WO2017129876A1 - Dispositif de régulation adaptative de la vitesse d'un véhicule, à moyens de décision - Google Patents

Dispositif de régulation adaptative de la vitesse d'un véhicule, à moyens de décision Download PDF

Info

Publication number
WO2017129876A1
WO2017129876A1 PCT/FR2017/050052 FR2017050052W WO2017129876A1 WO 2017129876 A1 WO2017129876 A1 WO 2017129876A1 FR 2017050052 W FR2017050052 W FR 2017050052W WO 2017129876 A1 WO2017129876 A1 WO 2017129876A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
vehicle
maximum
estimate
less
Prior art date
Application number
PCT/FR2017/050052
Other languages
English (en)
Inventor
Vincent DESCHAMPS
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Publication of WO2017129876A1 publication Critical patent/WO2017129876A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • B60W2510/0647Coasting condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the invention relates to vehicles, possibly of automotive type, and comprising a powertrain (or GMP), possibly coupled to a gearbox, and more precisely the adaptive speed control within such vehicles.
  • a powertrain or GMP
  • Certain vehicles of the aforementioned type comprise a regulating device which adaptively regulates their speed according to their environment. More specifically, such control devices are loaded, in case of activation, to determine, according to a speed setpoint and / or information relating to the environment of their vehicle, an acceleration instruction specific to to regulate the speed adaptively, that is to say taking into account the environment of their vehicle.
  • This environment information may be representative of the distance separating the vehicle concerned from an upstream vehicle, or the speed of an upstream vehicle, or the acceleration of an upstream vehicle, or a speed limitation, or the presence of a turn or a roundabout or a vehicle upstream.
  • Each acceleration setpoint (positive or negative) determined by a regulating device is converted, generally by a computer responsible for supervising the vehicle's GMP, into a GMP torque request and / or a request for pressure of the intended braking system ( s) to impose that the actual acceleration of the vehicle actually follows this acceleration guideline.
  • the acceleration instruction may be accompanied by a request to establish a freewheeling phase or with the engine brake, or energy recovery (in the case of a hybrid type GMP) , so as to optimize the energy consumption of the vehicle.
  • This is particularly the case in the control device which is described in patent document WO 2014009108. It is difficult to implement all the logic of these control devices other than in a single computer.
  • this type of implementation is not optimal because it often requires a dedicated computer, in addition to the computer associated with the GMP and computers associated with environmental sensors. Indeed, computers associated with environmental sensors can hardly achieve this type of functionality without having internal modeling of the transmission chain, and the GMP supervision computer must add on the embedded communication network additional flows intended to these environment calculators. Conversely, the GMP supervision computer can hardly achieve this type of functionality because it would require that it directly retrieves data from the environment and pre-processes, which is usually not his role.
  • the invention is therefore particularly intended to improve the situation.
  • a regulation device intended to adaptively regulate the speed of a vehicle comprising a powertrain (or GMP), and comprising specific calculation means to be determined for this vehicle, as a function of a speed setpoint and / or information relating to a vehicle environment, a nominal acceleration setpoint between minimum and maximum accelerations.
  • This device is characterized by the fact:
  • the functionalities can be separated into two distinct modules, which can, for example, be integrated in two separate computers (for example a calculator in charge of the perception of the environment (independent of the type of the transmission chain), and the computer providing supervision of the GMP (which only manages the longitudinal dynamics taking into account a minimum of inputs from the sensors / environment calculators).
  • the device according to the invention may comprise other characteristics that can be taken separately or in combination, and in particular:
  • its calculation means may also be suitable for estimating an evolution of the speed of the vehicle if it was coasting, and an evolution of a speed of another vehicle placed upstream (in its environment) taking into account a current dynamics of the latter, then to estimate the maximum duration of coasting according to these estimates of speed changes;
  • its calculation means may be able to estimate minimum and maximum accelerations that they would require in the presence of estimates of speed changes, then to estimate the maximum freewheeling time as a function of the difference separating the current moment. at a time when the acceleration estimate that the vehicle would have if it were coasting becomes equal to the minimum acceleration estimate or the maximum acceleration estimate;
  • its decision means may be suitable for determining an acceleration setpoint equal to the maximum acceleration when the acceleration estimate that the vehicle would have if it were under engine braking is greater than this maximum acceleration;
  • its decision means may be suitable for determining an acceleration setpoint equal to the minimum acceleration when, on the one hand, the acceleration estimate that the vehicle would have if it were under engine braking is less than maximum acceleration but is insufficient to remain below the maximum acceleration in the future, and, on the other hand, the minimum acceleration is greater than the acceleration estimate that the vehicle would have if it were Engine brake ;
  • its decision means may be suitable for determining an acceleration setpoint equal to the acceleration estimate that the vehicle would have if it were under engine braking when, on the one hand, the acceleration estimate that would have the vehicle if it was under engine braking is less than the maximum acceleration but is insufficient to remain in the future less than the maximum acceleration, and, secondly, the minimum acceleration is lower than the estimated acceleration that the vehicle would have if it were under engine braking;
  • its decision means may be able to determine an acceleration setpoint equal to the acceleration estimate that the vehicle would have if it were coasting when, firstly, the acceleration estimate would have the vehicle if it was under engine braking is less than the maximum acceleration and sufficient to remain in the future lower than the maximum acceleration, secondly, the acceleration estimate that the vehicle would have 'it was freewheeling is greater than the minimum acceleration and less than the maximum acceleration, and, thirdly, the estimated maximum freewheeling time (before the freewheeling acceleration does not becomes greater than the maximum acceleration or less than the minimum acceleration) is greater than a first chosen threshold; its decision means may also be suitable for ordering a temporary shutdown of the powertrain when the estimated maximum freewheeling time is greater than a second chosen threshold which is greater than the first threshold chosen;
  • its decision means may be suitable for determining an acceleration setpoint equal to the nominal acceleration setpoint when the acceleration estimate that the vehicle would have if it were under engine braking is less than the maximum acceleration, sufficient to remain in the future below the maximum acceleration, and below the nominal acceleration target, and the acceleration estimate that the vehicle would have if it were coasting is less than the minimum acceleration or greater than the maximum acceleration, or the estimate of the maximum freewheeling time is less than a first chosen threshold; its decision means may be able to determine an acceleration setpoint equal to the acceleration estimate that the vehicle would have if it were under engine braking when the acceleration estimate that the vehicle would have if engine brake is less than the maximum acceleration, sufficient to remain in the future less than the maximum acceleration, and greater than the nominal acceleration target, and the acceleration estimate that the vehicle would have if was freewheeling is less than the minimum acceleration or greater than the maximum acceleration or the maximum freewheeling time estimate is less than a first selected threshold.
  • the invention also proposes a vehicle, possibly of automobile type, and comprising, on the one hand, a powertrain (possibly coupled to a gearbox), and, on the other hand, a regulating device of the type of that presented. above.
  • the vehicle comprises a supervision computer able to supervise the operation of its powertrain and comprising the decision means of the regulating device, and an auxiliary computer able to determine environmental information from data acquired by means on-board acquisition and / or transmitted by waves by neighboring vehicles and / or neighboring information stations and comprising the calculation means of the control device.
  • the object of the invention is notably to propose a control device DR intended to adaptively regulate the speed of a vehicle V comprising a powertrain (or GMP), possibly coupled to a gearbox BV.
  • a control device DR intended to adaptively regulate the speed of a vehicle V comprising a powertrain (or GMP), possibly coupled to a gearbox BV.
  • the vehicle V is of automobile type. This is for example a car. But the invention is not limited to this type of vehicle. It concerns any vehicle having a powertrain (or GMP) intended to produce torque, for example to turn wheels, and acquisition means capable of providing information relating to their environment (in particular in a front part ). Therefore, the invention relates at least to land vehicles (cars, motorcycles, commercial vehicles, coaches (or buses), trucks).
  • GMP powertrain
  • the invention relates at least to land vehicles (cars, motorcycles, commercial vehicles, coaches (or buses), trucks).
  • the invention relates both to powertrain vehicles of exclusively thermal type (and therefore comprising at least one heat engine), that vehicles with a hybrid-type powertrain (and therefore comprising at least a heat engine and at least one non-thermal drive machine), and powertrain vehicles with a non-thermal drive machine (s).
  • FIG. 1 shows schematically in the sole figure, a vehicle V comprising a transmission chain comprising a powertrain (or GMP) of thermal type, a supervision computer CS able to supervise (or manage) the operation of the GMP. , an EM clutch, a BV robotic gearbox, and a DR control device according to the invention.
  • a powertrain or GMP
  • GMP powertrain
  • CS supervision computer
  • the thermal GMP includes an MT heat engine.
  • thermo engine MT is understood here to mean an engine that consumes fuel or chemicals.
  • the thermal engine MT comprises a crankshaft (not shown) which is fixedly attached to a motor shaft in order to drive the latter in rotation.
  • the BV gearbox can be of any type. Thus, it may be a manual gearbox (not controlled), an automatic gearbox (or BVA), or a manual gearbox (BVMP or DCT (double clutch gearbox) ).
  • This gearbox BV comprises at least one input shaft (or primary) intended to receive the torque produced by the heat engine MT via the clutch EM, and an output shaft intended to receive this torque via the gear shaft. input in order to communicate it to a transmission shaft to which it is coupled and which is coupled indirectly to the wheels (here of the TV front train of the vehicle V), preferably via a differential before DV.
  • the clutch EM comprises a flywheel fixedly secured to the drive shaft and a clutch disc fixedly secured to the input shaft of the gearbox BV.
  • the transmission chain also comprises an electric machine AD (starter or alternator-starter) which is coupled to the heat engine MT, possibly via a freewheel, in particular to launch it during a start.
  • This electric machine AD is also coupled to energy storage means MS, which are, for example, arranged in the form of a battery, for example of the very low voltage type (for example 12 V, 24 V or 48 V). .
  • the operations of the thermal engine MT, the clutch EM and the electric machine AD are here controlled by the supervision computer CS.
  • the vehicle V comprises a transmission chain with a powertrain (or GMP) of the hybrid type
  • the latter also comprises a prime mover coupled to energy storage means, possibly via a DC / DC type inverter.
  • motor machine means a non-thermal machine or motor intended to provide torque to move a vehicle, either alone or in addition to a heat engine. Therefore, it may for example be an electric motor, a hydraulic machine, a pneumatic machine or a flywheel. It will be noted that this driving machine may not be coupled to the heat engine MT or may be continuously coupled to the heat engine MT (and in this case it forms with the latter (MT) an indecouplable block).
  • the hybrid transmission chain must also include a coupling / decoupling means adapted to couple / uncouple the prime mover to a / of a transmission shaft in order to communicate the torque that it produces thanks to the energy stored in the associated storage means.
  • This transmission shaft is responsible for rotating the wheels (for example the rear axle TR of the vehicle V), preferably via a rear differential.
  • This coupling / decoupling means is for example a jaw mechanism or a clutch or a hydraulic torque converter.
  • a control device DR comprises at least calculation means MC and decision means MD.
  • the calculation means MC are arranged so as to determine, as a function of a speed reference and information relating to the environment of the vehicle V, minimum accelerations a mir , (t) and maximum a ma x (t). for the moment t in progress, and a nominal acceleration set point ca n0 m (t), between these minimum accelerations a mir , (t) and maximum a max (t).
  • the information relating to the environment of the vehicle V is provided by an auxiliary computer CA which is responsible, at least, for analyzing the environment of the vehicle V.
  • This auxiliary computer CA determines this environment information from data which are acquired by the acquisition means MA on board the vehicle V and / or transmitted by way of waves to the vehicle V by neighboring vehicles (Car2X function) and / or neighboring information stations.
  • the acquisition means MA may, for example, comprise at least one camera and / or at least one scanning laser and / or at least one radar or lidar. They are at least responsible for analyzing the environment located in front of (or upstream of) vehicle V.
  • this environment information may be representative of the current distance separating the vehicle V from a vehicle in front of it (or upstream) or behind it (or downstream), or the current speed of a vehicle.
  • a vehicle situated upstream or downstream of the vehicle V or the acceleration of a vehicle upstream or downstream of the vehicle V, or the activation status of a signaling function provided by blocks of a vehicle situated upstream or downstream of vehicle V (and in particular a change of direction (or flashing)), or a speed limitation, or the presence of a turn or a roundabout or a vehicle upstream.
  • the speed instruction used by the calculating means MC is provided by the driver of the vehicle V or by the supervision computer CS (and in this case it is determined as a function, in particular, of the environmental information available to it).
  • the acceleration estimates ea ri (t) and ea fm (t) can, for example and as illustrated without limitation, be determined by a first estimation module ME1, which may, possibly, be part of the control device DR. This determination can, for example, be made using the current torque supplied by the GMP, the speed of rotation of the vehicle wheels V, the pressure of the master cylinder (or PMC) of the braking system, an estimated the slope of the traffic lane used by the vehicle V at the instant considered, the gearbox ratio engaged, an estimate of the mass of the vehicle V, and the vehicle architecture parameters V. It will be noted that this The first estimation module ME1 could also internally calculate a possible variation of aerodynamic forces and rolling resistance (induced, for example, by a roof box).
  • this first estimation module ME1 may also be and optionally arranged to determine an estimate of the off-slope road law of the vehicle V, which is representative of the forces which oppose the movement of the vehicle V ( aerodynamic friction and rolling resistance).
  • This estimated road law off-slope can be useful to the decision means MD when the minimum, nominal, and maximum acceleration require all three a torque to the positive wheel, and that one wishes to choose the most "efficient" acceleration.
  • the first estimation module ME1 is implanted in the supervision computer CS. But this is not obligatory. Indeed, it could be implanted in another computer embedded in the vehicle V, such as for example the computer of the braking system or the auxiliary computer CA, or could itself be a calculator. Therefore, the first estimation module ME1 can be realized in the form of software modules (or computer or "software”), or a combination of electronic circuits (or “hardware”) and software modules.
  • the estimated mass of the vehicle V may, for example and as illustrated without limitation, be determined by a second estimation module ME2, which may, optionally, be part of the control device DR.
  • This determination may, for example, be based on the current torque provided by the GMP, the speed of rotation of the vehicle wheels V, the pressure of the master cylinder (or PMC) of the braking system, and the estimate of the slope of the traffic lane used by the vehicle V at the instant t considered. This determination is particularly useful when the vehicle V is loaded and / or tows a trailer or a caravan.
  • the second estimation module ME2 is implanted in the supervision computer CS. But this is not obligatory. Indeed, it could be implanted in another computer embedded in the vehicle V, such as the auxiliary computer CA or the braking system calculator, or could itself be a calculator. Therefore, the second estimation module ME2 can be realized in the form of software modules (or computer or "software"), or a combination of electronic circuits (or “hardware") and software modules. Also in the example illustrated nonlimitingly in the single figure, the calculation means MC are located in the auxiliary computer CA. This is advantageous because the environment information is determined in this auxiliary computer CA, and therefore it limits the data exchanges via a possible communication network of the vehicle V, possibly multiplexed type.
  • the calculation means MC can be made in the form of software modules (or computer or "software”), or a combination of electronic circuits (or “hardware”) and software modules.
  • the MC calculation means may also be arranged to estimate a change in the vehicle speed V if rolled self ev ri wheel, and a change in the speed of another vehicle positioned upstream of the vehicle V account - the current dynamics of the latter ev v upstream, depending on the aforementioned parameters it has.
  • the calculation means MC are arranged to estimate the maximum freewheeling time dr max as a function of these estimates of evolutions ev r
  • the computing means MC may be arranged to estimate, in addition, minimum accelerations ea m in and maximum ea ma x they would require in the presence of estimates of evolutions ev e velocity ! and ev v upstream, then to estimate the maximum freewheeling time dr max as a function of the difference which separates the instant in progress (t) from a moment when the acceleration estimate that the vehicle would have V if it was coasting ea r i (t) becomes equal to this estimate of minimum acceleration ea mir , or this estimate of maximum acceleration ea ma x-
  • the calculation means MC therefore provide a prediction function of the "future". Indeed, by predicting the evolution of the speed of the vehicle V if it was coasting, and the evolution of the speed of an upstream vehicle taking into account the dynamics of the latter at time t (by example its distance, speed, acceleration), they can predict which acceleration estimates minimum ea mir , and maximum ea max they would ask. Therefore, they can determine the maximum freewheeling time dr max as a function of the instant when the coasting acceleration estimate ea r i (t) becomes equal to the minimum acceleration estimate ea m or in maximum ea my x-
  • the computing means MC can also be arranged to estimate an evolution of the speed of the vehicle V if it was traveling under engine braking ev fm , and an evolution of the speed of another vehicle placed upstream of the vehicle V account - the current dynamics of the latter ev v upstream, depending on the aforementioned parameters it has.
  • the calculation means MC are arranged to estimate whether in the long run it would be necessary to decelerate more than the engine brake.
  • the calculation means MC may be arranged to estimate, in addition, the minimum accelerations ea mir , and maximum ea max that they would require in the presence of the estimates of the velocity evolutions ev fm and ev v upstream, and then to estimate whether In the future, it would be necessary to decelerate further than the engine brake if, in the future, the acceleration estimate that the vehicle V would have if it were a motor brake e fm (t) became equal to this estimated maximum acceleration e my x-
  • the computing means MC can therefore provide a prediction function of the "future". Indeed, by predicting the evolution of the speed of the vehicle V if it was under engine braking, and the evolution of the speed of an upstream vehicle taking into account the dynamics of the latter at time t (by example its distance, its speed, its acceleration), they can predict which estimated minimum acceleration ea mir , and maximum ea max they would ask. Therefore, they can estimate if in the long run it would be necessary to decelerate more than the engine brake if from the moment t the vehicle V was in engine braking.
  • the decision means MD are able to determine an acceleration setpoint CA (t) adapted to adaptively adjust the speed of the vehicle V as a function of the nominal acceleration setpoint ca n0 m (t), minimum accelerations a mir , (t) and maximum a max (t), of the estimated maximum running time freewheel dr max and the sufficiency of operation in engine braking. Thanks to the invention it is now possible to perform the processing in two separate modules which can, for example, be integrated in two separate computers.
  • one of these modules can, for example, be part of the computer CA which is in charge of the perception of the environment (independent of the type of the transmission chain), and the other module can, for example, be part of the CS computer which is in charge of the supervision of the GMP (which only manages the longitudinal dynamics taking into account a minimum of inputs from the sensors / environment calculators).
  • the decision means MD are located in the supervision computer CS.
  • the latter (CS) is the one that has the most important knowledge of the power train and therefore has useful data on energy consumption, in particular, which limits data exchanges via the possible communication network of the vehicle V.
  • CS supervision computer
  • the decision means MD can be made in the form of software modules (or computer or "software"), or a combination of electronic circuits (or “hardware”) and software modules.
  • the acceleration estimate that the vehicle V would have if it were a motor brake ea fm (t) is less than the maximum acceleration at my x (t) but is insufficient to remain in the future less than the maximum acceleration a max (t), and the minimum acceleration a mir , (t) is greater than the acceleration estimate that the vehicle V would have if it were a motor brake ea fm ( t).
  • the decision means MD may be able to determine an acceleration setpoint ca (t) which is equal to the minimum acceleration a min (t).
  • the acceleration estimate that the vehicle V would have if it were a motor brake ea fm (t) is less than the maximum acceleration a max (t) but is insufficient to remain in the vehicle. future less than the maximum acceleration a m a x (t), and the minimum acceleration a m in (t) is smaller than the estimated acceleration would have the vehicle V if it were in engine brake ea f m (t).
  • the decision means MD may be able to determine an acceleration setpoint ca (t) which is equal to the acceleration estimate that the vehicle V would have if it were in the engine brake ea fm (t). ).
  • the acceleration estimate that the vehicle V would have if it were a motor brake ea fm (t) is less than the maximum acceleration at my x (t) and sufficient to remain in the vehicle. future lower than the maximum acceleration a max (t), the acceleration estimate that the vehicle V would have if it were coasting ea r i (t) is greater than the minimum acceleration a m in (t) ) and less than the maximum acceleration a max (t), and the maximum freewheel time estimate dr max (before the freewheel acceleration becomes greater than the maximum acceleration a max (t) or less than the minimum acceleration a m in (t)) is greater than a first selected threshold s1.
  • the decision means MD may be able to determine an acceleration setpoint ca (t) which is equal to the acceleration estimate that the vehicle V if it was coasting ea ri (t). The transmission chain is then open.
  • this first threshold chosen s1 may be between two and four seconds. So, it can be equal to three seconds.
  • the maximum running time estimate dr max is in addition greater than a second chosen threshold s2 which is greater than the first threshold chosen s1 (ie s2> s1).
  • the decision means MD may be able to order a temporary shutdown of the powertrain, to avoid unnecessary consumption of energy.
  • this second threshold chosen s2 may be between four and six seconds. Thus, it can be equal to five seconds.
  • the acceleration estimate that the vehicle V would have if it were a motor brake ea fm (t) is less than the maximum acceleration a max (t), sufficient to remain in the future less than the maximum acceleration at my x (t), and less than the nominal acceleration set point ca n0 m (t), and the acceleration estimate that the vehicle V would have if it were coasting, and r i (t) is less than the minimum acceleration a m in (t) or greater than the maximum acceleration a max (t), or the maximum running time estimate dr max is less than the first threshold chosen s1.
  • the decision means MD may be able to determine an acceleration setpoint ca (t) which is equal to the nominal acceleration setpoint ca n0 m (t).
  • the acceleration estimate that the vehicle V would have if it were a motor brake ea fm (t) is greater than the maximum acceleration a max (t), sufficient to remain in the future less than the maximum acceleration at my x (t), and greater than the nominal acceleration set point ca n0 m (t) and the acceleration estimate that the vehicle V would have if it were coasting, ie i (t) is less than the minimum acceleration a m in (t) or greater than the maximum acceleration a max (t), or the maximum running time estimate dr max is less than the first threshold chosen s1.
  • the decision means MD may be suitable for determining a setpoint AC acceleration (t) which is equal to the acceleration setpoint would have the vehicle V if it were in engine brake Others fm (t).

Abstract

Un dispositif (DR) est chargé de réguler la vitesse d'un véhicule (V) et comprend des moyens de calcul (MC) propres à déterminer, en fonction d'une consigne de vitesse et/ou d'informations relatives à l'environnement, une consigne d'accélération nominale comprise entre des accélérations minimale et maximale, et à estimer une durée maximale de roulage du véhicule (V) en roue libre et si un fonctionnement en frein moteur est suffisant pour que l'accélération du véhicule (V) demeure inférieure à l'accélération maximale, en fonction d'estimées de l'accélération qu'aurait le véhicule (V) s'il était respectivement en roue libre et en frein moteur, et des moyens de décision (MD) propres à déterminer une consigne d'accélération propre à réguler la vitesse de façon adaptative en fonction de la consigne d'accélération nominale, des accélérations minimale et maximale, de l'estimée de durée maximale de roulage en roue libre et de la suffisance de fonctionnement en frein moteur.

Description

DISPOSITIF DE RÉGULATION ADAPTATIVE DE LA VITESSE VÉHICULE, À MOYENS DE DÉCISION
L'invention concerne les véhicules, éventuellement de type automobile, et comportant un groupe motopropulseur (ou GMP), éventuellement couplé à une boîte de vitesses, et plus précisément la régulation de vitesse adaptative au sein de tels véhicules.
Certains véhicules du type précité comprennent un dispositif de régulation chargé de réguler de façon adaptative leur vitesse en fonction de leur environnement. Plus précisément, de tels dispositifs de régulation sont chargés, en cas d'activation, de déterminer, en fonction d'une consigne de vitesse et/ou d'informations relatives à l'environnement de leur véhicule, une consigne d'accélération propre à réguler la vitesse de façon adaptative, c'est- à-dire tenant compte de l'environnement de leur véhicule.
Ces informations d'environnement peuvent être représentatives de la distance séparant le véhicule concerné d'un véhicule amont, ou de la vitesse d'un véhicule amont, ou de l'accélération d'un véhicule amont, ou d'une limitation de vitesse, ou de la présence d'un virage ou d'un rond-point ou d'un véhicule en amont.
Chaque consigne d'accélération (positive ou négative) déterminée par un dispositif de régulation est convertie, généralement par un calculateur chargé de superviser le GMP du véhicule, en une demande de couple GMP et/ou une demande de pression du système de freinage destinée(s) à imposer que l'accélération effective du véhicule suive effectivement cette consigne d'accélération.
Parfois, la consigne d'accélération peut être accompagnée d'une demande d'instauration d'une phase de roulage en roue libre ou avec le frein moteur, ou de récupération d'énergie (dans le cas d'un GMP de type hybride), de manière à optimiser la consommation d'énergie du véhicule. C'est notamment le cas dans le dispositif de régulation qui est décrit dans le document brevet WO 2014009108. Il s'avère difficile d'implémenter toute la logique de ces dispositifs de régulation autrement que dans un unique calculateur. Or, ce type d'implémentation ne s'avère pas optimal car il nécessite souvent d'avoir un calculateur dédié, en plus du calculateur associé au GMP et des calculateurs associés aux capteurs d'environnement. En effet, les calculateurs associés aux capteurs d'environnement peuvent difficilement réaliser ce type de fonctionnalité sans avoir en interne une modélisation précise de la chaîne de transmission, et le calculateur de supervision du GMP doit rajouter sur le réseau de communication embarqué des flux supplémentaires destinés à ces calculateurs d'environnement. A l'inverse, le calculateur de supervision du GMP peut difficilement réaliser ce type de fonctionnalité car il faudrait pour cela qu'il récupère directement des données de l'environnement et qu'il les pré-traite, ce qui n'est habituellement pas son rôle.
L'invention a donc notamment pour but d'améliorer la situation.
Elle propose notamment à cet effet un dispositif de régulation, destiné à réguler de façon adaptative la vitesse d'un véhicule comprenant un groupe motopropulseur (ou GMP), et comprenant des moyens de calcul propres à déterminer pour ce véhicule, en fonction d'une consigne de vitesse et/ou d'informations relatives à un environnement du véhicule, une consigne d'accélération nominale comprise entre des accélérations minimale et maximale. Ce dispositif se caractérise par le fait :
- que ses moyens de calcul sont également propres à estimer une durée maximale de roulage du véhicule en roue libre et si un fonctionnement en frein moteur est suffisant pour que l'accélération du véhicule demeure inférieure à l'accélération maximale, en fonction d'estimées de l'accélération qu'aurait le véhicule s'il était respectivement en roue libre et en frein moteur, éventuellement compte-tenu d'un rapport en cours d'engagement dans une éventuelle boîte de vitesses couplée au GMP, et
- qu'il comprend également des moyens de décision propres à déterminer une consigne d'accélération propre à réguler de façon adaptative la vitesse du véhicule en fonction de la consigne d'accélération nominale, des accélérations minimale et maximale, de l'estimée de durée maximale de roulage en roue libre et de la suffisance de fonctionnement en frein moteur. Ainsi, on peut séparer les fonctionnalités en deux modules distincts, pouvant, par exemple, être intégrés dans deux calculateurs distincts (par exemple un calculateur en charge de la perception de l'environnement (indépendant du type de la chaîne de transmission), et le calculateur assurant la supervision du GMP (qui ne gère que la dynamique longitudinale en prenant en compte un minimum d'entrées venant des capteurs / calculateurs d'environnement).
Le dispositif selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- ses moyens de calcul peuvent être également propres à estimer une évolution de la vitesse du véhicule s'il roulait en roue libre, et une évolution d'une vitesse d'un autre véhicule placé en amont (dans son environnement) compte-tenu d'une dynamique en cours de ce dernier, puis à estimer la durée maximale de roulage en roue libre en fonction de ces estimées d'évolutions de vitesse ;
ses moyens de calcul peuvent être propres à estimer des accélérations minimale et maximale qu'ils demanderaient en présence des estimées des évolutions de vitesse, puis à estimer la durée maximale de roulage en roue libre en fonction de l'écart séparant l'instant en cours d'un instant où l'estimée d'accélération qu'aurait le véhicule s'il était en roue libre devient égale à l'estimée d'accélération minimale ou l'estimée d'accélération maximale ;
- ses moyens de décision peuvent être propres à déterminer une consigne d'accélération égale à l'accélération maximale lorsque l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur est supérieure à cette accélération maximale ;
- ses moyens de décision peuvent être propres à déterminer une consigne d'accélération égale à l'accélération minimale lorsque, d'une part, l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur est inférieure à l'accélération maximale mais est insuffisante pour demeurer dans le futur inférieure à l'accélération maximale, et, d'autre part, l'accélération minimale est supérieure à l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur ;
- ses moyens de décision peuvent être propres à déterminer une consigne d'accélération égale à l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur lorsque, d'une part, l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur est inférieure à l'accélération maximale mais est insuffisante pour demeurer dans le futur inférieure à l'accélération maximale, et, d'autre part, l'accélération minimale est inférieure à l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur ;
- ses moyens de décision peuvent être propres à déterminer une consigne d'accélération égale à l'estimée d'accélération qu'aurait le véhicule s'il était en roue libre lorsque, d'une première part, l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur est inférieure à l'accélération maximale et suffisante pour demeurer dans le futur inférieure à l'accélération maximale, d'une deuxième part, l'estimée d'accélération qu'aurait le véhicule s'il était en roue libre est supérieure à l'accélération minimale et inférieure à l'accélération maximale, et, d'une troisième part, l'estimée de durée maximale de roulage en roue libre (avant que l'accélération en roue libre ne devienne supérieure à l'accélération maximale ou inférieure à l'accélération minimale) est supérieure à un premier seuil choisi ; ses moyens de décision peuvent être également propres à ordonner un arrêt temporaire de fonctionnement du groupe motopropulseur lorsque l'estimée de durée maximale de roulage en roue libre est supérieure à un second seuil choisi qui est supérieur au premier seuil choisi ;
- ses moyens de décision peuvent être propres à déterminer une consigne d'accélération égale à la consigne d'accélération nominale lorsque l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur est inférieure à l'accélération maximale, suffisante pour demeurer dans le futur inférieure à l'accélération maximale, et inférieure à la consigne d'accélération nominale, et l'estimée d'accélération qu'aurait le véhicule s'il était en roue libre est inférieure à l'accélération minimale ou supérieure à l'accélération maximale, ou l'estimée de durée maximale de roulage en roue libre est inférieure à un premier seuil choisi ; - ses moyens de décision peuvent être propres à déterminer une consigne d'accélération égale à l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur lorsque l'estimée d'accélération qu'aurait le véhicule s'il était en frein moteur est inférieure à l'accélération maximale, suffisante pour demeurer dans le futur inférieure à l'accélération maximale, et supérieure à la consigne d'accélération nominale, et l'estimée d'accélération qu'aurait le véhicule s'il était en roue libre est inférieure à l'accélération minimale ou supérieure à l'accélération maximale ou l'estimée de durée maximale de roulage en roue libre est inférieure à un premier seuil choisi.
L'invention propose également un véhicule, éventuellement de type automobile, et comprenant, d'une part, un groupe motopropulseur (éventuellement couplé à une boîte de vitesses), et, d'autre part, un dispositif de régulation du type de celui présenté ci-avant.
Par exemple, le véhicule comprend un calculateur de supervision propre à superviser le fonctionnement de son groupe motopropulseur et comprenant les moyens de décision du dispositif de régulation, et un calculateur auxiliaire propre à déterminer des informations d'environnement à partir de données acquises par des moyens d'acquisition embarqués et/ou transmises par voie d'ondes par des véhicules voisins et/ou des stations d'informations voisines et comprenant les moyens de calcul du dispositif de régulation.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et du dessin annexé, sur lequel l'unique figure illustre schématiquement et fonctionnellement un exemple de véhicule à groupe motopropulseur thermique et comportant un exemple de réalisation d'un dispositif de régulation selon l'invention.
L'invention a notamment pour but de proposer un dispositif de régulation DR destiné à réguler de façon adaptative la vitesse d'un véhicule V comprenant un groupe motopropulseur (ou GMP), éventuellement couplé à une boîte de vitesses BV.
On considère dans ce qui suit, à titre d'exemple non limitatif, que le véhicule V est de type automobile. Il s'agit par exemple d'une voiture. Mais l'invention n'est pas limitée à ce type de véhicule. Elle concerne en effet tout véhicule ayant un groupe motopropulseur (ou GMP) destiné à produire du couple, par exemple pour faire tourner des roues, et des moyens d'acquisition propres à fournir des informations relatives à leur environnement (en particulier dans une partie avant). Par conséquent, l'invention concerne au moins les véhicules terrestres (voitures, motocyclettes, véhicules utilitaires, cars (ou bus), camions).
Il est important de noter que l'invention concerne aussi bien les véhicules à groupe motopropulseur de type exclusivement thermique (et donc ne comprenant qu'au moins un moteur thermique), que les véhicules à groupe motopropulseur de type hybride (et donc comprenant au moins un moteur thermique et au moins une machine motrice non thermique), et les véhicules à groupe motopropulseur à machine(s) motrice(s) non thermique(s).
On a schématiquement représenté sur l'unique figure, à titre illustratif, un véhicule V comprenant une chaîne de transmission comportant un groupe motopropulseur (ou GMP) de type thermique, un calculateur de supervision CS propre à superviser (ou gérer) le fonctionnement du GMP, un embrayage EM, une boîte de vitesses robotisée BV, et un dispositif de régulation DR selon l'invention.
Le GMP thermique comprend notamment un moteur thermique MT.
On entend ici par « moteur thermique MT » un moteur consommant du carburant ou des produits chimiques.
Le moteur thermique MT comprend un vilebrequin (non représenté) qui est solidarisé fixement à un arbre moteur afin d'entraîner ce dernier en rotation.
La boîte de vitesses BV peut être de tout type. Ainsi, il peut s'agir d'une boîte de vitesses manuelle (non pilotée), d'une boîte de vitesses automatique (ou BVA), ou d'une boîte de vitesses manuelle pilotée (BVMP ou DCT (boîte à double embrayage)).
Cette boîte de vitesses BV comprend au moins un arbre d'entrée (ou primaire) destiné à recevoir le couple produit par le moteur thermique MT via l'embrayage EM, et un arbre de sortie destiné à recevoir ce couple via l'arbre d'entrée afin de le communiquer à un arbre de transmission auquel il est couplé et qui est couplé indirectement aux roues (ici du train avant TV du véhicule V), de préférence via un différentiel avant DV. Par exemple, l'embrayage EM comprend un volant moteur solidarisé fixement à l'arbre moteur et un disque d'embrayage solidarisé fixement à l'arbre d'entrée de la boîte de vitesses BV.
La chaîne de transmission comprend également une machine électrique AD (démarreur ou alterno-démarreur) qui est couplée au moteur thermique MT, éventuellement via une roue libre, notamment pour le lancer lors d'un démarrage. Cette machine électrique AD est également couplée à des moyens de stockage d'énergie MS, qui sont, par exemple, agencés sous la forme d'une batterie, par exemple de type très basse tension (par exemple 12 V, 24 V ou 48V).
Les fonctionnements du moteur thermique MT, de l'embrayage EM et de la machine électrique AD sont, ici, contrôlés par le calculateur de supervision CS.
On notera que lorsque le véhicule V comprend une chaîne de transmission à groupe motopropulseur (ou GMP) de type hybride, ce dernier comprend également une machine motrice couplée à des moyens de stockage d'énergie, éventuellement via un onduleur de type DC/DC. On entend ici par « machine motrice » une machine ou un moteur non thermique destiné(e) à fournir du couple pour déplacer un véhicule, soit seul(e), soit en complément d'un moteur thermique. Par conséquent, il pourra par exemple s'agir d'un moteur électrique, d'une machine hydraulique, d'une machine pneumatique ou d'un volant d'inertie. On notera que cette machine motrice peut ne pas être couplée au moteur thermique MT ou bien peut être continuellement accouplée au moteur thermique MT (et dans ce cas elle forme avec ce dernier (MT) un bloc indécouplable).
De plus, la chaîne de transmission hybride doit également comprendre un moyen de couplage/découplage propre à coupler/découpler la machine motrice à un/d'un arbre de transmission afin de communiquer le couple qu'il produit grâce à l'énergie stockée dans les moyens de stockage associés. Cet arbre de transmission est chargé d'entraîner en rotation les roues (par exemple du train arrière TR du véhicule V), de préférence via un différentiel arrière. Ce moyen de couplage/découplage est par exemple un mécanisme à crabots ou un embrayage ou encore un convertisseur de couple hydraulique.
Comme illustré un dispositif de régulation DR, selon l'invention, comprend au moins des moyens de calcul MC et des moyens de décision MD.
Les moyens de calcul MC sont agencés de manière à déterminer, en fonction d'une consigne de vitesse et d'informations relatives à l'environnement du véhicule V, des accélérations minimale amir,(t) et maximale amax(t) pour l'instant t en cours, et une consigne d'accélération nominale can0m(t), comprise entre ces accélérations minimale amir,(t) et maximale amax(t). Ils sont également agencés pour estimer une durée maximale de roulage du véhicule V s'il était en roue libre drmax et si un fonctionnement en frein moteur du véhicule V est suffisant pour que l'accélération de ce dernier (V) demeure inférieure à l'accélération maximale amax(t) (si le véhicule était en frein moteur), en fonction d'une estimée de l'accélération qu'aurait le véhicule V s'il était en roue libre eari(t) et d'une estimée de l'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t), éventuellement compte-tenu du rapport en cours d'engagement dans son éventuelle boîte de vitesses BV.
On notera que si le frein moteur pur n'est pas suffisant pour que l'accélération du véhicule V demeure inférieure à l'évolution de l'accélération maximale amax(t), cela signifie qu'il va falloir en plus freiner hydrauliquement à un moment donné.
Les informations relatives à l'environnement du véhicule V sont fournies par un calculateur auxiliaire CA qui est chargé, au moins, d'analyser l'environnement du véhicule V. Ce calculateur auxiliaire CA détermine ces informations d'environnement à partir de données qui sont acquises par des moyens d'acquisition MA embarqués dans le véhicule V et/ou transmises par voie d'ondes au véhicule V par des véhicules voisins (fonction Car2X) et/ou des stations d'informations voisines.
Les moyens d'acquisition MA peuvent, par exemple, comprendre au moins une caméra et/ou au moins un laser de balayage et/ou au moins un radar ou lidar. Ils sont au moins chargés d'analyser l'environnement situé devant le (ou en amont du) véhicule V.
Par exemple, ces informations d'environnement peuvent être représentatives de la distance en cours séparant le véhicule V d'un véhicule situé devant lui (ou en amont) ou derrière lui (ou en aval), ou de la vitesse en cours d'un véhicule situé en amont ou en aval du véhicule V, ou de l'accélération en cours d'un véhicule situé en amont ou en aval du véhicule V, ou de l'état d'activation d'une fonction de signalisation assurée par des blocs optiques d'un véhicule situé en amont ou en aval du véhicule V (et notamment un changement de direction (ou clignotant)), ou d'une limitation de vitesse, ou de la présence d'un virage ou d'un rond-point ou d'un véhicule en amont.
La consigne de vitesse utilisée par les moyens de calcul MC est fournie par le conducteur du véhicule V ou par le calculateur de supervision CS (et dans ce cas elle est déterminée en fonction, notamment, des informations d'environnement dont il dispose).
Les estimées d'accélération eari(t) et eafm(t) peuvent, par exemple et comme illustré non limitativement, être déterminées par un premier module d'estimation ME1 , qui peut, éventuellement, faire partie du dispositif de régulation DR. Cette détermination peut, par exemple, se faire en utilisant en entrée le couple en cours fourni par le GMP, la vitesse de rotation des roues du véhicule V, la pression du maître-cylindre (ou PMC) du système de freinage, une estimée de la pente de la voie de circulation empruntée par le véhicule V à l'instant t considéré, le rapport de boîte de vitesses engagé, une estimée de la masse du véhicule V, et des paramètres d'architecture du véhicule V. On notera que ce premier module d'estimation ME1 pourrait également calculer en interne une éventuelle variation des efforts aérodynamiques et de la résistance au roulement (induits, par exemple, par un coffre de toit).
On notera que ce premier module d'estimation ME1 peut être, également et éventuellement, agencé de manière à déterminer une estimée de la loi de route hors pente du véhicule V, laquelle est représentative des efforts qui s'opposent au déplacement du véhicule V (frottements aérodynamiques et résistance au roulement). Cette estimée de la loi de route hors pente peut être utile aux moyens de décision MD lorsque les accélérations minimale, nominale, et maximale nécessitent toutes les trois un couple à la roue positif, et que l'on désire choisir l'accélération la plus « efficiente ».
Dans l'exemple illustré non limitativement sur l'unique figure, le premier module d'estimation ME1 est implanté dans le calculateur de supervision CS. Mais cela n'est pas obligatoire. En effet, il pourrait être implanté dans un autre calculateur embarqué dans le véhicule V, comme par exemple le calculateur du système de freinage ou le calculateur auxiliaire CA, ou bien pourrait lui-même constituer un calculateur. Par conséquent, le premier module d'estimation ME1 peut être réalisé sous la forme de modules logiciels (ou informatiques ou encore « software »), ou bien d'une combinaison de circuits électroniques (ou « hardware ») et de modules logiciels.
L'estimée de la masse du véhicule V peut, par exemple et comme illustré non limitativement, être déterminée par un second module d'estimation ME2, qui peut, éventuellement, faire partie du dispositif de régulation DR. Cette détermination peut, par exemple, se faire en fonction du couple en cours fourni par le GMP, de la vitesse de rotation des roues du véhicule V, de la pression du maître-cylindre (ou PMC) du système de freinage, et de l'estimée de la pente de la voie de circulation empruntée par le véhicule V à l'instant t considéré. Cette détermination est notamment utile lorsque le véhicule V est chargé et/ou tracte une remorque ou une caravane.
Dans l'exemple illustré non limitativement sur l'unique figure, le second module d'estimation ME2 est implanté dans le calculateur de supervision CS. Mais cela n'est pas obligatoire. En effet, il pourrait être implanté dans un autre calculateur embarqué dans le véhicule V, comme par exemple le calculateur auxiliaire CA ou le calculateur du système de freinage, ou bien pourrait lui-même constituer un calculateur. Par conséquent, le second module d'estimation ME2 peut être réalisé sous la forme de modules logiciels (ou informatiques ou encore « software »), ou bien d'une combinaison de circuits électroniques (ou « hardware ») et de modules logiciels. Egalement dans l'exemple illustré non limitativement sur l'unique figure, les moyens de calcul MC sont implantés dans le calculateur auxiliaire CA. Cela est avantageux car les informations d'environnement sont déterminées dans ce calculateur auxiliaire CA, et donc cela permet de limiter les échanges de données via un éventuel réseau de communication du véhicule V, éventuellement de type multiplexé. Mais cela n'est pas obligatoire. En effet, ils pourraient être implantés dans un autre calculateur embarqué dans le véhicule V, et éventuellement dédié, ou bien pourraient eux-mêmes constituer un calculateur. Par conséquent, les moyens de calcul MC peuvent être réalisés sous la forme de modules logiciels (ou informatiques ou encore « software »), ou bien d'une combinaison de circuits électroniques (ou « hardware ») et de modules logiciels.
On notera que les moyens de calcul MC peuvent être également agencés pour estimer une évolution de la vitesse du véhicule V s'il roulait en roue libre evri, et une évolution de la vitesse d'un autre véhicule placé en amont du véhicule V compte-tenu de la dynamique en cours de ce dernier evv amont, en fonction des paramètres précités dont il dispose. Dans ce cas, les moyens de calcul MC sont agencés pour estimer la durée maximale de roulage en roue libre drmax en fonction de ces estimées d'évolutions de vitesse evr| et evv amont-
Par exemple, les moyens de calcul MC peuvent être agencés pour estimer, en complément, des accélérations minimale eamin et maximale eamax qu'ils demanderaient en présence des estimées des évolutions de vitesse evr! et evv amont, puis pour estimer la durée maximale de roulage en roue libre drmax en fonction de l'écart qui sépare l'instant en cours (t) d'un instant où l'estimée d'accélération qu'aurait le véhicule V s'il était en roue libre eari(t) devient égale à cette estimée d'accélération minimale eamir, ou cette estimée d'accélération maximale eamax-
Les moyens de calcul MC assurent donc une fonction de prédiction du « futur ». En effet, en prédisant l'évolution de la vitesse du véhicule V s'il était en roue libre, et l'évolution de la vitesse d'un véhicule amont compte-tenu de la dynamique de ce dernier à l'instant t (par exemple sa distance, sa vitesse, son accélération), ils peuvent prédire quelles estimées d'accélération minimale eamir, et maximale eamax ils demanderaient. Par conséquent, ils peuvent déterminer la durée maximale de roulage en roue libre drmax en fonction de l'instant où l'estimée d'accélération en roue libre eari(t) devient égale à l'estimée d'accélération minimale eamin ou maximale eamax-
On notera que les moyens de calcul MC peuvent être également agencés pour estimer une évolution de la vitesse du véhicule V s'il roulait en frein moteur evfm, et une évolution de la vitesse d'un autre véhicule placé en amont du véhicule V compte-tenu de la dynamique en cours de ce dernier evv amont, en fonction des paramètres précités dont il dispose. Dans ce cas, les moyens de calcul MC sont agencés pour estimer si à terme il serait nécessaire de décélérer davantage que le frein moteur.
Par exemple, les moyens de calcul MC peuvent être agencés pour estimer, en complément, des accélérations minimale eamir, et maximale eamax qu'ils demanderaient en présence des estimées des évolutions de vitesse evfm et evv amont, puis pour estimer si à terme il serait nécessaire de décélérer davantage que le frein moteur si dans le futur l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t) devenait égale à cette estimée d'accélération maximale eamax-
Les moyens de calcul MC peuvent donc assurer une fonction de prédiction du « futur ». En effet, en prédisant l'évolution de la vitesse du véhicule V s'il était en frein moteur, et l'évolution de la vitesse d'un véhicule amont compte-tenu de la dynamique de ce dernier à l'instant t (par exemple sa distance, sa vitesse, son accélération), ils peuvent prédire quelles estimées d'accélération minimale eamir, et maximale eamax ils demanderaient. Par conséquent, ils peuvent estimer si à terme il serait nécessaire de décélérer davantage que le frein moteur si à partir de l'instant t le véhicule V était en frein moteur.
Les moyens de décision MD sont propres à déterminer une consigne d'accélération ca(t) propre à réguler de façon adaptative la vitesse du véhicule V en fonction de la consigne d'accélération nominale can0m(t), des accélérations minimale amir,(t) et maximale amax(t), de l'estimée de durée maximale de roulage en roue libre drmax et de la suffisance de fonctionnement en frein moteur. Grâce à l'invention il est désormais possible de réaliser les traitements dans deux modules distincts qui peuvent, par exemple, être intégrés dans deux calculateurs distincts. Ainsi, l'un de ces modules peut, par exemple, faire partie du calculateur CA qui est en charge de la perception de l'environnement (indépendant du type de la chaîne de transmission), et l'autre module peut, par exemple, faire partie du calculateur CS qui est en charge de la supervision du GMP (qui ne gère que la dynamique longitudinale en prenant en compte un minimum d'entrées venant des capteurs / calculateurs d'environnement).
Dans l'exemple illustré non limitativement sur l'unique figure, les moyens de décision MD sont implantés dans le calculateur de supervision CS. Cela est avantageux car ce dernier (CS) est celui qui dispose de la connaissance la plus importante de la chaîne de traction et donc dispose des données utiles en matière de consommation d'énergie, notamment, ce qui permet de limiter les échanges de données via l'éventuel réseau de communication du véhicule V. Mais cela n'est pas obligatoire. En effet, ils pourraient être implantés dans un autre calculateur embarqué dans le véhicule V, comme par exemple le système de freinage, qui a en général, pour ses propres besoins, une connaissance relative de la chaîne de transmission, ou bien pourraient eux-mêmes constituer un calculateur. Par conséquent, les moyens de décision MD peuvent être réalisés sous la forme de modules logiciels (ou informatiques ou encore « software »), ou bien d'une combinaison de circuits électroniques (ou « hardware ») et de modules logiciels.
De nombreux exemples non limitatifs de décision peuvent être pris par le dispositif de régulation DR selon la situation de vie rencontrée. Sept de ces exemples et les situations de vie associées sont décrits ci-après à titre illustratif et donc non limitatif. On notera que ces exemples correspondent, notamment, à un GMP de type exclusivement thermique. Par conséquent, l'homme de l'art adaptera ces exemples au cas où le GMP est de type hybride ou bien ne comprend qu'une machine motrice non thermique (notamment pour prendre en compte une éventuelle capacité du véhicule à récupérer du couple de freinage). Dans une première situation de vie, l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t) est supérieure à l'accélération maximale amax(t). Dans ce cas, les moyens de décision MD peuvent être propres à déterminer une consigne d'accélération ca(t) qui est égale à l'accélération maximale amax(t). Il faut donc freiner hydrauliquement en plus de faire du frein moteur pur.
Dans une deuxième situation de vie, l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t) est inférieure à l'accélération maximale amax(t) mais est insuffisante pour demeurer dans le futur inférieure à l'accélération maximale amax(t), et l'accélération minimale amir,(t) est supérieure à l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t). Dans ce cas, les moyens de décision MD peuvent être propres à déterminer une consigne d'accélération ca(t) qui est égale à l'accélération minimale amin(t).
Dans une troisième situation de vie, l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t) est inférieure à l'accélération maximale amax(t) mais est insuffisante pour demeurer dans le futur inférieure à l'accélération maximale amax(t), et l'accélération minimale amin(t) est inférieure à l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t). Dans ce cas, les moyens de décision MD peuvent être propres à déterminer une consigne d'accélération ca(t) qui est égale à l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t).
Dans une quatrième situation de vie, l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t) est inférieure à l'accélération maximale amax(t) et suffisante pour demeurer dans le futur inférieure à l'accélération maximale amax(t), l'estimée d'accélération qu'aurait le véhicule V s'il était en roue libre eari(t) est supérieure à l'accélération minimale amin(t) et inférieure à l'accélération maximale amax(t), et l'estimée de durée maximale de roulage en roue libre drmax (avant que l'accélération en roue libre ne devienne supérieure à l'accélération maximale amax(t) ou inférieure à l'accélération minimale amin(t)) est supérieure à un premier seuil choisi s1 . Dans ce cas, les moyens de décision MD peuvent être propres à déterminer une consigne d'accélération ca(t) qui est égale à l'estimée d'accélération qu'aurait le véhicule V s'il était en roue libre eari(t). La chaîne de transmission est alors ouverte.
Par exemple, ce premier seuil choisi s1 peut être compris entre deux et quatre secondes. Ainsi, il peut être égal à trois secondes.
Dans une cinquième situation de vie, qui est un complément de la quatrième, l'estimée de durée maximale de roulage en roue libre drmax est de surcroît supérieure à un second seuil choisi s2 qui est supérieur au premier seuil choisi s1 (soit s2 > s1 ). Dans ce cas, les moyens de décision MD peuvent être propres à ordonner un arrêt temporaire de fonctionnement du groupe motopropulseur, pour éviter une consommation inutile d'énergie.
Par exemple, ce second seuil choisi s2 peut être compris entre quatre et six secondes. Ainsi, il peut être égal à cinq secondes.
Dans une sixième situation de vie, l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t) est inférieure à l'accélération maximale amax(t), suffisante pour demeurer dans le futur inférieure à l'accélération maximale amax(t), et inférieure à la consigne d'accélération nominale can0m(t), et l'estimée d'accélération qu'aurait le véhicule V s'il était en roue libre eari(t) est inférieure à l'accélération minimale amin(t) ou supérieure à l'accélération maximale amax(t), ou l'estimée de durée maximale de roulage en roue libre drmax est inférieure au premier seuil choisi s1 . Dans ce cas, les moyens de décision MD peuvent être propres à déterminer une consigne d'accélération ca(t) qui est égale à la consigne d'accélération nominale can0m(t).
Dans une septième situation de vie, l'estimée d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t) est supérieure à l'accélération maximale amax(t), suffisante pour demeurer dans le futur inférieure à l'accélération maximale amax(t), et supérieure à la consigne d'accélération nominale can0m(t) et l'estimée d'accélération qu'aurait le véhicule V s'il était en roue libre eari(t) est inférieure à l'accélération minimale amin(t) ou supérieure à l'accélération maximale amax(t), ou l'estimée de durée maximale de roulage en roue libre drmax est inférieure au premier seuil choisi s1 . Dans ce cas, les moyens de décision MD peuvent être propres à déterminer une consigne d'accélération ca(t) qui est égale à la consigne d'accélération qu'aurait le véhicule V s'il était en frein moteur eafm(t).
On notera que dans ce qui précède on prédit le futur en faisant l'hypothèse :
5 - que l'accélération en roue libre dans le futur ne varie pas, c'est-à-dire que l'on néglige la diminution des effets aérodynamiques avec la vitesse, car la vitesse va varier lentement si on fait de la roue libre (du fait que l'on ne prédit pas le futur à trente secondes), et que la pente de la voie de circulation empruntée par le véhicule V ne variera pas à court terme, et î o - que le surcroît de décélération en frein moteur ne varie pas, c'est-à-dire que l'on néglige l'effet d'un éventuel rétrogradage dans le futur.

Claims

REVENDICATIONS
1 . Dispositif (DR) de régulation adaptative de la vitesse d'un véhicule (V) comprenant un groupe motopropulseur, ledit dispositif (DR) comprenant des moyens de calcul (MC) propres à déterminer pour ledit véhicule (V), en fonction d'une consigne de vitesse et/ou d'informations relatives à un environnement dudit véhicule (V), une consigne d'accélération nominale comprise entre des accélérations minimale et maximale, caractérisé en ce que lesdits moyens de calcul (MC) sont également propres à estimer une durée maximale de roulage dudit véhicule (V) en roue libre et si un fonctionnement en frein moteur est suffisant pour que l'accélération dudit véhicule (V) demeure inférieure à ladite accélération maximale, en fonction d'estimées de l'accélération qu'aurait ledit véhicule (V) s'il était respectivement en roue libre et en frein moteur, éventuellement compte-tenu d'un rapport en cours d'engagement dans une éventuelle boîte de vitesses (BV), et en ce qu'il comprend en outre des moyens de décision (MD) propres à déterminer une consigne d'accélération propre à réguler de façon adaptative ladite vitesse en fonction de ladite consigne d'accélération nominale, desdites accélérations minimale et maximale, de ladite estimée de durée maximale de roulage en roue libre et de ladite suffisance de fonctionnement en frein moteur.
2. Dispositif selon la revendication 1 , caractérisé en ce que lesdits moyens de calcul (MC) sont également propres à estimer une évolution de ladite vitesse du véhicule (V) s'il roulait en roue libre, et une évolution d'une vitesse d'un autre véhicule placé en amont dudit véhicule (V) compte-tenu d'une dynamique en cours de ce premier, puis à estimer ladite durée maximale de roulage en roue libre en fonction desdites estimées d'évolutions de vitesse.
3. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que lesdits moyens de décision (MD) sont propres à déterminer une consigne d'accélération égale à ladite accélération maximale lorsque ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur est supérieure à ladite accélération maximale.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que lesdits moyens de décision (MD) sont propres à déterminer une consigne d'accélération égale à ladite accélération minimale lorsque i) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur est inférieure à ladite accélération maximale mais est insuffisante pour demeurer dans le futur inférieure à ladite accélération maximale, et ii) ladite accélération minimale est supérieure à ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que lesdits moyens de décision (MD) sont propres à déterminer une consigne d'accélération égale à ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur lorsque i) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur est inférieure à ladite accélération maximale mais est insuffisante pour demeurer dans le futur inférieure à ladite accélération maximale, et ii) ladite accélération minimale est inférieure à ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que lesdits moyens de décision (MD) sont propres à déterminer une consigne d'accélération égale à ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en roue libre lorsque i) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur est inférieure à ladite accélération maximale et suffisante pour demeurer dans le futur inférieure à ladite accélération maximale, ii) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en roue libre est supérieure à ladite accélération minimale et inférieure à ladite accélération maximale, et iii) ladite estimée de durée maximale de roulage en roue libre est supérieure à un premier seuil choisi.
7. Dispositif selon la revendication 6, caractérisé en ce que lesdits moyens de décision (MD) sont propres en outre à ordonner un arrêt temporaire de fonctionnement dudit groupe motopropulseur lorsque ladite estimée de durée maximale de roulage en roue libre est supérieure à un second seuil choisi qui est supérieur audit premier seuil choisi.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que lesdits moyens de décision (MD) sont propres à déterminer une consigne d'accélération égale à ladite consigne d'accélération nominale lorsque i) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur est inférieure à ladite accélération maximale, suffisante pour demeurer dans le futur inférieure à ladite accélération maximale, et inférieure à ladite consigne d'accélération nominale, et ii) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en roue libre est inférieure à ladite accélération minimale ou supérieure à ladite accélération maximale, ou ladite estimée de durée maximale de roulage en roue libre est inférieure à un premier seuil choisi.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que lesdits moyens de décision (MD) sont propres à déterminer une consigne d'accélération égale à ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur lorsque i) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en frein moteur est inférieure à ladite accélération maximale, suffisante pour demeurer dans le futur inférieure à ladite accélération maximale, et supérieure à ladite consigne d'accélération nominale, et ii) ladite estimée d'accélération qu'aurait ledit véhicule (V) s'il était en roue libre est inférieure à ladite accélération minimale ou supérieure à ladite accélération maximale ou ladite estimée de durée maximale de roulage en roue libre est inférieure à un premier seuil choisi.
10. Véhicule (V) comprenant un groupe motopropulseur, caractérisé en ce qu'il comprend en outre un dispositif de régulation (DR) selon l'une des revendications précédentes.
PCT/FR2017/050052 2016-01-27 2017-01-10 Dispositif de régulation adaptative de la vitesse d'un véhicule, à moyens de décision WO2017129876A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650641 2016-01-27
FR1650641A FR3046979B1 (fr) 2016-01-27 2016-01-27 Dispositif de regulation adaptative de la vitesse d'un vehicule, a moyens de decision

Publications (1)

Publication Number Publication Date
WO2017129876A1 true WO2017129876A1 (fr) 2017-08-03

Family

ID=55862973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/050052 WO2017129876A1 (fr) 2016-01-27 2017-01-10 Dispositif de régulation adaptative de la vitesse d'un véhicule, à moyens de décision

Country Status (2)

Country Link
FR (1) FR3046979B1 (fr)
WO (1) WO2017129876A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2556652A (en) * 2016-09-12 2018-06-06 Ford Global Tech Llc Autonomous pulse and glide system
FR3095630A1 (fr) * 2019-04-30 2020-11-06 Psa Automobiles Sa Estimation de l’accélération en frein moteur d’un véhicule, pour le contrôle de l’ouverture/fermeture de la chaîne de transmission

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034411A1 (de) * 2006-07-25 2008-01-31 Robert Bosch Gmbh Vorrichtung zur Geschwindigkeits- und Anhalteregelung in Kraftfahrzeugen
DE102011109039A1 (de) * 2011-07-30 2012-01-05 Daimler Ag Verfahren zum Betrieb eines Fahrzeuges
WO2012169962A1 (fr) * 2011-06-10 2012-12-13 Scania Cv Ab Procédé et système pour un véhicule
EP2540589A2 (fr) * 2011-07-01 2013-01-02 WABCO GmbH Procédé et dispositif de commande destinés à la commande ou au réglage de systèmes de véhicules
DE102012213229A1 (de) * 2012-07-27 2014-01-30 Robert Bosch Gmbh Verzögerungssteuerung für ein Kraftfahrzeug
DE102012224170A1 (de) * 2012-08-29 2014-03-06 Hyundai Motor Company Gerät und Verfahren zur Fahrsteuerung eines Fahrzeugs unter Freilaufbedingungen
WO2015120872A1 (fr) * 2014-02-15 2015-08-20 Audi Ag Procédé de fonctionnement d'un système d'assistance au conducteur dans le cas d'un processus de roulement par inertie et véhicule automobile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034411A1 (de) * 2006-07-25 2008-01-31 Robert Bosch Gmbh Vorrichtung zur Geschwindigkeits- und Anhalteregelung in Kraftfahrzeugen
WO2012169962A1 (fr) * 2011-06-10 2012-12-13 Scania Cv Ab Procédé et système pour un véhicule
EP2540589A2 (fr) * 2011-07-01 2013-01-02 WABCO GmbH Procédé et dispositif de commande destinés à la commande ou au réglage de systèmes de véhicules
DE102011109039A1 (de) * 2011-07-30 2012-01-05 Daimler Ag Verfahren zum Betrieb eines Fahrzeuges
DE102012213229A1 (de) * 2012-07-27 2014-01-30 Robert Bosch Gmbh Verzögerungssteuerung für ein Kraftfahrzeug
DE102012224170A1 (de) * 2012-08-29 2014-03-06 Hyundai Motor Company Gerät und Verfahren zur Fahrsteuerung eines Fahrzeugs unter Freilaufbedingungen
WO2015120872A1 (fr) * 2014-02-15 2015-08-20 Audi Ag Procédé de fonctionnement d'un système d'assistance au conducteur dans le cas d'un processus de roulement par inertie et véhicule automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2556652A (en) * 2016-09-12 2018-06-06 Ford Global Tech Llc Autonomous pulse and glide system
FR3095630A1 (fr) * 2019-04-30 2020-11-06 Psa Automobiles Sa Estimation de l’accélération en frein moteur d’un véhicule, pour le contrôle de l’ouverture/fermeture de la chaîne de transmission

Also Published As

Publication number Publication date
FR3046979A1 (fr) 2017-07-28
FR3046979B1 (fr) 2018-02-02

Similar Documents

Publication Publication Date Title
WO2017134373A1 (fr) Procédé et dispositif de contrôle de la fonction de récupération d'énergie de freinage d'un véhicule hybride dans une pente descendante
FR3008369A1 (fr) Commande du couple transmis a une roue motrice d'un vehicule a motorisation hybride
JP2016144977A (ja) 車両制御装置
WO2017129876A1 (fr) Dispositif de régulation adaptative de la vitesse d'un véhicule, à moyens de décision
WO2014188103A1 (fr) Procédé et dispositif de contrôle d'un mode de marche rampante d'un véhicule en fonction de sa vitesse et du freinage
FR2996510A1 (fr) Procede et dispositif d’aide aux decisions de couplage/ decouplage d'une machine d'un vehicule hybride, en fonction du couple offert par le moteur thermique
JP2017030595A (ja) ハイブリッド車両及びその制御方法
WO2021111051A1 (fr) Véhicule à contrôle de répartition de couple en présence d'une instabilité, et procédé de contrôle associé
EP3672819B1 (fr) Contrôle d'instants de déclenchement d'une marche rampante par des moteur thermique et machine motrice non-thermique d'un véhicule hybride
JP2016175496A (ja) ハイブリッド車両及びその制御方法
JP6686384B2 (ja) ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法
WO2017140968A1 (fr) Dispositif de détermination de paramètres pour un système de régulation adaptative de la vitesse d'un véhicule
WO2011036383A1 (fr) Procede de gestion de l'accouplement du moteur thermique sur un vehicule automobile hybride
FR3106797A1 (fr) Vehicule a gmp hybride et controle du frein moteur, et procede de controle associe
FR3022352A1 (fr) Dispositif et procede de controle d'un mode de marche rampante d'un vehicule en fonction de sa vitesse en cours et de l'intensite du freinage en cours
WO2020109679A1 (fr) Procédé et dispositif de contrôle de décélération à phase mixte, pour un véhicule à conduite automatisée et machine motrice non-thermique
FR3053300B1 (fr) Controle de l'etat de charge d'une batterie de machine motrice electrique d'une chaine de transmission hybride paralelle de vehicule
EP3678910B1 (fr) Procédé de contrôle de fourniture d'un couple complémentaire par une machine motrice non-thermique d'un véhicule hybride en fonction du potentiel d'accélération
EP4061680A1 (fr) Véhicule à gmp hybride à découplages de la machine motrice thermique fonction des interdictions de changement de rapport
WO2021048475A1 (fr) Contrôle du seuil de couple de démarrage thermique d'un groupe motopropulseur hybride d'un véhicule sur un trajet
JP2016175500A (ja) ハイブリッド車両及びその制御方法
FR3033459A1 (fr) Procede de regeneration electrique d'un vehicule automobile pour une phase de lacher de pied
WO2017129875A1 (fr) Procédé et dispositif de contrôle du rapport engagé dans une boîte de vitesses robotisée d'un véhicule à fonction de régulation de vitesse adaptative
WO2023148436A1 (fr) Détermination du couple demandé à une machine motrice électrique d'un véhicule dans un mode de déplacement dégradé
FR3137644A1 (fr) Surveillance multi-conditions d’une fonction de stationnement automatique d’un véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17702681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17702681

Country of ref document: EP

Kind code of ref document: A1