WO2022141133A1 - 一种折反射式目镜光学系统及头戴显示装置 - Google Patents

一种折反射式目镜光学系统及头戴显示装置 Download PDF

Info

Publication number
WO2022141133A1
WO2022141133A1 PCT/CN2020/141141 CN2020141141W WO2022141133A1 WO 2022141133 A1 WO2022141133 A1 WO 2022141133A1 CN 2020141141 W CN2020141141 W CN 2020141141W WO 2022141133 A1 WO2022141133 A1 WO 2022141133A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical
optical system
human eye
Prior art date
Application number
PCT/CN2020/141141
Other languages
English (en)
French (fr)
Inventor
郭健飞
曹鸿鹏
彭华军
Original Assignee
深圳纳德光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纳德光学有限公司 filed Critical 深圳纳德光学有限公司
Priority to PCT/CN2020/141141 priority Critical patent/WO2022141133A1/zh
Publication of WO2022141133A1 publication Critical patent/WO2022141133A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of optical technology, and more particularly, to a catadioptric eyepiece optical system and a head-mounted display device.
  • head-mounted display products With the continuous update and progress of head-mounted display technology, applications in military, industrial, medical, education, consumer and other fields continue to emerge. While ensuring a large field of view and high-quality imaging effects, head-mounted display products also The thinning and lightening of products also put forward higher requirements.
  • Patent Document 1 (Chinese Patent Publication No. CN108957732A), Patent Document 2 (Chinese Patent Publication No. CN109313340A), Patent Document 3 (Chinese Patent Publication No. CN207946592U), and Patent Document 4 (US Patent Publication No. US10133074) all adopt catadioptric optics. system form. Among them, the lens group of Patent Document 1 adopts a positive-negative structure, the lens group of Patent Document 2 adopts a negative-positive structure, and the lens group of Patent Document 3 and Patent Document 4 adopts a single-piece positive lens and a double-piece positive lens structure to achieve It has the advantages of small size and light weight, but there are disadvantages such as poor imaging quality and large distortion.
  • Patent Document 5 Choinese Patent Publication No. CN105278109A
  • CN105278109A Choinese Patent Publication No. CN105278109A
  • the head-mounted display device is developing towards the direction of compact size, light weight, easy to wear on the head and lightening of the load.
  • large field of view and visual comfort have gradually become the key factors to measure the quality of head-mounted display devices.
  • Large field of view determines the effect of high-presence visual experience, and high image quality and low distortion determine the comfort of visual experience.
  • Spend. To meet these requirements, it is necessary for the eyepiece optical system to achieve a large field of view, high image resolution, low distortion, small field curvature, and small volume as much as possible. At the same time, satisfying the above optical performance is very important for system design and aberration optimization. challenge.
  • the technical problem to be solved by the present invention is to provide a catadioptric eyepiece optical system and a head-mounted display device in view of the above-mentioned defects of the prior art, which can achieve a large angle of view, high image resolution, low distortion, small field curvature, Small size and other indicators.
  • the technical scheme adopted by the present invention to solve the technical problem is: constructing a catadioptric eyepiece optical system, which includes an optical polarizer, a first phase retardation plate and a first phase retarder that are arranged in sequence along the optical axis direction from the observation side of the human eye to the micro-image display.
  • the first lens group and the third lens group are lens groups with positive refractive power; the second lens group is a lens group with negative refractive power; the refractive power of the eyepiece optical system is set to F;
  • the refractive powers of the first lens group, the second lens group and the third lens group are respectively set to f 1 , f 2 and f 3 , and the following relational expression (1) is satisfied between f 1 , f 2 and f 3 :
  • the optical power of the eyepiece optical system is F; the optical power of the second lens group is f 2 , then F and f 2 satisfy the following relational formula (2):
  • the optical power of the eyepiece optical system is F; the optical power of the first lens group is f 1 ; the optical power of the second lens group is f 2 , then F, f 1 and f 2 satisfies the following relation (3):
  • the combined refractive power between the second lens group and the third lens group is set to f 23 ;
  • the refractive power of the eyepiece optical system is set to F, then f 23 and F satisfy the following relational expression (4):
  • the first lens group includes at least a first lens close to the human eye side;
  • the second lens group includes at least a second lens adjacent to the first lens;
  • the third lens group includes at least a second lens adjacent to the first lens; a third lens adjacent to the second lens; when the transflective optical surface is located on one of the optical surfaces of the first lens, the second lens or the third lens, the The focal length of a lens, the second lens or the third lens is f', and the curvature of the transflective optical surface is R 0 , then f' and R 0 satisfy the following relational formula (5):
  • the combined refractive power between the second lens group and the third lens group is set to f 23 ;
  • the refractive power of the eyepiece optical system is set to F, then f 23 and F further satisfy the following relationship Formula (6):
  • the optical surface of the first lens close to the human eye is a plane; the optical surface of the first lens away from the human eye is convex toward the micro-image display direction;
  • the optical surface of the second lens close to the human eye is concave in the direction of the human eye; the optical surface of the second lens away from the human eye is convex in the direction of the micro-image display;
  • the optical surface of the third lens close to the human eye is concave toward the human eye; the optical surface of the third lens away from the human eye is convex toward the optical surface or plane of the micro-image display.
  • the optical surface of the first lens close to the human eye is a plane; the optical surface of the first lens away from the human eye is convex toward the micro-image display direction;
  • the second lens is a double concave lens; the third lens is a double convex lens.
  • the optical surface of the first lens close to the human eye is a plane; the optical surface of the first lens away from the human eye is convex toward the micro-image display direction;
  • the second lens is a double concave lens
  • the optical surface of the third lens close to the human eye is convex toward the human eye; the optical surface of the third lens away from the human eye is a concave optical surface or plane of the micro-image display.
  • the third lens group further includes a fourth lens; the fourth lens is located between the second phase retardation plate and the third lens; the optical surface of the fourth lens close to the human eye is The optical surface of the plane or concave to the human eye; the optical surface of the fourth lens away from the human eye is convex to the direction of the micro-image display.
  • the transflective optical surface is convex toward the direction of the miniature image display.
  • each lens in the first lens group, the second lens group and the third lens group is glass material or plastic material.
  • the lens also includes a common optical surface; the common optical surface is a plane surface type, a spherical surface type or an aspheric surface type.
  • the present invention also provides a head-mounted display device, comprising two miniature image displays corresponding to the positions of the left and right eyes of a person, and comprising the eyepiece optical system described in any one of the foregoing;
  • the miniature image display is an organic electroluminescence device or a transmissive liquid crystal display.
  • the beneficial effects of the present invention are: utilizing the polarization of light to realize the refraction and reflection of the optical path, shortening the total length of the optical system, and with the combination of "positive, negative and positive" lens groups, the optical system can reduce the sensitivity of each optical component, and it is easy to
  • the processing and assembly of components especially the realization of large field of view, low distortion, low chromatic aberration, low field curvature, low astigmatism and other optical indicators, the observer can see full-frame high-definition, distortion-free through the eyepiece optical system ,
  • a large screen with uniform image quality, to achieve a high-presence visual experience, the head-mounted display device is compact in size, light in weight, and easy to wear on the head.
  • FIG. 1 is a schematic structural diagram of an eyepiece optical system according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a diffused spot array of the eyepiece optical system according to the first embodiment of the present invention
  • Fig. 3 is the distortion schematic diagram of the eyepiece optical system of the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system according to the first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an eyepiece optical system according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a speckle array of an eyepiece optical system according to a second embodiment of the present invention.
  • Fig. 7 is the distortion schematic diagram of the eyepiece optical system of the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system of the second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an eyepiece optical system according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a diffused spot array of an eyepiece optical system according to a third embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the distortion of the eyepiece optical system according to the third embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system of the third embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an eyepiece optical system according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a diffused spot array of an eyepiece optical system according to a fourth embodiment of the present invention.
  • 15 is a schematic diagram of the distortion of the eyepiece optical system according to the fourth embodiment of the present invention.
  • 16 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system of the fourth embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an eyepiece optical system according to a fifth embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a diffused spot array of an eyepiece optical system according to a fifth embodiment of the present invention.
  • Fig. 19 is the distortion diagram of the eyepiece optical system of the fifth embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of an eyepiece optical system according to a sixth embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a diffused spot array of an eyepiece optical system according to a sixth embodiment of the present invention.
  • FIG. 23 is a schematic diagram of the distortion of the eyepiece optical system according to the sixth embodiment of the present invention.
  • FIG. 24 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system according to the sixth embodiment of the present invention.
  • the invention constructs a catadioptric eyepiece optical system, which includes an optical polarizer, a first phase retardation plate, a first lens group, and a second lens group arranged in sequence along the optical axis direction from the observation side of the human eye to the micro-image display.
  • the third lens group, the second phase retardation plate and the linear polarizer; the first lens group, the second lens group and the third lens group all include one or more lenses;
  • the first lens group and the third lens group are lens groups with positive refractive power; the second lens group is a lens group with negative refractive power; the refractive power of the eyepiece optical system is set to F; the first lens group, the second lens group and the The refractive powers of the three lens groups are set to f 1 , f 2 and f 3 respectively, and the following relational expression (1) is satisfied between f 1 , f 2 and f 3 :
  • the light emitted from the miniature image display is polarized by the linear polarizer, so that the light is linearly polarized p light, and the polarized light p light passes through the 1/4 ⁇ second phase retarder, so that the linearly polarized light is circularly polarized in the p direction, and passes through the first lens.
  • Group, the second lens group and the third lens group are refracted, and the light is linearly polarized after passing through the 1/4 ⁇ first phase retardation plate.
  • the light transmits p light, and the s light is reflected by the optical polarizer.
  • the light passes through the 1/4 ⁇ first phase retarder again to present circularly polarized light in the s direction.
  • the first phase retardation plate is linearly polarized in the p direction and transmitted through the optical polarizer to reach the human eye. Using the polarization of light, the light path can be refracted and reflected, the total length of the optical system is shortened, and the head-mounted display device is compact. , Light weight, easy to wear.
  • the defects of the prior art are effectively improved by adopting a lens group that combines "positive, negative and positive", so that the light emitted by the miniature image display reaches the human eye into a full-frame high-definition, high-definition image.
  • Large-scale images with no distortion and uniform image quality achieve a highly immersive visual experience.
  • the optical system can reduce the sensitivity of each optical component, making it easy to process and assemble components, especially at the same time, achieving a large field of view, low distortion, and low chromatic aberration.
  • the observer can watch the full-frame high-definition, distortion-free, uniform image quality through the eyepiece optical system to achieve a high-presence visual experience.
  • This product is intended for use with head mounted displays and similar devices.
  • the light from the miniature image display is polarized by a linear polarizer, so that the light is linearly polarized s light, and the polarized s light passes through a 1/4 ⁇ second phase retarder, so that the linearly polarized light is circular in the s direction Polarization is refracted through the first lens group, the second lens group and the third lens group. After passing through the 1/4 ⁇ first phase retarder, it is linearly polarized p light.
  • the optical polarizer is a kind of rotational symmetry according to the component axis. The different directions reflect the p light and transmit the s light.
  • the p light is reflected by the optical polarizer, and the light passes through the 1/4 ⁇ first phase retarder again to present the p-direction circularly polarized light. When it reaches the transflective optical surface, it is partially reflected and transmitted. , the reflected light passes through the 1/4 ⁇ first phase retarder again and is linearly polarized in the s direction, transmitted through the optical polarizer, and reaches the human eye, forming a full-frame high-definition, distortion-free, and uniform large-scale picture, achieving a high-presence vision. experience, this product is suitable for use with head-mounted displays and similar devices.
  • the linear polarizer only has a polarizing effect on light, and filters ordinary light into linearly polarized p light or s light, which plays a filtering role.
  • the optical polarizer can selectively transmit the linearly polarized light p light or s light according to the rotation direction, and reflect the corresponding s light or p light.
  • the optical power of the eyepiece optical system is F; the optical power of the second lens group is f 2 , then F and f 2 satisfy the following relational formula (2):
  • ⁇ f 2 /F ⁇ can be 0.0396, 0.0557, 0.073, 0.15, 0.78, 1.22, 1.57, 2.01, 1.56, 1.78 and so on.
  • the optical power of the eyepiece optical system is F; the optical power of the first lens group is f 1 ; the optical power of the second lens group is f 2 , then F, f 1 and f 2 satisfy The following relation (3):
  • (f 1 +f 2 )/F can take values of -2.23, -2.12, -1.88, -1.35, -0.57, -0.28, 0.12, 0.30, and so on.
  • the combined refractive power between the second lens group and the third lens group is set to f 23 ;
  • the refractive power of the eyepiece optical system is set to F, then f 23 and F satisfy the following relational formula (4 ):
  • ⁇ f 23 /F ⁇ can be 0.30, 0.45, 0.50, 0.53, 0.61, 0.63, 0.69, 0.703 and so on.
  • the value ranges of ⁇ f 2 /F ⁇ , (f 1 +f 2 )/F and ⁇ f 23 /F ⁇ are closely related to the correction of system aberrations, the processing difficulty of optical components, and the sensitivity of optical component assembly deviations , the value of ⁇ f 2 /F ⁇ in the relation (2) is greater than 0.0396, so that the system aberration can be fully corrected, so as to achieve high-quality optical effects, and its value is less than 2.78, which improves the reliability of the optical elements in the system.
  • the value of (f 1 +f 2 )/F in the relationship (3) is greater than -2.23, so that the system aberration can be fully corrected, so as to achieve high-quality optical effects, and its value is less than 0.30, which improves the The machinability of the optical elements in the system;
  • the value of ⁇ f 23 /F ⁇ in the relationship (4) is greater than 0.30, so that the system aberration can be fully corrected, so as to achieve high-quality optical effects, and its value is less than 0.703, which improves the Processability of the optical elements in the system. This allows the system to be sufficiently corrected for aberrations to achieve high-quality optical results and to improve the processability of the optical elements in the system.
  • FIG. 1 it includes an optical polarizer, a first phase retarder, a first lens group, a second lens group, a third lens group, The second phase retardation plate and the linear polarizer; wherein, the number of the optical surface close to the E side of the human eye is 1, and so on (2, 3, 4, 5, 6 from left to right), emitted from the micro-image display
  • the light is passed through the linear polarizer, the second phase retarder, the third lens group, the second lens group, the first lens group, and the first phase retarder in turn, and is partially reflected by the optical polarizer and then passes through the first phase retarder again. , refracted by the lens group, and partially reflected and partially projected when reaching the semi-transparent and semi-reflective optical surface.
  • the reflected light passes through the first phase retarder again, and is transmitted by the optical polarizer before entering the human eye.
  • the first lens group includes at least a first lens close to the human eye side;
  • the second lens group includes at least a second lens adjacent to the first lens;
  • the third lens group includes at least a second lens adjacent to the second lens The adjacent third lens; when the transflective optical surface is located on one of the optical surfaces of the first lens, the second lens or the third lens, the focal length of the first lens, the second lens or the third lens is f', The curvature of the transflective optical surface is R 0 , then f' and R 0 satisfy the following relational formula (5):
  • R 0 /f' can be -0.7433, -0.55, -0.31, -0.20, -0.13, 0.35, 1.5, 3.78, 6.35, 7.98, 8.59, 9.91 and so on.
  • the lower limit value condition of R0/f' in the relational formula (5) is greater than -0.7433, so that the corresponding lens can provide enough negative power, so that the system aberration can be better balanced and corrected, and good optical effects can be achieved.
  • the value is less than 9.91, which reduces the difficulty of spherical aberration correction and facilitates the realization of large optical apertures.
  • the combined refractive power between the second lens group and the third lens group is set to f 23 ;
  • the refractive power of the eyepiece optical system is set to F, then f 23 and F further satisfy the following relational formula ( 6):
  • the optical surface of the first lens on the side close to the human eye is a plane; the optical surface on the side away from the human eye of the first lens is convex toward the direction of the micro-image display;
  • the optical surface of the second lens close to the human eye is concave toward the human eye; the optical surface of the second lens away from the human eye is convex toward the micro-image display direction;
  • the optical surface of the third lens close to the human eye is concave toward the human eye; the optical surface of the third lens away from the human eye is convex toward the optical surface or plane of the micro-image display.
  • the optical surface of the first lens on the side close to the human eye is flat; the optical surface on the side away from the human eye of the first lens is convex toward the direction of the micro-image display;
  • the second lens is a biconcave lens; the third lens is a biconvex lens.
  • the optical surface of the first lens close to the human eye side is a plane; the optical surface of the first lens away from the human eye side is convex toward the direction of the micro-image display;
  • the second lens is a double concave lens
  • the optical surface of the third lens close to the human eye is convex toward the human eye; the optical surface of the third lens away from the human eye is concave to the optical surface or plane of the micro-image display.
  • the third lens group further includes a fourth lens; the fourth lens is located between the second phase retardation plate and the third lens; the optical surface of the fourth lens close to the human eye is flat or concave to the human eye the optical surface of the fourth lens; the optical surface of the fourth lens away from the human eye is convex toward the direction of the micro-image display.
  • the third lens group is composed of two optical lenses, and the use of the fourth lens can better correct field curvature and astigmatism, which is more conducive to realizing a larger field of view and higher optical resolution.
  • the transflective optical surface is convex towards the micro-image display.
  • the above-mentioned embodiments further improve aberrations such as astigmatism and field curvature of the system, which is beneficial for the eyepiece system to achieve a high-resolution optical effect of uniform image quality across the entire frame.
  • the material of each lens in the first lens group, the second lens group and the third lens group is glass material or plastic material.
  • the lens further includes a common optical surface; the common optical surface is a plane surface type, a spherical surface type or an aspheric surface type.
  • the common optical surface is located on the non-transflective and semi-reflective optical surfaces of one or more lenses in the first lens group, the second lens group and the third lens group, so that the aberrations of the optical system (including spherical aberration, coma, Distortion, field curvature, astigmatism, chromatic aberration and other higher-order aberrations) are fully corrected, which is beneficial for the eyepiece optical system to further improve the center field of view and edge field of view while achieving a large angle of view and large aperture.
  • Image quality reducing the difference in image quality between the center and edge fields of view for more uniform image quality and low distortion across the full frame.
  • the diaphragm E may be the exit pupil of the eyepiece optical system for imaging, which is a virtual light exit aperture.
  • the pupil of the human eye is at the diaphragm position, the best imaging effect can be observed.
  • FIG. 1 is a 2D structural diagram of the eyepiece optical system of the first embodiment, including an optical polarizer L5, a first phase retarder L4, and a first lens that are sequentially arranged along the optical axis from the observation side of the human eye to the micro-image display.
  • the first lens group A1 in the optical system is composed of a first lens D1, which is a plano-convex lens; the second lens group A2 is composed of a second lens D2, which is a biconcave lens, and the third lens group A3 is composed of The third lens D3 is formed, and the third lens D3 is a biconvex lens.
  • the refractive power F of the optical system is 0.0667
  • the refractive power f1 of the first lens group A1 is 0.0198
  • the refractive power f2 of the second lens group A2 is -0.0784
  • the refractive power f of the third lens group A3 3 is 0.0746
  • the combined refractive power f 23 of the second lens group A2 and the third lens group A3 is 0.0203
  • ⁇ f 2 /F ⁇ is 1.176
  • (f 1 +f 2 )/F is -0.88, and ⁇ f 23 /F ⁇ is 0.304
  • the semi-transparent and semi-reflective optical surface L3 is located on the fourth optical surface of the second lens D2 in the second lens group A2 close to the human eye
  • the optical power f' of the second lens D2 is -12.75
  • half The radius of curvature R 0 of the transflective optical surface L3 is -66.12
  • R 0 /f' is 5.1859.
  • Accompanying drawing 2, accompanying drawing 3, accompanying drawing 4 are respectively the distortion figure of this optical system, diffused spot array figure and optical transfer function MTF figure, have reflected each field of view light of the present embodiment in the image plane (miniature image display device 1 ) has high resolution and small optical distortion in the unit pixel of ), the resolution per 10mm per unit period reaches more than 0.8, the aberration of the optical system is well corrected, and uniform and high optical performance can be observed through the eyepiece optical system. display image.
  • the eyepiece design data of the first embodiment is shown in Table 1 below:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • optical polarizer L5 can selectively project linearly polarized light p light and reflect linearly polarized light s light; Alternatively, linearly polarized light s can be selectively projected, and linearly polarized p light can be reflected; a transflective optical surface L3 is included between the first lens group A1, the second lens group A2 and the third lens group A3.
  • the first lens group A1 in the optical system is composed of a first lens D1, which is a plano-convex lens;
  • the second lens group A2 is composed of a second lens D2, which is a biconcave lens;
  • the third lens group A3 is composed of The third lens D3 is formed, and the third lens D3 is a biconvex lens.
  • the refractive power F of the optical system is 0.0615, the refractive power f1 of the first lens group A1 is 0.0147, the refractive power f2 of the second lens group A2 is -0.0359, and the refractive power f of the third lens group A3 3 is 0.0492, the combined refractive power f 23 of the second lens group A2 and the third lens group A3 is 0.0243, then ⁇ f 2 /F ⁇ is 0.5846, (f 1 +f 2 )/F is -0.3455, and ⁇ f 23 /F ⁇ is 0.395, the semi-transparent and semi-reflective optical surface L3 is located on the fourth optical surface of the second lens D2 in the second lens group A2 close to the human eye, the optical power f' of the second lens D2 is -27.83, half The radius of curvature R 0 of the transflective optical surface L3 is -66.12, then R 0 /f' is 2.3757.
  • Accompanying drawing 6, accompanying drawing 7, accompanying drawing 8 are the distortion diagram, the scattered spot array diagram and the MTF diagram of the optical transfer function of the optical system, respectively, reflecting the light of each field of view of the present embodiment on the image plane (miniature image display 1)
  • the unit pixel has high resolution and small optical distortion.
  • the resolution per 10mm per unit period reaches more than 0.8, and the optical system aberration is well corrected.
  • Through the eyepiece optical system uniform and high optical performance can be observed. Display image.
  • the eyepiece design data of the second embodiment is shown in Table 2 below:
  • optical polarizer L5 can selectively project linearly polarized light p light and reflect linearly polarized light s light; Alternatively, linearly polarized light s can be selectively projected, and linearly polarized p light can be reflected; a transflective optical surface L3 is included between the first lens group A1, the second lens group A2 and the third lens group A3.
  • the first lens group A1 in the optical system is composed of a first lens D1, which is a plano-convex lens;
  • the second lens group A2 is composed of a second lens D2, which is a biconcave lens;
  • the third lens group A3 is composed of The third lens D3 and the fourth lens D4 are formed, and the third lens D3 and the fourth lens D4 are plano-convex lenses.
  • the refractive power F of the optical system is 0.0459, the refractive power f1 of the first lens group A1 is 0.0255, the refractive power f2 of the second lens group A2 is -0.1277, and the refractive power f of the third lens group A3 3 is 0.0524, the combined refractive power f 23 of the second lens group A2 and the third lens group A3 is -0.029, then ⁇ f 2 /F ⁇ is 2.78, (f 1 +f 2 )/F is -2.23, ⁇ f 23 /F ⁇ is 0.63, the transflective optical surface L3 is located on the fourth optical surface of the second lens D2 in the second lens group A2 close to the human eye, and the optical power f' of the second lens D2 is -7.83, The radius of curvature R 0 of the transflective optical surface L3 is -77.60, so R 0 /f' is 9.91.
  • Accompanying drawing 10, accompanying drawing 11, accompanying drawing 12 are the distortion diagram, the scattered spot array diagram and the MTF diagram of the optical transfer function of the optical system, respectively, reflecting the light of each field of view in the present embodiment on the image plane (miniature image display I)
  • the unit pixel has high resolution and small optical distortion, the resolution per 10mm per unit period is more than 0.5, the aberration of the optical system is well corrected, and uniform and high optical performance can be observed through the eyepiece optical system. Display image.
  • the eyepiece design data of the third embodiment is shown in Table 3 below:
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 13 is a 2D structural diagram of the eyepiece optical system of the fourth embodiment, including an optical polarizer L5, a first phase retardation plate L4, and a first lens that are sequentially arranged along the optical axis from the observation side of the human eye to the micro-image display.
  • the first lens group A1 in the optical system is composed of a first lens D1, which is a plano-convex lens; the second lens group A2 is composed of a second lens D2, which is a meniscus lens convex to the micro-image display.
  • the third lens group A3 is composed of a third lens D3, the third lens D3 is a meniscus lens convex to the micro-image display, wherein the optical power F of the optical system is 0.0641, and the first lens group A1
  • the power f 1 is 0.0142
  • the refractive power f2 of the second lens group A2 is 0.0047
  • the refractive power f3 of the third lens group A3 is 0.0399
  • the combined refractive power f23 of the second lens group A2 and the third lens group A3 is -0.045, then ⁇ f 2 /F ⁇ is 0.0733, (f 1 +f 2 )/F is 0.295, ⁇ f 23 /F ⁇ is 0.703, and the transflective
  • the lens D2 is close to the fourth optical surface of the human eye, the refractive power f' of the second lens D2 is 212.87, and the curvature radius R 0 of the semi-transparent and semi-reflective optical surface L3 is -66.12, then R 0 /f' is -0.311 .
  • Fig. 14, Fig. 15, Fig. 16 are the distortion diagram, the scattered spot array diagram and the MTF diagram of the optical transfer function of the optical system, respectively, which reflect the light of each field of view of the present embodiment on the image plane (display device I)
  • the unit pixel has high resolution and small optical distortion.
  • the resolution per 10mm per unit period reaches more than 0.8.
  • the aberration of the optical system is well corrected. Through the eyepiece optical system, a display with uniform and high optical performance can be observed. portrait.
  • the eyepiece design data of the fourth embodiment is shown in Table 4 below:
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 17 is a 2D structural diagram of the eyepiece optical system of the fifth embodiment, including an optical polarizer L5, a first phase retardation plate L4, and a first lens that are sequentially arranged along the optical axis from the observation side of the human eye to the micro-image display.
  • the first lens group A1 in the optical system is composed of a first lens D1, which is a plano-convex lens;
  • the second lens group A2 is composed of a second lens D2, which is a meniscus lens convex to the micro-image display.
  • the third lens group A3 is composed of a third lens D3, and the third lens D3 is a plano-convex lens concave to the microdisplay screen.
  • the refractive power F of the optical system is 0.0607, the refractive power f1 of the first lens group A1 is 0.0144, the refractive power f2 of the second lens group A2 is -0.0024, and the refractive power f of the third lens group A3 3 is -0.0119, the combined refractive power f 23 of the second lens group A2 and the third lens group A3 is -0.0145, then ⁇ f 2 /F ⁇ is 0.0397, (f 1 +f 2 )/F is 0.197, ⁇ f 23 /F ⁇ is 0.2397, the semi-transparent and semi-reflective optical surface L3 is located on the sixth optical surface of the third lens D3 in the third lens group A3 close to the micro-display screen, and the optical power f' of the third lens D3 is -84.16 , the radius of curvature R 0 of the semi-transparent and semi-reflective optical surface L3 is -46.34, then R 0 /f'
  • Accompanying drawing 18, accompanying drawing 19, accompanying drawing 20 are the distortion diagram, the scattered spot array diagram and the MTF diagram of the optical transfer function of the optical system, respectively, which reflect the light of each field of view in the present embodiment on the image plane (miniature image display I)
  • the unit pixel has high resolution and small optical distortion, the resolution per 10mm per unit period reaches more than 0.5, and the aberration of the optical system is well corrected. Through the eyepiece optical system, uniform and high optical performance can be observed. Display image.
  • the eyepiece design data of the fifth embodiment is shown in Table 5 below:
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • 21 is a 2D structural diagram of the eyepiece optical system of the sixth embodiment, including an optical polarizer L5, a first phase retarder L4, and a first lens that are sequentially arranged along the optical axis from the observation side of the human eye to the micro-image display.
  • the first lens group A1 in the optical system is composed of a first lens D1, which is a plano-convex lens; the second lens group A2 is composed of a second lens D2, and the second lens group A2 is a meniscus convex toward the micro-image display.
  • the lens, the third lens group A3 is composed of a third lens D3, and the third lens D3 is a plano-convex lens concave to the microdisplay screen.
  • the refractive power F of the optical system is 0.0727, the refractive power f1 of the first lens group A1 is 0.0138, the refractive power f2 of the second lens group A2 is -0.04897, and the refractive power f of the third lens group A3 3 is -0.0497, the combined refractive power f 23 of the second lens group A2 and the third lens group A3 is -0.004, then ⁇ f 2 /F ⁇ is 0.67, (f 1 +f 2 )/F is -0.483, ⁇ f 23 /F ⁇ is 0.0558, the semi-transparent and semi-reflective optical surface L3 is located on the third optical surface of the first lens D1 in the first lens group A1 close to the micro display screen, and the optical power f' of the first lens D1 is 13.76 , the radius of curvature R 0 of the semi-transparent and semi-reflective optical surface L3 is -53.7, then R 0 /f' is -0.743.
  • Fig. 22, Fig. 23, Fig. 24 are the distortion diagram, the scattered spot array diagram and the MTF diagram of the optical transfer function of the optical system, respectively, which reflect the light of each field of view of the present embodiment on the image plane (display device I)
  • the unit pixel has high resolution and small optical distortion.
  • the resolution per 10mm per unit period reaches more than 0.7, and the aberration of the optical system is well corrected.
  • a display with uniform and high optical performance can be observed. portrait.
  • the eyepiece design data of the sixth embodiment are shown in Table 6 below:
  • the present invention also provides a head-mounted display device, which includes two micro-image displays corresponding to the positions of the left and right eyes of a human being, and includes an eyepiece optical system as described above; the eyepiece optical system is arranged between the human eye and the micro-image display. between.
  • the miniature image display is an organic electroluminescent device or a transmissive liquid crystal display.
  • the eyepiece optical system of the above-mentioned embodiments of the present invention utilizes the polarization of light to realize refraction and reflection of the optical path, shortening the total length of the optical system, and with the combination of "positive, negative, positive" lens groups, the optical system can reduce
  • the sensitivity of each optical component is easy to process and assemble, especially the optical indicators such as large field of view, low distortion, low chromatic aberration, low field curvature, and low astigmatism are realized.
  • the observer can watch through the eyepiece optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种折反射式目镜光学系统及头戴显示装置,目镜光学系统包括从人眼观察侧到微型图像显示器(IMG)之间沿光轴方向依次排列的光学偏振片(L5)、第一相位延迟片(L4)、第一透镜组(A1)、第二透镜组(A2)、第三透镜组(A3)、第二相位延迟片(L2)以及线性偏振片(L1);第一透镜组(A1)、第二透镜组(A2)以及第三透镜组(A3)均包含一个或多个透镜;第一相位延迟片(L4)与第二相位延迟片(L2)之间设有唯一的半透半反光学面(L3);半透半反光学面(L3)设置在第一透镜组(A1)、第二透镜组(A2)或第三透镜组(A3)的其中一个光学面上;第一透镜组(A1)与第三透镜组(A3)为正光焦度透镜组;第二透镜组(A2)为负光焦度透镜组;目镜光学系统实现了大视场角、低畸变、低色差、低场曲、低像散光学指标,体积紧凑,重量轻,便于头戴。

Description

一种折反射式目镜光学系统及头戴显示装置 技术领域
本发明涉及光学技术领域,更具体地说,涉及一种折反射式目镜光学系统及头戴显示装置。
背景技术
随着头戴显示技术的不断更新进步,在军事、工业、医疗、教育、消费等领域不断涌现应用,头戴显示产品在保证大视场、高质量的成像效果的同时,也对头戴显示产品的薄型化,轻型化也提出了更高的要求。
专利文献1(中国专利公开号CN108957732A)、专利文献2(中国专利公开号CN109313340A)、专利文献3(中国专利公开号CN207946592U)、专利文献4(美国专利公开号US10133074)均是采用折反式光学系统形态。其中,专利文献1的透镜组采用的是正负结构,专利文献2的透镜组采用的是负正结构,专利文献3与专利文献4采用的是单片正透镜和双片正透镜结构,实现了小体积、重量轻,但存在成像质量差、畸变大等缺点。
专利文献5(中国专利公开号CN105278109A)虽然采用了正、负、正透镜组组合的光学系统,实现了大视场角、高像质、低畸变,但体积较大,重量重。
头戴显示装置向着体积紧凑,重量轻,便于头戴,减轻负载等方向发展。同时,大视场角和视觉舒适体验也逐渐成为衡量头戴显示装置优劣的关键因素,大视场角决定了高临场感的视觉体验效果,高像质、低畸变决定了视觉体验的舒适度。满足这些要求,需要目镜光学系统尽可能地实现大视场角、高图 像分辨力、低畸变、小场曲、小体积等指标,同时满足上述光学性能对系统的设计和像差优化是很大挑战。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种折反射式目镜光学系统及头戴显示装置,实现大视场角、高图像分辨力、低畸变、小场曲、小体积等指标。
本发明解决其技术问题所采用的技术方案是:构造一种折反射式目镜光学系统,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列的光学偏振片、第一相位延迟片、第一透镜组、第二透镜组、第三透镜组、第二相位延迟片以及线性偏振片;所述第一透镜组、所述第二透镜组以及所述第三透镜组均包含一个或多个透镜;所述第一相位延迟片与所述第二相位延迟片之间设有唯一的半透半反光学面;所述半透半反光学面设置在所述第一透镜组、所述第二透镜组或所述第三透镜组的其中一个光学面上;
所述第一透镜组与所述第三透镜组为正光焦度透镜组;所述第二透镜组为负光焦度透镜组;所述目镜光学系统的光焦度设为F;所述第一透镜组、第二透镜组以及第三透镜组的光焦度分别设为f 1、f 2和f 3,且f 1、f 2和f 3之间满足下列关系式(1):
f 1+f 2+f 3≤F       (1)。
进一步地,所述目镜光学系统的光焦度为F;所述第二透镜组的光焦度为f 2,则F与f 2满足下列关系式(2):
0.0396≤│f 2/F│≤2.78     (2)。
进一步地,所述目镜光学系统的光焦度为F;所述第一透镜组的光焦度为 f 1;所述第二透镜组的光焦度为f 2,则F、f 1与f 2满足下列关系式(3):
-2.23≤(f 1+f 2)/F≤0.30     (3)。
进一步地,所述第二透镜组以及所述第三透镜组之间的组合光焦度设为f 23;所述目镜光学系统的光焦度设为F,则f 23与F满足下列关系式(4):
0.30≤│f 23/F│≤0.703      (4)。
进一步地,所述第一透镜组至少包括靠近人眼侧的第一透镜;所述第二透镜组至少包括与所述第一透镜相邻的第二透镜;所述第三透镜组至少包括与所述第二透镜相邻的第三透镜;在所述半透半反光学面位于所述第一透镜、所述第二透镜或所述第三透镜中的其中一个光学面时,所述第一透镜、所述第二透镜或所述第三透镜的焦距为f’,所述半透半反光学面的曲率为R 0,则f’与R 0满足下列关系式(5):
-0.7433≤R 0/f’≤9.91      (5)。
进一步地,所述第二透镜组以及所述第三透镜组之间的组合光焦度设为f 23;所述目镜光学系统的光焦度设为F,则f 23与F进一步满足下列关系式(6):
0.30≤│f 23/F│≤0.703      (6)。
进一步地,所述第一透镜靠近人眼侧的光学面为平面;所述第一透镜远离人眼侧的光学面凸向微型图像显示器方向;
所述第二透镜靠近人眼侧的光学面凹向人眼方向;所述第二透镜远离人眼侧的光学面凸向微型图像显示器方向;
所述第三透镜靠近人眼侧的光学面凹向人眼方向;所述第三透镜远离人眼侧的光学面为凸向微型图像显示器的光学面或平面。
进一步地,所述第一透镜靠近人眼侧的光学面为平面;所述第一透镜远离人眼侧的光学面凸向微型图像显示器方向;
所述第二透镜为双凹透镜;所述第三透镜为双凸透镜。
进一步地,所述第一透镜靠近人眼侧的光学面为平面;所述第一透镜远离人眼侧的光学面凸向微型图像显示器方向;
所述第二透镜为双凹透镜;
所述第三透镜靠近人眼侧的光学面凸向人眼方向;所述第三透镜远离人眼侧的光学面为凹向微型图像显示器的光学面或平面。
进一步地,所述第三透镜组还包括第四透镜;所述第四透镜位于所述第二相位延迟片与所述第三透镜之间;所述第四透镜靠近人眼侧的光学面为平面或者凹向人眼的光学面;所述第四透镜远离人眼侧的光学面凸向微型图像显示器方向。
进一步地,所述半透半反光学面凸向微型图像显示器方向。
进一步地,所述第一透镜组、所述第二透镜组以及所述第三透镜组中各透镜的材质为玻璃材质或塑胶材质。
进一步地,所述透镜还包括普通光学面;所述普通光学面为平面面型、球面面型或非球面面型。
本发明还提供一种头戴显示装置,包括两个分别与人左右眼位置对应的微型图像显示器,包含如前述中任一项所述目镜光学系统;。
进一步地,所述微型图像显示器为有机电致发光器件或透射式液晶显示器。
本发明的有益效果在于:利用光的偏振性,实现对光路进行折反射,缩短光学系统的总长,配合“正、负、正”组合的透镜组,光学系统能够降低各光学部件的感度,易于部件的加工及组装,特别是同时实现了大视场角、低畸变、低色差、低场曲、低像散等光学指标,观察者可以通过该目镜光学系统,观看 到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验,头戴显示装置体积紧凑,重量轻,便于头戴。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明第一实施例的目镜光学系统的结构示意图;
图2是本发明第一实施例的目镜光学系统的弥散斑阵列示意图;
图3是本发明第一实施例的目镜光学系统的畸变示意图;
图4是本发明第一实施例的目镜光学系统的光学传递函数MTF示意图;
图5是本发明第二实施例的目镜光学系统的结构示意图;
图6是本发明第二实施例的目镜光学系统的弥散斑阵列示意图;
图7是本发明第二实施例的目镜光学系统的畸变示意图;
图8是本发明第二实施例的目镜光学系统的光学传递函数MTF示意图;
图9是本发明第三实施例的目镜光学系统的结构示意图;
图10是本发明第三实施例的目镜光学系统的弥散斑阵列示意图;
图11是本发明第三实施例的目镜光学系统的畸变示意图;
图12是本发明第三实施例的目镜光学系统的光学传递函数MTF示意图;
图13是本发明第四实施例的目镜光学系统的结构示意图;
图14是本发明第四实施例的目镜光学系统的弥散斑阵列示意图;
图15是本发明第四实施例的目镜光学系统的畸变示意图;
图16是本发明第四实施例的目镜光学系统的光学传递函数MTF示意图;
图17是本发明第五实施例的目镜光学系统的结构示意图;
图18是本发明第五实施例的目镜光学系统的弥散斑阵列示意图;
图19是本发明第五实施例的目镜光学系统的畸变示意图;
图20是本发明第五实施例的目镜光学系统的光学传递函数MTF示意图;
图21是本发明第六实施例的目镜光学系统的结构示意图;
图22是本发明第六实施例的目镜光学系统的弥散斑阵列示意图;
图23是本发明第六实施例的目镜光学系统的畸变示意图;
图24是本发明第六实施例的目镜光学系统的光学传递函数MTF示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明构造一种折反射式目镜光学系统,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列的光学偏振片、第一相位延迟片、第一透镜组、第二透镜组、第三透镜组、第二相位延迟片以及线性偏振片;第一透镜组、第二透镜组以及第三透镜组均包含一个或多个透镜;第一相位延迟片与第二相位延迟片之间设有唯一的半透半反光学面;半透半反光学面设置在第一透镜组、第二透镜组或第三透镜组的其中一个光学面上;
第一透镜组与第三透镜组为正光焦度透镜组;第二透镜组为负光焦度透镜 组;目镜光学系统的光焦度设为F;第一透镜组、第二透镜组以及第三透镜组的光焦度分别设为f 1、f 2和f 3,且f 1、f 2和f 3之间满足下列关系式(1):
f 1+f 2+f 3≤F       (1)。
光线从微型图像显示器射出经线性偏振片起偏,使光线呈线性偏振光p光,偏振光p光经过1/4λ第二相位延迟片,使线性偏振光呈p方向圆偏振,经过第一透镜组、第二透镜组以及第三透镜组进行折射,在经过1/4λ第一相位延迟片后呈线性偏振光s光,光学偏振片是一种根据部件轴对称的旋转方向的不同来反射s光透射p光,s光经光学偏振片反射,光线再次经过1/4λ第一相位延迟片呈现s方向圆偏振光,到达半透半反光学面时进行部分反射和透射,反射光线再次经过1/4λ第一相位延迟片呈p方向线性偏振光经光学偏振片透射出去,到达人眼,利用光的偏振性,实现对光路进行折反射,缩短光学系统的总长,使得头戴显示装置体积紧凑,重量轻,便于头戴。
更重要的是,在上述特征的基础上,通过采用“正、负、正”组合的透镜组,有效改善了现有技术的缺陷,使微型图像显示器射出的光线到达人眼时成全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验,光学系统能够降低各光学部件的感度,易于部件的加工及组装,特别是同时实现了大视场角、低畸变、低色差、低场曲、低像散等光学指标,观察者可以通过该目镜光学系统,观看到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验。本产品适用于头戴显示器及其类似装置。
在另一实施例中,光线从微型图像显示器经线性偏振片起偏,使光线呈线性偏振光s光,偏振光s光经过1/4λ第二相位延迟片,使线性偏振光呈s方向圆偏振,经过第一透镜组、第二透镜组以及第三透镜组进行折射,在经过1/4λ第一相位延迟片后呈线性偏振光p光,光学偏振片是一种根据部件轴对 称的旋转方向的不同来反射p光透射s光,p光经光学偏振片反射,光线再次经过1/4λ第一相位延迟片呈现p方向圆偏振光,到达半透半反光学面时进行部分反射和透射,反射光线再次经过1/4λ第一相位延迟片呈s方向线性偏振光经光学偏振片透射出去,到达人眼,成全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验,本产品适用于头戴显示器及其类似装置。
上述实施例中,光学偏振片透射出的光线为s光或者p光取决于线性偏振片、第一相位延迟片、第二相位延迟片以及光学偏振片的旋转方向。其中,线性偏振片只对光线有起偏作用,将普通光线过滤成线性偏振光p光或s光,起过滤作用。光学偏振片能够根据旋转方向,选择性地对线性偏振光p光或s光进行透射,反射对应的s光或p光。
在进一步的实施例中,目镜光学系统的光焦度为F;第二透镜组的光焦度为f 2,则F与f 2满足下列关系式(2):
0.0396≤│f 2/F│≤2.78      (2)。
其中,│f 2/F│可取值为0.0396、0.0557、0.073、0.15、0.78、1.22、1.57、2.01、1.56、1.78等等。
在进一步的实施例中,目镜光学系统的光焦度为F;第一透镜组的光焦度为f 1;第二透镜组的光焦度为f 2,则F、f 1与f 2满足下列关系式(3):
-2.23≤(f 1+f 2)/F≤0.30     (3)。
(f 1+f 2)/F可取值为-2.23、-2.12、-1.88、-1.35、-0.57、-0.28、0.12、0.30等等。
在进一步的实施例中,第二透镜组以及第三透镜组之间的组合光焦度设为f 23;目镜光学系统的光焦度设为F,则f 23与F满足下列关系式(4):
0.30≤│f 23/F│≤0.703     (4)。
其中,│f 23/F│可取值为0.30、0.45、0.50、0.53、0.61、0.63、0.69、0.703等等。
上述│f 2/F│、(f 1+f 2)/F以及│f 23/F│的取值范围对系统像差的校正、光学元件的加工难度、以及光学元件装配偏差的灵敏度密切相关,关系式(2)中│f 2/F│的取值大于0.0396,使系统像差得以充分校正,从而实现优质的光学效果,其取值小于2.78,改善了所述系统中光学元件的可加工性;关系式(3)中(f 1+f 2)/F的取值大于-2.23,使系统像差得以充分校正,从而实现优质的光学效果,其取值小于0.30,改善了所述系统中光学元件的可加工性;关系式(4)中│f 23/F│的取值大于0.30,使系统像差得以充分校正,从而实现优质的光学效果,其取值小于0.703,改善了所述系统中光学元件的可加工性。使得系统像差得以充分校正,从而实现优质的光学效果,并改善了所述系统中光学元件的可加工性。
如图1所示,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列的光学偏振片、第一相位延迟片、第一透镜组、第二透镜组、第三透镜组、第二相位延迟片以及线性偏振片;其中,以靠近人眼E侧的光学表面序号为1,依此类推(从左至右为2、3、4、5、6),从微型图像显示器发出的光,依次经线性偏振片、第二相位延迟片、第三透镜组、第二透镜组、第一透镜组、第一相位延迟片,经过光学偏振片部分反射后再次经过第一相位延迟片,经透镜组折射,在到达半透半反光学面时进行部分反射部分投射,被反射的光线再次经过第一相位延迟片,并由光学偏振片透射后,进入人眼。
在进一步的实施例中,第一透镜组至少包括靠近人眼侧的第一透镜;第二透镜组至少包括与第一透镜相邻的第二透镜;第三透镜组至少包括与第二透镜相邻的第三透镜;在半透半反光学面位于第一透镜、第二透镜或第三透镜中的 其中一个光学面时,第一透镜、第二透镜或第三透镜的焦距为f’,半透半反光学面的曲率为R 0,则f’与R 0满足下列关系式(5):
-0.7433≤R 0/f’≤9.91      (5)。
其中,R 0/f’可取值为-0.7433、-0.55、-0.31、-0.20、-0.13、0.35、1.5、3.78、6.35、7.98、8.59、9.91等等。
其中关系式(5)中R0/f’的下限取值条件大于-0.7433,使对应透镜可以提供足够的负光焦度,从而可以更好地平衡校正系统像差,实现良好的光学效果,其取值小于9.91,降低了球差的校正难度,便于实现大光学孔径。
在进一步的实施例中,第二透镜组以及第三透镜组之间的组合光焦度设为f 23;目镜光学系统的光焦度设为F,则f 23与F进一步满足下列关系式(6):
0.30≤│f 23/F│≤0.703      (6)。
通过进一步优选第二透镜组、第三透镜组和目镜光学系统光焦度的取值范围,更好地平衡了所述光学系统的光学性能和加工制造难度。
在进一步的实施例中,第一透镜靠近人眼侧的光学面为平面;第一透镜远离人眼侧的光学面凸向微型图像显示器方向;
第二透镜靠近人眼侧的光学面凹向人眼方向;第二透镜远离人眼侧的光学面凸向微型图像显示器方向;
第三透镜靠近人眼侧的光学面凹向人眼方向;第三透镜远离人眼侧的光学面为凸向微型图像显示器的光学面或平面。
在另一实施例中,第一透镜靠近人眼侧的光学面为平面;第一透镜远离人眼侧的光学面凸向微型图像显示器方向;
第二透镜为双凹透镜;第三透镜为双凸透镜。
在另一实施例中,第一透镜靠近人眼侧的光学面为平面;第一透镜远离人 眼侧的光学面凸向微型图像显示器方向;
第二透镜为双凹透镜;
第三透镜靠近人眼侧的光学面凸向人眼方向;第三透镜远离人眼侧的光学面为凹向微型图像显示器的光学面或平面。
在进一步的实施例中,第三透镜组还包括第四透镜;第四透镜位于第二相位延迟片与第三透镜之间;第四透镜靠近人眼侧的光学面为平面或者凹向人眼的光学面;第四透镜远离人眼侧的光学面凸向微型图像显示器方向。其中,第三透镜组由两枚光学透镜构成,利用第四透镜可更好的校正场曲和像散,更加有利于实现更大的视场角和更高的光学分辨率。
在进一步的实施例中,半透半反光学面凸向微型图像显示器方向。
上述实施例进一步改善了系统的像散和场曲等像差,有利于目镜系统实现全画幅均匀像质的高分辨率光学效果。
在进一步的实施例中,第一透镜组、第二透镜组以及第三透镜组中各透镜的材质为玻璃材质或塑胶材质。使得所述目镜光学系统的各级像差得到充分校正的同时,又控制了光学元件的制造成本和光学系统的重量。
在进一步的实施例中,透镜还包括普通光学面;普通光学面为平面面型、球面面型或非球面面型。普通光学面位于第一透镜组、第二透镜组和第三透镜组内一个或多个透镜的非半透半反光学面上,使所述光学系统的像差(包括球差、慧差、畸变、场曲、像散、色差和其它高阶像差)得到充分的校正,有利于所述目镜光学系统在实现大视场角、大孔径的同时,进一步提升中心视场和边缘视场的图像质量、缩小中心视场和边缘视场图像质量的差别,实现全画幅内更均匀的图像质量和低畸变。
下面通过更加具体的实施例对上述目镜光学系统的原理、方案及显示结果 进行更进一步的阐述。
以下实施例中,光阑E可以为目镜光学系统成像的出瞳,为一个虚拟的出光孔径,人眼的瞳孔在光阑位置时,可以观察到最佳的成像效果。
实施例一:
附图1为第一实施例目镜光学系统的2D结构图,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列着光学偏振片L5、第一相位延迟片L4、第一透镜组A1、第二透镜组A2、第三透镜组A3、第二相位延迟片L4以及线性偏振片L5;其中,光学偏振片L5可选择性投射线性偏振光p光,反射线性偏振光s光;或者,可选择性投射线性偏振光s光,反射线性偏振光p光;第一透镜组A1、第二透镜组A2以及第三透镜组A3之间包括一个半透半反光学面L3。光学系统中的第一透镜组A1由第一透镜D1组成,第一透镜D1为平凸透镜;第二透镜组A2由第二透镜D2组成,第二透镜D2为双凹透镜,第三透镜组A3由第三透镜D3组成,第三透镜D3为双凸透镜。其中光学系统的光焦度F为0.0667,第一透镜组A1的光焦度f 1为0.0198,第二透镜组A2的光焦度f 2为-0.0784,第三透镜组A3的光焦度f 3为0.0746,第二透镜组A2和第三透镜组A3的组合光焦度f 23为0.0203,则│f 2/F│为1.176,(f 1+f 2)/F为-0.88,│f 23/F│为0.304,半透半反光学面L3位于第二透镜组A2中第二透镜D2靠近人眼的第4光学面上,第二透镜D2的光焦度f’为-12.75,半透半反光学面L3的曲率半径R 0为-66.12,则R 0/f’为5.1859。
附图2、附图3、附图4分别为该光学系统的畸变图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(微型图像显示器件I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.8以上,光学系统像差得到良好校正,通过所述目镜光学系统可 观察到均匀、高光学性能的显示画像。
第一实施例目镜设计数据如下表一所示:
表一
Figure PCTCN2020141141-appb-000001
实施例二:
附图5为第二实施例目镜光学系统的2D结构图,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列着光学偏振片L5、第一相位延迟片L4、第一透镜组A1、第二透镜组A2、第三透镜组A3、第二相位延迟片L4以及线性偏振片L5;其中,光学偏振片L5可选择性投射线性偏振光p光,反射线性偏振光s光;或者,可选择性投射线性偏振光s光,反射线性偏振光p光;第一透镜组A1、第二透镜组A2以及第三透镜组A3之间包括一个半透半反光学面L3。光学系统中的第一透镜组A1由第一透镜D1组成,第一透镜D1为平凸透镜;第二透镜组A2由第二透镜D2组成,第二透镜D2为双凹透镜;第三透镜组A3由第三透镜D3组成,第三透镜D3为双凸透镜。其中光学系统的光焦度F为0.0615,第一透镜组A1的光焦度f 1为0.0147,第二透镜组A2的光焦 度f 2为-0.0359,第三透镜组A3的光焦度f 3为0.0492,第二透镜组A2和第三透镜组A3的组合光焦度f 23为0.0243,则│f 2/F│为0.5846,(f 1+f 2)/F为-0.3455,│f 23/F│为0.395,半透半反光学面L3位于第二透镜组A2中第二透镜D2靠近人眼的第4光学面上,第二透镜D2的光焦度f’为-27.83,半透半反光学面L3的曲率半径R 0为-66.12,则R 0/f’为2.3757。
附图6、附图7、附图8分别为该光学系统的畸变图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(微型图像显示器I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.8以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第二实施例目镜设计数据如下表二所示:
表二
Figure PCTCN2020141141-appb-000002
实施例三:
附图9为第三实施例目镜光学系统的2D结构图,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列着光学偏振片L5、第一相位延迟片L4、第一透镜组A1、第二透镜组A2、第三透镜组A3、第二相位延迟片L4以及线性偏振片L5;其中,光学偏振片L5可选择性投射线性偏振光p光,反射线性偏振光s光;或者,可选择性投射线性偏振光s光,反射线性偏振光p光;第一透镜组A1、第二透镜组A2以及第三透镜组A3之间包括一个半透半反光学面L3。光学系统中的第一透镜组A1由第一透镜D1组成,第一透镜D1为平凸透镜;第二透镜组A2由第二透镜D2组成,第二透镜D2为双凹透镜;第三透镜组A3由第三透镜D3和第四透镜D4组成,第三透镜D3和第四透镜D4为平凸透镜。其中光学系统的光焦度F为0.0459,第一透镜组A1的光焦度f 1为0.0255,第二透镜组A2的光焦度f 2为-0.1277,第三透镜组A3的光焦度f 3为0.0524,第二透镜组A2和第三透镜组A3的组合光焦度f 23为-0.029,则│f 2/F│为2.78,(f 1+f 2)/F为-2.23,│f 23/F│为0.63,半透半反光学面L3位于第二透镜组A2中第二透镜D2靠近人眼的第4光学面上,第二透镜D2的光焦度f’为-7.83,半透半反光学面L3的曲率半径R 0为-77.60,则R 0/f’为9.91。
附图10、附图11、附图12分别为该光学系统的畸变图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(微型图像显示器I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.5以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第三实施例目镜设计数据如下表三所示:
表三
Figure PCTCN2020141141-appb-000003
实施例四:
附图13为第四实施例目镜光学系统的2D结构图,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列着光学偏振片L5、第一相位延迟片L4、第一透镜组A1、第二透镜组A2、第三透镜组A3、第二相位延迟片L4以及线性偏振片L5;其中,光学偏振片L5可选择性投射线性偏振光p光,反射线性偏振光s光;或者,可选择性投射线性偏振光s光,反射线性偏振光p光;第一透镜组A1、第二透镜组A2以及第三透镜组A3之间包括一个半透半反光学面L3。光学系统中的第一透镜组A1由第一透镜D1组成,第一透镜D1为平凸透镜;第二透镜组A2由第二透镜D2组成,第二透镜D2为凸向微型图像显示器的弯月透镜,第三透镜组A3由第三透镜D3组成,第三透镜D3为凸向微型图像显示器的弯月透镜,其中光学系统的光焦度F为0.0641,第一透镜组A1的光焦度f 1为0.0142,第二透镜组A2的光焦度f 2为0.0047,第三透镜组A3 的光焦度f 3为0.0399,第二透镜组A2和第三透镜组A3的组合光焦度f 23为-0.045,则│f 2/F│为0.0733,(f 1+f 2)/F为0.295,│f 23/F│为0.703,半透半反光学面L3位于第二透镜组A2中第二透镜D2靠近人眼的第4光学面上,第二透镜D2的光焦度f’为212.87,半透半反光学面L3的曲率半径R 0为-66.12,则R 0/f’为-0.311。
附图14、附图15、附图16分别为该光学系统的畸变图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.8以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第四实施例目镜设计数据如下表四所示:
表四
Figure PCTCN2020141141-appb-000004
实施例五:
附图17为第五实施例目镜光学系统的2D结构图,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列着光学偏振片L5、第一相位延迟片L4、第一透镜组A1、第二透镜组A2、第三透镜组A3、第二相位延迟片L4以及线性偏振片L5;其中,光学偏振片L5可选择性投射线性偏振光p光,反射线性偏振光s光;或者,可选择性投射线性偏振光s光,反射线性偏振光p光;第一透镜组A1、第二透镜组A2以及第三透镜组A3之间包括一个半透半反光学面L3。光学系统中的第一透镜组A1由第一透镜D1组成,第一透镜D1为平凸透镜;第二透镜组A2由第二透镜D2组成,第二透镜D2为凸向微型图像显示器的弯月透镜,第三透镜组A3由第三透镜D3组成,第三透镜D3为凹向微显示屏的平凸透镜。其中光学系统的光焦度F为0.0607,第一透镜组A1的光焦度f 1为0.0144,第二透镜组A2的光焦度f 2为-0.0024,第三透镜组A3的光焦度f 3为-0.0119,第二透镜组A2和第三透镜组A3的组合光焦度f 23为-0.0145,则│f 2/F│为0.0397,(f 1+f 2)/F为0.197,│f 23/F│为0.2397,半透半反光学面L3位于第三透镜组A3中第三透镜D3靠近微显示屏的第6光学面上,第三透镜D3的光焦度f’为-84.16,半透半反光学面L3的曲率半径R 0为-46.34,则R 0/f’为-0.551。
附图18、附图19、附图20分别为该光学系统的畸变图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(微型图像显示器I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.5以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第五实施例目镜设计数据如下表五所示:
表五
Figure PCTCN2020141141-appb-000005
实施例六:
附图21为第六实施例目镜光学系统的2D结构图,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列着光学偏振片L5、第一相位延迟片L4、第一透镜组A1、第二透镜组A2、第三透镜组A3、第二相位延迟片L4以及线性偏振片L5;其中,光学偏振片L5可选择性投射线性偏振光p光,反射线性偏振光s光;或者,可选择性投射线性偏振光s光,反射线性偏振光p光;第一透镜组A1、第二透镜组A2以及第三透镜组A3之间包括一个半透半反光学面L3。光学系统中的第一透镜组A1由第一透镜D1组成,第一透镜D1为平凸透镜;第二透镜组A2由第二透镜D2组成,第二透镜组A2为凸向微型图像显示器的弯月透镜,第三透镜组A3由第三透镜D3组成,第三透镜D3为凹向微 显示屏的平凸透镜。其中光学系统的光焦度F为0.0727,第一透镜组A1的光焦度f 1为0.0138,第二透镜组A2的光焦度f 2为-0.04897,第三透镜组A3的光焦度f 3为-0.0497,第二透镜组A2和第三透镜组A3的组合光焦度f 23为-0.004,则│f 2/F│为0.67,(f 1+f 2)/F为-0.483,│f 23/F│为0.0558,半透半反光学面L3位于第一透镜组A1中第一透镜D1靠近微显示屏的第3光学面上,第一透镜D1的光焦度f’为13.76,半透半反光学面L3的曲率半径R 0为-53.7,则R 0/f’为-0.743。
附图22、附图23、附图24分别为该光学系统的畸变图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.7以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第六实施例目镜设计数据如下表六所示:
表六
Figure PCTCN2020141141-appb-000006
上述实施例一至六的各项数据均满足发明内容中所记录的参数要求,结果如下表七所示:
表七
  │f 2/F│ (f 1+f 2)/F │f 23/F│ R 0/f’
实施例一 1.1758 -0.8796 0.3043 5.1859
实施例二 0.5846 -0.3455 0.3954 2.3757
实施例三 2.7829 -2.2282 0.6312 9.91
实施例四 0.0733 0.2955 0.7027 -0.3106
实施例五 0.0397 0.1974 0.2397 0.5506
实施例六 0.6738 -0.4834 0.0558 -0.7434
本发明还提供一种头戴显示装置,包括两个分别与人左右眼位置对应的微型图像显示器,包含如前述中任一项目镜光学系统;目镜光学系统设置在人眼与所述微型图像显示器之间。
优选地,微型图像显示器为有机电致发光器件或透射式液晶显示器。
综上,本发明的上述各实施例的目镜光学系统利用光的偏振性,实现对光路进行折反射,缩短光学系统的总长,配合“正、负、正”组合的透镜组,光学系统能够降低各光学部件的感度,易于部件的加工及组装,特别是同时实现了大视场角、低畸变、低色差、低场曲、低像散等光学指标,观察者可以通过该目镜光学系统,观看到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验,使得头戴显示装置体积紧凑,重量轻,便于头戴。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种折反射式目镜光学系统,其特征在于:包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列的光学偏振片、第一相位延迟片、第一透镜组、第二透镜组、第三透镜组、第二相位延迟片以及线性偏振片;所述第一透镜组、所述第二透镜组以及所述第三透镜组均包含一个或多个透镜;所述第一相位延迟片与所述第二相位延迟片之间设有唯一的半透半反光学面;所述半透半反光学面设置在所述第一透镜组、所述第二透镜组或所述第三透镜组的其中一个光学面上;
    所述第一透镜组与所述第三透镜组为正光焦度透镜组;所述第二透镜组为负光焦度透镜组;所述目镜光学系统的光焦度设为F;所述第一透镜组、第二透镜组以及第三透镜组的光焦度分别设为f 1、f 2和f 3,且f 1、f 2和f 3之间满足下列关系式(1):
    f 1+f 2+f 3≤F  (1)。
  2. 根据权利要求1所述的折反射式目镜光学系统,其特征在于,所述目镜光学系统的光焦度为F;所述第二透镜组的光焦度为f 2,则F与f 2满足下列关系式(2):
    0.0396≤│f 2/F│≤2.78  (2)。
  3. 根据权利要求1所述的折反射式目镜光学系统,其特征在于,所述目镜光学系统的光焦度为F;所述第一透镜组的光焦度为f 1;所述第二透镜组的光焦度为f 2,则F、f 1与f 2满足下列关系式(3):
    -2.23≤(f 1+f 2)/F≤0.30  (3)。
  4. 根据权利要求1所述的折反射式目镜光学系统,其特征在于,所述第 二透镜组以及所述第三透镜组之间的组合光焦度设为f 23;所述目镜光学系统的光焦度设为F,则f 23与F满足下列关系式(4):
    0.30≤│f 23/F│≤0.703  (4)。
  5. 根据权利要求1所述的折反射式目镜光学系统,其特征在于,所述第一透镜组至少包括靠近人眼侧的第一透镜;所述第二透镜组至少包括与所述第一透镜相邻的第二透镜;所述第三透镜组至少包括与所述第二透镜相邻的第三透镜;在所述半透半反光学面位于所述第一透镜、所述第二透镜或所述第三透镜中的其中一个光学面时,所述第一透镜、所述第二透镜或所述第三透镜的焦距为f’,所述半透半反光学面的曲率为R 0,则f’与R 0满足下列关系式(5):
    -0.7433≤R 0/f’≤9.91  (5)。
  6. 根据权利要求4所述的折反射式目镜光学系统,其特征在于,所述第二透镜组以及所述第三透镜组之间的组合光焦度设为f 23;所述目镜光学系统的光焦度设为F,则f 23与F进一步满足下列关系式(6):
    0.30≤│f 23/F│≤0.703(6)。
  7. 根据权利要求5所述的折反射式目镜光学系统,其特征在于,
    所述第一透镜靠近人眼侧的光学面为平面;所述第一透镜远离人眼侧的光学面凸向微型图像显示器方向;
    所述第二透镜靠近人眼侧的光学面凹向人眼方向;所述第二透镜远离人眼侧的光学面凸向微型图像显示器方向;
    所述第三透镜靠近人眼侧的光学面凹向人眼方向;所述第三透镜远离人眼侧的光学面为凸向微型图像显示器的光学面或平面。
  8. 根据权利要求5所述的折反射式目镜光学系统,其特征在于,
    所述第一透镜靠近人眼侧的光学面为平面;所述第一透镜远离人眼侧的光 学面凸向微型图像显示器方向;
    所述第二透镜为双凹透镜;所述第三透镜为双凸透镜。
  9. 根据权利要求5所述的折反射式目镜光学系统,其特征在于,所述第一透镜靠近人眼侧的光学面为平面;所述第一透镜远离人眼侧的光学面凸向微型图像显示器方向;
    所述第二透镜为双凹透镜;
    所述第三透镜靠近人眼侧的光学面凸向人眼方向;所述第三透镜远离人眼侧的光学面为凹向微型图像显示器的光学面或平面。
  10. 根据权利要求9所述的折反射式目镜光学系统,其特征在于,所述第三透镜组还包括第四透镜;所述第四透镜位于所述第二相位延迟片与所述第三透镜之间;所述第四透镜靠近人眼侧的光学面为平面或者凹向人眼的光学面;所述第四透镜远离人眼侧的光学面凸向微型图像显示器方向。
  11. 根据权利要求5所述的折反射式目镜光学系统,其特征在于,所述半透半反光学面凸向微型图像显示器方向。
  12. 根据权利要求1所述的折反射式目镜光学系统,其特征在于,所述第一透镜组、所述第二透镜组以及所述第三透镜组中各透镜的材质为玻璃材质或塑胶材质。
  13. 根据权利要求1所述的折反射式目镜光学系统,其特征在于,所述透镜还包括普通光学面;所述普通光学面为平面面型、球面面型或非球面面型。
  14. 一种头戴显示装置,包括两个分别与人左右眼位置对应的微型图像显示器,其特征在于,包含如权利要求1-13中任一项所述目镜光学系统;所述目镜光学系统设置在人眼与所述微型图像显示器之间。
  15. 根据权利要求14所述的头戴显示装置,其特征在于,所述微型图像 显示器为有机电致发光器件或透射式液晶显示器。
PCT/CN2020/141141 2020-12-30 2020-12-30 一种折反射式目镜光学系统及头戴显示装置 WO2022141133A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141141 WO2022141133A1 (zh) 2020-12-30 2020-12-30 一种折反射式目镜光学系统及头戴显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141141 WO2022141133A1 (zh) 2020-12-30 2020-12-30 一种折反射式目镜光学系统及头戴显示装置

Publications (1)

Publication Number Publication Date
WO2022141133A1 true WO2022141133A1 (zh) 2022-07-07

Family

ID=82259944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141141 WO2022141133A1 (zh) 2020-12-30 2020-12-30 一种折反射式目镜光学系统及头戴显示装置

Country Status (1)

Country Link
WO (1) WO2022141133A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116149065A (zh) * 2023-04-24 2023-05-23 歌尔光学科技有限公司 光学模组以及可穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278109A (zh) * 2015-07-10 2016-01-27 深圳纳德光学有限公司 大视场角目镜光学系统
WO2017128187A1 (zh) * 2016-01-28 2017-08-03 深圳多哚新技术有限责任公司 一种短距离光学放大模组、放大方法及放大系统
CN109507801A (zh) * 2017-09-14 2019-03-22 精工爱普生株式会社 虚像显示装置
CN110383135A (zh) * 2017-03-08 2019-10-25 3M创新有限公司 光学系统
CN110646942A (zh) * 2019-09-29 2020-01-03 平行现实(杭州)科技有限公司 一种超薄光学放大模组及其应用
CN110764266A (zh) * 2019-11-13 2020-02-07 歌尔股份有限公司 光学系统及虚拟现实设备
CN112558287A (zh) * 2020-12-30 2021-03-26 深圳纳德光学有限公司 一种折反射式目镜光学系统及头戴显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278109A (zh) * 2015-07-10 2016-01-27 深圳纳德光学有限公司 大视场角目镜光学系统
WO2017128187A1 (zh) * 2016-01-28 2017-08-03 深圳多哚新技术有限责任公司 一种短距离光学放大模组、放大方法及放大系统
CN110383135A (zh) * 2017-03-08 2019-10-25 3M创新有限公司 光学系统
CN109507801A (zh) * 2017-09-14 2019-03-22 精工爱普生株式会社 虚像显示装置
CN110646942A (zh) * 2019-09-29 2020-01-03 平行现实(杭州)科技有限公司 一种超薄光学放大模组及其应用
CN110764266A (zh) * 2019-11-13 2020-02-07 歌尔股份有限公司 光学系统及虚拟现实设备
CN112558287A (zh) * 2020-12-30 2021-03-26 深圳纳德光学有限公司 一种折反射式目镜光学系统及头戴显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116149065A (zh) * 2023-04-24 2023-05-23 歌尔光学科技有限公司 光学模组以及可穿戴设备
CN116149065B (zh) * 2023-04-24 2023-08-04 歌尔光学科技有限公司 光学模组以及可穿戴设备

Similar Documents

Publication Publication Date Title
US10302906B2 (en) Eyepiece optical system for near-eye display, and head-mounted display device
CN112558287A (zh) 一种折反射式目镜光学系统及头戴显示装置
CN213934402U (zh) 一种大视场角的目镜光学系统及头戴显示装置
US11480782B1 (en) Reflective eyepiece optical system and head-mounted near-to-eye display device
CN112630973A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630977A (zh) 一种大视场角的目镜光学系统及头戴显示装置
US11768382B2 (en) Reflective eyepiece optical system and head-mounted near-to-eye display device
CN112630974A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630976A (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141385A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934399U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214041889U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934401U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214011639U (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141133A1 (zh) 一种折反射式目镜光学系统及头戴显示装置
US20230393383A1 (en) Diopter-adjustable eyepiece optical system and head-mounted display device
CN112630978A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630975A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112764221A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112731666A (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2021102685A1 (zh) 一种大视场角高像质的目镜光学系统及设备
CN213934400U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934404U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214311096U (zh) 一种折反射式目镜光学系统及头戴显示装置
WO2022141382A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967481

Country of ref document: EP

Kind code of ref document: A1