WO2017128187A1 - 一种短距离光学放大模组、放大方法及放大系统 - Google Patents

一种短距离光学放大模组、放大方法及放大系统 Download PDF

Info

Publication number
WO2017128187A1
WO2017128187A1 PCT/CN2016/072532 CN2016072532W WO2017128187A1 WO 2017128187 A1 WO2017128187 A1 WO 2017128187A1 CN 2016072532 W CN2016072532 W CN 2016072532W WO 2017128187 A1 WO2017128187 A1 WO 2017128187A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization direction
optical image
optical
linear polarization
imaging lens
Prior art date
Application number
PCT/CN2016/072532
Other languages
English (en)
French (fr)
Inventor
李刚
汤伟平
Original Assignee
深圳多哚新技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳多哚新技术有限责任公司 filed Critical 深圳多哚新技术有限责任公司
Priority to EP16887074.9A priority Critical patent/EP3410176A4/en
Priority to PCT/CN2016/072532 priority patent/WO2017128187A1/zh
Priority to JP2018539330A priority patent/JP6641021B2/ja
Priority to KR1020187024650A priority patent/KR102083468B1/ko
Priority to US16/073,415 priority patent/US11604349B2/en
Publication of WO2017128187A1 publication Critical patent/WO2017128187A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the invention relates to the technical field of optical module design, in particular to a short-distance optical amplifying module, an amplifying method and an amplifying system.
  • the structure of the existing short-distance optical amplifying module is as shown in FIG. 2, and includes a display screen, a first phase retarder, a partially transmissive partial reflection lens, a second phase retarder and a reflective polarizer.
  • the light is transmitted from the side of the first phase retarder through the partially transmissive portion to the curved lens, and then transmitted through the reflective polarizer, which causes the light to be dispersed during transmission.
  • This dispersive light will cause light loss, which in turn affects the quality of light reflection imaging, and it is difficult to meet the high-definition quality requirements.
  • the invention provides a solution to solve the problem that the short-distance optical amplifying module of the prior art affects the imaging quality of the optical image due to the occurrence of dispersion during light propagation.
  • a short-distance optical amplifying module comprising a reflective polarizing plate, a first phase retarder, an imaging lens, a second phase retarder and an absorbing polarizer arranged in sequence, wherein
  • a reflective polarizer disposed on a transmission path of an optical image having a first linear polarization direction, the reflective polarizer having a transmission direction consistent with a first linear polarization direction;
  • a first phase retarder disposed on a transmission path of the optical image of the transflective polarizer for converting a polarization direction of the optical image from a first linear polarization direction to an elliptical or circular polarization direction;
  • An imaging lens disposed on a transmission path of the optical image having an elliptical or circular polarization direction, the imaging lens including a second optical surface adjacent to the first phase retarder, and a second opposite to the second optical surface
  • An optical surface the first optical surface is an optical surface partially reflected by the transmissive portion, and the imaging lens is configured to amplify an optical image transmitted through the first optical surface
  • a second phase retarder disposed on a side of the first optical surface of the imaging lens for converting a polarization direction of the optical image from an elliptical or circular polarization direction to a second linear polarization direction, the second linear polarization The direction is orthogonal to the first linear polarization direction;
  • An absorbing polarizer disposed on a side of the second phase retarder and away from the imaging lens, and the absorbing polarizer has a transmission direction that coincides with a first linear polarization direction;
  • the optical image sequentially passes through the reflective polarizer, the first phase retarder, the imaging lens, the second phase retarder, and the absorbing polarizer, and the first phase retarder is further used to reflect the imaging lens back.
  • the polarization direction of the optical image is converted from an elliptical or circular polarization direction to a second linear polarization direction, and the reflective polarizer is for reflecting an optical image having a second linear polarization direction transmitted from the first phase retarder.
  • the imaging lens is configured to amplify an optical image reflected by the reflective polarizer, and the second phase retarder is further configured to convert a polarization direction of the enlarged optical image into a non-second linear polarization direction, so as to have the An optical image that is not in the second linear polarization direction passes through the absorbing polarizer.
  • the first phase retarder and the second phase retarder are both quarter-wave plates.
  • the second optical surface of the imaging lens is in contact with the first phase retarder, and the second phase retarder is attached to the absorbing polarizer.
  • the first optical surface of the imaging lens is in contact with the second phase retarder.
  • the reflective polarizer is attached to the first phase retarder.
  • the module further includes an optical display screen for generating an optical image of a first linear polarization direction, the optical display screen being disposed on a side of the reflective polarizing plate and away from the first phase retarder .
  • a short-distance optical amplifying module comprising a reflective polarizing plate, a first phase retarder, an imaging lens, a second phase retarder and an absorbing polarizer arranged in sequence, wherein
  • a reflective polarizer disposed on a transmission path of an optical image having a first linear polarization direction, the reflective polarizer having a transmission direction consistent with a first linear polarization direction;
  • a first phase retarder disposed on a transmission path of the optical image of the transflective polarizer for converting a polarization direction of the optical image from a first linear polarization direction to an elliptical or circular polarization direction;
  • An imaging lens disposed on a transmission path of the optical image having an elliptical or circular polarization direction, the imaging lens including a second optical surface adjacent to the first phase retarder, and a second opposite to the second optical surface
  • An optical surface the first optical surface is an optical surface partially reflected by the transmissive portion, and the imaging lens is configured to amplify an optical image transmitted through the first optical surface
  • a second phase retarder disposed on a side of the first optical surface of the imaging lens for converting a polarization direction of the optical image from an elliptical or circular polarization direction to a first linear polarization direction;
  • An absorbing polarizer disposed on a side of the second phase retarder and away from the imaging lens, and the absorbing polarizer has a transmission direction of a second linear polarization direction, and the second linear polarization direction is The first linear polarization direction is orthogonal;
  • the optical image sequentially passes through the reflective polarizer, the first phase retarder, the imaging lens, the second phase retarder, and the absorbing polarizer, and the first phase retarder is further used to reflect the imaging lens back.
  • the polarization direction of the optical image is converted from an elliptical or circular polarization direction to a second linear polarization direction;
  • the reflective polarizer is for reflecting an optical image having a second linear polarization direction transmitted by the first phase retarder,
  • the imaging lens is configured to amplify an optical image reflected by the reflective polarizer, and the second phase retarder is further configured to convert a polarization direction of the enlarged optical image into a non-first linear polarization direction, so as to have the An optical image that is not in the first linear polarization direction passes through the absorbing polarizer.
  • a short-range optical amplification method comprising the steps of:
  • the optical image of the polarization direction passes through the absorbing polarizer.
  • a short-range optical amplification method comprising the steps of:
  • the polarization direction of the image is converted from an elliptical or circular polarization direction to a non-first linear polarization direction, and the optical image having a non-first linear polarization direction is passed through the absorption-type polarizer.
  • a short-range optical amplifying system comprising a short-distance optical amplifying module, and an optical display for generating an optical image of a first linear polarization direction, wherein the short-distance optical amplifying module comprises:
  • a reflective polarizing layer disposed on a transmission path of the optical image having a first linear polarization direction, the reflective polarization layer having a transmission direction consistent with the first linear polarization direction;
  • a first phase retardation layer disposed on a transmission path of the optical image transmitted through the reflective polarizing layer for converting a polarization direction of the optical image from a first linear polarization direction to an elliptical or circular polarization direction;
  • An imaging lens layer disposed on a transmission path of the optical image having an elliptical or circular polarization direction, the imaging lens including a second optical surface adjacent to the first phase retardation layer, and opposite to the second optical surface a first optical surface, and wherein the first optical surface is an optical surface that is partially transmissive, and the imaging lens layer is configured to magnify an optical image transmitted through the first optical surface;
  • a second phase retardation layer disposed on a side of the first optical surface of the imaging lens layer for converting a polarization direction of the optical image from an elliptical or circular polarization direction to a second linear polarization direction, the second linearity
  • the polarization direction is orthogonal to the first linear polarization direction
  • An absorbing polarizing layer disposed on a side of the second phase retardation layer away from the imaging lens layer, the absorbing polarizing layer having a transmission direction that is consistent with the first linear polarization direction;
  • the optical image sequentially passes through the reflective polarizing layer, the first phase retarding layer, the imaging lens layer, the second phase retarding layer and the absorbing polarizing layer, and the first phase retarding layer is further used to reflect the imaging lens layer back
  • the polarization direction of the optical image is converted from an elliptical or circular polarization direction to a second linear polarization direction, the reflective polarization layer for reflecting an optical image having a second linear polarization direction transmitted by the first phase retardation layer
  • the imaging lens layer is configured to perform reflection amplification on an optical image reflected back by the reflective polarization layer
  • the second phase retardation layer is further configured to convert a polarization direction of the amplified optical image into a non-second linear polarization direction, to An optical image having the non-second linear polarization direction is passed through the absorbing polarizing layer.
  • a short-range optical amplifying system comprising a short-distance optical amplifying module, and an optical display for generating an optical image of a first linear polarization direction, wherein the short-distance optical amplifying module comprises:
  • a reflective polarizing layer disposed on a transmission path of the optical image having a first linear polarization direction, the reflective polarization layer having a transmission direction consistent with the first linear polarization direction;
  • a first phase retardation layer disposed on a transmission path of the optical image transmitted through the reflective polarizing layer for converting a polarization direction of the optical image from a first linear polarization direction to an elliptical or circular polarization direction;
  • An imaging lens layer disposed on a transmission path of the optical image having an elliptical or circular polarization direction
  • the image lens layer includes a second optical surface adjacent to the first phase retardation layer, and a first optical surface opposite the second optical surface, and the first optical surface is an optical surface that is partially transmissive partially reflected.
  • the imaging lens layer is configured to magnify an optical image transmitted through the first optical surface;
  • a second phase retardation layer disposed on a side of the first optical surface of the imaging lens layer for converting a polarization direction of the optical image from an elliptical or circular polarization direction to a first linear polarization direction;
  • An absorbing polarizing layer disposed on a side of the second phase retardation layer away from the imaging lens layer, the absorbing polarizing layer having a transmission direction of a second linear polarization direction, the second linear polarization direction and a first linear polarization Orthogonal direction;
  • the optical image sequentially passes through the reflective polarizing layer, the first phase retarding layer, the imaging lens layer, the second phase retarding layer and the absorbing polarizing layer, and the first phase retarding layer is further used to reflect the imaging lens layer back
  • the polarization direction of the optical image is converted from an elliptical or circular polarization direction to a second linear polarization direction, the reflective polarization layer for reflecting an optical image having a second linear polarization direction transmitted by the first phase retardation layer
  • the imaging lens layer is configured to perform reflection amplification on an optical image reflected back by the reflective polarization layer, and the second phase retardation layer is further configured to convert a polarization direction of the amplified optical image into a non-first linear polarization direction, An optical image having the non-first linear polarization direction is passed through the absorbing polarizing layer.
  • the system further includes an optical device that does not affect the phase delay, the optical device being disposed between the short-range optical amplification module and the optical display.
  • the short-distance optical amplifying module further includes an optical device layer that does not affect the phase delay, and the optical device layer is disposed on the reflective polarizing layer, the first phase retarding layer, the imaging lens layer, and the second phase Between any two of the retardation layer and the absorbing polarizing layer.
  • a short-distance optical amplifying module comprising a reflective polarizing plate, an imaging lens and an absorbing polarizing plate arranged in sequence, wherein the reflective polarizing plate comprises two sides, a first side and a second side opposite the first side, and the first side transmits light, the second side reflects light, and the second side is adjacent to the imaging lens, wherein two sides of the imaging lens One of the faces is a flat portion, and the other face opposed to the flat portion is a curved portion, and the curved portion is adjacent to the absorbing polarizer.
  • the short-distance optical amplifying module provided by the solution the reflective polarizing plate is close to the light source side, so that the polarized light passes through the first phase retarder and then firstly reflects in the imaging lens, and the reflected polarized light passes through the first phase again. After the retarder, a second reflection occurs on the reflective polarizer. After the second reflection, the light is refracted by the imaging lens. After being refracted, the polarized light passes through the second phase retarder and enters the observer's line of sight. Short distance provided by the present invention The optical amplifying module causes the light to be reflected first and then re-refracted.
  • the existing short-distance optical amplifying module is prevented from being refracted and then reflected, so that the refracted light is dispersed and the light is lost.
  • a problem that affects the quality of light imaging. Prevents light from returning to the optical display, reducing light loss and improving light utilization and image quality.
  • One side of the imaging lens of the short-distance optical amplifying module provided by the solution is a second optical surface, which facilitates the second optical surface of the imaging lens to be in contact with the first phase retarder, thereby reducing the light module. Size and volume.
  • the second optical surface of the imaging lens can also reduce the degree of dispersion of the curved surface, ensure the quality of light propagation, and the mirror processing of the second optical surface is less difficult to process and the processing cost compared to the processing of the first optical surface. less.
  • the second phase retarder is bonded to the absorbing polarizer
  • the imaging lens is bonded to the second phase retarder
  • the reflective polarizer is bonded to the first phase retarder, thereby reducing the three sets of components.
  • the spatial distance further shortens the size and volume of the short-range optical amplifying module.
  • the short-distance optical amplifying module provided by the solution further comprises an optical display screen, and the short-distance optical amplifying module realizes optical imaging through the optical display, and is applied to VR (virtual reality) glasses, so that the VR glasses Compared with the existing VR glasses, the size and volume are smaller and the quality is lighter.
  • VR virtual reality
  • the short-distance optical amplifying module provided by the solution further comprises an optical device that does not affect the phase delay, and the optical device increases the practicability and flexibility of the light amplifying module, so that the short-distance optical amplifying module provided by the invention Can be applied to different optical devices and instruments.
  • the optical device can be disposed between any two adjacent components without affecting the phase delay of the optical path, further increasing the practicability and flexibility of the module.
  • the short-distance optical amplifying method provided by the solution uses a short-distance optical amplifying module to make the optical image reflect and finally refract, so that the existing short-distance optical amplifying module is refracted and reflected so that the refracted light is refracted.
  • the occurrence of dispersion causes light loss, which in turn affects the quality of light imaging.
  • the present invention also provides a short-distance optical amplifying system, the system comprising a short-distance optical amplifying module and an optical display screen, wherein the short-distance optical amplifying module is a reflective polarizing layer, a first phase retarding layer,
  • the multi-layer optical module composed of the imaging lens layer, the second phase retardation layer and the absorbing polarizing layer enables the optical module to minimize the size and volume of the optical module without affecting the optical imaging quality.
  • the weight is reduced, and the comfort of wearing the VR glasses using the optical amplifying system is increased.
  • Another short-distance optical amplifying system provided by the present scheme further includes an optical device that does not affect the phase delay, and the position of the optical device can be freely set, further increasing the practicability of the short-distance optical amplifying system.
  • FIG. 1 is a schematic structural diagram of a short-distance optical amplifying module according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a conventional short-distance optical amplifying module
  • FIG. 3 is a schematic structural diagram of another short-distance optical amplifying module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another short-distance optical amplifying module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another short-distance optical amplifying module according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another short-distance optical amplifying module according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a short-distance optical amplifying method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another short-distance optical amplifying method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another short-distance optical amplifying system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another short-distance optical amplifying system according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of still another short-distance optical amplifying module according to an embodiment of the present invention.
  • a short-distance optical amplifying module, an amplifying method, and an amplifying system according to an embodiment of the present invention will be specifically described below with reference to FIG. 1 to FIG.
  • a short-distance optical amplifying module as shown in FIG. 1 is a schematic structural diagram of a short-distance optical amplifying module according to an embodiment of the present invention, where the module includes a reflective polarizing plate 1 and a first arrangement a phase retarder 2, an imaging lens 3, a second phase retarder 4, and an absorbing polarizer 5, wherein
  • the reflective polarizing plate 1 is disposed on a transmission path of an optical image having a first linear polarization direction, and the reflective polarizing plate 1 has a transmission direction that coincides with the first linear polarization direction.
  • the first phase retarder 2 is disposed on a transmission path of the optical image of the transflective polarizer for using the first polarization direction of the optical image
  • the linear polarization direction is converted to an elliptical or circular polarization direction.
  • An imaging lens 3 disposed on a transmission path of the optical image having an elliptical or circular polarization direction, the imaging lens 3 including a second optical surface adjacent to the first phase retarder, and opposite to the second optical surface a first optical surface, the first optical surface being an optical surface partially reflected by the transmissive portion, and the imaging lens is for amplifying the optical image transmitted through the first optical surface.
  • a second phase retarder 4 disposed on one side of the first optical surface of the imaging lens for converting a polarization direction of the optical image from an elliptical or circular polarization direction to a second linear polarization direction, the second linearity
  • the polarization direction is orthogonal to the first linear polarization direction.
  • the absorbing polarizing plate 5 is disposed on the side of the second phase retarder 4 and away from the imaging lens 3, and the absorbing polarizing plate 5 has a transmission direction that coincides with the first linear polarization direction.
  • the optical image sequentially passes through the reflective polarizing plate 1, the first phase retarder 2, the imaging lens 3, the second phase retarder 4, and the absorbing polarizer 5.
  • the first phase retarder 2 is also used.
  • the polarization direction of the optical image reflected back from the imaging lens 3 is converted from an elliptical or circular polarization direction to a second linear polarization direction, and the reflective polarization plate 1 is also used to reflect the transmission from the first phase retarder 2.
  • the reflective polarizing plate 1, the first phase retarder 2, the second phase retarder 4, and the absorbing polarizer 5 in the present embodiment are all prior art, and the polarized light can pass through the phase retarder each time.
  • the reflective polarizer can achieve linear polarization of the polarization direction and its transmission direction, and completely reflect the linear polarization of the polarization direction orthogonal to the transmission direction, and for the circularly polarized light with a certain phase delay.
  • the elliptically polarized light is partially transmitted through.
  • the optical surface reflected by the partially transmissive portion can achieve a certain proportion of light-generating reflection, and the remaining proportion of light is transmitted.
  • the first optical surface is a curved surface
  • the second optical surface is a flat surface
  • a center of curvature of the first optical surface and a second optical surface are located on the same side of the first optical surface.
  • non-second linear polarization direction is preferably a first linear polarization direction.
  • an optical image having a first linear polarization direction (in this embodiment, a direction parallel to the plane of the paper) is transmitted through the reflective polarizer 1, the reflective polarizer 1 having a first linear polarization a direction of uniform transmission direction; after passing through the reflective polarizer, the optical image passes through the first phase retarder 2 and its polarization direction becomes a phase-delayed elliptical polarization direction or a circular polarization direction, in particular, when the first phase is delayed
  • the slice 2 is a quarter-wave plate
  • the polarization direction of the transmitted optical image passes through the first phase retarder 2 and becomes a circular polarization direction, and then a certain proportion of energy is generated through the first optical surface of the imaging lens 3.
  • the reflection is magnified to make the optics
  • the image is first magnified, and the enlargement is a magnification of a large multiple.
  • the polarization direction of the reflected optical image passes through the second phase retarder 4, its polarization direction is converted from an elliptical or circular polarization direction to a second linear polarization direction (In this embodiment, the direction perpendicular to the paper surface); since the second linear polarization direction is orthogonal to the first linear polarization direction, the optical image having the second linear polarization direction reaches the reflective polarizer again.
  • the polarization direction of the optical image is converted into an elliptical or circular polarization direction by the second linear polarization direction.
  • the first phase retarder 2 is a quarter-wave plate
  • the polarization direction of the reflected optical image passes through the first phase retarder 2 and becomes a circular polarization direction;
  • the optical image totally reflected by the reflective polarizing plate 1 passes through the imaging lens 3 again, transmission amplification occurs at the first optical surface of the imaging lens 3, this time being a magnification of a small multiple.
  • the optical image that has undergone small magnification amplification passes through the second phase retarder 4, and its polarization direction becomes a non-second linear polarization direction (preferably a first linear polarization direction), in particular, when the second phase retarder 4 is 1/4
  • the polarization direction of the optical image further changes to the first linear polarization direction after passing through the second phase retarder 4, and since the absorption type polarizing plate 5 has a transmission direction that coincides with the first linear polarization direction,
  • the optical image having the first linear polarization direction passes through the absorbing polarizer 5 and enters the observer's line of sight, thereby achieving large magnification amplification of the light over a short distance (less than 5 cm).
  • the first phase retarder 2 and the second phase retarder 4 have
  • a short-distance optical amplifying module is provided.
  • the reflective polarizing plate is close to the light source side, so that the polarized light passes through the first phase retarder and then is reflected for the first time in the imaging lens, and the reflected polarized light passes through the first After the phase retarder, a second reflection occurs on the reflective polarizer. After the second reflection, the light is refracted by the imaging lens. After being refracted, the polarized light passes through the second phase retarder and enters the observer's line of sight.
  • the short-distance optical amplifying module provided by the invention causes the light to be reflected first and then re-refracted.
  • the existing short-distance optical amplifying module is prevented from being refracted and then reflected so that the refracted light is dispersed.
  • Light loss is generated, which in turn affects the quality of light imaging. Prevents light from returning to the optical display, reducing light loss and improving light utilization and image quality.
  • One side of the imaging lens of the short-distance optical amplifying module provided by the solution is a second optical surface, which facilitates the second optical surface of the imaging lens to be in contact with the first phase retarder, thereby reducing the light module. Size and volume.
  • the second optical surface of the imaging lens can also reduce the degree of dispersion of the curved surface, ensure the quality of light propagation, and the mirror processing of the second optical surface is less difficult to process and the processing cost compared to the processing of the first optical surface. less.
  • the first phase retarder 2 and the second phase retarder 4 are both quarter waves.
  • the sheet is ensured that the optical image reaches the reflective polarizer 1 for the second time, that is, the polarization direction of the optical image becomes a second linear polarization direction orthogonal to the first linear polarization direction.
  • the optical image passes through the light of the first phase retarder 2 and the second phase retarder 4
  • n is an integer
  • the 1/2 is represented as an integer.
  • the optical path difference of the polarized light passing through the first phase retarder 2 and the second phase retarder 4 has an adjustable range, and a preferred value of the range is 0.3-0.7.
  • the absorbing polarizing plate 5 is used for absorbing external light, preventing external light from interfering with display effects, and further improving image quality.
  • the second optical surface of the imaging lens 3 and the first phase retarder 2 are Fitting together, and the second phase retarder 4 is attached to the absorbing polarizer 5, wherein the bonding comprises pasting or moving to make the gaps of the two optical components small enough, but These bonding methods do not affect the propagation of the optical path in the short-distance optical module.
  • the first optical surface of the imaging lens 3 is disposed to be in contact with the second phase retarder 4; and the reflective polarizer is 1 is bonded to the first phase retarder 2.
  • the short-distance optical amplifying module in the above embodiment when applied to an optical device (such as VR glasses) for near-eye display, as shown in FIG. 5, the module further includes An optical display screen 6 of an optical image of a first linear polarization direction, the optical display screen 6 being disposed on a side of the reflective polarizing film 1 and away from the first phase retarder 2.
  • an optical device such as VR glasses
  • the module further includes An optical display screen 6 of an optical image of a first linear polarization direction, the optical display screen 6 being disposed on a side of the reflective polarizing film 1 and away from the first phase retarder 2.
  • the short-distance optical amplifying module realizes optical imaging by adding an optical display screen, and is applied to VR (virtual reality) glasses, so that the VR glasses are smaller in size and volume than the existing VR glasses, and the quality is smaller. Lighter and more comfortable to wear.
  • VR virtual reality
  • the short-distance optical amplifying module provided by the present invention is further provided with an optical device 7 which does not affect the phase delay, and the optical device 7 is disposed on the reflective polarizing plate 1, the first phase retarder 2, the imaging lens 3, and the second phase. Between any two adjacent components of the retarder 4 and the absorbing polarizer 5.
  • the optical device 7 is disposed between the first phase retarder 2 and the imaging lens 3, and the optical device 7 and the reflective polarizer, the first phase retarder, the imaging lens, and the first The two-phase retarder and the absorbing polarizer are coaxially disposed.
  • the optical device can increase the practicality and flexibility of the short-distance optical amplifying module, so that the short-distance optical amplifying module provided by the present invention can be applied to different lights. Learning equipment and instruments.
  • the first optical surface of the imaging lens 3 in the above embodiment has a radius of curvature of 100 mm or -100 mm in order to reduce light loss and improve light utilization. Further, in order to enhance the projection effect of the polarized light, the transmittance of the imaging lens 3 ranges from 0.2 to 0.8.
  • the present invention further provides another short-distance optical amplifying module.
  • the short-distance optical amplifying module of this embodiment differs only in:
  • the first phase retarder 2 and the second phase retarder 4 rotate in opposite directions of polarization (ie, when the first phase retarder 2 is in the left-hand direction, the second phase retarder 4 The right-handed direction; or, when the first phase retarder 2 is in the right-handed direction, the second phase retarder 4 is in the left-handed direction).
  • the absorbing polarizer 5 has a transmission direction of a second linear polarization direction, the second linear polarization direction is orthogonal to the first linear polarization direction; and the second phase retarder 5 is disposed.
  • the polarization direction of the optical image is converted from an elliptical or circular polarization direction to a first linear polarization direction or a second linear polarization direction.
  • the optical image sequentially passes through the reflective polarizing plate 1, the first phase retarder 2, the imaging lens 3, the second phase retarder 4, and the absorbing polarizer 5.
  • the first phase retarder 2 is also used.
  • the polarization direction of the optical image reflected back from the imaging lens 3 is converted from an elliptical or circular polarization direction to a second linear polarization direction, and the reflective polarization plate 1 is also used to reflect the transmission from the first phase retarder 2.
  • An optical image having a second linear polarization direction for amplifying an optical image reflected by the reflective polarizer 1, the second phase retarder 4 also for polarizing the polarized optical image The image is converted to a non-first linear polarization direction such that an optical image having the non-first linear polarization direction passes through the absorption-type polarizing plate 5.
  • non-first linear polarization direction is preferably a second linear polarization direction.
  • the present embodiment provides a short-distance optical amplifying method, which corresponds to the short-distance optical amplifying module described above, wherein the method includes the following steps:
  • Step S110 output an optical image having a first linear polarization direction along a transmission path, and pass the optical image having the first linear polarization direction to a reflective polarization plate, the reflective polarization plate having a first linear polarization direction The direction of transmission.
  • Step S120 Converting the polarization direction of the optical image from a first linear polarization direction to an elliptical or circular polarization direction, and causing the optical image to be reflected and amplified by the imaging lens.
  • Step S130 The polarization direction of the optical image reflected by the imaging lens is converted from a first linear polarization direction to a second linear polarization direction, and the second linear polarization direction is orthogonal to the first linear polarization direction.
  • Step S140 the reflective polarizer reflects the optical image having the second linear polarization direction, and the The polarization direction of the optical image is converted to an elliptical or circular polarization direction by a second linear polarization direction.
  • Step S150 performing transmission amplification on the optical image reflected by the reflective polarizer through the imaging lens, and converting the polarization direction of the optical image after transmission amplification from an elliptical or circular polarization direction to a non-second linear polarization direction; An optical image of the two linear polarization directions passes through the absorbing polarizer.
  • the short-distance optical amplifying method provided by the present invention is based on the amplifying principle of the short-distance optical amplifying module, and is fully combined with the large-angle (relative to small-angle variation of transmission) adjustment characteristics of the reflective optical module to combine A very large magnification is achieved in the small total optical channel, so that the microscopic screen also sees a large angle of view.
  • the present invention is a near-eye display optical module that realizes a high magnification, a small overall thickness, and almost no phase difference.
  • the short-distance optical amplifying method provided by the embodiment provides a short-distance optical amplifying module, so that the optical image is reflected first and then re-refracted, thereby avoiding the refraction of the existing short-distance optical amplifying module and causing the refraction after refraction. Light is dissipated to cause light loss, which in turn affects the quality of light imaging.
  • the short-distance optical amplifying module corresponding to FIG. 6 further provides another short-distance optical amplifying method, which comprises the following steps:
  • Step S210 output an optical image having a first linear polarization direction along a transmission path, and pass the optical image having the first linear polarization direction through a reflective polarizer, the reflective polarizer having a first linear polarization direction Transmission direction
  • Step S220 converting a polarization direction of the optical image from a first linear polarization direction to an elliptical or circular polarization direction, and causing the optical image to be reflected and amplified by the imaging lens;
  • Step S230 converting a polarization direction of the optical image reflected by the imaging lens from a first linear polarization direction to a second linear polarization direction, and the second linear polarization direction is orthogonal to the first linear polarization direction;
  • Step S240 the reflective polarizer reflects the optical image having the second linear polarization direction, and converts the polarization direction of the optical image from the second linear polarization direction to an elliptical or circular polarization direction;
  • Step S250 performing transmission amplification on the optical image reflected by the reflective polarizer through the imaging lens, and converting the polarization direction of the optical image after transmission amplification from an elliptical or circular polarization direction to a non-first linear polarization direction, and causing the non-linear
  • the optical image of the first linear polarization direction passes through the absorbing polarizer.
  • the present invention also provides a short-range optical amplifying system, as shown in FIG. 9, the system includes a short-distance optical amplifying module 10, and an optical display screen 6 for generating an optical image of a first linear polarization direction, wherein
  • the short-distance optical amplifying module 10 includes:
  • the reflective polarizing layer 1 is disposed on a transmission path of an optical image having a first linear polarization direction, the reflective polarization layer having a transmission direction that coincides with the first linear polarization direction.
  • the first phase retardation layer 2 is disposed on a transmission path of the optical image transmitted through the reflective polarization layer for converting the polarization direction of the optical image from the first linear polarization direction to an elliptical or circular polarization direction.
  • An imaging lens layer 3 disposed on a transmission path of the optical image having an elliptical or circular polarization direction, the imaging lens including a second optical surface adjacent to the first phase retardation layer, and opposite to the second optical surface And a first optical surface, wherein the first optical surface is an optical surface that is partially transmissive, and the imaging lens layer is configured to amplify an optical image transmitted through the first optical surface.
  • a second phase retardation layer 4 disposed on one side of the first optical surface of the imaging lens layer for converting a polarization direction of the optical image from an elliptical or circular polarization direction to a second linear polarization direction, the second The linear polarization direction is orthogonal to the first linear polarization direction.
  • the absorbing polarizing layer 5 is disposed on a side of the second phase retardation layer away from the imaging lens, and the absorbing polarizing layer has a transmission direction that coincides with the first linear polarization direction.
  • the optical image sequentially passes through the reflective polarizing layer 1, the first phase retardation layer 2, the imaging lens layer 3, the second phase retardation layer 4, and the absorbing polarizing layer 5, and the reflective polarizing layer 1 is used for reflection by An optical image having a second linear polarization direction transmitted by the first phase retardation layer, wherein the imaging lens layer 3 is configured to perform reflection amplification on an optical image reflected back from the reflective polarization layer 1, the second phase retardation layer 4 is further for converting a polarization direction of the enlarged optical image to a non-second linear polarization direction such that an optical image having the non-second linear polarization direction passes through the absorption-type polarization layer.
  • the optical display screen 6 is disposed on a side of the short-distance optical amplifying module 10 adjacent to the reflective polarizing layer 1.
  • the reflective polarizing layer, the first phase retardation layer, the imaging lens layer, and the second phase retardation layer in the short-distance optical amplifying system provided in this embodiment are respectively different from the reflective polarizing plate and the first phase retarder described in the foregoing examples.
  • the structural position and function of the imaging lens and the second phase retarder are the same, and the propagation process of the optical image in the short-distance optical amplifying module 10 is also the same as that of the short-distance optical amplifying module described above.
  • the short-distance optical amplifying module in this embodiment is composed of a reflective polarizing layer, a first phase retarding layer, an imaging lens layer, and a second phase retarding layer, and does not affect optical imaging. Under the premise of quality, the size and volume of the optical amplifying module are greatly shortened, the weight is reduced, and the comfort of wearing the VR glasses using the optical amplifying component is increased.
  • the short-distance optical amplifying system in the above embodiment further includes an optical device 7 that does not affect the phase delay, and the optical device 7 is disposed between the short-distance optical amplifying module and the optical display.
  • the optical device 7 comprises a myopic lens, a distance vision lens, or an astigmatic lens or the like.
  • the optical device 7 and the short-distance optical amplifying module 10 are not affected by the optical path. Fit together.
  • the short-range optical amplifying module 10 of the short-range optical amplifying system further includes an optical device layer 7 that does not affect the phase delay, and the optical device layer 7 is disposed at the reflective polarization. Between any of the layers, the first phase retardation layer, the imaging lens layer, the second phase retardation layer, and the absorbing polarizing layer. Preferably, as shown in FIG. 10, the optical device layer 7 is disposed between the first phase retardation layer 2 and the imaging lens layer 3.
  • the short-distance optical amplifying system provided by the present scheme further increases the short-distance optics by adding an optical device that does not affect the phase delay, since the position of the optical device can be freely set, thereby not affecting the optical image transmission process. Amplify the practicality of the system.
  • the present invention provides another short-range optical amplifying system comprising a short-range optical amplifying module 10, and an optical display screen 6 for generating an optical image of a first linear polarization direction, wherein the short
  • the distance optical amplification module 10 includes:
  • a reflective polarizing layer 1 disposed on a transmission path of an optical image having a first linear polarization direction, the reflective polarization layer 1 having a transmission direction that coincides with a first linear polarization direction;
  • a first phase retardation layer 2 disposed on a transmission path of the optical image transmitted through the reflective polarizing layer 1 for converting a polarization direction of the optical image from a first linear polarization direction to an elliptical or circular polarization direction;
  • An imaging lens layer 3 disposed on a transmission path of the optical image having an elliptical or circular polarization direction, the imaging lens 3 including a second optical surface adjacent to the first phase retardation layer 2, and the second optical a first optical surface opposite to the surface, and wherein the first optical surface is an optical surface partially reflected by the transmissive portion, and the imaging lens layer is configured to magnify an optical image transmitted through the first optical surface;
  • a second phase retardation layer 4 disposed on one side of the first optical surface of the imaging lens layer 3 for converting the polarization direction of the optical image from an elliptical or circular polarization direction to a first linear polarization direction;
  • An absorbing polarizing layer 5 is disposed on a side of the second phase retardation layer 4 away from the imaging lens layer 3, the absorbing polarizing layer 5 has a transmission direction of a second linear polarization direction, and the second linear polarization direction is The first linear polarization direction is orthogonal;
  • the optical image sequentially passes through the reflective polarizing layer, the first phase retarding layer, the imaging lens layer, the second phase retarding layer and the absorbing polarizing layer, and the first phase retarding layer is further used to reflect the imaging lens layer back
  • the polarization direction of the optical image is converted from an elliptical or circular polarization direction to a second linear polarization direction, the reflective polarization layer for reflecting an optical image having a second linear polarization direction transmitted by the first phase retardation layer
  • the imaging lens layer is configured to perform reflection amplification on an optical image reflected back by the reflective polarization layer
  • the second phase retardation layer is further configured to convert a polarization direction of the amplified optical image into a non-first linear polarization direction, Make this An optical image that is not in the first linear polarization direction passes through the absorbing polarizing layer.
  • the present invention also provides another short-distance optical amplifying module, as shown in FIG. 11, the module includes a reflective polarizing plate 8, an imaging lens 3 and an absorbing polarizing plate 5 which are arranged in series, wherein
  • the reflective polarizer 5 includes a first side and a second side opposite to the first side, and the first side transmits light, the second side reflects light, and the first side Two sides are adjacent to the imaging lens, wherein one of the two sides of the imaging lens 3 is a second optical surface, and the other surface opposite to the second optical surface is a first optical surface, and the An optical surface side is adjacent to the absorbing polarizing plate 5.
  • the imaging lens 3 and the absorbing polarizer 5 are the same as the previous embodiment, except that the reflective polarizer 8 has a one-way reflection function, that is, optically incident from one side into the reflective polarizer.
  • the reflective polarizing plate 8 passes through the reflective polarizing plate 8, the other side of the reflective polarizing plate 8 is totally reflected when the light is incident from the other surface, similar to the one-way linearity of the diode.
  • the side on which only the transmission occurs in the reflective polarizer is the first side
  • the side on which only the reflection occurs is the second side.
  • one of the two side faces of the imaging lens 3 is a flat surface, and the other surface is a curved surface, and one side of the curved surface is adjacent to the absorbing polarizing plate 5. Both sides of the absorbing polarizing plate 5 are flat.
  • a short-distance optical amplifying module is designed to replace the first phase retarder and the second phase retarder, and the orthogonal polarized light passes through the reflective polarizer 8.
  • the polarized light passes through the curved surface side of the imaging lens 3
  • the first reflection occurs, and the reflected polarized light reaches the reflective polarizing plate 8 again for the second total reflection, after the second time.
  • the totally reflected polarized light passes through the curved surface of the imaging lens 3 for a second time and then enters the observer's line of sight.
  • the optical amplifying module provided in this embodiment saves the space of the phase delay piece, and further reduces the size and volume of the optical module.
  • the short-distance optical amplifying module provided in this embodiment further comprises: an optical display screen 6 and an optical device 7 that does not affect the phase delay.
  • the optical display screen 6 is disposed on the reflective polarizing plate 8 and away from the side of the imaging lens 3; the optical device 7 may be disposed on the optical display screen 6, the reflective polarizing plate 8, Between the imaging lens 3 and any two optical devices of the absorbing polarizing plate 5, the position of the optical device can also be set according to actual needs, thereby further increasing the practicability and flexibility of the optical module.
  • the optical display screen 6 is attached to the reflective polarizing plate 8, and the reflective polarizing plate 8 is attached to the imaging lens 3, and the absorption is performed.
  • the polarizing plate 5 is attached to the imaging lens 3.
  • the imaging lens 3 or the imaging lens layer is a 50% proportional transmission, 50% proportional reflection curved lens.

Abstract

一种短距离光学放大模组、放大方法及放大系统,所述模组包括依次排列布置的反射型偏振片(1)、第一相位延迟片(2)、成像透镜(3)、第二相位延迟片(4)和吸收型偏振片(5),其中,反射型偏振片(1)设置于光学图像的传输路径上,第一相位延迟片(2)设置于透过反射型偏振片(1)的光学图像的传输路径上,成像透镜(3)设置于光学图像的传输路径上,第二相位延迟片(4)用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,吸收型偏振片(5)设置于第二相位延迟片(4)且远离所述成像透镜(3)的一侧。该短距离光学放大模组使光线先发生反射最后再折射,由于反射无光损,因此,避免了现有的短距离光学放大模组先折射后反射使得折射后的光线发生色散而产生光损,进而影响光质量。

Description

一种短距离光学放大模组、放大方法及放大系统 技术领域
本发明涉及一种光学模组设计技术领域,特别是涉及一种短距离光学放大模组、放大方法及放大系统。
背景技术
现有的短距离光学放大模组的结构如图2所示,包括显示屏、第一相位延迟片、部分透射部分反射镜片、第二相位延迟片和反射式偏振片。在该模组中,为放大光路,光线从第一相位延迟片一侧经过部分透射部分反射曲面镜片后先发生透射,再经过反射式偏振片发生发射,这样会导致光线在透射时发生色散,该色散光会产生光损失,进而影响光反射成像质量,难以满足高清质量需求。
发明内容
本发明实施例中提供了,以解决现有的短距离光学放大模组在光传播时,由于发生色散进而影响光学图像成像质量的问题。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
一种短距离光学放大模组,所述模组包括依次排列布置的反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片和吸收型偏振片,其中,
反射型偏振片,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
第一相位延迟片,设置于透过反射型偏振片的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
成像透镜,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜包括靠近所述第一相位延迟片的第二光学面,以及与所述第二光学面相对的第一光学面,所述第一光学面为部分透射部分反射的光学面,且该成像透镜用于对透过所述第一光学面的光学图像进行放大;
第二相位延迟片,设置于所述成像透镜的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述第二线性偏振方向与第一线性偏振方向正交;
吸收型偏振片,设置于所述第二相位延迟片且远离所述成像透镜的一侧,并且,所述吸收型偏振片具有与第一线性偏振方向一致的透射方向;
其中,所述光学图像依次通过所述反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片及吸收型偏振片,所述第一相位延迟片还用于将成像透镜反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振片用于反射由所述第一相位延迟片传来的具有第二线性偏振方向的光学图像,所述成像透镜用于对反射型偏振片反射回来的光学图像进行放大,所述第二相位延迟片还用于将放大后光学图像的偏振方向转换为非第二线性偏振方向,以使得具有该非第二线性偏振方向的光学图像通过所述吸收型偏振片。
优选的,所述第一相位延迟片和第二相位延迟片均为1/4波片。
优选的,所述成像透镜的第二光学面与所述第一相位延迟片相贴合,以及,所述第二相位延迟片与所述吸收型偏振片相贴合。
优选的,所述成像透镜的第一光学面与所述第二相位延迟片相贴合。
优选的,所述反射型偏振片与所述第一相位延迟片相贴合。
优选的,所述模组还包括用于产生第一线性偏振方向的光学图像的光学显示屏,所述光学显示屏设置在所述反射型偏振片且远离所述第一相位延迟片的一侧。
一种短距离光学放大模组,所述模组包括依次排列布置的反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片和吸收型偏振片,其中,
反射型偏振片,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
第一相位延迟片,设置于透过反射型偏振片的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
成像透镜,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜包括靠近所述第一相位延迟片的第二光学面,以及与所述第二光学面相对的第一光学面,所述第一光学面为部分透射部分反射的光学面,且该成像透镜用于对透过所述第一光学面的光学图像进行放大;
第二相位延迟片,设置于所述成像透镜的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第一线性偏振方向;
吸收型偏振片,设置于所述第二相位延迟片且远离所述成像透镜的一侧,并且,所述吸收型偏振片具有第二线性偏振方向的透射方向,所述第二线性偏振方向与第一线性偏振方向正交;
其中,所述光学图像依次通过所述反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片及吸收型偏振片,所述第一相位延迟片还用于将成像透镜反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向;所述反射型偏振片用于反射由所述第一相位延迟片传来的具有第二线性偏振方向的光学图像,所述成像透镜用于对反射型偏振片反射回来的光学图像进行放大,所述第二相位延迟片还用于将放大后光学图像的偏振方向转换为非第一线性偏振方向,以使得具有该非第一线性偏振方向的光学图像通过所述吸收型偏振片。
一种短距离光学放大方法,所述方法包括以下步骤:
沿一传输路径输出具有第一线性偏振方向的光学图像,将所述具有第一线性偏振方向的光学图像通过反射型偏振片,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
将所述光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向,并使得所述光学图像通过成像透镜进行反射放大;
将所述通过成像透镜反射的光学图像的偏振方向由第一线性偏振方向转换为第二线性偏振方向,并且,所述第二线性偏振方向与第一线性偏振方向正交;
反射型偏振片反射所述具有第二线性偏振方向的光学图像,并将该光学图像的偏振方向由第二线性偏振方向转换为椭圆或圆偏振方向;
通过成像透镜将反射型偏振片反射的光学图像进行透射放大,并将透射放大后光学图像的偏振方向由椭圆或圆偏振方向转换为非第二线性偏振方向,以及使所述具有非第二线性偏振方向的光学图像通过吸收型偏振片。
一种短距离光学放大方法,所述方法包括以下步骤:
沿一传输路径输出具有第一线性偏振方向的光学图像,将所述具有第一线性偏振方向的光学图像通过反射型偏振片,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
将所述光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向,并使得所述光学图像通过成像透镜进行反射放大;
将所述通过成像透镜反射的光学图像的偏振方向由第一线性偏振方向转换为第二线性偏振方向,并且,所述第二线性偏振方向与第一线性偏振方向正交;
反射型偏振片反射所述具有第二线性偏振方向的光学图像,并将该光学图像的偏振方向由第二线性偏振方向转换为椭圆或圆偏振方向;
通过成像透镜将反射型偏振片反射的光学图像进行透射放大,并将透射放大后光 学图像的偏振方向由椭圆或圆偏振方向转换为非第一线性偏振方向,以及使所述具有非第一线性偏振方向的光学图像通过吸收型偏振片。
一种短距离光学放大系统,所述系统包括短距离光学放大模组,和用于产生第一线性偏振方向的光学图像的光学显示屏,其中,所述短距离光学放大模组包括:
反射型偏振层,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振层具有与第一线性偏振方向一致的透射方向;
第一相位延迟层,设置于透过反射型偏振层的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
成像透镜层,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜包括靠近所述第一相位延迟层的第二光学面,以及与所述第二光学面相对的第一光学面,并且,所述第一光学面为部分透射部分反射的光学面,所述成像透镜层用于对透过所述第一光学面的光学图像进行放大;
第二相位延迟层,设置于所述成像透镜层的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述第二线性偏振方向与第一线性偏振方向正交;
吸收型偏振层,设置于所述第二相位延迟层远离成像透镜层的一侧,所述吸收型偏振层具有与第一线性偏振方向一致的透射方向;
其中,所述光学图像依次通过反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层,所述第一相位延迟层还用于将成像透镜层反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振层用于反射由所述第一相位延迟层传来的具有第二线性偏振方向的光学图像,所述成像透镜层用于将反射型偏振层反射回来的光学图像进行反射放大,所述第二相位延迟层还用于将放大后光学图像的的偏振方向转换为非第二线性偏振方向,以使得具有该非第二线性偏振方向的光学图像通过所述吸收型偏振层。
一种短距离光学放大系统,所述系统包括短距离光学放大模组,和用于产生第一线性偏振方向的光学图像的光学显示屏,其中,所述短距离光学放大模组包括:
反射型偏振层,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振层具有与第一线性偏振方向一致的透射方向;
第一相位延迟层,设置于透过反射型偏振层的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
成像透镜层,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成 像透镜层包括靠近所述第一相位延迟层的第二光学面,以及与所述第二光学面相对的第一光学面,并且,所述第一光学面为部分透射部分反射的光学面,所述成像透镜层用于对透过所述第一光学面的光学图像进行放大;
第二相位延迟层,设置于所述成像透镜层的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第一线性偏振方向;
吸收型偏振层,设置于所述第二相位延迟层远离成像透镜层的一侧,所述吸收型偏振层具有第二线性偏振方向的透射方向,所述第二线性偏振方向与第一线性偏振方向正交;
其中,所述光学图像依次通过反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层,所述第一相位延迟层还用于将成像透镜层反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振层用于反射由所述第一相位延迟层传来的具有第二线性偏振方向的光学图像,所述成像透镜层用于将反射型偏振层反射回来的光学图像进行反射放大,所述第二相位延迟层还用于将放大后光学图像的的偏振方向转换为非第一线性偏振方向,以使得具有该非第一线性偏振方向的光学图像通过所述吸收型偏振层。
优选的,所述系统还包括不影响相位延时的光学器件,所述光学器件设置在所述短距离光学放大模组和光学显示屏之间。
优选的,所述短距离光学放大模组还包括不影响相位延时的光学器件层,所述光学器件层设置在所述反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层中的任意两个层之间。
一种短距离光学放大模组,所述模组包括依次排列布置的反射型偏振片、成像透镜和吸收型偏振片,其中,所述反射型偏振片包括的两个侧面中,第一侧面以及与所述第一侧面相对的第二侧面,且所述第一侧面透射光线,所述第二侧面反射光线,且所述第二侧面靠近所述成像透镜,其中所述成像透镜的两个侧面中的一个面为平面部,与所述平面部相对的另一个面为曲面部,且所述曲面部一侧靠近所述吸收型偏振片。
由以上技术方案可见,本发明具有以下有益效果:
本方案提供的一种短距离光学放大模组,反射型偏振片靠近光源侧,使偏振光经过第一相位延迟片后在成像透镜发生第一次反射,反射后的偏振光再次经过第一相位延迟片后在反射型偏振片上发生第二次反射,经过第二次反射后的光线再经过成像透镜折射,折射后偏振光经过第二相位延迟片后进入观察者的视线。本发明提供的短距 离光学放大模组使光线先发生反射最后再折射,由于反射无光损,因此,避免了现有的短距离光学放大模组先折射后反射使得折射后的光线发生色散而产生光损,进而影响光成像质量的问题。防止了光线返回到光学显示屏,降低了光损失,提高了光线利用率和成像质量。
本方案提供的一种短距离光学放大模组的成像透镜的一面为第二光学面,方便该成像透镜的第二光学面与第一相位延迟片相贴合,进而减小了光线模组的尺寸和体积。此外,将该成像透镜的第二光学面还能减小曲面发生色散程度,保证光线传播的质量,并且相比于第一光学面加工,第二光学面的镜面加工工艺加工难度低,加工成本少。
此外,将第二相位延迟片与吸收型偏振片相贴合,成像透镜与第二相位延迟片相贴合,将反射型偏振片与第一相位延迟片相贴合,减少了三组组件的空间距离,进一步地缩短了短距离光学放大模组的尺寸和体积。
本方案提供的一种短距离光学放大模组还包括光学显示屏,通过该光学显示屏使得该短距离光学放大模组实现了光学成像,应用于VR(虚拟现实)眼镜中,使得该VR眼镜较现有的VR眼镜的尺寸和体积更小,质量更轻。
本方案提供的一种短距离光学放大模组还包括不影响相位延时的光学器件,该光学器件增加了光线放大模组的实用性和灵活性,使得本发明提供的短距离光学放大模组能够适用于不同的光学设备和仪器中。此外,该光学器件在不影响光路相位延时的基础上,可以设置在任意相邻的两个组件之间,进一步增加了本方案模组的实用性和灵活性。
本方案提供的一种短距离光学放大方法,应用短距离光学放大模组,使光学图像先发生反射最后再折射,避免了现有的短距离光学放大模组先折射后反射使得折射后的光线发生色散而产生光损,进而影响光成像质量的问题。
本方案还提供的一种短距离光学放大系统,所述系统包括短距离光学放大模组和光学显示屏,其中,该短距离光学放大模组是由反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层组成的多层光学模组,使得该光学模组在不影响光学成像质量的前提下,最大程度地减小光学模组的尺寸和体积,减轻了重量,增加了使用该光学放大系统的VR眼镜佩戴时的舒适感。
本方案提供的另一种短距离光学放大系统,还包括不影响相位延时的光学器件,并且该光学器件的位置可以自由设置,进一步增加短距离光学放大系统的实用性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种短距离光学放大模组的结构示意图;
图2为现有的一种短距离光学放大模组的结构示意图;
图3为本发明实施例提供的另一种短距离光学放大模组的结构示意图;
图4为本发明实施例提供的又一种短距离光学放大模组的结构示意图;
图5为本发明实施例提供的又一种短距离光学放大模组的结构示意图;
图6为本发明实施例提供的又一种短距离光学放大模组的结构示意图;
图7为本发明实施例提供的一种短距离光学放大方法的流程图;
图8为本发明实施例提供的另一种短距离光学放大方法的流程图;
图9为本发明实施例提供的又一种短距离光学放大系统的结构示意图;
图10为本发明实施例提供的又一种短距离光学放大系统的结构示意图;
图11为本发明实施例提供的又一种短距离光学放大模组的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
下面将结合图1至图11对本发明实施例提供的一种短距离光学放大模组、放大方法及放大系统进行具体描述。
一种短距离光学放大模组,如图1所示为本发明实施例提供的一种短距离光学放大模组的结构示意图,所述模组包括依次排列布置的反射型偏振片1、第一相位延迟片2、成像透镜3、第二相位延迟片4和吸收型偏振片5,其中,
反射型偏振片1,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振片1具有与第一线性偏振方向一致的透射方向。第一相位延迟片2,设置于透过反射型偏振片的光学图像的传输路径上,用于将该光学图像的偏振方向由第一 线性偏振方向转换为椭圆或圆偏振方向。成像透镜3,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜3包括靠近所述第一相位延迟片的第二光学面,以及与所述第二光学面相对的第一光学面,所述第一光学面为部分透射部分反射的光学面,且该成像透镜用于对透过所述第一光学面的光学图像进行放大。第二相位延迟片4,设置于所述成像透镜的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述第二线性偏振方向与第一线性偏振方向正交。吸收型偏振片5,设置于所述第二相位延迟片4且远离所述成像透镜3的一侧,并且,所述吸收型偏振片5具有与第一线性偏振方向一致的透射方向。
其中,所述光学图像依次通过所述反射型偏振片1、第一相位延迟片2、成像透镜3、第二相位延迟片4及吸收型偏振片5,所述第一相位延迟片2还用于将成像透镜3反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振片1还用于反射由所述第一相位延迟片2传来的具有第二线性偏振方向的光学图像,所述成像透镜3用于对反射型偏振片1反射回来的光学图像进行放大,所述第二相位延迟片4还用于将放大后光学图像的偏振方向转换为非第二线性偏振方向,以使得具有该非第二线性偏振方向的光学图像通过所述吸收型偏振片5。
需要说明的是,本实施例中的反射式偏振片1、第一相位延迟片2、第二相位延迟片4和吸收型偏振片5均为现有技术,偏振光每次经过相位延迟片能够增加一定角度的相位延迟,反射式偏振片能实现对偏振方向与其透射方向一致的线偏光通过,而对于偏振方向与其透射方向正交的线偏光完全反射,而对于有一定相位延迟的圆偏振光或者椭圆偏振光部分透射通过。部分透射部分反射的光学面可以实现一定比例的光产生反射,剩余比例的光产生透射。
本实施例中,所述第一光学面为曲面,所述第二光学面为平面,且所述第一光学面的曲率中心、第二光学面位于所述第一光学面的同侧。
其中,所述非第二线性偏振方向优选为第一线性偏振方向。
下面介绍一下本发明中的短距离光学放大模组的工作原理:
在靠近光源的一侧,具有第一线性偏振方向(本实施例中为平行于纸面的方向)的光学图像透过反射型偏振片1,所述反射型偏振片1具有与第一线性偏振方向一致的透射方向;经过反射型偏振片后接着,该光学图像经过第一相位延迟片2后其偏振方向变为相位延迟了的椭圆偏振方向或圆偏振方向,特别地,当第一相位延迟片2为1/4波片时,该透过的光学图像的偏振方向经过第一相位延迟片2后变为圆偏振方向,然后再经过成像透镜3的第一光学面发生一定比例能量的光的反射放大,使光学 图像完成第一次放大,此次放大是大倍数的放大,被反射后的光学图像的偏振方向经过第二相位延迟片4后其偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向(本实施例中为垂直于纸面的方向);由于所述第二线性偏振方向与第一线性偏振方向正交,因此,该所述具有第二线性偏振方向的光学图像再次到达反射型偏振片1后被发生全发射,反射后的光学图像再次第二次次经过第一相位延迟片2时,光学图像的偏振方向由第二线性偏振方向转换为椭圆或圆偏振方向。特别地,当第一相位延迟片2为1/4波片时,反射后的光学图像的偏振方向经过第一相位延迟片2后变为圆偏振方向;
接着,该当经反射型偏振片1全反射的光学图像再次经过成像透镜3时,在成像透镜3的第一光学面发生透射放大,这次是小倍数的放大。经过小倍数放大的光学图像经过第二相位延迟片4,其偏振方向变为非第二线性偏振方向(优选为第一线性偏振方向),特别地,当第二相位延迟片4为1/4波片时,该光学图像的偏振方向再经过第二相位延迟片4后变为第一线性偏振方向,由于所述吸收型偏振片5具有与第一线性偏振方向一致的透射方向,因此,该具有第一线性偏振方向的光学图像通过吸收型偏振片5后进入观察者视线,从而在短距离(小于5cm)内实现光线的大倍数放大。本实施例中,所述第一相位延迟片2与第二相位延迟片4对偏振光旋转方向一致(即所述第一相位延迟片2与第二相位延迟片4均为左旋或右旋方向)。
本实施例提供的一种短距离光学放大模组,反射型偏振片靠近光源侧,使偏振光经过第一相位延迟片后在成像透镜发生第一次反射,反射后的偏振光再次经过第一相位延迟片后在反射型偏振片上发生第二次反射,经过第二次反射后的光线再经过成像透镜折射,折射后偏振光经过第二相位延迟片后进入观察者的视线。本发明提供的短距离光学放大模组使光线先发生反射最后再折射,由于反射无光损,因此,避免了现有的短距离光学放大模组先折射后反射使得折射后的光线发生色散而产生光损,进而影响光成像质量的问题。防止了光线返回到光学显示屏,降低了光损失,提高了光线利用率和成像质量。
本方案提供的一种短距离光学放大模组的成像透镜的一面为第二光学面,方便该成像透镜的第二光学面与第一相位延迟片相贴合,进而减小了光线模组的尺寸和体积。此外,将该成像透镜的第二光学面还能减小曲面发生色散程度,保证光线传播的质量,并且相比于第一光学面加工,第二光学面的镜面加工工艺加工难度低,加工成本少。
在一个优选的实施例中,所述第一相位延迟片2和第二相位延迟片4均为1/4波 片,以保证光学图像第二次到达反射型偏振片1被全发射,即此时光学图像的偏振方向变为与第一线性偏振方向正交的第二线性偏振方向。
此外,为保证第一次从成像透镜的第一光学面透过的偏振光到达吸收型偏振片5被全吸收,光学图像经过所述第一相位延迟片2和第二相位延迟片4的光程差为
Figure PCTCN2016072532-appb-000001
其中,n为整数,所述1/2表示为整数。其中,受加工或者生产工艺限制,偏振光线经过所述第一相位延迟片2和第二相位延迟片4的光程差存在一个可调整的范围,该范围的一个较优值是0.3-0.7。
本实施例中,所述吸收型偏振片5用于吸收外界来的光,防止外界光对显示影响的干扰,进一步提高了成像质量。
在上述实例中的另一种优化方案中,如图3所示,为进一步减小光学模组的尺寸和体积,将所述成像透镜3的第二光学面与所述第一相位延迟片2相贴合,以及,所述第二相位延迟片4与所述吸收型偏振片5相贴合,其中,所述贴合包括粘贴,或者移动使两个光学组件的缝隙足够小,但是所述这些贴合手段都不会影响光路在短距离光学模组中的传播。
此外,如图4所示,为进一步减小光学模组的尺寸,设置所述成像透镜3的第一光学面与所述第二相位延迟片4相贴合;以及,所述反射型偏振片1与所述第一相位延迟片2相贴合。
在另一可行的实施例中,将上述实施例中的短距离光学放大模组应用于近眼显示的光学设备(例如VR眼镜)中时,如图5所示,该模组还包括用于产生第一线性偏振方向的光学图像的光学显示屏6,所述光学显示屏6设置在所述反射型偏振片1且远离所述第一相位延迟片2的一侧。
本实施例中通过增设光学显示屏使得该短距离光学放大模组实现了光学成像,应用于VR(虚拟现实)眼镜中,使得该VR眼镜较现有的VR眼镜的尺寸和体积更小,质量更轻,佩戴更舒适。
本发明提供的短距离光学放大模组还设有不影响相位延时的光学器件7,所述光学器件7设置在反射型偏振片1、第一相位延迟片2、成像透镜3、第二相位延迟片4和吸收型偏振片5中的任意相邻的两个组件之间。其中,附图5中,将该光学器件7设置在第一相位延迟片2和成像透镜3之间,且该光学器件7与所述反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片和吸收型偏振片同轴设置。
本实施例提供的短距离光学放大模组中,设置光学器件能够增加短距离光学放大模组的实用性和灵活性,使得本发明提供的短距离光学放大模组能够适用于不同的光 学设备和仪器中。
在另一个优选的实施例中,为降低光损失,提高光线利用率,上述实施例中的成像透镜3的第一光学面的曲率半径为100mm或者-100mm。此外,为增强偏振光的投射效果,所述成像透镜3的透过率范围为0.2至0.8。
此外,如图6所示,本发明还提供另一种短距离光学放大模组,相比于上述实施例,本实施例短距离光学放大模组其区别仅在于:
本实施例中,所述第一相位延迟片2与第二相位延迟片4对偏振光旋转方向相反(即当所述第一相位延迟片2为左旋方向时,所述第二相位延迟片4为右旋方向;或者,当所述第一相位延迟片2为右旋方向时,所述第二相位延迟片4为左旋方向)。相应的,本实施例中,所述吸收型偏振片5具有第二线性偏振方向的透射方向,所述第二线性偏振方向与第一线性偏振方向正交;所述第二相位延迟片5设置于所述成像透镜4的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第一线性偏振方向或第二线性偏振方向。
其中,所述光学图像依次通过所述反射型偏振片1、第一相位延迟片2、成像透镜3、第二相位延迟片4及吸收型偏振片5,所述第一相位延迟片2还用于将成像透镜3反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振片1还用于反射由所述第一相位延迟片2传来的具有第二线性偏振方向的光学图像,所述成像透镜3用于对反射型偏振片1反射回来的光学图像进行放大,所述第二相位延迟片4还用于将放大后光学图像的偏振方向转换为非第一线性偏振方向,以使得具有该非第一线性偏振方向的光学图像通过所述吸收型偏振片5。
其中,所述非第一线性偏振方向优选为第二线性偏振方向。
如图7所示,本实施例提供一种短距离光学放大方法,对应于前述的短距离光学放大模组,其中,所述方法包括以下步骤:
步骤S110:沿一传输路径输出具有第一线性偏振方向的光学图像,将所述具有第一线性偏振方向的光学图像通过反射型偏振片,所述反射型偏振片具有与第一线性偏振方向一致的透射方向。
步骤S120:将所述光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向,并使得所述光学图像通过成像透镜进行反射放大。
步骤S130:所述通过成像透镜反射的光学图像的偏振方向由第一线性偏振方向转换为第二线性偏振方向,并且,所述第二线性偏振方向与第一线性偏振方向正交。
步骤S140:反射型偏振片反射所述具有第二线性偏振方向的光学图像,并将该 光学图像的偏振方向由第二线性偏振方向转换为椭圆或圆偏振方向。
步骤S150:通过成像透镜将反射型偏振片反射的光学图像进行透射放大,并将透射放大后光学图像的偏振方向由椭圆或圆偏振方向转换为非第二线性偏振方向;将所述具有非第二线性偏振方向的光学图像通过吸收型偏振片。
本发明提供的一种短距离光学放大方法,基于前述短距离光学放大模组的放大原理,充分借助反射功能光学模组的大角度(相对于透射的小角度变化)调整特性来组合出在较小的总的光学通道内实现非常大的放大倍数,从而实现微型屏幕同样看到大视场角的效果。考虑到近眼光学对整体亮度损失的敏感度较低,因此在本发明中的光学的整体设计中使用了成像透镜的丢弃部分能量的方式,而不会对最终的显示效果产生明显的影响。因此,本发明是一种实现了高的放大倍数、整体厚度较小且几乎无相差的近眼显示光学模组。
本实施例提供的一种短距离光学放大方法,应用短距离光学放大模组,使光学图像先发生反射最后再折射,避免了现有的短距离光学放大模组先折射后反射使得折射后的光线发生色散而产生光损,进而影响光成像质量的问题。
此外,如图8所示,对应于附图6的短距离光学放大模组,本发明还提供另一种短距离光学放大方法,包括以下步骤:
步骤S210:沿一传输路径输出具有第一线性偏振方向的光学图像,将所述具有第一线性偏振方向的光学图像通过反射型偏振片,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
步骤S220:将所述光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向,并使得所述光学图像通过成像透镜进行反射放大;
步骤S230:将所述通过成像透镜反射的光学图像的偏振方向由第一线性偏振方向转换为第二线性偏振方向,并且,所述第二线性偏振方向与第一线性偏振方向正交;
步骤S240:反射型偏振片反射所述具有第二线性偏振方向的光学图像,并将该光学图像的偏振方向由第二线性偏振方向转换为椭圆或圆偏振方向;
步骤S250:通过成像透镜将反射型偏振片反射的光学图像进行透射放大,并将透射放大后光学图像的偏振方向由椭圆或圆偏振方向转换为非第一线性偏振方向,以及使所述具有非第一线性偏振方向的光学图像通过吸收型偏振片。
本发明还提供一种短距离光学放大系统,如图9所示,该系统包括短距离光学放大模组10,和用于产生第一线性偏振方向的光学图像的光学显示屏6,其中,所述短距离光学放大模组10包括:
反射型偏振层1,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振层具有与第一线性偏振方向一致的透射方向。第一相位延迟层2,设置于透过反射型偏振层的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向。成像透镜层3,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜包括靠近所述第一相位延迟层的第二光学面,以及与所述第二光学面相对的第一光学面,并且,所述第一光学面为部分透射部分反射的光学面,所述成像透镜层用于对透过所述第一光学面的光学图像进行放大。第二相位延迟层4,设置于所述成像透镜层的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述第二线性偏振方向与第一线性偏振方向正交。吸收型偏振层5,设置于所述第二相位延迟层远离成像透镜的一侧,所述吸收型偏振层具有与第一线性偏振方向一致的透射方向。
其中,所述光学图像依次通过反射型偏振层1、第一相位延迟层2、成像透镜层3、第二相位延迟层4和吸收型偏振层5,所述反射型偏振层1用于反射由所述第一相位延迟层传来的具有第二线性偏振方向的光学图像,所述成像透镜层3用于将反射型偏振层1反射回来的光学图像进行反射放大,所述第二相位延迟层4还用于将放大后光学图像的偏振方向转换为非第二线性偏振方向,以使得具有该非第二线性偏振方向的光学图像通过所述吸收型偏振层。
所述光学显示屏6设置在所述短距离光学放大模组10中靠近所述反射型偏振层1的一侧。
本实施例提供的短距离光学放大系统中的反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层分别与前述实例所述的反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片的结构位置和功能相同,光学图像在短距离光学放大模组10中的传播过程与前述的短距离光学放大模组也相同。区别在于,本实施例中的短距离光学放大模组由反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层组合成的多层光学结构体,并且在不影响光学成像质量的前提下,极大程度地缩短了光学放大模组的尺寸和体积,减轻了重量,增加了使用该光学放大组件的VR眼镜佩戴时的舒适感。
上述实施例中的短距离光学放大系统,还包括不影响相位延时的光学器件7,所述光学器件7设置在所述短距离光学放大模组和光学显示屏之间。其中,所述光学器件7包括近视镜片、远视镜片,或者散光镜片等。此外,为进一步减小光学组件的尺寸和体积,在不影响光路的前提下,所述光学器件7与所述短距离光学放大模组10 相贴合。
在另一个优选的实施例中,所述短距离光学放大系统的短距离光学放大模组10还包括不影响相位延时的光学器件层7,所述光学器件层7设置在所述反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层中的任意两个层之间。优选的,如图10所示,该光学器件层7设置在第一相位延迟层2和成像透镜层3之间。
本方案提供的一种短距离光学放大系统,通过增设不影响相位延时的光学器件,由于该光学器件的位置可以自由设置,因此,在不影响光学图像传输的过程中,进一步增加短距离光学放大系统的实用性。
此外,本发明还提供另一种短距离光学放大系统,所述系统包括短距离光学放大模组10,和用于产生第一线性偏振方向的光学图像的光学显示屏6,其中,所述短距离光学放大模组10包括:
反射型偏振层1,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振层1具有与第一线性偏振方向一致的透射方向;
第一相位延迟层2,设置于透过反射型偏振层1的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
成像透镜层3,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜3包括靠近所述第一相位延迟层2的第二光学面,以及与所述第二光学面相对的第一光学面,并且,所述第一光学面为部分透射部分反射的光学面,所述成像透镜层用于对透过所述第一光学面的光学图像进行放大;
第二相位延迟层4,设置于所述成像透镜层3的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第一线性偏振方向;
吸收型偏振层5,设置于所述第二相位延迟层4远离成像透镜层3的一侧,所述吸收型偏振层5具有第二线性偏振方向的透射方向,所述第二线性偏振方向与第一线性偏振方向正交;
其中,所述光学图像依次通过反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层,所述第一相位延迟层还用于将成像透镜层反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振层用于反射由所述第一相位延迟层传来的具有第二线性偏振方向的光学图像,所述成像透镜层用于将反射型偏振层反射回来的光学图像进行反射放大,所述第二相位延迟层还用于将放大后光学图像的的偏振方向转换为非第一线性偏振方向,以使得具有该 非第一线性偏振方向的光学图像通过所述吸收型偏振层。
本方案还提供了另一种短距离光学放大模组,如图11所示,该模组包括依次排列设置的反射型偏振片8、成像透镜3和吸收型偏振片5,其中,其中,所述反射型偏振片5包括的两个侧面中,第一侧面以及与所述第一侧面相对的第二侧面,且所述第一侧面透射光线,所述第二侧面反射光线,且所述第二侧面靠近所述成像透镜,其中所述成像透镜3的两个侧面中的一个面为第二光学面,与所述第二光学面相对的另一个面为第一光学面,且所述第一光学面一侧靠近所述吸收型偏振片5。
需要说明的是,所述成像透镜3和吸收型偏振片5与前述实施例相同,区别在于,该反射型偏振片8具有单向反射功能,即光学从一侧射入反射型偏振片,透过该反射型偏振片8时不反射,在该反射型偏振片8的另一面,当光学从所述另一面射入时,发生全反射,类似于二极管的单向导线性。为方便起见,定义所述反射型偏振片中只发生透射的侧面为第一侧面,只发生反射的一面为第二侧面。此外,所述成像透镜3的两个侧面中的一面为平面,另一面为曲面,且所述曲面一侧靠近所述吸收型偏振片5。吸收型偏振片5的两个侧面均为平面。
在本实施中利用这种反射型偏振片的单向反射性,设计短距离光学放大模组替代了第一相位延迟片和第二相位延时片,正交的偏振光经过反射型偏振片8时,不发生反射,接着,该偏振光经过成像透镜3的曲面一侧时,发生第一次反射,反射后的偏振光再次到达反射型偏振片8发生第二次全反射,经过第二次全反射的偏振光第二次经过成像透镜3的曲面时发生透射后,进入观察者视线。本实施例提供的光学放大模组节省了相位延时片的空间,进一步减小了光学模组的尺寸和体积。
优选的,在该实施例提供的短距离光学放大模组还包括:光学显示屏6和不影响相位延时的光学器件7。其中,所述光学显示屏6设置在所述反射型偏振片8,并且远离所述成像透镜3的一侧;所述光学器件7可设置在所述光学显示屏6、反射型偏振片8、成像透镜3和吸收型偏振片5的任意两个光学器件之间,也可根据实际需求情况,自行设置光学器件的位置,进一步增加光学模组的实用性和灵活性。
为进一步减小光学模组的尺寸和体积,所述光学显示屏6与所述反射型偏振片8相贴合,所述反射型偏振片8与所述成像透镜3相贴合,所述吸收型偏振片5与所述成像透镜3相贴合。
此外,在上述实施例中所述成像透镜3或者成像透镜层为50%比例透射、50%比例反射的曲面镜片。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种短距离光学放大模组,其特征在于,所述模组包括依次排列布置的反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片和吸收型偏振片,其中,
    反射型偏振片,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
    第一相位延迟片,设置于透过反射型偏振片的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
    成像透镜,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜包括靠近所述第一相位延迟片的第二光学面,以及与所述第二光学面相对的第一光学面,所述第一光学面为部分透射部分反射的光学面,且该成像透镜用于对透过所述第一光学面的光学图像进行放大;
    第二相位延迟片,设置于所述成像透镜的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述第二线性偏振方向与第一线性偏振方向正交;
    吸收型偏振片,设置于所述第二相位延迟片且远离所述成像透镜的一侧,并且,所述吸收型偏振片具有与第一线性偏振方向一致的透射方向;
    其中,所述光学图像依次通过所述反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片及吸收型偏振片,所述第一相位延迟片还用于将成像透镜反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振片用于反射由所述第一相位延迟片传来的具有第二线性偏振方向的光学图像,所述成像透镜用于对反射型偏振片反射回来的光学图像进行放大,所述第二相位延迟片还用于将放大后光学图像的偏振方向转换为非第二线性偏振方向,以使得具有该非第二线性偏振方向的光学图像通过所述吸收型偏振片。
  2. 根据权利要求1所述的模组,其特征在于,所述第一相位延迟片和第二相位延迟片均为1/4波片。
  3. 根据权利要求1所述的模组,其特征在于,所述成像透镜的第二光学面与所述第一相位延迟片相贴合,以及,所述第二相位延迟片与所述吸收型偏振片相贴合。
  4. 根据权利要求3所述的模组,其特征在于,所述成像透镜的第一光学面与所述第二相位延迟片相贴合。
  5. 根据权利要求4所述的模组,其特征在于,所述反射型偏振片与所述第一相位延迟片相贴合。
  6. 根据权利要求5所述的模组,其特征在于,所述模组还包括用于产生第一线性偏振方向的光学图像的光学显示屏,所述光学显示屏设置在所述反射型偏振片且远离所述第一相位延迟片的一侧。
  7. 一种短距离光学放大模组,其特征在于,所述模组包括依次排列布置的反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片和吸收型偏振片,其中,
    反射型偏振片,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
    第一相位延迟片,设置于透过反射型偏振片的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
    成像透镜,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜包括靠近所述第一相位延迟片的第二光学面,以及与所述第二光学面相对的第一光学面,所述第一光学面为部分透射部分反射的光学面,且该成像透镜用于对透过所述第一光学面的光学图像进行放大;
    第二相位延迟片,设置于所述成像透镜的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第一线性偏振方向;
    吸收型偏振片,设置于所述第二相位延迟片且远离所述成像透镜的一侧,并且,所述吸收型偏振片具有第二线性偏振方向的透射方向,所述第二线性偏振方向与第一线性偏振方向正交;
    其中,所述光学图像依次通过所述反射型偏振片、第一相位延迟片、成像透镜、第二相位延迟片及吸收型偏振片,所述第一相位延迟片还用于将成像透镜反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向;所述反射型偏振片用于反射由所述第一相位延迟片传来的具有第二线性偏振方向的光学图像,所述成像透镜用于对反射型偏振片反射回来的光学图像进行放大,所述第二相位延迟片还用于将放大后光学图像的偏振方向转换为非第一线性偏振方向,以使得具有该非第一线性偏振方向的光学图像通过所述吸收型偏振片。
  8. 一种短距离光学放大方法,其特征在于,所述方法包括以下步骤:
    沿一传输路径输出具有第一线性偏振方向的光学图像,将所述具有第一线性偏振方向的光学图像通过反射型偏振片,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
    将所述光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向,并使得所述光学图像通过成像透镜进行反射放大;
    将所述通过成像透镜反射的光学图像的偏振方向由第一线性偏振方向转换为第二线性偏振方向,并且,所述第二线性偏振方向与第一线性偏振方向正交;
    反射型偏振片反射所述具有第二线性偏振方向的光学图像,并将该光学图像的偏振方向由第二线性偏振方向转换为椭圆或圆偏振方向;
    通过成像透镜将反射型偏振片反射的光学图像进行透射放大,并将透射放大后光学图像的偏振方向由椭圆或圆偏振方向转换为非第二线性偏振方向,以及使所述具有非第二线性偏振方向的光学图像通过吸收型偏振片。
  9. 一种短距离光学放大方法,其特征在于,所述方法包括以下步骤:
    沿一传输路径输出具有第一线性偏振方向的光学图像,将所述具有第一线性偏振方向的光学图像通过反射型偏振片,所述反射型偏振片具有与第一线性偏振方向一致的透射方向;
    将所述光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向,并使得所述光学图像通过成像透镜进行反射放大;
    将所述通过成像透镜反射的光学图像的偏振方向由第一线性偏振方向转换为第二线性偏振方向,并且,所述第二线性偏振方向与第一线性偏振方向正交;
    反射型偏振片反射所述具有第二线性偏振方向的光学图像,并将该光学图像的偏振方向由第二线性偏振方向转换为椭圆或圆偏振方向;
    通过成像透镜将反射型偏振片反射的光学图像进行透射放大,并将透射放大后光学图像的偏振方向由椭圆或圆偏振方向转换为非第一线性偏振方向,以及使所述具有非第一线性偏振方向的光学图像通过吸收型偏振片。
  10. 一种短距离光学放大系统,其特征在于,所述系统包括短距离光学放大模组,和用于产生第一线性偏振方向的光学图像的光学显示屏,其中,所述短距离光学放大模组包括:
    反射型偏振层,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振层具有与第一线性偏振方向一致的透射方向;
    第一相位延迟层,设置于透过反射型偏振层的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
    成像透镜层,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜包括靠近所述第一相位延迟层的第二光学面,以及与所述第二光学面相对的第一光学面,并且,所述第一光学面为部分透射部分反射的光学面,所述 成像透镜层用于对透过所述第一光学面的光学图像进行放大;
    第二相位延迟层,设置于所述成像透镜层的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述第二线性偏振方向与第一线性偏振方向正交;
    吸收型偏振层,设置于所述第二相位延迟层远离成像透镜层的一侧,所述吸收型偏振层具有与第一线性偏振方向一致的透射方向;
    其中,所述光学图像依次通过反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层,所述第一相位延迟层还用于将成像透镜层反射回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振层用于反射由所述第一相位延迟层传来的具有第二线性偏振方向的光学图像,所述成像透镜层用于将反射型偏振层反射回来的光学图像进行反射放大,所述第二相位延迟层还用于将放大后光学图像的的偏振方向转换为非第二线性偏振方向,以使得具有该非第二线性偏振方向的光学图像通过所述吸收型偏振层。
  11. 一种短距离光学放大系统,其特征在于,所述系统包括短距离光学放大模组,和用于产生第一线性偏振方向的光学图像的光学显示屏,其中,所述短距离光学放大模组包括:
    反射型偏振层,设置于具有第一线性偏振方向的光学图像的传输路径上,所述反射型偏振层具有与第一线性偏振方向一致的透射方向;
    第一相位延迟层,设置于透过反射型偏振层的光学图像的传输路径上,用于将该光学图像的偏振方向由第一线性偏振方向转换为椭圆或圆偏振方向;
    成像透镜层,设置于该具有椭圆或圆偏振方向的光学图像的传输路径上,所述成像透镜层包括靠近所述第一相位延迟层的第二光学面,以及与所述第二光学面相对的第一光学面,并且,所述第一光学面为部分透射部分反射的光学面,所述成像透镜层用于对透过所述第一光学面的光学图像进行放大;
    第二相位延迟层,设置于所述成像透镜层的第一光学面的一侧,用于将该光学图像的偏振方向由椭圆或圆偏振方向转换为第一线性偏振方向;
    吸收型偏振层,设置于所述第二相位延迟层远离成像透镜层的一侧,所述吸收型偏振层具有第二线性偏振方向的透射方向,所述第二线性偏振方向与第一线性偏振方向正交;
    其中,所述光学图像依次通过反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层,所述第一相位延迟层还用于将成像透镜层反射 回来的光学图像的偏振方向由椭圆或圆偏振方向转换为第二线性偏振方向,所述反射型偏振层用于反射由所述第一相位延迟层传来的具有第二线性偏振方向的光学图像,所述成像透镜层用于将反射型偏振层反射回来的光学图像进行反射放大,所述第二相位延迟层还用于将放大后光学图像的的偏振方向转换为非第一线性偏振方向,以使得具有该非第一线性偏振方向的光学图像通过所述吸收型偏振层。
  12. 根据权利要求11所述的系统,其特征在于,所述系统还包括不影响相位延时的光学器件,所述光学器件设置在所述短距离光学放大模组和光学显示屏之间。
  13. 根据权利要求11或12所述的系统,其特征在于,所述短距离光学放大模组还包括不影响相位延时的光学器件层,所述光学器件层设置在所述反射型偏振层、第一相位延迟层、成像透镜层、第二相位延迟层和吸收型偏振层中的任意两个层之间。
  14. 一种短距离光学放大模组,其特征在于,所述模组包括依次排列布置的反射型偏振片、成像透镜和吸收型偏振片,其中,所述反射型偏振片包括的两个侧面中,第一侧面以及与所述第一侧面相对的第二侧面,且所述第一侧面透射光线,所述第二侧面反射光线,且所述第二侧面靠近所述成像透镜,其中所述成像透镜的两个侧面中的一个面为平面部,与所述平面部相对的另一个面为曲面部,且所述曲面部一侧靠近所述吸收型偏振片。
PCT/CN2016/072532 2016-01-28 2016-01-28 一种短距离光学放大模组、放大方法及放大系统 WO2017128187A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16887074.9A EP3410176A4 (en) 2016-01-28 2016-01-28 SHORT-DISTANCE OPTICAL AMPLIFIER MODULE, AMPLIFICATION METHOD, AND AMPLIFICATION SYSTEM
PCT/CN2016/072532 WO2017128187A1 (zh) 2016-01-28 2016-01-28 一种短距离光学放大模组、放大方法及放大系统
JP2018539330A JP6641021B2 (ja) 2016-01-28 2016-01-28 短距離光拡大モジュール、拡大方法及び拡大システム
KR1020187024650A KR102083468B1 (ko) 2016-01-28 2016-01-28 근거리 광 증폭 모듈, 근거리 광 증폭 방법, 및 근거리 광 증폭 시스템
US16/073,415 US11604349B2 (en) 2016-01-28 2016-01-28 Short-distance optical amplification module, amplification method and amplification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/072532 WO2017128187A1 (zh) 2016-01-28 2016-01-28 一种短距离光学放大模组、放大方法及放大系统

Publications (1)

Publication Number Publication Date
WO2017128187A1 true WO2017128187A1 (zh) 2017-08-03

Family

ID=59396805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072532 WO2017128187A1 (zh) 2016-01-28 2016-01-28 一种短距离光学放大模组、放大方法及放大系统

Country Status (5)

Country Link
US (1) US11604349B2 (zh)
EP (1) EP3410176A4 (zh)
JP (1) JP6641021B2 (zh)
KR (1) KR102083468B1 (zh)
WO (1) WO2017128187A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333778A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
CN108333779A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
JP2020173459A (ja) * 2018-04-23 2020-10-22 ソニー株式会社 接眼光学系、医療用ビューア及び医療用ビューアシステム
WO2022141133A1 (zh) * 2020-12-30 2022-07-07 深圳纳德光学有限公司 一种折反射式目镜光学系统及头戴显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668471B (zh) * 2018-09-14 2019-08-11 量子光電股份有限公司 頭戴顯示器及其光學裝置
CN114077051B (zh) * 2020-08-13 2023-06-06 京东方科技集团股份有限公司 一种近眼显示装置
CN114690415A (zh) * 2020-12-29 2022-07-01 华为技术有限公司 光学模组及电子设备
CN112731676B (zh) * 2021-01-04 2022-07-29 业成科技(成都)有限公司 光学系统
WO2022232370A1 (en) * 2021-04-29 2022-11-03 Meta Platforms Technologies, Llc High efficiency pancake lens
US11782279B2 (en) 2021-04-29 2023-10-10 Meta Platforms Technologies, Llc High efficiency pancake lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718645A2 (en) * 1994-12-19 1996-06-26 Sharp Kabushiki Kaisha Optical device and head-mounted display using said optical device
EP0803756A1 (en) * 1996-04-24 1997-10-29 Sharp Kabushiki Kaisha Viewing device for head mounted display
CN1316063A (zh) * 1999-07-02 2001-10-03 皇家菲利浦电子有限公司 头戴型显示器
CN1388909A (zh) * 2000-06-23 2003-01-01 皇家菲利浦电子有限公司 显示装置
CN1930511A (zh) * 2003-11-26 2007-03-14 吕勒公司 用于真实世界模拟的改进的准直光学元件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715023A (en) 1996-04-30 1998-02-03 Kaiser Electro-Optics, Inc. Plane parallel optical collimating device employing a cholesteric liquid crystal
JP3716625B2 (ja) 1997-09-18 2005-11-16 コニカミノルタホールディングス株式会社 映像観察装置及びカメラ及び映像観察システム
US6262841B1 (en) 1997-11-24 2001-07-17 Bruce D. Dike Apparatus for projecting a real image in space
US6075651A (en) * 1999-01-28 2000-06-13 Kaiser Electro-Optics, Inc. Compact collimating apparatus
JP2000249984A (ja) 1999-02-26 2000-09-14 Minolta Co Ltd 反射透過偏光子を用いた光学系
JP2002107655A (ja) * 2000-09-27 2002-04-10 Minolta Co Ltd 映像表示装置
GB2387920B (en) * 2002-04-24 2005-11-23 Seos Ltd An eyepiece for viewing a flat image and comprising a cemented doublet of reflecting and refracting optical components
US7242524B2 (en) * 2003-11-25 2007-07-10 Pc Mirage, Llc Optical system for forming a real image in space
US20070273970A1 (en) * 2006-05-26 2007-11-29 Creative Display Systems, Llc Wide field of view, compact collimating apparatus
KR20120126561A (ko) * 2011-05-12 2012-11-21 엘지디스플레이 주식회사 영상 표시장치
WO2014129630A1 (ja) 2013-02-25 2014-08-28 株式会社ニコン 光学系、光学部材、マイクロミラーアレイ、表示装置および撮像装置
CN105093555B (zh) 2015-07-13 2018-08-14 深圳多新哆技术有限责任公司 短距离光学放大模组及使用其的近眼显示光学模组
US10197802B2 (en) * 2016-07-29 2019-02-05 Intevac, Inc. Biocular compact collimation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718645A2 (en) * 1994-12-19 1996-06-26 Sharp Kabushiki Kaisha Optical device and head-mounted display using said optical device
EP0803756A1 (en) * 1996-04-24 1997-10-29 Sharp Kabushiki Kaisha Viewing device for head mounted display
CN1316063A (zh) * 1999-07-02 2001-10-03 皇家菲利浦电子有限公司 头戴型显示器
CN1388909A (zh) * 2000-06-23 2003-01-01 皇家菲利浦电子有限公司 显示装置
CN1930511A (zh) * 2003-11-26 2007-03-14 吕勒公司 用于真实世界模拟的改进的准直光学元件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410176A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333778A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
CN108333779A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
CN108333779B (zh) * 2018-04-20 2023-10-03 深圳创维新世界科技有限公司 近眼显示系统
CN108333778B (zh) * 2018-04-20 2023-10-03 深圳创维新世界科技有限公司 近眼显示系统
JP2020173459A (ja) * 2018-04-23 2020-10-22 ソニー株式会社 接眼光学系、医療用ビューア及び医療用ビューアシステム
EP3620844B1 (en) * 2018-04-23 2023-07-26 Sony Group Corporation Eyepiece optical system, medical viewer, and medical viewer system
US11733517B2 (en) 2018-04-23 2023-08-22 Sony Corporation Ocular optical system, medical viewer, and medical viewer system
JP7375688B2 (ja) 2018-04-23 2023-11-08 ソニーグループ株式会社 接眼光学系、医療用ビューア及び医療用ビューアシステム
WO2022141133A1 (zh) * 2020-12-30 2022-07-07 深圳纳德光学有限公司 一种折反射式目镜光学系统及头戴显示装置

Also Published As

Publication number Publication date
US11604349B2 (en) 2023-03-14
JP6641021B2 (ja) 2020-02-05
EP3410176A1 (en) 2018-12-05
US20190033581A1 (en) 2019-01-31
EP3410176A4 (en) 2019-09-18
KR102083468B1 (ko) 2020-03-02
JP2019506636A (ja) 2019-03-07
KR20180105217A (ko) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017128187A1 (zh) 一种短距离光学放大模组、放大方法及放大系统
WO2017128183A1 (zh) 短距离光学放大模组、放大方法及放大系统
WO2017008414A1 (zh) 短距离光学放大模组及使用其的近眼显示光学模组
CN105572894B (zh) 一种短距离光学放大模组、放大方法及放大系统
WO2018223873A1 (zh) 阵列波导、显示装置和眼镜装置
WO2020042576A1 (zh) 一种光学成像系统
JP2019506636A5 (zh)
CN105629472A (zh) 短距离光学放大模组、放大方法及放大系统
CN110646942A (zh) 一种超薄光学放大模组及其应用
CN205539752U (zh) 短距离光学放大模组及其组件
WO2023092705A1 (zh) 光学模组和头戴显示设备
WO2024022106A1 (zh) 一种光学模组以及头戴显示设备
WO2024001238A1 (zh) 光学模组以及头戴显示设备
CN216248599U (zh) 增强现实显示系统及ar眼镜
WO2019119258A1 (zh) 光学系统及近眼显示装置
US20220350154A1 (en) Polarization optimized heads-up display
CN116243483A (zh) 增强现实显示系统及ar眼镜
US20200292821A1 (en) Near-eye display device
US20200249389A1 (en) Plate waveguide
WO2023246436A1 (zh) 光学系统以及显示装置
WO2023221239A1 (zh) 光学模组以及头戴显示设备
CN219642014U (zh) 近眼显示模组以及可穿戴设备
WO2023116163A1 (zh) 一种光波导器件、显示装置和显示设备
CN117666150A (zh) 近眼光学系统以及头戴显示设备
CN117170102A (zh) 近眼光学系统以及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539330

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024650

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024650

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016887074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016887074

Country of ref document: EP

Effective date: 20180828