WO2017130258A1 - 管理装置、及び蓄電システム - Google Patents

管理装置、及び蓄電システム Download PDF

Info

Publication number
WO2017130258A1
WO2017130258A1 PCT/JP2016/005124 JP2016005124W WO2017130258A1 WO 2017130258 A1 WO2017130258 A1 WO 2017130258A1 JP 2016005124 W JP2016005124 W JP 2016005124W WO 2017130258 A1 WO2017130258 A1 WO 2017130258A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
voltage drop
voltage
battery
block
Prior art date
Application number
PCT/JP2016/005124
Other languages
English (en)
French (fr)
Inventor
尚史 大野
康正 一色
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP16887847.8A priority Critical patent/EP3410136B1/en
Priority to JP2017563404A priority patent/JP6751915B2/ja
Priority to CN201680044739.XA priority patent/CN107923949B/zh
Priority to US15/752,332 priority patent/US10493848B2/en
Publication of WO2017130258A1 publication Critical patent/WO2017130258A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a management device that manages a power storage module, and a power storage system that includes the power storage module and the management device.
  • a battery in which an abnormality has occurred has a larger voltage drop than a normal battery or a battery that has deteriorated over time (for example, capacity deterioration or internal resistance deterioration). Deterioration occurs with the passage of time, but battery abnormality (for example, micro short circuit) may occur in the short term even when the usage period is short, and in the worst case, ignition may occur. Therefore, it is important to quickly detect a sign of battery abnormality and detect battery abnormality.
  • the abnormality detection timing may be delayed. Can do. Although it is conceivable to provide a voltage detection line for each storage cell, the circuit scale increases.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for detecting an abnormality of a power storage device at an early stage with a simple configuration.
  • a management device includes m (m is an integer of 1 or more) storage cells and n (n is an integer of 2 or more) storage blocks connected in parallel.
  • a management device that manages power storage modules connected in series, and identifies a power storage block including an abnormal power storage cell based on each voltage drop speed of the n power storage blocks.
  • the abnormality of the power storage device can be detected early with a simple configuration.
  • FIG. 1 is a diagram for explaining a power storage system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of occurrence of abnormality in a battery cell.
  • FIGS. 3A and 3B are diagrams showing voltage transition and voltage drop speed transition of the first battery block and the second battery block of FIG.
  • FIG. 4 is a flowchart showing the flow of the first abnormality detection method by the battery management apparatus according to the embodiment of the present invention.
  • FIGS. 5A and 5B are diagrams showing a voltage transition and a voltage drop speed transition when all n battery blocks are normal.
  • FIGS. 6A and 6B are diagrams showing a voltage transition and a voltage drop speed transition when an abnormal battery block is included among n battery blocks.
  • FIGS. 1 is a diagram for explaining a power storage system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of occurrence of abnormality in a battery cell.
  • FIGS. 3A and 3B are diagrams showing
  • FIGS. 7A and 7B are diagrams for explaining the processing example 1 based on the flowchart of FIG.
  • FIGS. 8A and 8B are diagrams for explaining a processing example 2 based on the flowchart of FIG. 4.
  • FIGS. 9A and 9B are diagrams for explaining a processing example 3 based on the flowchart of FIG. 4.
  • FIG. 10 is a flowchart showing a flow of the second abnormality detection method by the battery management apparatus according to the embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a processing example based on the flowchart of FIG.
  • FIG. 12 is a flowchart showing the flow of the third abnormality detection method by the battery management apparatus according to the embodiment of the present invention.
  • FIG. 13 is a flowchart showing the flow of the fourth abnormality detection method by the battery management apparatus according to the embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a power storage system 1 according to an embodiment of the present invention.
  • the power storage system 1 includes a power storage module 20 and a battery management device 10.
  • the power storage module 20 is connected to the load 2.
  • the load 2 is a motor.
  • an inverter circuit (not shown) is connected between the power storage module 20 and the load 2.
  • the DC power discharged from the power storage module 20 is converted into AC power by the inverter circuit and supplied to the motor.
  • AC power generated by the motor is converted into DC power by the inverter circuit, and the power storage module 20 is charged.
  • a configuration that can be charged from an external charger by plug-in may be used.
  • the load 2 is a system and a general / specific load.
  • an inverter circuit (not shown) is connected between the power storage module 20 and the load 2.
  • the power storage module 20 When the power storage module 20 is charged, the AC power supplied from the system is converted into DC power by the inverter circuit, and the power storage module 20 is charged.
  • the power storage module 20 When the power storage module 20 is discharged, DC power discharged from the power storage module 20 is converted into AC power by an inverter circuit and supplied to a general / specific load.
  • the power storage module 20 is configured by connecting n (n is an integer of 2 or more) battery blocks (first battery block B1, second battery block B2,..., Nth battery block Bn) in series. .
  • the first battery block B1 is configured by connecting m (m is an integer of 1 or more) battery cells S11-S1m in parallel. The same applies to the second battery block B2 and the nth battery block Bn.
  • a lithium ion battery cell, a nickel metal hydride battery cell, a lead battery cell, or the like can be used.
  • a lithium ion battery cell is used in this specification, an example in which a lithium ion battery cell is used is assumed.
  • FIG. 1 a plurality of power storage modules can be further connected in series to increase the output voltage.
  • the battery management device 10 includes a voltage detection unit 11, a current detection unit 12, a control unit 13, and a storage unit 14.
  • the control unit 13 includes a voltage drop speed calculation unit 13a and an abnormality determination unit 13b.
  • the voltage detector 11 detects the voltage of each battery block of n battery blocks.
  • the voltage detection unit 11 outputs the detection voltage of each battery block to the control unit 13.
  • the current detector 12 measures the voltage across the shunt resistor Rs inserted in the current path of the power storage module 20 and detects the current flowing through the power storage module 20.
  • the current detection unit 12 outputs the detection current of the power storage module 20 to the control unit 13.
  • the voltage detection unit 11 and the current detection unit 12 can be configured by, for example, an ASIC. Instead of the shunt resistor Rs, another current detection element such as a Hall element may be used.
  • the configuration of the control unit 13 can be realized by cooperation of hardware resources and software resources, or only by hardware resources.
  • a hardware resource a microcomputer, DSP, FPGA, or other LSI can be used.
  • Firmware and other programs can be used as software resources.
  • the storage unit 14 can be realized by a ROM and a RAM.
  • the storage unit 14 stores the voltage value of each of the n battery blocks detected by the voltage detection unit 11 in time series.
  • the storage unit 14 stores the current value of the power storage module 20 detected by the current detection unit 12 in time series.
  • the storage area for storing the voltage value and the current value is configured by a ring buffer. When the storage area becomes full, new data is overwritten in the area in which the oldest data is stored.
  • the voltage drop speed calculation unit 13a calculates the voltage drop speed of each battery block based on the time series data of the voltage value of each battery block.
  • Abnormality determination unit 13b specifies a power storage block including abnormal battery cells based on the voltage drop speed of each battery block.
  • FIG. 2 is a diagram illustrating an example of occurrence of abnormality in a battery cell.
  • a state in which the first battery block B1 and the second battery block B2 are connected in series as shown in FIG. 2 will be described as an example.
  • each battery cell constituting each battery block has an internal resistance R11-Rnm.
  • the second battery block B2 When a micro short circuit occurs in the battery cell S21 of the second battery block B2, a current flows through the micro short circuit path Ps formed in the battery cell S21. Accordingly, the second battery block B2 is not only self-discharged by the internal resistance R21-R2m of each battery cell, but also a voltage drop due to the discharge in the micro short-circuit path Ps of the battery cell S21. And get faster.
  • FIGS. 3A and 3B are diagrams showing the voltage transition and voltage drop speed transition of the first battery block B1 and the second battery block B2 of FIG.
  • FIG. 3A shows the voltage transition of both
  • FIG. 3B shows the voltage drop speed transition of both.
  • the voltage of the first battery block B1 drops at a substantially constant speed due to self-discharge due to the internal resistance of each battery cell
  • the second battery block B2 has the internal resistance of each battery cell.
  • the voltage drop speed becomes faster with respect to the first battery block B1.
  • the voltage drop amounts of the first battery block B1 and the second battery block B2 are substantially equal, and the voltage drop speeds of both are also substantially equal. Conversely, if there is a large difference in the voltage drop speed between the two, it can be said that an abnormality has occurred in one of the battery cells. Therefore, by comparing the voltage drop speed between the battery blocks, it is possible to detect the occurrence of an abnormality in the battery cell.
  • FIG. 4 is a flowchart showing the flow of the first abnormality detection method by the battery management apparatus 10 according to the embodiment of the present invention.
  • the voltage detection part 11 detects the voltage of each battery block of n battery blocks (S10).
  • the detected voltage of each battery block is stored in the storage unit 14 (S11). Specifically, voltage values detected at a predetermined sampling period are stored in time series.
  • the voltage drop rate calculation unit 13a calculates the voltage drop rate of each battery block based on time series data in a predetermined period (for example, several hours) of the detection voltage of each battery block stored in the storage unit 14. (S12).
  • the voltage drop speed may be a voltage change per predetermined period of each battery block, or may be an average value of a voltage change (unit voltage drop speed) per unit time (for example, 1 second) in a predetermined period.
  • the length of the predetermined period is determined by the designer using the parallel number of battery cells included in the battery block as a key parameter. As the number of parallels increases, the capacity of the battery block increases, and the degree of contribution that an abnormality of one battery cell gives to the voltage drop of the battery block decreases, so the predetermined period needs to be set longer. This is because it takes time until a significant difference occurs in the voltage drop speed between the battery blocks. On the contrary, the capacity of the battery block decreases as the parallel number decreases, and the degree of contribution that abnormality of one battery cell gives to the voltage drop of the entire battery block increases, so that the predetermined period can be set short. This is because the time until a significant difference occurs in the voltage drop speed between the battery blocks is shortened.
  • the voltage drop speed calculation unit 13a calculates an average value of the voltage drop speeds of all battery blocks (also referred to as other battery blocks) excluding one target battery block (also referred to as its own battery block) (S13). .
  • the abnormality determination unit 13b calculates the difference between the voltage drop speed of its own battery block and the average value (voltage drop average speed) of the voltage drop speeds of the other battery blocks (S14).
  • the abnormality determination unit 13b compares the difference with the first predetermined value (S15), and when the difference is equal to or greater than the first predetermined value (Y in S15), determines that the own battery block is abnormal (S18). When the difference is less than the first predetermined value (N in S15), it is determined that there is no abnormality in the own battery block.
  • the above processing is executed for all battery blocks. That is, the process of setting each battery block as its own battery block is executed for all battery blocks.
  • the first predetermined value is a value determined by a designer based on the results of experiments and simulations under the same conditions of battery cell specifications, battery cell parallel numbers, and battery block series numbers.
  • FIGS. 5A and 5B are diagrams showing a voltage transition and a voltage drop speed transition when all n battery blocks are normal.
  • FIG. 5A shows the voltage transition of the n battery blocks
  • FIG. 5B shows the voltage drop speed transition of the n battery blocks.
  • the voltage transitions of the n battery blocks are substantially equal, and the voltage drop speed transition is also within a certain range.
  • 6 (a) and 6 (b) are diagrams showing a voltage transition and a voltage drop speed transition when an abnormal battery block is included among n battery blocks.
  • 6A shows the voltage transition of each battery block when the first battery block is abnormal and the second to nth battery blocks are normal
  • FIG. 6B shows the voltage drop of each battery block under the same conditions. Shows the speed transition. In this case, the voltage drop speed of the first battery block is faster than the voltage drop speed of the second to nth battery blocks.
  • FIGS. 7A and 7B are diagrams for explaining a processing example 1 based on the flowchart of FIG.
  • Processing example 1 is an example in which all battery blocks are normal.
  • the difference between the voltage drop speed of its own battery block and the average value of the voltage drop speeds of the other battery blocks is smaller than the first predetermined value. Therefore, it is determined that there is no abnormality in the own battery block.
  • FIGS. 8A and 8B are diagrams for explaining a processing example 2 based on the flowchart of FIG.
  • the process example 2 is an example in which the battery block of itself is abnormal and all other battery blocks are normal.
  • the difference between the voltage drop speed of its own battery block and the average value of the voltage drop speeds of the other battery blocks is greater than the first predetermined value. Therefore, it is determined that the own battery block is abnormal.
  • FIGS. 9A and 9B are diagrams for explaining a processing example 3 based on the flowchart of FIG.
  • Processing example 3 is an example of the case where the battery block of itself is normal and one of the other battery blocks is abnormal.
  • the difference between the voltage drop speed of its own battery block and the average value of the voltage drop speeds of the other battery blocks is smaller than the first predetermined value. Therefore, it is determined that there is no abnormality in the own battery block.
  • FIG. 10 is a flowchart showing a flow of the second abnormality detection method by the battery management apparatus 10 according to the embodiment of the present invention.
  • the second abnormality detection method is obtained by adding steps S16 and S17 to the flowchart of the first abnormality detection method shown in FIG.
  • step S15 the abnormality determination unit 13b compares the difference between the voltage drop speed of its own battery block and the average value of the voltage drop speeds of the other battery blocks with the first predetermined value (S15).
  • the voltage drop rate calculation unit 13a is based on time-series data in a predetermined period of the voltage of its own battery block stored in the storage unit 14. The time-series data of the voltage drop speed of its own battery block is calculated, and the amount of change at each time point of the voltage drop speed is calculated (S16).
  • the abnormality determination unit 13b determines whether or not the amount of change in the voltage drop speed of its own battery block includes a period that is equal to or greater than a second predetermined value (S17). When the change amount includes a period equal to or greater than the second predetermined value (Y in S17), the abnormality determining unit 13b determines that the own battery block is abnormal (S18). When the amount of change does not include a period greater than or equal to the second predetermined value (N in S17), it is determined that there is no abnormality in the own battery block.
  • the above processing is executed for all battery blocks.
  • the second predetermined value is a value determined by a designer based on the results of experiments and simulations under the same conditions of the battery cell specifications, the parallel number of battery cells, and the series number of battery blocks.
  • FIG. 11 is a diagram for explaining a processing example based on the flowchart of FIG.
  • the voltage drop speed of the battery block in which the abnormality has occurred in the battery cell changes before and after the abnormality occurs.
  • the change in the voltage drop rate becomes abrupt at a predetermined time t after the occurrence of the abnormality.
  • the length of the predetermined time t depends on the sampling width of the battery block voltage. After a predetermined time t has elapsed from the time of occurrence of the abnormality, the voltage stabilizes at a new voltage drop rate.
  • the abnormality determination unit 13b has a difference between the voltage drop speed of its own battery block and the average value of the voltage drop speeds of the other battery blocks being equal to or greater than a first predetermined value, and changes in the voltage drop speed of its own battery block. If it includes a steep period, it is determined that there is an abnormality in its battery block.
  • FIG. 12 is a flowchart showing the flow of the third abnormality detection method by the battery management apparatus 10 according to the embodiment of the present invention.
  • the power storage module 20 is formed by two battery blocks, the first battery block B1 and the second battery block B2.
  • the voltage detector 11 detects the voltages of the first battery block B1 and the second battery block B2 (S20).
  • the detected voltages of the first battery block B1 and the second battery block B2 are stored in the storage unit 14 (S21).
  • the voltage drop speed calculation unit 13a is configured to store the first battery block B1 and the second battery block B1 on the basis of time series data of the detection voltages of the first battery block B1 and the second battery block B2 stored in the storage unit 14 for a predetermined period.
  • the voltage drop speed of the battery block B2 is calculated (S22).
  • the abnormality determination unit 13b calculates the difference between the voltage drop speed of the first battery block B1 and the voltage drop speed of the second battery block B2 (S23). The abnormality determination unit 13b compares the difference with the first predetermined value (S24), and when the difference is less than the first predetermined value (N in S24), determines that there is no abnormality in the first battery block B1.
  • the voltage drop rate calculation unit 13a is based on time-series data in a predetermined period of the voltage of the first battery block B1 stored in the storage unit 14. Then, the time series data of the voltage drop speed of the first battery block B1 is calculated, and the change amount of each time point of the voltage drop speed is calculated (S25).
  • the abnormality determination unit 13b determines whether or not the amount of change in the voltage drop speed of the first battery block B1 includes a period that is equal to or greater than a second predetermined value (S26). When the amount of change does not include a period greater than or equal to the second predetermined value (N in S26), it is determined that there is no abnormality in the first battery block B1.
  • the abnormality determination unit 13b determines whether or not the voltage drop speed of the second battery block B2 is within the set range (S27). ). If it is within the range (Y in S27), the abnormality determination unit 13b determines that there is an abnormality in the first battery block B1 (S28). If not (N in S27), it is determined that there is no abnormality in the first battery block B1.
  • the above process is performed also about 2nd battery block B2.
  • the set range is a range that is generated by adding a certain margin in the vertical direction to the voltage drop speed that is derived in advance by experiments or simulations when the second battery block is in a normal state.
  • FIG. 13 is a flowchart showing a flow of the fourth abnormality detection method by the battery management apparatus 10 according to the embodiment of the present invention.
  • the voltage detection part 11 detects the voltage of each battery block of n battery blocks (S30).
  • the current detection unit 12 detects the current of the power storage module 20 (S31).
  • the detection voltage of each battery block and the detection current of the power storage module 20 are stored in the storage unit 14 (S32).
  • the voltage drop speed calculation unit 13a sets a period in which the current value of the power storage module 20 stored in the storage unit 14 can be considered as a target period (S33).
  • the voltage drop rate calculation unit 13a calculates the voltage drop rate of each battery block during the target period based on the time series data of the detection voltage of each battery block stored in the storage unit 14 during the target period. (S34).
  • the voltage drop speed calculation unit 13a calculates an average value of the voltage drop speeds during the target period of other battery blocks (S35).
  • the abnormality determination unit 13b calculates the difference between the voltage drop speed of its own battery block and the average value of the voltage drop speeds of other battery blocks (S36). The abnormality determination unit 13b compares the difference with the first predetermined value (S37). If the difference is equal to or greater than the first predetermined value (Y in S37), the abnormality determination unit 13b determines that the own battery block is abnormal (S38). When the difference is less than the first predetermined value (N in S37), it is determined that there is no abnormality in the own battery block. The above processing is executed for all battery blocks.
  • an abnormality of the battery block can be detected early with a simple configuration. Since the abnormality detection process and the equalization process are not linked, the abnormality detection process can be executed at an arbitrary timing.
  • the change in the voltage drop speed transition of its own battery block is also taken into account, thereby improving the accuracy of the abnormality detection process. Further improvement can be achieved.
  • the voltage drop speed of one other battery block is not the average value of the voltage drop speeds of the other battery blocks, but the comparison target. Therefore, in the third abnormality detection method, in order to ensure the reliability of the voltage drop speed of the other battery block, it is checked whether or not the voltage drop speed of the other battery block is within the set range. . Thereby, the accuracy of abnormality detection in the two series power storage modules can be ensured.
  • the abnormality detection method described above is preferably executed during a period in which the power storage module 20 is not charging / discharging. However, if it is during constant current discharge or constant current charge, it can be executed because the current conditions match among the plurality of battery blocks.
  • a period in which the current condition is constant is specified based on the time series data of the current value of the power storage module 20. If the above-described abnormality detection process is executed based on time-series data of voltage values during the period, it is possible to accurately determine whether there is an abnormality in the battery cell even when the power storage module 20 is in use. Can do.
  • the current condition is constant while the vehicle is stopped, during external charging (plug-in hybrid, EV), and when the vehicle is traveling at a constant speed.
  • the battery management device 10 receives a status signal indicating that external charging or cruise control is being performed from the vehicle-side ECU.
  • the former can be regarded as constant current charge, and the latter can be regarded as constant current discharge. Therefore, the above-described abnormality detection process can be executed based on the time-series data during those periods.
  • a capacitor for example, an electric double layer capacitor
  • the average value of the voltage drop speeds of the other battery blocks is set as the comparison target
  • the median value of the voltage drop speeds of the other battery blocks may be set as the comparison target.
  • a voltage detector (11) for detecting a voltage of each of the n power storage blocks (B1-Bn) of the n power storage blocks (B1-Bn);
  • a storage unit (14) for storing the detected voltages of the respective storage blocks (B1-Bn) in time series;
  • a voltage drop speed calculation unit (13a) that calculates a voltage drop speed of each power storage block (B1-Bn) based on time series data of the voltage of each power storage block (B1-Bn); Of the n storage blocks (B1-Bn), the difference between the voltage drop rate of one storage block (B1) and the average value or median value of the voltage drop rates of the remaining storage blocks (B2-Bn) is
  • An abnormality determination unit (13b) that determines the one storage block (B1) as the storage block (B1) including the abnormal storage cell (S11) when the first predetermined value or more;
  • the management apparatus (10) according to item 1, comprising: According to this, it is possible to accurately determine the presence / absence of an abnormality
  • the voltage drop rate calculation unit (13a) calculates time series data of the voltage drop rate of each storage block (S11-Snm) based on the time series data of the voltage of each storage block (B1-Bn),
  • the abnormality determination unit (13b) has a difference between the voltage drop speed of one power storage block (B1) and the average value or median value of the voltage drop speeds of the remaining power storage blocks (B2-Bn) equal to or greater than a first predetermined value.
  • the one power storage block (B1) is replaced with a power storage block including an abnormal power storage cell (S11) ( The management device (10) according to item 2, characterized in that it is determined as B1). According to this, it is possible to further improve the accuracy of the abnormality detection process.
  • the storage unit (14) stores the detected current of the power storage module (20) in time series
  • the voltage drop rate calculation unit (13a) is configured to store each power storage block (B1) based on time series data of the voltage of each power storage block (B1-Bn) in a period in which the current flowing through the power storage module (20) can be regarded as constant.
  • the management device (10) according to item 2 or 3, wherein the voltage drop speed of -Bn) is calculated. According to this, even when the power storage module (20) is being used, highly accurate abnormality detection processing can be performed by using data during a period when the current condition is constant.
  • the power storage module (20) and the management device (10) are mounted on a vehicle,
  • the voltage drop speed calculation unit (13a) is a time-series data of the voltage of each power storage block (B1-Bn) while the vehicle is stopped, the vehicle is running at a constant speed, or the power storage module is being charged with a constant current.
  • 1 power storage system 2 loads, 10 battery management device, 11 voltage detection unit, 12 current detection unit, 13 control unit, 13a voltage drop speed calculation unit, 13b abnormality determination unit, 14 storage unit, 20 storage module, B1 first battery Block, B2 2nd battery block, Bn nth battery block, S11-Snm battery cell, Rs shunt resistance, R11-Rnm internal resistance, Ps micro short circuit path.

Abstract

蓄電セルをm(mは1以上の整数)個、並列に接続した蓄電ブロックを、n(nは2以上の整数)個、直列に接続した蓄電モジュール(20)を管理する管理装置において、電圧検出部(11)は、n個の蓄電ブロックの各蓄電ブロックの電圧を検出する。記憶部(14)は、検出された各蓄電ブロックの電圧を時系列に記憶する。電圧降下速度算出部(13a)は、各蓄電ブロックの電圧の時系列データをもとに、各蓄電ブロックの電圧降下速度を算出する。異常判定部(13b)は、n個の蓄電ブロックの内、1つの蓄電ブロックの電圧降下速度と、残りの蓄電ブロックの電圧降下速度の平均値または中央値との差分が第1所定値以上のとき、当該1つの蓄電ブロックを、異常な蓄電セルを含む蓄電ブロックと判定する。

Description

管理装置、及び蓄電システム
 本発明は、蓄電モジュールを管理する管理装置、及び蓄電モジュールと管理装置を備える蓄電システムに関する。
 異常が発生した電池は、正常電池や経年劣化(例えば、容量劣化、内部抵抗劣化)した電池と比較して、電圧降下が大きくなることが知られている。劣化は時間の経過と共に生じるものであるが、電池異常(例えば、微小短絡)は使用期間が短い場合でも短期的に起こる可能性があり、最悪の場合、発火に至る場合もある。そのため、電池異常の予兆を素早く検知し、電池異常を検出することが重要である。
 蓄電装置の異常を検出する手法の1つとして、複数の蓄電部の電圧のばらつきを均等化するための均等化処理を複数回実行し、均等化処理間の時間間隔が設定時間より短い場合に異常の兆候ありと判定し、それ以降の充放電容量などの検出値をもとに最終的な異常を検出する手法が提案されている(例えば、特許文献1参照)。
特開2008-134060号公報
 一般的な均等化処理は、複数の蓄電部間の電圧差が一定値以上になったとき実行されるため、均等化処理と異常検出処理を関連付けている場合、異常検出タイミングが遅れる場合が発生し得る。また蓄電セルごとに電圧検出線を設けることが考えられるが、回路規模が増大する。
 本発明はこうした状況に鑑みなされたものであり、その目的は、蓄電装置の異常を簡素な構成で早期に検出する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の管理装置は、蓄電セルをm(mは1以上の整数)個、並列に接続した蓄電ブロックを、n(nは2以上の整数)個、直列に接続した蓄電モジュールを管理する管理装置であって、前記n個の蓄電ブロックの各電圧降下速度をもとに、異常な蓄電セルを含む蓄電ブロックを特定する。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、蓄電装置の異常を簡素な構成で早期に検出することができる。
図1は本発明の実施の形態に係る蓄電システムを説明するための図である。 図2は電池セルの異常発生の一例を示す図である。 図3(a)、(b)は、図2の第1電池ブロックと第2電池ブロックの電圧推移と電圧降下速度推移を示す図である。 図4は本発明の実施の形態に係る電池管理装置による、第1の異常検出方法の流れを示すフローチャートである。 図5(a)、(b)は、n個の電池ブロックが全て正常な場合の電圧推移と電圧降下速度推移を示す図である。 図6(a)、(b)は、n個の電池ブロックの内、異常な電池ブロックを含む場合の電圧推移と電圧降下速度推移を示す図である。 図7(a)、(b)は、図4のフローチャートに基づく処理例1を説明するための図である。 図8(a)、(b)は、図4のフローチャートに基づく処理例2を説明するための図である。 図9(a)、(b)は、図4のフローチャートに基づく処理例3を説明するための図である。 図10は本発明の実施の形態に係る電池管理装置による、第2の異常検出方法の流れを示すフローチャートである。 図11は図4のフローチャートに基づく処理例を説明するための図である。 図12は本発明の実施の形態に係る電池管理装置による、第3の異常検出方法の流れを示すフローチャートである。 図13は本発明の実施の形態に係る電池管理装置による、第4の異常検出方法の流れを示すフローチャートである。
 図1は、本発明の実施の形態に係る蓄電システム1を説明するための図である。蓄電システム1は蓄電モジュール20及び電池管理装置10を備える。蓄電モジュール20は負荷2に接続される。例えば車載用途の場合、負荷2はモータである。その場合、蓄電モジュール20と負荷2の間にインバータ回路(不図示)が接続される。力行時、蓄電モジュール20から放電される直流電力がインバータ回路により交流電力に変換されてモータに供給される。回生時、モータにより発電された交流電力がインバータ回路により直流電力に変換されて蓄電モジュール20に充電される。なお外部充電器からプラグインにより充電可能な構成であってもよい。
 また据置型のピークカット/バックアップ用途の蓄電モジュール20の場合、負荷2は系統および一般/特定の負荷である。この場合も、蓄電モジュール20と負荷2の間にインバータ回路(不図示)が接続される。蓄電モジュール20の充電時、系統から供給される交流電力がインバータ回路により直流電力に変換されて蓄電モジュール20に充電される。蓄電モジュール20の放電時、蓄電モジュール20から放電される直流電力がインバータ回路により交流電力に変換されて一般/特定の負荷に供給される。
 蓄電モジュール20は、n(nは2以上の整数)個の電池ブロック(第1電池ブロックB1、第2電池ブロックB2、・・・、第n電池ブロックBn)が直列に接続されて構成される。第1電池ブロックB1は、m(mは1以上の整数)個の電池セルS11-S1mが並列に接続されて構成される。第2電池ブロックB2及び第n電池ブロックBnも同様である。電池セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル等を使用することができる。以下、本明細書ではリチウムイオン電池セルを使用する例を想定する。なお図1では1つの蓄電モジュール20を描いているが、複数の蓄電モジュールをさらに直列に接続して出力電圧を増加させることもできる。
 電池管理装置10は電圧検出部11、電流検出部12、制御部13及び記憶部14を含む。制御部13は電圧降下速度算出部13a及び異常判定部13bを含む。電圧検出部11はn個の電池ブロックの各電池ブロックの電圧を検出する。電圧検出部11は各電池ブロックの検出電圧を制御部13に出力する。電流検出部12は、蓄電モジュール20の電流路に挿入されるシャント抵抗Rsの両端電圧を測定して蓄電モジュール20に流れる電流を検出する。電流検出部12は蓄電モジュール20の検出電流を制御部13に出力する。電圧検出部11及び電流検出部12は例えば、ASICで構成することができる。なおシャント抵抗Rsの代わりに、ホール素子などの他の電流検出素子を使用してもよい。
 制御部13の構成は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源として、マイクロコンピュータ、DSP、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。記憶部14はROM、及びRAMで実現できる。
 記憶部14は、電圧検出部11により検出されたn個の電池ブロックの各電池ブロックの電圧値を時系列に記憶する。また記憶部14は電流検出部12により検出された蓄電モジュール20の電流値を時系列に記憶する。なお当該電圧値および当該電流値を記憶する記憶領域はリングバッファで構成され、当該記憶領域がフルになると、最も古いデータが記憶されている領域に、新たなデータが上書きされる。
 電圧降下速度算出部13aは、各電池ブロックの電圧値の時系列データをもとに、各電池ブロックの電圧降下速度を算出する。異常判定部13bは、各電池ブロックの電圧降下速度をもとに、異常な電池セルを含む蓄電ブロックを特定する。
 図2は、電池セルの異常発生の一例を示す図である。以下、図2に示すように第1電池ブロックB1と第2電池ブロックB2の2つが直列に接続された状態を例に説明する。図2に示すように各電池ブロックを構成する各電池セルは内部抵抗R11-Rnmを有している。
 第2電池ブロックB2の電池セルS21で微小短絡が発生すると、電池セルS21内部に形成された微小短絡経路Psを電流が流れるようになる。従って第2電池ブロックB2は、各電池セルの内部抵抗R21-R2mによる自己放電に加えて電池セルS21の微小短絡経路Psでの放電による電圧降下で、電圧降下速度が第1電池ブロックB1に対して速くなる。
 図3(a)、(b)は、図2の第1電池ブロックB1と第2電池ブロックB2の電圧推移と電圧降下速度推移を示す図である。図3(a)は両者の電圧推移を示し、図3(b)は両者の電圧降下速度推移を示す。図3(a)、(b)に示すように第1電池ブロックB1は各電池セルの内部抵抗による自己放電によりほぼ定速で電圧が降下し、第2電池ブロックB2は各電池セルの内部抵抗による自己放電に加えて異常電池セルにおける微小短絡経路Psでの放電により、ほぼ定速で電圧が降下していくが、第2電池ブロックB2の方が異常電池セルにおける微小短絡経路Psでの放電が発生するため、電圧降下速度が第1電池ブロックB1に対して速くなる。
 いずれの電池セルにも異常が発生していなければ第1電池ブロックB1と第2電池ブロックB2の電圧降下量はほぼ等しくなり、両者の電圧降下速度もほぼ等しくなる。逆にいえば、両者の電圧降下速度に大きな開きがある場合、いずれかの電池セルに異常が発生しているといえる。従って電池ブロック間の電圧降下速度を比較することにより、電池セルの異常発生を検出することができる。
 図4は、本発明の実施の形態に係る電池管理装置10による、第1の異常検出方法の流れを示すフローチャートである。電圧検出部11はn個の電池ブロックの各電池ブロックの電圧を検出する(S10)。各電池ブロックの検出電圧が記憶部14に保存される(S11)。具体的には所定のサンプリング周期で検出される電圧値が時系列に保存される。
 電圧降下速度算出部13aは、記憶部14に保存されている各電池ブロックの検出電圧の所定期間(例えば、数時間)における時系列データをもとに、各電池ブロックの電圧降下速度を算出する(S12)。電圧降下速度は、各電池ブロックの所定期間当たりの電圧変化であってもよいし、単位時間(例えば、1秒)当たりの電圧変化(単位電圧降下速度)の所定期間における平均値でもよい。
 当該所定期間の長さは、電池ブロックに含まれる電池セルの並列数をキーパラメータとして設計者により決定される。並列数が多いほど電池ブロックの容量は増大し、1つの電池セルの異常が電池ブロックの電圧降下に与える寄与度が小さくなるため上記所定期間を長く設定する必要がある。電池ブロック間の電圧降下速度に有意な差異が発生するまでに時間を要するためである。反対に並列数が少ないほど電池ブロックの容量は減少し、1つの電池セルの異常が電池ブロック全体の電圧降下に与える寄与度が大きくなるため上記所定期間を短く設定することが許容される。電池ブロック間の電圧降下速度に有意な差異が発生するまでの時間が短くなるためである。
 電圧降下速度算出部13aは、対象となる1つの電池ブロック(自己の電池ブロックともいう)を除く、全電池ブロック(他の電池ブロックともいう)の電圧降下速度の平均値を算出する(S13)。
 異常判定部13bは、自己の電池ブロックの電圧降下速度と、他の電池ブロックの電圧降下速度の平均値(電圧降下平均速度)との差分を算出する(S14)。異常判定部13bは当該差分と第1所定値とを比較し(S15)、当該差分が第1所定値以上の場合(S15のY)、自己の電池ブロックに異常ありと判定する(S18)。当該差分が第1所定値未満の場合(S15のN)、自己の電池ブロックに異常なしと判定する。以上の処理を、全ての電池ブロックについて実行する。すなわち、各電池ブロックを自己の電池ブロックとした処理を、全ての電池ブロックについて実行する。上記第1所定値は、電池セルの仕様、電池セルの並列数、及び電池ブロックの直列数を同じにした条件下における実験やシミュレーションの結果に基づき、設計者により決定された値である。
 図5(a)、(b)は、n個の電池ブロックが全て正常な場合の電圧推移と電圧降下速度推移を示す図である。図5(a)はn個の電池ブロックの電圧推移を示し、図5(b)はn個の電池ブロックの電圧降下速度推移を示す。n個の電池ブロックが全て正常な場合、n個の電池ブロックの電圧推移はほぼ等しくなり、電圧降下速度推移も一定範囲内に収まる。
 図6(a)、(b)は、n個の電池ブロックの内、異常な電池ブロックを含む場合の電圧推移と電圧降下速度推移を示す図である。図6(a)は第1電池ブロックが異常で第2-第n電池ブロックが正常な場合の各電池ブロックの電圧推移を示し、図6(b)は同条件下の各電池ブロックの電圧降下速度推移を示す。この場合、第1電池ブロックの電圧降下速度が、第2-第n電池ブロックの電圧降下速度より速くなる。
 図7(a)、(b)は、図4のフローチャートに基づく処理例1を説明するための図である。処理例1は、全ての電池ブロックが正常な場合の例である。処理例1では、自己の電池ブロックの電圧降下速度と、他の電池ブロックの電圧降下速度の平均値との差分が第1所定値より小さくなる。従って、自己の電池ブロックは異常なしと判定される。
 図8(a)、(b)は、図4のフローチャートに基づく処理例2を説明するための図である。処理例2は、自己の電池ブロックが異常で、他の電池ブロックが全て正常な場合の例である。処理例2では、自己の電池ブロックの電圧降下速度と、他の電池ブロックの電圧降下速度の平均値との差分が第1所定値より大きくなる。従って、自己の電池ブロックは異常ありと判定される。
 図9(a)、(b)は、図4のフローチャートに基づく処理例3を説明するための図である。処理例3は、自己の電池ブロックが正常で、他の電池ブロックの1つが異常な場合の例である。処理例3では、自己の電池ブロックの電圧降下速度と、他の電池ブロックの電圧降下速度の平均値との差分が第1所定値より小さくなる。従って、自己の電池ブロックは異常なしと判定される。
 図10は、本発明の実施の形態に係る電池管理装置10による、第2の異常検出方法の流れを示すフローチャートである。第2の異常検出方法は、図4に示した第1の異常検出方法のフローチャートに、ステップS16及びステップS17の処理が追加されたものである。
 ステップS15において異常判定部13bは、自己の電池ブロックの電圧降下速度と、他の電池ブロックの電圧降下速度の平均値との差分と、第1所定値とを比較する(S15)。当該差分が第1所定値以上の場合(S15のY)、電圧降下速度算出部13aは、記憶部14に保存されている自己の電池ブロックの電圧の所定期間における時系列データをもとに、自己の電池ブロックの電圧降下速度の時系列データを算出し、電圧降下速度の各時点の変化量を算出する(S16)。
 異常判定部13bは、自己の電池ブロックの電圧降下速度の変化量が第2所定値以上の期間を含むか否か判定する(S17)。当該変化量が第2所定値以上の期間を含む場合(S17のY)、異常判定部13bは自己の電池ブロックに異常ありと判定する(S18)。当該変化量が第2所定値以上の期間を含まない場合(S17のN)、自己の電池ブロックに異常なしと判定する。以上の処理を、全ての電池ブロックについて実行する。上記第2所定値は、電池セルの仕様、電池セルの並列数、及び電池ブロックの直列数を同じにした条件下における実験やシミュレーションの結果に基づき、設計者により決定された値である。
 図11は、図10のフローチャートに基づく処理例を説明するための図である。電池セルに異常が発生した電池ブロックの電圧降下速度は、異常発生時点の前後で変化する。図11に示すように異常発生時点から所定時間tにおいて、電圧降下速度の変化が急になる。この所定時間tの長さは、電池ブロックの電圧のサンプリング幅に依存する。異常発生時点から所定時間t経過後、新たな電圧降下速度で安定する。
 異常判定部13bは、自己の電池ブロックの電圧降下速度と、他の電池ブロックの電圧降下速度の平均値との差分が第1所定値以上であり、かつ自己の電池ブロックの電圧降下速度の変化が急な期間を含む場合、自己の電池ブロックに異常ありと判定する。
 図12は、本発明の実施の形態に係る電池管理装置10による、第3の異常検出方法の流れを示すフローチャートである。第3の異常検出方法では、第1電池ブロックB1と第2電池ブロックB2の2つの電池ブロックにより蓄電モジュール20が形成される例を想定する。
 電圧検出部11は第1電池ブロックB1と第2電池ブロックB2の電圧を検出する(S20)。第1電池ブロックB1と第2電池ブロックB2の検出電圧が記憶部14に保存される(S21)。電圧降下速度算出部13aは、記憶部14に保存されている第1電池ブロックB1と第2電池ブロックB2の検出電圧の所定期間における時系列データをもとに、第1電池ブロックB1と第2電池ブロックB2の電圧降下速度を算出する(S22)。
 異常判定部13bは、第1電池ブロックB1の電圧降下速度と、第2電池ブロックB2の電圧降下速度との差分を算出する(S23)。異常判定部13bは当該差分と第1所定値とを比較し(S24)、当該差分が第1所定値未満の場合(S24のN)、第1電池ブロックB1に異常なしと判定する。
 当該差分が第1所定値以上の場合(S24のY)、電圧降下速度算出部13aは、記憶部14に保存されている第1電池ブロックB1の電圧の所定期間における時系列データをもとに、第1電池ブロックB1の電圧降下速度の時系列データを算出し、電圧降下速度の各時点の変化量を算出する(S25)。異常判定部13bは、第1電池ブロックB1の電圧降下速度の変化量が第2所定値以上の期間を含むか否か判定する(S26)。当該変化量が第2所定値以上の期間を含まない場合(S26のN)、第1電池ブロックB1に異常なしと判定する。
 当該変化量が第2所定値以上の期間を含む場合(S26のY)、異常判定部13bは、第2電池ブロックB2の電圧降下速度が、設定範囲内に収まっているか否か判定する(S27)。収まっている場合(S27のY)、異常判定部13bは第1電池ブロックB1に異常ありと判定する(S28)。収まっていない場合(S27のN)、第1電池ブロックB1に異常なしと判定する。以上の処理を、第2電池ブロックB2についても実行する。当該設定範囲は、第2電池ブロックが正常な状態において、予め実験やシミュレーションにより導出された電圧降下速度に対して、上下に一定のマージンを加えて生成された範囲である。
 図13は、本発明の実施の形態に係る電池管理装置10による、第4の異常検出方法の流れを示すフローチャートである。電圧検出部11はn個の電池ブロックの各電池ブロックの電圧を検出する(S30)。電流検出部12は蓄電モジュール20の電流を検出する(S31)。各電池ブロックの検出電圧と蓄電モジュール20の検出電流が記憶部14に保存される(S32)。
 電圧降下速度算出部13aは、記憶部14に保存されている蓄電モジュール20の電流値が一定と見なせる期間を対象期間に設定する(S33)。電圧降下速度算出部13aは、記憶部14に保存されている各電池ブロックの検出電圧の当該対象期間における時系列データをもとに、各電池ブロックの当該対象期間中の電圧降下速度を算出する(S34)。電圧降下速度算出部13aは、他の電池ブロックの当該対象期間中の電圧降下速度の平均値を算出する(S35)。
 異常判定部13bは、自己の電池ブロックの電圧降下速度と、他の電池ブロックの電圧降下速度の平均値との差分を算出する(S36)。異常判定部13bは当該差分と第1所定値とを比較し(S37)、当該差分が第1所定値以上の場合(S37のY)、自己の電池ブロックに異常ありと判定する(S38)。当該差分が第1所定値未満の場合(S37のN)、自己の電池ブロックに異常なしと判定する。以上の処理を、全ての電池ブロックについて実行する。
 以上説明したように本実施の形態によれば、直列接続された複数の電池ブロック間の電圧降下速度を比較することにより、電池ブロックの異常を簡素な構成で早期に検出することができる。異常検出処理と均等化処理が紐付いていないため、任意のタイミングで異常検出処理を実行することができる。
 また、自己の電池ブロックの電圧降下速度の推移のみをもとに異常を検出する場合、長い期間のデータまで遡らなければ精度を確保することが難しいが、本実施の形態では他の電池ブロックの電圧降下速度との相対比較であるため、ある程度の期間のデータでも精度を確保することができる。また外部環境の変化による電圧降下速度の変化は、複数の電池ブロック間で共通に影響を受けるため、相対比較ではその影響が相殺される。また電池セルごとに電圧検出線を設ける必要がなく、回路規模の増大を抑えることができる。
 また第2の異常検出方法によれば、他の電池ブロックの電圧降下速度との相対比較に加えて、自己の電池ブロックの電圧降下速度推移の変化も考慮することにより、異常検出処理の精度をさらに向上させることができる。
 2直列の蓄電モジュールでは、他の複数の電池ブロックの電圧降下速度の平均値ではなく、他の1つの電池ブロックの電圧降下速度が比較対象となる。そこで第3の異常検出方法では、他の1つの電池ブロックの電圧降下速度の信頼性を確保するため、当該他の1つの電池ブロックの電圧降下速度が設定範囲に収まっているか否かをチェックする。これにより、2直列の蓄電モジュールにおける異常検出の精度を確保することができる。
 以上に説明した異常検出方法は、蓄電モジュール20が充放電を実施していない期間中に実行することが好ましい。しかしながら、定電流放電または定電流充電中であれば、複数の電池ブロック間で電流条件が一致しているため実行可能である。第4の異常検出方法では、蓄電モジュール20の電流値の時系列データをもとに、電流条件が一定の期間を特定する。当該期間中の電圧値の時系列データをもとに上述の異常検出処理を実行すれば、蓄電モジュール20が使用中の状態であっても、電池セルの異常の有無を高精度に判定することができる。
 なお車載用途では、車両の停止中、外部充電中(プラグインハイブリッド、EV)、車両の定速走行中は電流条件が一定となる。例えば、電池管理装置10は、車両側のECUから外部充電中、又はクルーズコントロール中であることを示すステータス信号を受信する。前者は定電流充電とみなすことができ、後者は定電流放電と見なすことができる。従って、それらの期間中の時系列データをもとに、上述の異常検出処理を実行することができる。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述の実施の形態では蓄電モジュールとして蓄電池を用いる例を想定したが、キャパシタ(例えば、電気二重層キャパシタ)を用いてもよい。また、他の電池ブロックの電圧降下速度の平均値を比較対象としたが、他の電池ブロックの電圧降下速度の中央値を比較対象としてもよい。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 蓄電セル(S11-Snm)をm(mは1以上の整数)個、並列に接続した蓄電ブロック(B1-Bn)を、n(nは2以上の整数)個、直列に接続した蓄電モジュール(20)を管理する管理装置(10)であって、
 前記n個の蓄電ブロック(B1-Bn)の各電圧降下速度をもとに、異常な蓄電セル(S11)を含む蓄電ブロック(B2)を特定することを特徴とする管理装置(10)。
 これによれば、異常な蓄電セル(S11)を含む蓄電ブロック(B1)の有無を簡素な構成で早期に判定することができる。
[項目2]
 前記n個の蓄電ブロック(B1-Bn)の各蓄電ブロック(B1-Bn)の電圧を検出する電圧検出部(11)と、
 検出された各蓄電ブロック(B1-Bn)の電圧を時系列に記憶する記憶部(14)と、
 各蓄電ブロック(B1-Bn)の電圧の時系列データをもとに、各蓄電ブロック(B1-Bn)の電圧降下速度を算出する電圧降下速度算出部(13a)と、
 前記n個の蓄電ブロック(B1-Bn)の内、1つの蓄電ブロック(B1)の電圧降下速度と、残りの蓄電ブロック(B2-Bn)の電圧降下速度の平均値または中央値との差分が第1所定値以上のとき、前記1つの蓄電ブロック(B1)を、異常な蓄電セル(S11)を含む蓄電ブロック(B1)と判定する異常判定部(13b)と、
 を備えることを特徴とする項目1に記載の管理装置(10)。
 これによれば、他の蓄電ブロック(B2-Bn)の電圧降下速度との相対比較により、自己の蓄電ブロック(B1)の異常の有無を的確に判定することができる。
[項目3]
 前記電圧降下速度算出部(13a)は、各蓄電ブロック(B1-Bn)の電圧の時系列データをもとに、各蓄電ブロック(S11-Snm)の電圧降下速度の時系列データを算出し、
 前記異常判定部(13b)は、1つの蓄電ブロック(B1)の電圧降下速度と、残りの蓄電ブロック(B2-Bn)の電圧降下速度の平均値または中央値との差分が第1所定値以上であり、かつ前記1つの蓄電ブロック(B1)の電圧降下速度の変化量が第2所定値以上のとき、前記1つの蓄電ブロック(B1)を、異常な蓄電セル(S11)を含む蓄電ブロック(B1)と判定することを特徴とする項目2に記載の管理装置(10)。
 これによれば、異常検出処理の精度をさらに向上させることができる。
[項目4]
 前記蓄電モジュール(20)を流れる電流を検出する電流検出部(12)をさらに備え、
 前記記憶部(14)は、検出された蓄電モジュール(20)の電流を時系列に記憶し、
 前記電圧降下速度算出部(13a)は、前記蓄電モジュール(20)に流れる電流が一定とみなせる期間における、各蓄電ブロック(B1-Bn)の電圧の時系列データをもとに各蓄電ブロック(B1-Bn)の電圧降下速度を算出することを特徴とする項目2または3に記載の管理装置(10)。
 これによれば、蓄電モジュール(20)の使用中であっても、電流条件が一定の期間のデータを使用することにより、高精度な異常検出処理が可能となる。
[項目5]
 前記蓄電モジュール(20)及び前記管理装置(10)は車両に搭載され、
 前記電圧降下速度算出部(13a)は、前記車両の停止中、前記車両の定速走行中、または前記蓄電モジュールの定電流充電中における、各蓄電ブロック(B1-Bn)の電圧の時系列データをもとに各蓄電ブロック(B1-Bn)の電圧降下速度を算出することを特徴とする項目2または3に記載の管理装置(10)。
 これによれば、蓄電モジュール(20)の使用中であっても、電流条件が一定の期間のデータを使用することにより、高精度な異常検出処理が可能となる。
[項目6]
 蓄電モジュール(20)と、
 前記蓄電モジュール(20)を管理する項目1から5のいずれかに記載の管理装置(10)と、
 を備えることを特徴とする蓄電システム(1)。
 これによれば、異常な蓄電セル(11)を含む蓄電ブロック(B1)の有無を簡素な構成で早期に判定することができる。
 1 蓄電システム、 2 負荷、 10 電池管理装置、 11 電圧検出部、 12 電流検出部、 13 制御部、 13a 電圧降下速度算出部、 13b 異常判定部、 14 記憶部、 20 蓄電モジュール、 B1 第1電池ブロック、 B2 第2電池ブロック、 Bn 第n電池ブロック、 S11-Snm 電池セル、 Rs シャント抵抗、 R11-Rnm 内部抵抗、 Ps 微小短絡経路。

Claims (6)

  1.  蓄電セルをm(mは1以上の整数)個、並列に接続した蓄電ブロックを、n(nは2以上の整数)個、直列に接続した蓄電モジュールを管理する管理装置であって、
     前記n個の蓄電ブロックの各電圧降下速度をもとに、異常な蓄電セルを含む蓄電ブロックを特定することを特徴とする管理装置。
  2.  前記n個の蓄電ブロックの各蓄電ブロックの電圧を検出する電圧検出部と、
     検出された各蓄電ブロックの電圧を時系列に記憶する記憶部と、
     各蓄電ブロックの電圧の時系列データをもとに、各蓄電ブロックの電圧降下速度を算出する電圧降下速度算出部と、
     前記n個の蓄電ブロックの内、1つの蓄電ブロックの電圧降下速度と、残りの蓄電ブロックの電圧降下速度の平均値または中央値との差分が第1所定値以上のとき、前記1つの蓄電ブロックを、異常な蓄電セルを含む蓄電ブロックと判定する異常判定部と、
     を備えることを特徴とする請求項1に記載の管理装置。
  3.  前記電圧降下速度算出部は、各蓄電ブロックの電圧の時系列データをもとに、各蓄電ブロックの電圧降下速度の時系列データを算出し、
     前記異常判定部は、1つの蓄電ブロックの電圧降下速度と、残りの蓄電ブロックの電圧降下速度の平均値または中央値との差分が第1所定値以上であり、かつ前記1つの蓄電ブロックの電圧降下速度の変化量が第2所定値以上のとき、前記1つの蓄電ブロックを、異常な蓄電セルを含む蓄電ブロックと判定することを特徴とする請求項2に記載の管理装置。
  4.  前記蓄電モジュールを流れる電流を検出する電流検出部をさらに備え、
     前記記憶部は、検出された蓄電モジュールの電流を時系列に記憶し、
     前記電圧降下速度算出部は、前記蓄電モジュールに流れる電流が一定とみなせる期間における、各蓄電ブロックの電圧の時系列データをもとに各蓄電ブロックの電圧降下速度を算出することを特徴とする請求項2または3に記載の管理装置。
  5.  前記蓄電モジュール及び前記管理装置は車両に搭載され、
     前記電圧降下速度算出部は、前記車両の停止中、前記車両の定速走行中、または前記蓄電モジュールの定電流充電中における、各蓄電ブロックの電圧の時系列データをもとに各蓄電ブロックの電圧降下速度を算出することを特徴とする請求項2または3に記載の管理装置。
  6.  蓄電モジュールと、
     前記蓄電モジュールを管理する請求項1から5のいずれかに記載の管理装置と、
     を備えることを特徴とする蓄電システム。
PCT/JP2016/005124 2016-01-28 2016-12-14 管理装置、及び蓄電システム WO2017130258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16887847.8A EP3410136B1 (en) 2016-01-28 2016-12-14 Management device and power storage system
JP2017563404A JP6751915B2 (ja) 2016-01-28 2016-12-14 管理装置、及び蓄電システム
CN201680044739.XA CN107923949B (zh) 2016-01-28 2016-12-14 管理装置以及蓄电系统
US15/752,332 US10493848B2 (en) 2016-01-28 2016-12-14 Management device and power storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-014754 2016-01-28
JP2016014754 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017130258A1 true WO2017130258A1 (ja) 2017-08-03

Family

ID=59397603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005124 WO2017130258A1 (ja) 2016-01-28 2016-12-14 管理装置、及び蓄電システム

Country Status (5)

Country Link
US (1) US10493848B2 (ja)
EP (1) EP3410136B1 (ja)
JP (1) JP6751915B2 (ja)
CN (1) CN107923949B (ja)
WO (1) WO2017130258A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092276A (ja) * 2017-11-14 2019-06-13 株式会社Gsユアサ 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
WO2019123907A1 (ja) * 2017-12-22 2019-06-27 三洋電機株式会社 管理装置、及び電源システム
WO2021033480A1 (ja) * 2019-08-22 2021-02-25 パナソニックIpマネジメント株式会社 管理装置、及び蓄電システム
JP2022522342A (ja) * 2019-11-05 2022-04-18 エルジー エナジー ソリューション リミテッド バッテリー診断装置、バッテリー診断方法及びエネルギー貯蔵システム
JP2022551451A (ja) * 2020-05-15 2022-12-09 エルジー エナジー ソリューション リミテッド 電池を診断するための装置およびその方法
JP2023503185A (ja) * 2020-06-30 2023-01-26 寧徳時代新能源科技股▲分▼有限公司 セル内部短絡故障の検出方法、装置、デバイス及び媒体
WO2023095674A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 電池異常検知システム、電池異常検知方法、および電池異常検知プログラム
JP7439340B2 (ja) 2021-01-19 2024-02-27 エルジー エナジー ソリューション リミテッド バッテリーシステム診断装置及び方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200101754A (ko) * 2019-02-20 2020-08-28 삼성에스디아이 주식회사 배터리 제어 장치 및 배터리 제어 방법
WO2021019848A1 (ja) * 2019-07-30 2021-02-04 日置電機株式会社 蓄電デバイスの測定装置及び測定方法
KR20220100442A (ko) * 2021-01-08 2022-07-15 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 시스템 및 배터리 진단 방법
CN113009321B (zh) * 2021-03-04 2022-04-08 深圳市金泰克半导体有限公司 晶圆漏电流测试方法、装置、晶圆级测试仪及存储介质
DE102021113209A1 (de) 2021-05-21 2022-11-24 Audi Aktiengesellschaft Verfahren zum Detektieren eines Fehlerzustands zumindest einer Batteriezelle einer Batterie, Detektionseinrichtung und Kraftfahrzeug
CN113945753B (zh) * 2021-09-01 2023-11-28 力高(山东)新能源技术有限公司 一种判断电池组电芯电压异常的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006750A (ja) * 1999-06-25 2001-01-12 Toyota Motor Corp 電池検査装置
JP2003204627A (ja) * 2001-09-14 2003-07-18 Matsushita Electric Ind Co Ltd バッテリ制御装置
US20090099799A1 (en) * 2007-10-10 2009-04-16 Texas Instruments Incorporated Systems, Methods and Circuits for Determining Micro-Short
JP2010008067A (ja) * 2008-06-24 2010-01-14 Sony Corp 電池パックおよび制御方法
JP2010181262A (ja) * 2009-02-05 2010-08-19 Sanyo Electric Co Ltd 二次電池の異常検出装置および二次電池装置
JP2011018482A (ja) * 2009-07-07 2011-01-27 Toyota Motor Corp 電池の検査方法
CN104617330A (zh) * 2015-01-19 2015-05-13 清华大学 电池微短路的识别方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179047B2 (ja) * 2006-11-27 2013-04-10 パナソニック株式会社 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
WO2010100736A1 (ja) * 2009-03-05 2010-09-10 トヨタ自動車株式会社 ハイブリッド車両の充放電制御システムおよびその制御方法
US9024572B2 (en) * 2009-03-31 2015-05-05 Sanyo Electric Co., Ltd. Battery module, battery system and electric vehicle
DE102010062187A1 (de) * 2010-11-30 2012-05-31 Sb Limotive Company Ltd. Verfahren zur Ermittlung der Leerlaufspannung einer Batterie, Batterie mit einem Modul zur Ermittlung der Leerlaufspannung sowie ein Kraftfahrzeug mit einer entsprechenden Batterie
US9945910B2 (en) * 2011-03-31 2018-04-17 Renesas Electronics Corporation Voltage monitoring module and voltage monitoring system which compares voltages to determine leakage
DE102012211393A1 (de) * 2012-07-02 2014-01-02 Robert Bosch Gmbh Batterie und Kraftfahrzeug
US10870360B2 (en) * 2013-02-12 2020-12-22 Cps Technology Holdings Llc Battery monitoring network
US9770997B2 (en) * 2013-06-11 2017-09-26 Ford Global Technologies, Llc Detection of imbalance across multiple battery cells measured by the same voltage sensor
CN104333059A (zh) * 2014-10-06 2015-02-04 西安煜邦电子科技有限公司 用于通信基站备用电源的智能维护系统及方法
JP6572448B2 (ja) * 2015-02-13 2019-09-11 パナソニックIpマネジメント株式会社 電池状態推定装置、および電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006750A (ja) * 1999-06-25 2001-01-12 Toyota Motor Corp 電池検査装置
JP2003204627A (ja) * 2001-09-14 2003-07-18 Matsushita Electric Ind Co Ltd バッテリ制御装置
US20090099799A1 (en) * 2007-10-10 2009-04-16 Texas Instruments Incorporated Systems, Methods and Circuits for Determining Micro-Short
JP2010008067A (ja) * 2008-06-24 2010-01-14 Sony Corp 電池パックおよび制御方法
JP2010181262A (ja) * 2009-02-05 2010-08-19 Sanyo Electric Co Ltd 二次電池の異常検出装置および二次電池装置
JP2011018482A (ja) * 2009-07-07 2011-01-27 Toyota Motor Corp 電池の検査方法
CN104617330A (zh) * 2015-01-19 2015-05-13 清华大学 电池微短路的识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410136A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092276A (ja) * 2017-11-14 2019-06-13 株式会社Gsユアサ 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
WO2019123907A1 (ja) * 2017-12-22 2019-06-27 三洋電機株式会社 管理装置、及び電源システム
CN111492555A (zh) * 2017-12-22 2020-08-04 三洋电机株式会社 管理装置和电源系统
JPWO2019123907A1 (ja) * 2017-12-22 2021-01-14 三洋電機株式会社 管理装置、及び電源システム
US11351887B2 (en) 2017-12-22 2022-06-07 Sanyo Electric Co., Ltd. Management device and power supply system
JP7163313B2 (ja) 2017-12-22 2022-10-31 三洋電機株式会社 管理装置、及び電源システム
CN111492555B (zh) * 2017-12-22 2023-09-15 三洋电机株式会社 管理装置和电源系统
WO2021033480A1 (ja) * 2019-08-22 2021-02-25 パナソニックIpマネジメント株式会社 管理装置、及び蓄電システム
JP7214002B2 (ja) 2019-11-05 2023-01-27 エルジー エナジー ソリューション リミテッド バッテリー診断装置、バッテリー診断方法及びエネルギー貯蔵システム
JP2022522342A (ja) * 2019-11-05 2022-04-18 エルジー エナジー ソリューション リミテッド バッテリー診断装置、バッテリー診断方法及びエネルギー貯蔵システム
JP2022551451A (ja) * 2020-05-15 2022-12-09 エルジー エナジー ソリューション リミテッド 電池を診断するための装置およびその方法
JP7313762B2 (ja) 2020-05-15 2023-07-25 エルジー エナジー ソリューション リミテッド 電池を診断するための装置およびその方法
US11959969B2 (en) 2020-05-15 2024-04-16 Lg Energy Solution, Ltd. Apparatus and method for diagnosing battery
US11614494B2 (en) 2020-06-30 2023-03-28 Contemporary Amperex Technology Co., Limited Method, apparatus, device and medium for detecting internal short-circuit fault of battery cell
JP7344393B2 (ja) 2020-06-30 2023-09-13 寧徳時代新能源科技股▲分▼有限公司 セル内部短絡故障の検出方法、装置、デバイス及び媒体
JP2023503185A (ja) * 2020-06-30 2023-01-26 寧徳時代新能源科技股▲分▼有限公司 セル内部短絡故障の検出方法、装置、デバイス及び媒体
JP7439340B2 (ja) 2021-01-19 2024-02-27 エルジー エナジー ソリューション リミテッド バッテリーシステム診断装置及び方法
WO2023095674A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 電池異常検知システム、電池異常検知方法、および電池異常検知プログラム

Also Published As

Publication number Publication date
EP3410136A4 (en) 2019-01-16
EP3410136A1 (en) 2018-12-05
JPWO2017130258A1 (ja) 2018-11-22
US20190077265A1 (en) 2019-03-14
EP3410136B1 (en) 2022-02-02
CN107923949A (zh) 2018-04-17
US10493848B2 (en) 2019-12-03
JP6751915B2 (ja) 2020-09-09
CN107923949B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2017130258A1 (ja) 管理装置、及び蓄電システム
JP5382138B2 (ja) 組電池の異常検出装置
JP6846659B2 (ja) 管理装置、及び蓄電システム
US10048322B2 (en) Method of measuring battery pack current and correcting offsets of a current sensor
JP6179407B2 (ja) 組電池の均等化装置及び方法
US9551750B2 (en) Monitoring system and vehicle
US10838013B2 (en) Management apparatus and power storage system
US9153990B2 (en) Steady state detection of an exceptional charge event in a series connected battery element
JP6986707B2 (ja) 管理装置、及び蓄電システム
JP2015080334A (ja) 蓄電システム
EP3032690B1 (en) Battery control system and vehicle control system
US20150372517A1 (en) Apparatus, system, and method of preventing battery rack damage by measuring voltage
CN107135669B (zh) 管理装置以及蓄电系统
CN105390759B (zh) 一种电动汽车锂电池的状态确定方法
US9529048B2 (en) Transient detection of an exceptional charge event in a series connected battery element
US9806383B2 (en) Electric energy storage device and method for operating an electric energy storage device
EP3032689B1 (en) Battery control system and vehicle control system
JP5838224B2 (ja) 電池制御装置
JP7111642B2 (ja) 電池制御装置
JP2014103840A (ja) 蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE