのは困難である。
 つまり、電力計測装置とEV-PCSとの間に電力を計測するタイミングのずれ、即ち、電力を計測する時刻のずれが生じてしまい、このことがHEMSにおいて、これらの装置による電力の計測結果の活用を妨げる要因の1つになっている。
 本発明は、上記課題を解決するためになされたものであり、複数の計測装置による電力の計測結果を有効に活用することが可能となるエネルギー管理装置等を提供することを目的とする。
 上記目的を達成するため、本発明に係るエネルギー管理装置は、
 第1の計測装置から、第1の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第1の計測データを取得し、第2の計測装置から、第2の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第2の計測データを取得する計測データ取得手段と、
 予め定めた期間分の前記第1の計測データから、前記第1の電力線グループの総電力である第1の電力が変化する第1の時刻を検出し、前記予め定めた期間分の前記第2の計測データから、前記第2の電力線グループの総電力である第2の電力が変化する第2の時刻を検出し、前記第1の時刻と前記第2の時刻との時間差を算出する時間差算出手段と、
 前記予め定めた期間分の第1の計測データの各計測時刻と、前記予め定めた期間分の第2の計測データの各計測時刻の何れか一方を前記時間差に基づいて補正した電力情報を表示装置に出力する情報出力手段とを備える。
 本発明によれば、複数の計測装置による電力の計測結果を有効に活用することが可能となる。
本発明の実施形態に係るエネルギー管理システムの全体構成を示す図である。 電力計測装置が生成する計測データについて説明するための図である。 EV-PCSが生成する計測データについて説明するための図である。 エネルギー管理装置のハードウェア構成を示すブロック図である。 エネルギー管理装置が備える二次記憶装置を説明するための図である。 エネルギー管理装置の機能構成を示す図である。 時間差について説明するための図(その1)である。 時間差について説明するための図(その2)である。 時間差について説明するための図(その3)である。 時間差について説明するための図(その4)である。 時間差について説明するための図(その5)である。 時間差の算出手法について説明するための図である。 優先レベルテーブルの一例を示す図である。 時間差を補正した電力情報の表示例を示す図である。 電力情報表示処理の手順を示すフローチャートである。 他の実施形態に係るエネルギー管理システムの全体構成を示す図である。 他の実施形態に係るエネルギー管理システムの全体構成を示す図である。
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 図1は、本発明の実施形態に係るエネルギー管理システム1の全体構成を示す図である。このエネルギー管理システム1は、一般家庭で使用される電力の管理を行う、いわゆる、HEMS(Home Energy Management System)と呼ばれるシステムである。エネルギー管理システム1は、エネルギー管理装置2と、操作端末3と、電力計測装置4と、EV-PCS5と、PV-PCS6とを備える。
 エネルギー管理装置2は、家屋H内の適切な場所に設置され、家屋H、即ち、需要地において消費される電力の監視を行い、電力の消費状況を操作端末3を介して表示する。また、エネルギー管理装置2は、複数の機器7(機器7-1,7-2,…)の動作制御や動作状態の監視などを行う。エネルギー管理装置2の詳細については後述する。
 操作端末3(表示装置)は、押しボタン、タッチパネル、タッチパッド等の入力デバイスと、有機ELディスプレイ、液晶ディスプレイ等の出力デバイスと、通信インタフェースとを備えた、例えば、スマートフォンやタブレット端末等の携帯機器である。操作端末3は、エネルギー管理装置2と、Wi-Fi(登録商標)、Wi-SUN(登録商標)や有線LAN等の周知の通信規格に則った通信を行う。操作端末3は、ユーザからの操作を受け付け、受け付けた操作内容を示す情報をエネルギー管理装置2に送信する。また、操作端末3は、エネルギー管理装置2から送信された、ユーザに提示するための情報を受信し、受信した情報を表示する。このように、操作端末3は、ユーザとのインタフェース(ユーザインタフェース)としての役割を担う。
 電力計測装置4は、一定時間毎に(本実施形態では、30秒毎に)、家屋Hの電力線D2(第1の電力線グループ)を送電される電力の値を計測する。電力線D2は、EV-PCS5と分電盤9との間に配設されている。電力計測装置4は、電力線D2に接続されたCT(Current Transformer)1と通信線を介して接続される。CT1は、交流電流を計測するセンサである。電力計測装置4は、CT1の計測結果に基づいて電力線D2の電力値を計測する。
 また、電力計測装置4は、無線通信インタフェースを備え、家屋H内に構築された無線ネットワーク(図示せず)を介して、エネルギー管理装置2と通信可能に接続する。この無線ネットワークは、例えば、エコーネットライト(ECHONET Lite)に準じたネットワークである。なお、電力計測装置4は、外付けの通信アダプタ(図示せず)を介して、この無線ネットワークに接続される仕様であってもよい。
 電力計測装置4は、エネルギー管理装置2からの要求に応答して、計測した電力線D2の電力値を格納した計測データを生成し、エネルギー管理装置2に送信する。具体的には、この計測データには、図2に示すように、電力計測装置4の機器IDと、電力データとが格納される。
 機器IDは、エネルギー管理装置2に接続する機器等(EV-PCS5、PV-PCS6、機器7-1,7-2,…)を識別するためのID(identification)である。本実施形態では、電力計測装置4の機器IDは、“10”である。
 電力データには、電力線D2の電力線IDと、計測された電力線D2の電力値とが格納される。電力線IDは、電力線を識別するためのIDであり、本実施形態では、電力線D2の電力線IDは、“02”である。
 図1に戻り、EV-PCS5は、EV(電気自動車)10用のパワーコンディショニングシステムである。EV-PCS5は、EV10に搭載されている蓄電池11の充電及び放電の制御を行う。EV-PCS5は、蓄電池11の充電時には、商用電源8やPV-PCS6からの電力を電力線D4を介して蓄電池11に供給する。また、EV-PCS5は、蓄電池11の放電時には、蓄電池11からの電力を電力線D4,D2を介して分電盤9に供給する。
 EV-PCS5は、充電及び放電の制御を行うため、一定時間毎に(本実施形態では、30秒毎に)、電力線D1,D3,D4(第2の電力線グループ)のそれぞれを送電される電力の値を計測する。電力線D1は商用電源8とEV-PCS5との間に配設され、電力線D3は、PV-PCS6とEV-PCS5との間に配設され、電力線D4は、EV-PCS5とEV10との間に配設されている。
 EV-PCS5は、電力線D1,D3,D4にそれぞれ接続されたCT2~4の各々と通信線を介して接続される。EV-PCS5は、CT2の計測結果に基づいて電力線D1の電力値を計測する。同様に、EV-PCS5は、CT3,4の計測結果に基づいて電力線D3,D4の電力値を計測する。
 また、EV-PCS5は、専用の通信線を介して、エネルギー管理装置2と通信可能に接続する。EV-PCS5は、エネルギー管理装置2からの要求に応答して、計測した電力線D1,D3,D4の電力値を格納した計測データを生成し、エネルギー管理装置2に送信する。なお、EV-PCS5は、家屋H内に構築された上述の無線ネットワークを介して、エネルギー管理装置2と通信してもよい。
 EV-PCS5が生成する計測データには、図3に示すように、EV-PCS5の機器IDと、電力データ1~3とが格納される。本実施形態では、EV-PCS5の機器IDは、“11”である。電力データ1~3には、電力線D1,D3,D4の電力線ID(本実施形態では、“01”,“03”,“04”)と計測された電力線D1,D3,D4の電力値とが格納される。
 図1に戻り、PV-PCS6は、PV(太陽光発電)用のパワーコンディショニングシステムである。PV-PCS6は、PVパネル12が発電した電気を直流電力から交流電力に変換し、電力線D3を介してEV-PCS5に供給する。PV-PCS6から供給された電力は、EV-PCS5によって、分電盤9に供給されたり、蓄電池11の充電に使用される。あるいは、PV-PCS6から供給された電力は、EV-PCS5によって商用電源8に供給されることもある(いわゆる売電)。
 例えば、電力計測装置4は、本発明の第1の計測装置に相当し、EV-PCS5は、本発明の第2の計測装置に相当する。
 機器7(機器7-1,7-2,…)は、例えば、エアコン、照明器、床暖房システム、冷蔵庫、IH(Induction Heating)調理器、テレビ、給湯機等の電気機器である。機器7-1,7-2,…は、家屋H(敷地も含む)内に設置され、電力線D2から分電盤9により分岐された電力線D5,D6,…にそれぞれ接続されている。各機器7は、上述の図示しない無線ネットワークを介して、エネルギー管理装置2と通信可能に接続する。なお、各機器7は、外付けの通信アダプタ(図示せず)を介して、この無線ネットワークに接続される仕様であってもよい。
 エネルギー管理装置2は、図4に示すように、CPU(Central Processing Unit)20と、通信インタフェース21と、ROM(Read Only Memory)22と、RAM(Random Access Memory)23と、二次記憶装置24とを備える。これらの構成部は、バス25を介して相互に接続される。CPU20は、このエネルギー管理装置2を統括的に制御する。CPU20によって実現される機能の詳細については後述する。
 通信インタフェース21は、電力計測装置4、機器7-1,7-2,…と無線通信又は有線通信するためのNIC(Network Interface Card controller)と、操作端末3、EV-PCS5と無線通信又は有線通信するためのNICを備える。
 ROM22は、複数のファームウェアやこれらのファームウェアの実行時に使用されるデータ等を記憶する。RAM23は、CPU20の作業領域として使用される。
 二次記憶装置24は、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリやハードディスクドライブ等から構成される。二次記憶装置24は、図5に示すように、計測履歴DB240と優先レベルテーブル241を記憶する。なお、この他にも、二次記憶装置24は、この家庭で消費される電力を監視するためのプログラムや各機器7の動作を制御するためのプログラム、そして、これらのプログラムの実行時に使用されるデータ等を記憶する。
 計測履歴DB(計測履歴データベース)240は、電力計測装置4(第1の計測装置)及びEV-PCS5(第2の計測装置)のそれぞれから送られてきた計測データ(即ち、第1の計測データ及び第2の計測データ)の履歴が格納されるデータベースである。優先レベルテーブル241については後述する。
 続いて、エネルギー管理装置2の機能について説明する。エネルギー管理装置2は、機能的には、図6に示すように、ユーザインタフェース部200と、計測データ取得部201と、時間差算出部202と、電力情報生成部203と、表示指示部204とを備える。これらの各機能部は、CPU20が二次記憶装置24に記憶されている1又は複数のプログラムを実行することで実現される。
 ユーザインタフェース部200は、操作端末3を介したユーザインタフェース処理を行う。即ち、ユーザインタフェース部200は、ユーザからの操作を操作端末3を介して受け付ける。また、ユーザインタフェース部200は、ユーザに提示するための情報を操作端末3に送信する。
 計測データ取得部201は、電力計測装置4及びEV-PCS5から、上述した計測データを取得する処理を行う。具体的には、計測データ取得部201は、一定時間毎に(本実施形態では、30秒毎に)、電力計測装置4及びEV-PCS5のそれぞれに対し、計測データの送信を要求する。計測データ取得部201は、かかる要求に応答して電力計測装置4から送られてきた計測データ(第1の計測データ)を取得し、取得した第1の計測データを、受信した時刻を計測時刻として付与した後、計測履歴DB240に格納する。同様に、計測データ取得部201は、上記の要求に応答してEV-PCS5から送られてきた第2の計測データを取得し、取得した第2の計測データを、受信した時刻を計測時刻として付与した後、計測履歴DB240に格納する。
 時間差算出部202は、計測履歴DB240に格納されている、第1の計測データの履歴と第2の計測データの履歴に基づいて、第1の電力線グループの総電力(電力線D2の電力)が変化する時刻と、第2の電力線グループの総電力(電力線D1,D3,D4の合計電力)が変化する時刻との時間差(時刻のずれ)を算出する。以下、この時間差について説明する。
 電力計測装置4とEV-PCS5において、電力計測の間隔、換言すると、電力計測のサンプリング間隔は、本実施形態においては同一(30秒)である。しかし、電力計測装置4とEV-PCS5とは、物理的に分離されており、双方が正確に常時同期して計測を行うようにするのは困難である。例えば、電力計測装置4とEV-PCS5とが、図7に示すようなタイミングで電力を計測すると、電力線D1~D3の電力の推移は、図8に示すようになる。また、第2の電力線グループの総電力の推移は、図9に示すようになる。なお、図8及び図9に示す例では、蓄電池11の充電及び放電が行われていないものとする。また、図9における第2の電力線グループの総電力において、売電時での電力線D1の電力値は、負数として取り扱われているものとする。
 上記のようなケースにおいて、エネルギー管理装置2が、電力計測装置4及びEV-PCS5のそれぞれから30秒毎に計測データを取得し、取得した時刻(計測データの受信時刻)に基づいて、電力線D1~D3の電力の推移を同一時間軸で表示すると、図10に示すようになり、また、第2の電力線グループの総電力の推移は、図11に示すようになる。ここで、第1の電力線グループの総電力(電力線D2の電力)と、第2の電力線グループの総電力は、蓄電池11の充電及び放電の何れも行われていない場合、同時刻において理論上、同一の値となるはずである。
 しかしながら、電力計測装置4とEV-PCS5とが非同期で電力の計測を行うため、何ら対策を講じない場合、エネルギー管理装置2で表示される、第1の電力線グループの総電力の推移と、第2の電力線グループの総電力の推移との間には、図11に示すように、電力変化の時刻のずれ(時間差)が生じてしまう。このように、時間差が生じたまま電力の情報を表示してしまうと、ユーザに違和感や不安感を抱かせる虞がある。
 時間差算出部202は、上記の時間差を以下のようにして算出する。先ず、時間差算出部202は、計測履歴DB240から、表示の対象となる予め定めた期間分の第1の計測データの履歴と第2の計測データの履歴を読み出す。
 そして、時間差算出部202は、第1の電力線グループの総電力(第1の電力)が変化する時刻(第1の時刻)を検出する。より詳細には、先ず、時間差算出部202は、読み出した複数の第1の計測データに含まれる各電力値(即ち、電力線D2の電力値)と、各第1の計測データに付与された計測時刻に基づいて、第1の時刻を検出する。具体的には、時間差算出部202は、予め定めた時間(例えば、30秒)当たりの電力値の変化量(絶対値)が予め定めた閾値(例えば、300W)を超えるような変化を検出すると、当該変化に対応する第1の計測データの計測時刻を第1の時刻として取得する。なお、閾値は、宅内の負荷の大きさよって動的に変更されるようにしてもよい。
 また、時間差算出部202は、第2の電力線グループの総電力(第2の電力)が変化する時刻(第2の時刻)を検出する。より詳細には、先ず、時間差算出部202は、読み出した複数の第2の計測データの各々について、総電力値(即ち、電力線D1,D3,D4の電力値の合計)を算出する。その際、時間差算出部202は、売電時においては、電力線D1の電力値を負数とし、また、蓄電池11の充電時においては、電力線D4の電力値を負数として取り扱う。
 そして、時間差算出部202は、算出した各総電力値と、各第2の計測データに付与された計測時刻に基づいて、上述した第1の時刻の検出と同様の手法により、第2の時刻を検出する。
 時間差算出部202は、それぞれ検出した第1の時刻及び第2の時刻との時間差を算出する。例えば、電力計測装置4とEV-PCS5から取得された計測データに基づいた第1の電力線グループの総電力の推移と、第2の電力線グループの総電力の推移が図11のように示される場合、時間差算出部202は、第1の時刻として、12時13分30秒を取得し、第2の時刻として、12時13分00秒を取得する(図12参照)。その結果、時間差算出部202は、第1の時刻と第2の時刻との差分時間である「+30秒」を時間差として算出する。
 電力情報生成部203は、各電力線の電力や、複数の電力線の電力を適宜統合した電力(例えば、上述した第2の電力線グループの総電力)の推移を同一の時間軸で示した電力情報を生成する。その際、電力情報生成部203は、電力計測装置4とEV-PCS5の何れか一方に対応する各計測データの計測時刻を算出された時間差で補正する。なお、電力情報生成部203は、算出された時間差が予め定めた時間以内(例えば、60秒以内)である場合にかかる補正を行う。
 より詳細には、表示対象となる計測デ-タの内、電力計測装置4とEV-PCS5の何れか一方に対応する全ての計測データの計測時刻(受信時刻)を、時間差算出部202により算出された時間差に基づいて補正する。電力情報生成部203は、電力計測装置4とEV-PCS5の何れの計測データの計測時刻を上記の補正対象にするかを、二次記憶装置24に記憶されている優先レベルテーブル241を参照することで決定する。
 優先レベルテーブル241は、電力を計測する装置(本実施形態では、電力計測装置4とEV-PCS5)の優先レベルが定義されたデータテーブルである。本実施形態では、優先レベルテーブル241の各レコードは、図13に示すように、機器IDと優先レベルの2つの項目を含んでいる。本実施形態では、電力計測装置4の優先レベルが“1”、EV-PCS5の優先レベルが“2”となっており、EV-PCS5の方が、電力計測装置4より優先度が高いことが示されている。
 優先レベルは、各装置の仕様上の計測精度や電力計測のサンプリング間隔に基づいて決定される。つまり、より計測精度の高い装置やサンプリング間隔がより短い装置に対して、より高い優先レベル(より大きい数値)が付与される。優先レベルの決定及び優先レベルテーブル241へのデータの設定は、例えば、エネルギー管理システム1の設置の際、工事担当者によって行われる。
 図13に示すように優先レベルが設定されている場合、電力情報生成部203は、第1の電力(電力線D2の電力)が変化する時刻(第1の時刻)が、第2の電力(電力線D1,D3,D4の総電力)が変化する時刻(第2の時刻)と一致するように、第1の計測データの計測時刻(受信時刻)を補正する。具体的には、電力情報生成部203は、表示対象となる全ての第1の計測データの計測時刻から、算出された時間差(30秒)を差し引く。このようにして、表示対象となる電力計測装置4に対応する全ての計測データの計測時刻を補正する。
 表示指示部204(情報出力手段)は、電力情報生成部203により生成された電力情報の表示を操作端末3に指示する。その結果、操作端末3に表示される電力情報の例を図14に示す。
 図15は、エネルギー管理装置2によって実行される電力情報表示処理の手順を示すフローチャートである。この電力情報表示処理は、一定時間毎(本実施形態では、30秒毎)に繰り返し実行される。
 計測データ取得部201は、電力計測装置4から計測データを取得する(ステップS101)。また、計測データ取得部201は、EV-PCS5から計測データを取得する(ステップS102)。計測データ取得部201は、取得したそれぞれの計測データを、受信した時刻を計測時刻として付与した後、計測履歴DB240に格納する。
 時間差算出部202は、上述した時間差を算出する(ステップS103)。
 電力情報生成部203は、電力計測装置4に対応する計測データの計測時刻と、EV-PCS5に対応する計測データの計測時刻の何れか一方を算出された時間差に基づいて補正する(ステップS104)。
 そして、電力情報生成部203は、電力計測装置4に対応する電力の推移とEV-PCS5に対応する電力の推移を同一の時間軸で示した電力情報を生成する(ステップS105)。
 表示指示部204は、生成された電力情報の表示を操作端末3に指示する(ステップS106)。
 以上説明したように、本発明の実施形態に係るエネルギー管理システム1では、エネルギー管理装置2は、電力計測装置4に対応する(電力計測装置4の計測に基づく)電力の推移と、EV-PCS5に対応する電力の推移を操作端末3に表示する際、双方の電力変化の時刻の時間差を算出する。そして、エネルギー管理装置2は、電力計測装置4に対応する計測データの計測時刻(受信時刻)と、EV-PCS5に対応する計測データの計測時刻(受信時刻)の何れか一方を算出した時間差に基づいて補正する。これにより、異なる装置で計測された電力の推移を同一の時間軸上に表示する際の不整合性を低減させることができる。したがって、ユーザに違和感や不安感を与えることなく、電力の使用状況に関する多種多様な情報をユーザに提示することができ、利便性の向上が図れる。
 なお、本発明は、上記実施形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。
 例えば、上記実施形態では、電力計測装置4は、電力線D2の電力のみを計測していたが、さらに他の電力線の電力を計測してもよい。この場合、電力計測装置4は、計測した複数の電力線の電力値を格納した計測データを生成し、エネルギー管理装置2に送信する。
 また、電力を計測する装置として、電力計測装置4とEV-PCS5以外の他の装置によって電力が計測され、計測された電力値を格納した計測データがエネルギー管理装置2に送信されるようにしてもよい。この場合の他の装置には、例えば、PV-PCS6や、何れも図示しない定置型蓄電池システム、スマートメータ等が含まれ、何れもが第1の計測装置又は第2の計測装置になり得る。また、電力を計測する装置が3つ以上の場合、優先レベルテーブル241に設定された優先度が最も高い装置の計測に対応する計測データの計測時刻(受信時刻)を基準として、他の各装置に対応する計測データの計測時刻(受信時刻)を補正すればよい。
 また、電力計測装置4とEV-PCS5のサンプリング間隔は同一である必要はない。
 上記実施形態では、エネルギー管理装置2は、計測データの受信時刻を当該計測データに対応する計測時刻として取り扱うことで上述の時間差を算出し、電力情報を生成した。しかし、電力を計測する装置からの計測データに時刻情報が含まれている場合には、かかる時刻情報を計測時刻として取り扱うことで時間差の算出及び電力情報の生成を行ってもよい。
 また、エネルギー管理装置2は、ユーザの操作に応じて、計測時刻を補正した電力情報の表示を行うか否かを切り替えるようにしてもよい。あるいは、エネルギー管理装置2は、メンテナンスモードの場合に、上記の切り替えを可能として、メンテナンスモード以外の場合では、上記の切り替えを禁止してもよい。
 また、計測時刻を補正した電力情報の表示のみならず、計測時刻を補正した計測データを用いて、機器7等の動作を制御してもよい。
 上記の実施形態では、操作端末3が、エネルギー管理装置2とユーザとの間のインタフェースの役割を担っていたが、エネルギー管理装置2が、ユーザからの操作を受け付けるための入力デバイスと、ユーザに情報を提示するための出力デバイスを含んで構成されるようにしてもよい。
 また、上記の実施形態においてエネルギー管理装置2が実行した一部の処理が、他の装置によって実行されるようにしてもよい。この場合のエネルギー管理システム1の全体構成を図16に示す。
 図16において、ルータ13は、ブロードバンドルータであり、エネルギー管理装置2とLANケーブルを介して通信可能に接続されている。エネルギー管理装置2の通信インタフェース21は、広域通信するためのNICをさらに備え、ルータ13を介して広域ネットワークNに接続し、サーバ14とデータ通信を行う。サーバ14は、エネルギー管理装置2の販売元等によって管理される、HEMS用のいわゆるクラウドサーバである。
 上記の場合において、エネルギー管理装置2は、電力計測装置4とEV-PCS5からそれぞれ取得した第1の計測データ及び第2の計測データを定期的にサーバ14に送信する。サーバ14は、時間差算出部202及び/又は電力情報生成部203と同等の機能を備える。サーバ14は、エネルギー管理装置2から送られてきた第1の計測データ及び第2の計測データに基づいて、上述した時間差を算出する処理や電力情報を生成する処理を行い、処理結果をエネルギー管理装置2に送信するようにしてもよい。
 また、上記の実施形態では、エネルギー管理装置2が家屋Hに設置された場合について説明したが、エネルギー管理装置2と同等の機能を有する装置を家屋Hの外に設置するようにしてもよい。
 この場合のエネルギー管理システム1の全体構成を図17に示す。図17に示すエネルギー管理システム1では、図16に示す構成と異なり、家屋Hには、エネルギー管理装置2が設置されていない。この場合、ルータ13とサーバ14とが協調してエネルギー管理装置2の役割を果たす。
 上記の実施形態では、CPU20によって二次記憶装置24に記憶されている1又は複数のプログラムが実行されることで、エネルギー管理装置2の各機能部(図6参照)が実現された。しかし、エネルギー管理装置2の機能部の全部又は一部が、専用のハードウェアで実現されるようにしてもよい。専用のハードウェアとは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらの組み合わせ等である。
 また、本発明は、家屋のみに限らず、例えば、オフィスビルや工場等において設置されるエネルギー管理システムに採用することが可能である。
 また、上記実施形態において、エネルギー管理装置2によって実行されるプログラムは、CD-ROM(Compact Disc Read Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disk)、USB(Universal Serial Bus)メモリ、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。そして、かかるプログラムを特定の又は汎用のコンピュータにインストールすることによって、当該コンピュータを上記実施形態におけるエネルギー管理装置2として機能させることも可能である。
 また、上記のプログラムをインターネット等の通信ネットワーク上のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。あるいは、通信ネットワークを介してプログラムを転送しながら起動実行することによって、上述の処理を達成してもよい。さらに、プログラムの全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによって、上述の処理を達成してもよい。
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを上記の記録媒体に格納して配布してもよく、あるいは、コンピュータにダウンロード等してもよい。
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能である。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、建物内で使用される電力の管理を行うシステム等に好適に採用され得る。
 1 エネルギー管理システム、2 エネルギー管理装置、3 操作端末、4 電力計測装置、5 EV-PCS、6 PV-PCS、7(7-1,7-2,…) 機器、8 商用電源、9 分電盤、10 EV、11 蓄電池、12 PVパネル、13 ルータ、14 サーバ、20 CPU、21 通信インタフェース、22 ROM、23 RAM、24 二次記憶装置、25 バス、200 ユーザインタフェース部、201 計測データ取得部、202 時間差算出部、203 電力情報生成部、204 表示指示部、240 計測履歴DB、241 優先レベルテーブル、D1~D6 電力線

Claims (8)

  1.  第1の計測装置から、第1の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第1の計測データを取得し、第2の計測装置から、第2の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第2の計測データを取得する計測データ取得手段と、
     予め定めた期間分の前記第1の計測データから、前記第1の電力線グループの総電力である第1の電力が変化する第1の時刻を検出し、前記予め定めた期間分の前記第2の計測データから、前記第2の電力線グループの総電力である第2の電力が変化する第2の時刻を検出し、前記第1の時刻と前記第2の時刻との時間差を算出する時間差算出手段と、
     前記予め定めた期間分の第1の計測データの各計測時刻と、前記予め定めた期間分の第2の計測データの各計測時刻の何れか一方を前記時間差に基づいて補正した電力情報を表示装置に出力する情報出力手段とを備える、エネルギー管理装置。
  2.  前記計測データ取得手段は、前記第1の計測データ及び前記第2の計測データを取得した際、それぞれ取得した時刻を計測時刻として前記第1の計測データ及び前記第2の計測データに付与する、請求項1に記載のエネルギー管理装置。
  3.  前記電力情報を生成する電力情報生成手段をさらに備える、請求項1又は2に記載のエネルギー管理装置。
  4.  前記電力情報生成手段は、前記時間差が予め定めた時間以内である場合に、前記予め定めた期間分の第1の計測データの各計測時刻と、前記予め定めた期間分の第2の計測データの各計測時刻の何れか一方を前記時間差に基づいて補正する、請求項3に記載のエネルギー管理装置。
  5.  前記電力情報生成手段は、前記第1の計測装置及び前記第2の計測装置に付与されている優先レベルに基づいて、前記予め定めた期間分の第1の計測データの各計測時刻と、前記予め定めた期間分の第2の計測データの各計測時刻の何れを補正するを決定する、請求項3又は4に記載のエネルギー管理装置。
  6.  前記時間差算出手段は、前記第1の電力が予め定めた閾値を超えて変化した場合に前記第1の時刻を検出し、前記第2の電力が前記閾値を超えて変化した場合に前記第2の時刻を検出する、請求項1から5の何れか1項に記載のエネルギー管理装置。
  7.  第1の計測装置から、第1の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第1の計測データを取得し、
     第2の計測装置から、第2の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第2の計測データを取得し、
     予め定めた期間分の前記第1の計測データから、前記第1の電力線グループの総電力である第1の電力が変化する第1の時刻を検出し、
     前記予め定めた期間分の前記第2の計測データから、前記第2の電力線グループの総電力である第2の電力が変化する第2の時刻を検出し、
     前記第1の時刻と前記第2の時刻との時間差を算出し、
     前記予め定めた期間分の第1の計測データの各計測時刻と、前記予め定めた期間分の第2の計測データの各計測時刻の何れか一方を前記時間差に基づいて補正した電力情報を表示装置に出力する、電力情報表示方法。
  8.  コンピュータを、
     第1の計測装置から、第1の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第1の計測データを取得し、第2の計測装置から、第2の電力線グループに含まれる1又は複数の電力線の計測された各電力を含む第2の計測データを取得する計測データ取得手段、
     予め定めた期間分の前記第1の計測データから、前記第1の電力線グループの総電力である第1の電力が変化する第1の時刻を検出し、前記予め定めた期間分の前記第2の計測データから、前記第2の電力線グループの総電力である第2の電力が変化する第2の時刻を検出し、前記第1の時刻と前記第2の時刻との時間差を算出する時間差算出手段、
     前記予め定めた期間分の第1の計測データの各計測時刻と、前記予め定めた期間分の第2の計測データの各計測時刻の何れか一方を前記時間差に基づいて補正した電力情報を表示装置に出力する情報出力手段として機能させる、プログラム。
PCT/JP2016/052337 2016-01-27 2016-01-27 エネルギー管理装置、電力情報表示方法及びプログラム WO2017130326A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017563457A JP6385599B2 (ja) 2016-01-27 2016-01-27 エネルギー管理装置、電力情報表示方法及びプログラム
PCT/JP2016/052337 WO2017130326A1 (ja) 2016-01-27 2016-01-27 エネルギー管理装置、電力情報表示方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/052337 WO2017130326A1 (ja) 2016-01-27 2016-01-27 エネルギー管理装置、電力情報表示方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2017130326A1 true WO2017130326A1 (ja) 2017-08-03

Family

ID=59397645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052337 WO2017130326A1 (ja) 2016-01-27 2016-01-27 エネルギー管理装置、電力情報表示方法及びプログラム

Country Status (2)

Country Link
JP (1) JP6385599B2 (ja)
WO (1) WO2017130326A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116205355A (zh) * 2023-02-22 2023-06-02 正泰电气股份有限公司 电力负荷的预测方法、装置以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019653A (ja) * 2010-07-09 2012-01-26 Sony Corp 電力コントロール装置および電力コントロール方法
JP2013106066A (ja) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd 光通信システム、光通信システムの制御方法および宅側装置
JP2014014223A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電力制御システム、サーバ装置、電力需要設備用の制御装置及び電力制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016931A1 (ja) * 2014-07-28 2016-02-04 三菱電機株式会社 エネルギー管理コントローラ、エネルギー管理方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019653A (ja) * 2010-07-09 2012-01-26 Sony Corp 電力コントロール装置および電力コントロール方法
JP2013106066A (ja) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd 光通信システム、光通信システムの制御方法および宅側装置
JP2014014223A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電力制御システム、サーバ装置、電力需要設備用の制御装置及び電力制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116205355A (zh) * 2023-02-22 2023-06-02 正泰电气股份有限公司 电力负荷的预测方法、装置以及存储介质
CN116205355B (zh) * 2023-02-22 2023-12-01 正泰电气股份有限公司 电力负荷的预测方法、装置以及存储介质

Also Published As

Publication number Publication date
JPWO2017130326A1 (ja) 2018-04-26
JP6385599B2 (ja) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6161822B2 (ja) エネルギー管理コントローラ、エネルギー管理方法及びプログラム
JP6552769B1 (ja) エネルギー表示システム、表示装置およびエネルギー表示方法
JP6013076B2 (ja) エネルギー管理装置、エネルギー管理システムおよびエネルギー管理方法
WO2016002347A1 (ja) 電力制御システム、方法及び電力制御装置
JP6198970B2 (ja) 制御装置、機器制御システム、機器制御方法及びプログラム
JP6744071B2 (ja) 需要家装置、電力消費管理装置、電力消費管理システム、電力消費管理方法および電力消費管理プログラム
WO2017033282A1 (ja) 制御装置、イベント情報表示方法及びプログラム
JP6289502B2 (ja) エネルギー管理システム、システムコントローラ及びエネルギー管理方法
WO2017009909A1 (ja) 制御装置、制御システム、制御方法、及び、プログラム
JP6385599B2 (ja) エネルギー管理装置、電力情報表示方法及びプログラム
JP5592730B2 (ja) 電気料金可視化装置
JP6076666B2 (ja) 管理システム、管理方法及び制御装置
JP6373513B2 (ja) 制御装置、充電情報表示方法及びプログラム
JP6440873B2 (ja) エネルギー管理装置、電力情報表示方法及びプログラム
JP6082586B2 (ja) エネルギー管理装置、エネルギー管理システム、及びエネルギー管理方法
JP6261755B2 (ja) 制御装置、機器制御方法及びプログラム
JP2016185036A (ja) 電力管理装置、電力管理システムおよび電力管理方法
WO2016067847A1 (ja) 電力管理システムの移行方法、移行に用いるシステムおよびサーバ
JP2018027010A (ja) 電力計測装置、抑制レベル通知方法及びプログラム
WO2016175048A1 (ja) 情報処理システム、情報処理方法、およびプログラム
WO2016147411A1 (ja) 制御装置、制御方法、及び、プログラム
JP2016045876A (ja) 電子装置、制御システム、及び制御方法
JP2016103103A (ja) 電力表示端末、電力管理装置、電力表示方法及びプログラム
JP2012075321A (ja) 電力制御装置、電力制御システム、電力制御プログラム、および、電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887913

Country of ref document: EP

Kind code of ref document: A1