WO2023116163A1 - 一种光波导器件、显示装置和显示设备 - Google Patents

一种光波导器件、显示装置和显示设备 Download PDF

Info

Publication number
WO2023116163A1
WO2023116163A1 PCT/CN2022/126652 CN2022126652W WO2023116163A1 WO 2023116163 A1 WO2023116163 A1 WO 2023116163A1 CN 2022126652 W CN2022126652 W CN 2022126652W WO 2023116163 A1 WO2023116163 A1 WO 2023116163A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
polarized
optical waveguide
polarized light
Prior art date
Application number
PCT/CN2022/126652
Other languages
English (en)
French (fr)
Inventor
陈志东
Original Assignee
深圳铅笔视界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111594430.7A external-priority patent/CN113985519B/zh
Priority claimed from CN202220635648.6U external-priority patent/CN216870952U/zh
Application filed by 深圳铅笔视界科技有限公司 filed Critical 深圳铅笔视界科技有限公司
Publication of WO2023116163A1 publication Critical patent/WO2023116163A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the embodiments of the present application relate to the field of optical display technology, and in particular to an optical waveguide device, a display device, and a display device.
  • An optical waveguide is a dielectric device that guides light waves to propagate in it, also known as a dielectric optical waveguide.
  • Optical waveguides have become an important component of near-eye display devices due to their thinness and lightness.
  • most of the current optical waveguide components use the principle of total reflection to propagate light.
  • a reflective film can be formed on the surface of the optical waveguide element, so that the light that does not satisfy the total reflection condition can continue to propagate in the optical waveguide element through the reflection of the reflective film, so as to prevent the light from exiting the optical waveguide element from affecting the display effect, but this will As a result, the light in the optical waveguide element can only exit in the area without the reflective film to form a display image, which greatly limits the exit range of the light.
  • the problem to be solved by the present invention is to provide an optical waveguide device, a display device and a display device to increase the light output range of the optical waveguide device.
  • the first aspect of the present invention discloses an optical waveguide device, which includes an optical waveguide dielectric body, a first polarization reflection layer and an optical structure layer; the optical waveguide dielectric body includes opposite first and second surfaces, and the first a polarized reflective layer is disposed on the first surface, and the optical structure layer is disposed on the second surface;
  • the optical waveguide dielectric body is used for propagating light, and the light includes first polarized light;
  • the first polarized reflective layer is used to reflect the first polarized light and transmit the second polarized light, and the second polarized light is perpendicular to the polarization direction of the first polarized light;
  • the optical structure layer is used to convert the first polarized light incident at a preset angle into the second polarized light, and reflect the second polarized light to the first polarized reflective layer, and convert the second polarized light to the first polarized reflection layer by other The first polarized light incident at an angle is reflected to the first polarized reflective layer.
  • the second aspect of the present invention discloses a display device, including a micro-image source and the optical waveguide device described in any one of the above; the micro-image source is used to emit light required for image display to the optical waveguide device, so The light includes first polarized light.
  • a third aspect of the present invention discloses a display device, including the above-mentioned display device.
  • the optical structure layer can convert the first polarized light incident at a preset angle into the second polarized light, and reflect the second polarized light to the first polarized light
  • the reflective layer, and the first polarized reflective layer can transmit the second polarized light. Therefore, the second polarized light converted from the first polarized light incident at a preset angle can emerge from the optical waveguide device to form a display image.
  • the optical structure layer can reflect the first polarized light incident at other angles to the first polarized reflective layer, and the first polarized reflective layer can reflect the first polarized light, therefore, the first polarized light incident at other angles can be Continuous reflection between the optical structure layer and the first polarized reflective layer prevents the first polarized light incident at other angles from exiting the optical waveguide device and disturbing image display.
  • the output area of the second polarized light is no longer limited to the area without a reflective film layer, thereby increasing the light output range of the optical waveguide device, and further increasing the range of light output including the optical waveguide device.
  • Fig. 1 is a structural schematic diagram of an optical waveguide element utilizing the principle of total reflection for light propagation
  • Fig. 2 is a structural schematic diagram of another optical waveguide element
  • Fig. 3 is a schematic cross-sectional structure diagram of an optical waveguide device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of an optical waveguide device provided by an embodiment of the present invention.
  • Fig. 5 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the exposure method of the holographic reflective layer provided by an embodiment of the present invention.
  • Fig. 8 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 9 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 10 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 11 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 12 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 13 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 14 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 15 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • Fig. 16 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present invention.
  • Fig. 18 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present invention.
  • Fig. 19 is a schematic structural view of an embodiment of the optical structure of the present invention.
  • Fig. 20 is a schematic structural diagram of the light propagation path in Fig. 19;
  • FIG. 21 is a structural schematic diagram of part of the structure in FIG. 19 .
  • Figure 1 is a schematic structural view of an optical waveguide element that utilizes the principle of total reflection to propagate light.
  • the reflection angle is greater than the critical angle of total reflection, so that the light propagates in the optical waveguide medium 1 and exits after reaching a specific area for image display.
  • the reflection angle of the light in the optical waveguide medium 1 is less than or equal to the critical angle of total reflection, the light will emerge from the optical waveguide medium 1, and these emitted light will interfere with the light for image display, affecting the image display effect .
  • Figure 2 is a schematic structural view of another optical waveguide element, although a reflective film 21 can be formed on the surface of the optical waveguide medium 20, so that the light that does not meet the total reflection condition can continue to be reflected by the reflective film 21.
  • the light propagates in the optical waveguide medium 20 to prevent the light from exiting the optical waveguide medium 20 and affect the image display effect.
  • the light can only propagate in the area with the reflective film 21, and exit in the area without the reflective film 21, that is, the light can only exit in the area without the reflective film 21 to form a display image, which greatly limits the light output. Exit range.
  • an embodiment of the present invention provides an optical waveguide device, a display device, and a display device.
  • an optical waveguide is arranged on the second surface of the optical waveguide dielectric body.
  • the optical structure layer and make the first polarized reflective layer reflect the first polarized light and transmit the second polarized light, so that the optical structure layer converts the first polarized light incident at a preset angle into the second polarized light, and converts the second polarized light reflect to the first polarized reflective layer, and reflect the first polarized light incident at other angles to the first polarized reflective layer, so that the exit area of the second polarized light is no longer limited to the area without the reflective film layer, thereby increasing the The light output range of the optical waveguide device is enlarged, thereby increasing the image display range of a display device and a display device including the optical waveguide device.
  • FIG. 3 is a schematic cross-sectional structure diagram of an optical waveguide device provided by an embodiment of the present invention.
  • the optical waveguide device includes an optical waveguide dielectric body 31 , a first polarizing reflective layer 32 and an optical structure layer 33 .
  • the optical waveguide dielectric body 31 includes opposite first surface S1 and second surface S2, the first polarized reflection layer 32 is disposed on the first surface S1, and the optical structure layer 33 is disposed on the second surface S2.
  • the optical waveguide dielectric body 31 is used for propagating light, and the light includes the first polarized light.
  • the first polarized reflection layer 32 is used to reflect the first polarized light and transmit the second polarized light, wherein the second polarized light is perpendicular to the polarization direction of the first polarized light.
  • the first polarized light is p-polarized light
  • the second polarized light is s-polarized light
  • the first polarized light is s-polarized light
  • the second polarized light is p-polarized light.
  • the optical structure layer 33 is used to convert the first polarized light incident at a preset angle into a second polarized light, and reflect the second polarized light to the first polarized reflective layer 32, and reflect the first polarized light incident at other angles. to the first polarizing reflective layer 32 .
  • the optical structure layer 33 will convert the first polarized light into the second polarized light, and reflect the second polarized light to the first polarized reflective layer 32, so that the second polarized light is emitted from the first polarized reflective layer 32 to the outside.
  • the optical structure layer 33 will reflect the first polarized light to the first polarized reflective layer 32 .
  • the first polarized reflective layer 32 will reflect the first polarized light again, so that the first polarized light incident at other angles is continuously reflected between the first polarized reflective layer 32 and the optical structure layer 33, so that the first polarized light incident at other angles The first polarized light will not exit from the optical waveguide device.
  • the preset angle ⁇ in the embodiment of the present invention is an angle range. If the angle at which the first polarized light is incident on the optical structure layer 33 is within the angle range, the angle is the preset angle ⁇ ; if the angle at which the first polarized light is incident on the optical structure layer 33 is not within the angle range, the angle for other angles.
  • ⁇ t
  • is a specific angle, 0 ⁇ t ⁇ 15°.
  • the first polarized light emitted from the optical waveguide dielectric body 31 first enters the first polarized reflective layer 32 for illustration.
  • the present invention is not limited thereto.
  • the first polarized light emitted from the optical waveguide dielectric body 31 may also first enter the optical structure layer 33 , which will not be repeated here.
  • the optical structure layer 33 can convert the first polarized light incident at a preset angle ⁇ into the second polarized light, and reflect the second polarized light to the first polarized reflective layer 32,
  • the first polarized reflective layer 32 can transmit the second polarized light. Therefore, the second polarized light converted from the first polarized light incident at a preset angle ⁇ can emerge from the optical waveguide device to form a display image.
  • the optical structure layer 33 can reflect the first polarized light incident at other angles to the first polarized reflective layer 32, and the first polarized reflective layer 32 can reflect the first polarized light, therefore, the first polarized light incident at other angles
  • the light can be constantly reflected between the optical structure layer 33 and the first polarized reflective layer 32, so that the first polarized light incident at other angles will not exit from the optical waveguide device and interfere with the display of images.
  • the output area of the second polarized light is no longer limited to the area without a reflective film layer, thereby increasing the light output range of the optical waveguide device.
  • the plane where the first surface S1 and the second surface S2 are located has a first included angle ⁇ , and the first included angle ⁇ is an acute angle, so as to change The incident angle of the first polarized light of the reflective layer 32 or the optical structure layer 33 .
  • the first polarized light can be reflected by the first polarized reflection layer 32 and then incident on the optical structure layer 33 again.
  • the angle changes, so that after the first polarized light is reflected by the optical structure layer 33 , the angle at which it re-enters the first polarized reflection layer 32 changes.
  • the first polarized light After the first polarized light is repeatedly reflected between the first polarized reflective layer 32 and the optical structure layer 33, if the angle of the first polarized light incident on the optical structure layer 33 changes to a preset angle ⁇ , the first polarized light will It is converted into the second polarized light by the optical structure layer 33, reflected to the first polarized reflective layer 32, and then transmitted to the outside by the first polarized reflective layer 32, thereby further improving the utilization rate of the first polarized light and increasing the display image The brightness improves the display effect.
  • the embodiments of the present invention are not limited to the first angle ⁇ between the first surface S1 and the second surface S2, and in other embodiments, the first surface S1 and the second surface S2 may also be parallel to each other, In some other embodiments, the first included angle ⁇ may also be greater than or equal to 90 degrees.
  • the angle of the first polarized light incident on the optical waveguide dielectric body 31 is adjusted, the first polarized light incident on the optical structure layer 33 at a preset angle ⁇ will be converted into the second polarized light and reflected by the first polarized light.
  • the layer 32 transmits to the outside, so that the first polarized light incident on the optical structure layer 33 at other angles is continuously reflected between the first polarized reflective layer 32 and the optical structure layer 33 .
  • FIG. 4 is a schematic diagram of a three-dimensional structure of an optical waveguide device provided by an embodiment of the present invention.
  • the above-mentioned FIG. 3 is a cross-section of the optical waveguide device shown in FIG. 4 along the cutting line AA' Schematic diagram of the structure, the shape of the optical waveguide dielectric body 31 is a triangular prism, the first polarized reflection layer 32 is arranged on the first surface S1 of the triangular prism, the optical structure layer 33 is arranged on the second surface S2 of the triangular prism, and the first surface S1 The included angle with the second surface S2 is the first included angle ⁇ .
  • light including the first polarized light may enter the optical waveguide dielectric body 31 from the outside through the surface S3.
  • the surface S3 intersects the first surface S1 and the second surface S2 two by two.
  • the light can also enter the optical waveguide dielectric body 31 from two surfaces other than the first surface S1, the second surface S2 and the surface S3. This will not be repeated here.
  • the shape of the optical waveguide dielectric body 31 in the embodiment of the present invention is not limited to a triangular prism, and in other embodiments, the shape of the optical waveguide dielectric body 31 can also be a square prism, a pentagonal prism, or other irregular shapes, etc. .
  • Figure 5 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention
  • the shape of the optical waveguide dielectric body 31 is a quadrangular prism
  • the first polarizing reflective layer 32 and the optical structure layer 33 are respectively arranged on
  • the angle between the extension line is on the first surface S1 and the second surface S2 at the first angle ⁇ .
  • first surface S1 and the second surface S2 are planes for illustration, but the present invention is not limited thereto.
  • the first surface S1 And the second surface S2 can also be an arc surface or a curved surface, etc., as long as the first surface S1 can reflect the light to the second surface S2, and the second surface S2 can reflect the light to the first surface S1, no more details are given here. .
  • the optical structure layer 33 is also used to transmit the second polarized light in the external light to the first polarized reflective layer 32, so that the second polarized light in the external light can pass through the optical waveguide device.
  • the external light is ambient light in the environment where the optical waveguide device is located. That is to say, the display device adopting the optical waveguide device can transmit the background light, and can realize the display mode combining virtual and real.
  • FIG. 6 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention, and the optical structure layer includes a first phase retardation layer 331 , a holographic reflective layer 332 , a second phase delay layer 333 and a second polarized reflective layer 334 .
  • the first phase retardation layer 331 , the holographic reflection layer 332 , the second phase retardation layer 333 and the second polarization reflection layer 334 are disposed on the second surface S2 in sequence. Both the first phase retardation layer 331 and the second phase retardation layer 333 are used to retard the light. Moreover, after the polarized light passes through the first phase retardation layer 331 and the second phase retardation layer 333, the polarization state remains unchanged, and the first polarized light is converted to the second polarization after passing through the first phase retardation layer 331 or the second phase retardation layer 333 even times.
  • the second polarized light passes through the first phase retardation layer 331 or the second phase retardation layer 333 even times and then is converted into the first polarized light.
  • the holographic reflective layer 332 is used to reflect light incident at a preset angle ⁇ and transmit light incident at other angles.
  • the second polarized reflective layer 334 is used to reflect the first polarized light and transmit the second polarized light.
  • the first polarized light incident on the optical structure layer 33 is incident on the holographic reflective layer 332 after passing through the first retardation layer 331 . If the first polarized light is incident on the holographic reflective layer 332 at a predetermined angle ⁇ , the holographic reflective layer 332 will reflect the first polarized light, so that the first polarized light passes through the first phase delay layer 331 again. Since the first polarized light passes through the first phase retardation layer 331 twice, the first polarized light is converted into the second polarized light, and is emitted to the first polarized reflective layer 32, and then transmitted to the outside through the first polarized reflective layer 32 .
  • the holographic reflective layer 332 will transmit the first polarized light, so that the first polarized light is incident on the second polarized reflective layer 334 after passing through the second retardation layer 333 .
  • the second polarized reflective layer 334 reflects the first polarized light, so that the first polarized light
  • the polarized light enters the holographic reflective layer 332 through the second phase retardation layer 333 , and passes through the first phase retardation layer 331 after being transmitted by the holographic reflective layer 332 .
  • the first phase retardation layer 331 Since the polarization state of the first polarized light remains unchanged after passing through the first phase retardation layer 331 and the second phase retardation layer 333 again, the first phase retardation layer 331 emits the first polarized light to the first polarized reflective layer 32 .
  • the second polarized reflective layer 334 Since the second polarized reflective layer 334 reflects the first polarized light and transmits the second polarized light, the second polarized light in the external light will pass through the second polarized reflective layer 334 and enter the second phase retardation layer 333, and pass through the second polarized light.
  • the phase retardation layer 333 is incident on the holographic reflective layer 332
  • the second polarized light incident on the holographic reflective layer 332 at a preset angle ⁇ is reflected back to the outside, and the second polarized light incident on the holographic reflective layer 332 at other angles is transmitted to the The first phase delay layer 331 .
  • the second polarized light Since the polarization state of the second polarized light remains unchanged after passing through the first phase retardation layer 331 and the second phase retardation layer 333 , the second polarized light is transmitted to the outside by the first polarized reflection layer 32 . Based on this, external light can pass through the optical waveguide device from right to left, realizing a display mode combining virtual and real.
  • the first phase delay layer 331 includes a 1/4 wavelength phase delay layer, and the 1/4 wavelength phase delay layer may be a 1/4 wave plate, and the second phase delay layer 333 includes a 3/4 wavelength phase delay layer.
  • Retardation layer, the 3/4 wavelength phase retardation layer may be a 3/4 wavelength plate.
  • the phase of the first polarized light is delayed by 1/4 wavelength after passing through the first phase delay layer 331 , and the phase is further delayed by 3/4 wavelength after passing through the second phase delay layer 333 . That is to say, the phase difference of the first polarized light is one wavelength after passing through the first phase delay layer 331 and the second phase delay layer 333 , so the polarization state of the first polarized light remains unchanged. After the first polarized light passes through the first phase retardation layer 331 or the second phase retardation layer 333 even times, the phase difference is 1/2 wavelength, therefore, the first polarized light is converted into the second polarized light.
  • the present invention is not limited thereto.
  • the first phase delay layer 331 includes a 1/4 wavelength phase delay layer
  • the second phase delay layer 333 also includes a 1/4 wavelength phase delay layer, but the second The phase delay direction of the phase delay layer 333 is opposite to that of the first phase delay layer 331 .
  • the phase of the first polarized light is delayed by 1/4 wavelength after passing through the first phase retardation layer 331, and the phase is advanced by 1/4 wavelength after passing through the second phase retardation layer 333, so that the first polarized light passes through the first phase retardation layer 331
  • the phase difference with the second phase retardation layer 333 is 0, so that the polarization state of the first polarized light remains unchanged.
  • both the first polarized light and the second polarized light are linearly polarized light.
  • the first phase retardation layer 331 and the second phase retardation layer 333 are used to convert linearly polarized light into circularly polarized light, or convert circularly polarized light into linearly polarized light.
  • the first polarized light is converted into circularly polarized light after passing through the first phase retardation layer 331
  • the circularly polarized light is converted into linearly polarized light after passing through the first phase retardation layer 331 or the second phase retardation layer 333 .
  • the holographic reflective layer 332 is a diffractive optical film layer made according to the principle of holography.
  • the relationship of incidence, reflection and transmission of light can be designed by designing the diffraction pattern of the holographic reflective layer 332, so that the holographic reflective layer 332 has angle selectivity, that is, the holographic reflective layer 332 can reflect light at a preset angle ⁇ , and transmit other light rays. Angle of light.
  • the holographic reflective layer 332 when fabricating the holographic reflective layer 332 , the holographic reflective layer 332 is usually exposed to the object light and the reference light emitted by the point light source.
  • the holographic reflective layer 332 can be exposed as a whole with light having RGB three-color wavelengths, so that the holographic reflective layer 332 can reflect red light, green light and blue light in the light incident at a preset angle ⁇ , The red light, green light and blue light reflected by the holographic reflective layer 332 can be mixed to form various grayscale lights required for displaying images.
  • FIG. 7 is a schematic diagram of the exposure mode of the holographic reflective layer provided by one embodiment of the present invention.
  • the holographic reflective layer 332 includes multiple Each reflective area 7 includes a first sub-reflective area 7R, a second sub-reflective area 7G and a third sub-reflective area 7B adjacently arranged, and a plurality of first sub-reflective areas 7R, a second sub-reflective area
  • the sub-reflective regions 7G or the third sub-reflective regions 7B are also arranged in an array.
  • the first sub-reflective area 7R is used to reflect red light in the light
  • the second sub-reflective area 7G is used to reflect green light in the light
  • the third sub-reflective area 7B is used to reflect blue light in the light.
  • the shape of the sub-reflection area is only hexagonal for illustration, but the present invention is not limited thereto. In other embodiments, the shape of the sub-reflection area can also be triangular, rectangular or round etc. Wherein, the size of each sub-reflection area may be 0.5mm ⁇ 0.6mm.
  • the optical structure layer 33 may not transmit external light to the first polarizing reflective layer 32, that is, the display device using the optical waveguide device cannot transmit background light, That is, the display of the combination of virtual and real cannot be realized.
  • the second polarizing reflective layer 334 can be replaced by a full-wavelength reflective layer, so that all external light is reflected by the full-wavelength reflective layer, so that it cannot enter the optical waveguide device.
  • the optical waveguide device may further include a light transmission control layer, so as to control whether external light passes through the optical waveguide device through the light transmission control layer.
  • the light transmission control layer may include a liquid crystal light valve, an electronic switch, or a liquid crystal atomized film.
  • FIG. 8 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention
  • the light transmission control layer 34 is arranged on the side of the optical structure layer 33 away from the optical waveguide dielectric body 31 side.
  • the light transmission control layer 34 transmits external light, so that the external light is incident on the optical structure layer 33; in the second state, the light transmission control layer 34 blocks the external light, so that the external light cannot enter the optical structure. Layer 33.
  • the light transmission control layer 34 is a liquid crystal light valve
  • the liquid crystal light valve in the first state, the liquid crystal light valve is opened so that light can pass through the liquid crystal light valve; in the second state, the liquid crystal light valve is closed so that light cannot pass through the liquid crystal light valve. light valve.
  • the outgoing direction of the second polarized light can also be adjusted by adjusting the direction or angle of the light incident on the optical waveguide dielectric body 31, and/or by adjusting the direction or angle of the optical waveguide device. , so that the optical waveguide device can meet the requirements of light output direction or light output angle in practical applications.
  • the direction of the optical waveguide device can be the direction perpendicular to the horizontal plane of the first surface S1, so that the second polarized light emerges along the direction perpendicular to the first surface S1, that is, the second polarized light emitted from the first polarized reflective layer 32
  • the outgoing direction of the polarized light is perpendicular to the first surface S1.
  • the direction of the optical waveguide device can also be the direction perpendicular to the horizontal plane of the second surface S2, so that The second polarized light is emitted along a direction perpendicular to the second surface S2, that is, the outgoing direction of the second polarized light emitted by the first polarized reflective layer 32 is perpendicular to the second surface S2.
  • the optical waveguide device further includes an optical correction body, and the optical correction body is used to correct the outgoing direction of at least part of the second polarized light emitted from the first polarized reflection layer 32 .
  • FIG. 10 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • the optical correcting body 35 is arranged on the side of the first polarized reflection layer 32 away from the optical waveguide dielectric body 31, so as to correct the first polarization reflection layer 32.
  • the outgoing direction of all the second polarized light emitted by a polarized reflective layer 32 is corrected, so that the outgoing direction of the second polarized light is the desired direction.
  • FIG. 11 which is a schematic cross-sectional structure diagram of an optical waveguide device provided in another embodiment of the present invention
  • the optical correction body 35 is arranged on the side of the optical structure layer 33 away from the optical waveguide dielectric body 31, so as to correct the first
  • the outgoing direction of part of the second polarized light emitted from a polarized reflective layer 32 is corrected, where the part of the second polarized light is the second polarized light that passes through the optical waveguide device in the external light.
  • the optical correction body 35 has the same refractive index as the optical waveguide dielectric body 31, and, as shown in Figure 10 or 11, the optical correction body 35 includes a third surface S3 and a fourth surface S4, the third surface
  • the plane where S3 and the fourth surface S4 are located has a second included angle ⁇ , and the second included angle ⁇ is equal to the first included angle ⁇ .
  • the third surface S3 is arranged parallel to the first surface S1
  • the fourth surface S4 is arranged parallel to the second surface S2, so that after the second polarized light in the external environment passes through the optical waveguide device, the propagation direction is basically unchanged. It should be noted that since the first polarized reflective layer 32 and the optical structure layer 33 are relatively thin, the direction deviation caused by light refraction in the two can be ignored.
  • the optical waveguide device further includes a polarization absorbing layer, and the polarization absorbing layer is used to absorb the first polarized light and transmit the second polarized light.
  • the polarized absorbing layer is disposed on the side of the first polarized reflective layer 32 facing away from the optical waveguide dielectric body 31
  • the polarized absorbing layer is disposed on the side of the optical structure layer 33 facing away from the optical waveguide dielectric body 31 .
  • the polarity direction of the polarized absorbing layer is parallel to the polarized directions of the first polarized reflective layer 32 and the second polarized reflective layer 334, so that after the first polarized light is absorbed by the polarized absorbing layer, the back reflection of light is eliminated. This prevents the first polarized reflective layer 32 or the second polarized reflective layer 334 from reflecting the first polarized light in the external light and causing interference to the outgoing second polarized light. Since the polarized absorbing layer transmits the second polarized light, the polarized absorbing layer does not affect the output and transmission of the second polarized light by the optical waveguide device.
  • the structure of the optical waveguide device in the embodiment of the present invention can effectively suppress the reflected light at the interface, and the reflected light at the interface can also be called zero-order light.
  • each interface will generate interfacial reflection light, for the interface of two film layers with relatively close refractive index, the interface reflection light is very weak and difficult to be detected by human eyes, so it can be ignored.
  • the reflected light at the interface between the optical waveguide dielectric body 31 and the first phase delay layer 331, the reflected light at the interface between the first phase delay layer 331 and the holographic reflective layer 332, and the reflected light at the interface between the holographic reflective layer 332 and the second phase delay layer 333 Reflected light, reflected light at the interface between the second phase retardation layer 333 and the second polarizing reflective layer 334 , and the like.
  • the reflected light from the interface is strong, and it is necessary to eliminate the interference caused by the reflected light from the interface.
  • the first polarized light emitted from the optical waveguide dielectric body 31 passes through the first phase retardation layer 331, the holographic reflective layer 332 and the second phase retardation layer 333 to reach the second polarized light.
  • the interface between the polarized reflective layer 334 and the air is still the first polarized light, that is, the interface reflected light at the interface between the second polarized reflective layer 334 and the air is the first polarized light, and the interface reflected light passes through the second polarized light again after being reflected.
  • phase retardation layer 333, the holographic reflective layer 332 and the first phase retardation layer 331 are still the first polarized light, which will be reflected by the first polarized reflective layer 32, that is, the interface reflected light will be There is continuous reflection between the first polarized reflective layer 32 and the second polarized reflective layer 334 , which will not be emitted to the outside and interfere with the display of images.
  • first polarized reflective layer 32 and the second polarized reflective layer 334 can reflect the first polarized light, they have a certain reflectivity, and there will still be a small amount of first polarized light that will pass through the first polarized reflective layer. 32 transmitted.
  • a polarized absorbing layer is provided on the side of the first polarized reflective layer 32 away from the optical waveguide dielectric body 31, so that the polarized absorbing layer absorbs a small amount of transmitted first polarized light, and the interface reflection can be further suppressed.
  • the interface in contact with the air is the surface of the polarized absorbing layer. Since the reflectivity of the polarized absorbing layer to the first polarized light is relatively low, the interface reflection light produced by the interface in contact with the air can be further reduced. , so that the interface reflected light can be further suppressed.
  • FIG. 12 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention
  • the polarization absorbing layer 36 is arranged on the first polarization reflection layer 32 away from the optical waveguide dielectric body 31
  • FIG. 13 is a schematic cross-sectional structure diagram of an optical waveguide device provided by another embodiment of the present invention.
  • the polarization absorbing layer 36 can also be arranged on the optical structure layer 33 and the optical correction body Between 35.
  • FIG. 14 which is a cross-sectional schematic diagram of an optical waveguide device provided by another embodiment of the present invention, the polarization absorbing layer 36 can also be disposed between the first polarization reflection layer 32 and the optical correction body 35 .
  • the optical correction body 35 is located between the optical structure layer 33 and the polarization absorption layer 36, or in other words, the polarization absorption layer 36 may also be disposed on the surface of the optical correction body 35 facing away from the optical structure layer 33 .
  • the polarization absorption layer 36 may also be disposed on the surface of the optical correction body 35 facing away from the optical structure layer 33 .
  • the optical correction body 35 is located between the first polarized reflective layer 32 and the polarized absorbing layer 36, or in other words, the polarized
  • the absorbing layer 36 can also be disposed on the surface of the optical correction body 35 facing away from the first polarized reflection layer 32 .
  • the embodiments of the present invention further provide a display device, the display device including the optical waveguide device and the micro image source provided in any one of the above embodiments.
  • the micro-image source is used to emit light required for image display to the optical waveguide device, and the light includes the first polarized light.
  • the angle of the light emitted by the micro-image source by setting the angle of the light emitted by the micro-image source, all the first polarized light required for image display is incident on the optical structure layer 33 at a preset angle.
  • the light incident at other angles includes stray light such as ambient light.
  • Figure 17 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present invention
  • the micro-image source 40 emits the light required for image display to the optical waveguide dielectric body 31 in the optical waveguide device, after that, the light in the light
  • the first polarized light is reflected by the first polarized reflective layer 32 to the optical structure layer 33 .
  • the optical structure layer 33 will convert the first polarized light into the second polarized light, and reflect the second polarized light to the first polarized reflective layer 32 , so that the second polarized light is emitted from the first polarized reflective layer 32 to human eyes in the outside world, and the human eyes can see a virtual image formed by the emitted second polarized light.
  • the optical structure layer 33 will reflect the first polarized light to the first polarized reflective layer 32, and the first polarized reflective layer 32 will reflect the first polarized light again, The first polarized light incident at other angles is continuously reflected between the first polarized reflective layer 32 and the optical structure layer 33, so that the first polarized light incident at other angles will not exit from the optical waveguide device and interfere with the display of the image .
  • the holographic reflective layer in the optical structure layer 33 has a refractive effect, which can enlarge the image. Therefore, the enlarged image can be seen by human eyes, thereby improving the viewing effect.
  • the optical waveguide device can transmit the second polarized light in the external light. Therefore, the human eye not only You can see the virtual image formed by the second polarized light, and you can also see the second polarized light reflected by the real object, that is, you can see the real object through the display device, so you can see the image combined with virtual and real.
  • the display device in the embodiment of the present invention may be an Augmented Reality (AR) display device or a Virtual Reality (VR) display device or the like.
  • the display device in the embodiment of the present invention may also be a near-eye display device.
  • the micro-image source includes a laser image source, an LED image source, an OLED image source, or a micro-LED image source.
  • the micro-image source is most preferably a laser image source, and the image displayed by the laser image source is a laser source image including a laser-illuminated LCD image or a projected real image projected on the diffusion film by a laser-illuminated micro-projector.
  • the image displayed by the self-luminous micro-image source includes an image displayed by an OLED micro-display or a micro-display image displayed by a micro-LED.
  • a narrow-band filter can be added between the micro-image source and the optical waveguide device to filter the light emitted from the micro-image source to the optical waveguide device and improve the display effect.
  • the last choice is an incoherent microimage source that displays an image including an LED-illuminated LCD image, an OLED microdisplay without a narrowband filter, or a microdisplay image displayed by a micro-LED display.
  • the embodiments of the present invention further provide a display device, where the display device includes the display device provided in any one of the above embodiments.
  • the display devices in the embodiments of the present invention include, but are not limited to, smart phones, tablet computers, smart TVs, near-eye display devices such as VR glasses or AR glasses, and the like.
  • a head mounted display device is an electronic product that can provide an immersive experience
  • the display principle of the head mounted display device includes augmented reality (Augmented Reality) technology, referred to as AR display technology.
  • the display principle of the head-mounted display device also includes VR (Virtual Reality) technology, referred to as VR display technology.
  • AR displays are used to superimpose internal and external lighting to add a virtual image over the real picture of the outside world.
  • the VR display is used to display a virtual screen simulated by a computer.
  • the current head-mounted display device is equipped with a single image source, and the single image source propagates in the waveguide.
  • the single image source propagates in the waveguide.
  • the size of the displayed image screen is small, the field of view of the image that the user can see is small, and the field of view of the user is limited, which is not conducive to the immersive experience of the user.
  • the screen size of the displayed image can be increased, the field of view of the user can be increased, and the immersive experience of the user can be improved.
  • an optical structure which includes:
  • a waveguide the waveguide has a first surface and a second surface opposite to each other, the waveguide also has a first light-incident end face and a second light-incident end face opposite to each other, the first light-incident end face is located on the Between the first surface and the second surface of the waveguide, the second light-incident end surface is located between the first surface and the second surface of the waveguide;
  • An image source group includes a first image source and a second image source, the first image source is set on the first light-incident end surface, and the second image source is set on the second light-incident end surface end face;
  • the first polarized reflective film is disposed on the second surface of the waveguide
  • the polarization conversion component is arranged on the first surface of the waveguide, and the polarization conversion component is used to direct the light from the first image source and the second image source to the waveguide second surface.
  • the waveguide includes a first waveguide part and a second waveguide part, the first waveguide part and the second waveguide part are butted, and the first light-incident end surface is located at the first waveguide part away from the end of the second waveguide, and the second light-incident end surface is located at the end of the second waveguide part away from the first waveguide.
  • the first waveguide part and the second waveguide part are glued together;
  • the first waveguide part and the second waveguide part are integrally formed.
  • the first waveguide portion includes a first subsurface
  • the second waveguide portion includes a second subsurface
  • the first subsurface and the second subsurface form the second surface
  • the first sub-surface and the second sub-surface are arranged at an included angle, and the included angle is an obtuse angle.
  • the included angle between the first light-incident end face and the first sub-surface is an acute angle
  • the included angle between the second light-incident end face and the second sub-surface is an acute angle
  • the optical structure further includes a correction compensator for correcting the phase difference, and the correction compensator is arranged on the second surface of the waveguide.
  • the polarization conversion component includes a first phase retarder, a holographic reflective film, a second phase retarder and a second polarized reflective film, the first phase retarder, the holographic reflective film, the The second phase retarder and the second polarizing reflective film are sequentially arranged from a direction away from the waveguide;
  • the polarization conversion component includes a first phase retarder, a holographic reflective film, a second phase retarder and a polarizer, and the first phase retarder, the holographic reflective film and the polarizer are separated from the waveguide
  • the direction of the body is set in sequence.
  • the optical structure further includes an anti-reflection polarizing film, and the anti-reflection polarizing film is disposed on a side of the first polarizing reflection film away from the waveguide.
  • the first image source and the second image source are any one of laser image source, LED image source, OLED image source or micro-LED image source.
  • the present invention also provides a near-eye display device, the near-eye display device includes a casing and the above-mentioned optical structure, and the optical structure is arranged on the casing.
  • image sources are respectively arranged at both ends of the waveguide, compared with the existing single image source, the source of image light is expanded, and the angle of emitted light can be larger.
  • the far end of one image source in the waveguide is the near end of the other image source, so the setting of two image sources can make up for the fact that there is no light emitted from the far end of a single image source, thereby increasing the size of the entire display image , to increase the user's field of view and improve the user's immersive experience.
  • the first polarizing reflective film has a transmission direction.
  • the light transmits through the first polarizing reflective film.
  • the light is reflected by the first polarizing reflective film.
  • the light reflected by the first polarized reflection film is directed to the second surface of the waveguide again until the polarization state of the light is the same as the transmission direction of the first polarized reflection film.
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • this embodiment provides an optical structure, which includes: a waveguide 10 , an image source group, a first polarizing reflective film 310 and a polarization conversion component.
  • the image source group is arranged close to the waveguide 10 , and may be spaced a certain distance from the waveguide 10 , or may abut against the surface of the waveguide 10 .
  • the first polarized reflective film 310 and the polarization conversion component are respectively disposed on two opposite surfaces of the waveguide 10 .
  • the first polarized reflective film 310 and the polarization conversion component may be independent optical devices, or may be a film layer structure attached to the waveguide 10 .
  • the waveguide 10 has a first surface 101 and a second surface 102 oppositely arranged, and the waveguide 10 also has a first light-incident end surface 103 and a second light-incident end surface 104 oppositely arranged, and the first light-incident end surface 103 is located at the Between the first surface 101 and the second surface 102, the second light-incident end surface 104 is located between the first surface 101 and the second surface 102 of the waveguide 10; wherein, the first surface 101 faces the external environment, and the second surface 102 faces user.
  • the first surface 101 is also a flat surface.
  • the image source group includes a first image source 210 and a second image source 220, the first image source 210 is arranged on the first light-incident end surface 103, the second image source 220 is arranged on the second light-incident end surface 104; the first polarizing reflective film 310 disposed on the second surface 102 of the waveguide 10;
  • the polarization conversion component is disposed on the first surface 101 of the waveguide 10 , and the polarization conversion component is used for directing light from the first image source 210 and the second image source 220 to the second surface 102 of the waveguide 10 .
  • the optical structure can be applied to AR display technology, and can also be applied to VR display technology. When the optical structure is applied to the AR display technology, light from the external environment needs to be incident on the second surface 102 , for this reason, the polarization conversion component can also transmit the light from the outside to the waveguide 10 . Adds together the optics emitted by the image source group and the ambient ambient light.
  • the source of image light is expanded, and the angle of emitted light can be larger.
  • the far end of one image source in the waveguide 10 is the near end of the other image source, thus the arrangement of two image sources can make up for the situation that there is no light emitted from the far end of a single image source, thereby improving the image quality of the entire displayed image.
  • the size increases the user's field of view and improves the user's immersive experience.
  • the first polarized reflective film 310 has a transmission direction.
  • the polarization direction of the light is the same as the transmission direction of the first polarized reflective film 310, the light is transmitted through the first polarized reflective film 310.
  • the direction is different, the light is reflected by the first polarized reflective film.
  • Film 310 is reflective. And, through the action of the polarization conversion component, the light reflected by the first polarizing reflective film 310 goes to the second surface 102 of the waveguide 10 again until the polarization state of the light is the same as the transmission direction of the first polarizing reflective film 310 .
  • the viewing angle can be increased. If the image sources are added at the upper and lower ends of the head-mounted display device, the angle of view in the up and down directions will be increased. If the image sources are added at the upper and lower ends of the head-mounted display device The left and right ends of the device increase the viewing angle of the left and right directions.
  • the waveguide 10 includes a first waveguide part 110 and a second waveguide part 120, the first waveguide part 110 and the second waveguide part 120 are butted, and the first light incident end surface 103 is located away from the first waveguide part 110.
  • the second light incident surface 104 is located at the end of the second waveguide 120 away from the first waveguide 110 .
  • the waveguide 10 there are at least two ways to arrange the waveguide 10 .
  • the first waveguide portion 110 and the second waveguide portion 120 are glued together; at this time, the refractive indices between the first waveguide portion 110 and the second waveguide portion 120 may be the same or different.
  • optical glue is provided between the first waveguide 110 and the second waveguide 120 , the first waveguide 110 and the second waveguide 120 are docked, and optical images are calibrated and stitched, so as to complete the installation of the waveguide 10 .
  • the processing of the optical device is facilitated. Calibrated stitching of optical images can also ensure that superimposed images will not appear ghosting.
  • the second situation is that the first waveguide part 110 and the second waveguide part 120 are integrally formed. At this time, the materials of the first waveguide portion 110 and the second waveguide portion 120 have the same refractive index.
  • the integrally formed waveguide 10 as an integral device reduces the steps of image calibration and is easy to install.
  • first waveguide part 110 and the second waveguide part 120 may be the same. That is, the first waveguide portion 110 and the second waveguide portion 120 take the plane of the docking position as a plane of symmetry, and the first waveguide portion 110 and the second waveguide portion 120 are arranged symmetrically.
  • the first waveguide portion 110 includes a first subsurface 102a
  • the second waveguide portion 120 includes a second subsurface 102b
  • the first subsurface 102a and the second subsurface 102b form the second surface 102
  • the first The sub-surface 102a and the second sub-surface 102b are arranged at an included angle, and the included angle is an obtuse angle.
  • the first sub-surface 102a and the second sub-surface 102b present an obtuse angle arrangement on the side facing the user.
  • a V-shaped space can be formed, and the eyes of the user can be located in the V-shaped space. Through the wrapping of the V-shaped space, the user's immersive experience can also be improved.
  • the included angle between the first light-incident end surface 103 and the first sub-surface 102a is an acute angle
  • the included angle between the second light-incident end surface 104 and the second sub-surface 102b is an acute angle.
  • the angles of the two acute angles are the same to ensure that the path of light propagation is symmetrical and reduce ghosting.
  • the incident angle of the first image source 210 to the first sub-surface 102a and the incident angle of the second image source 220 to the second sub-surface 102b both meet the critical angle for total reflection.
  • the light-emitting surface of the first image source 210 faces the first sub-surface 102a
  • the light-emitting surface of the second image source 220 faces the second sub-surface 102b.
  • the included angle between the first light-incident end surface 103 and the first sub-surface 102a is an obtuse angle
  • the included angle between the second light-incident end surface 104 and the second sub-surface 102b is an obtuse angle.
  • the angles of the two obtuse angles are the same.
  • the light emitting surface of the first image source 210 faces the second surface 102
  • the light emitting surface of the second image source 220 faces the second surface 102 .
  • the optical structure when the optical structure is applied to the AR display technology, the light from the external environment hits the waveguide 10, and after passing through the polarization conversion component and the waveguide 10, the propagation path of the light changes, making it difficult to form an image at the same time. on a surface. As a result, phase differences, such as optical distortion, etc. are formed.
  • the optical structure further includes a correction compensator 50 for correcting phase difference, and the correction compensator 50 is disposed on the second surface 102 of the waveguide 10 .
  • the material of the correction compensator 50 may be the same as that of the waveguide 10 or may be different.
  • the correcting compensator 50 is used to correct the passing light path so that it passes through the optical structure and is imaged on the same surface, thereby reducing distortion.
  • the polarization conversion component includes a first phase retarder 410, a holographic reflective film 420, a second phase retarder 430 and a second polarized reflective film 440, the first phase retarder 410, the holographic reflective film 420, the second polarized reflective film
  • the two-phase retarder 430 and the second polarizing reflective film 440 are arranged in sequence from the direction away from the waveguide 10 .
  • the first phase retarder 410 is a quarter waveguide
  • the second phase retarder 430 is a quarter wave plate or a three-quarter wave plate
  • the first phase retarder 410 and the second phase retarder 430 phase delay a quarter wavelength difference.
  • the holographic reflection film 420 is a diffractive optical film layer made according to the principle of holography. Among them, the incident, reflection and transmission relationship of light can be designed by designing the diffraction pattern of the holographic reflective film 420, so that the holographic reflective film 420 has angle selectivity, that is, the holographic reflective film 420 can reflect light at a preset angle and transmit light at other angles. of light. It should be noted that, when fabricating the holographic reflective film 420 , the holographic reflective film 420 is generally exposed by using object light and reference light emitted by a point light source.
  • the holographic reflective film 420 can be exposed as a whole with light having RGB three-color wavelengths, so that the holographic reflective film 420 can reflect red light, green light and blue light in the light incident at a preset angle, so that The red light, green light and blue light reflected by the holographic reflective film 420 can be mixed to form light of various gray scales required for displaying images.
  • the second polarized reflective film 440 has a polarized transmission direction, the light with the same polarized transmission direction is transmitted, and the light with the opposite polarized transmission direction is reflected.
  • the light rays emitted by the first image source 210 and the second image source 220 are both linearly polarized light, and the linearly polarized light has a first polarization state and a second polarization state, that is, P light and S light.
  • the first image source 210 emits a first light 211, the first light 211 has a first polarization state, the light of the first polarization state is directed to the second surface 102 of the waveguide 10, at this time, the first light 211 passes through the first polarization
  • the vibration direction of the first light 211 is different from the transmission direction of the first polarized reflective film, and the first light 211 is reflected toward the first surface 101 of the waveguide 10 for the first time.
  • the first light 211 is transformed into circularly polarized light after entering the first quarter-wave plate.
  • the first light 211 is incident on the holographic reflective film 420 at an angle other than the preset angle, and the first light 211 is transmitted through the holographic reflective film 420 .
  • the first light 211 passes through the second quarter-wave plate, and the circularly polarized light is converted into linearly polarized light.
  • the polarization direction of the linear polarization state at this time is different from the transmission direction of the second polarized reflection film 440 .
  • the first light 211 is reflected by the second polarized reflection film 440 .
  • the reflected first light 211 passes through the second quarter-wave plate, the holographic reflection film 420 and the first quarter-wave plate in sequence.
  • the polarization state remains unchanged.
  • the first light 211 is directed toward the first polarizing reflective film 310 , the polarization direction of the first light 211 is different from the transmission direction of the first polarizing reflective film 310 , and the first light 211 is reflected toward the first surface 101 for the second time.
  • the circularly polarized light of the first polarization state incident on the first light 211 at a preset angle is directed to the holographic reflective film 420 , and the holographic reflective film 420 reflects the first light 211 .
  • the first light 211 is transformed into linearly polarized light after passing through the first quarter-wave plate again.
  • the polarization state of the first light 211 is the same as the transmission direction of the first polarized reflection film 310 .
  • the first light 211 passes through the first polarizing reflective film 310 .
  • the holographic reflective film 420 can reflect light at preset angles, and reflect light at other preset angles. Through refraction and reflection of the light in the waveguide 10 , the light propagation space can be effectively reduced, and the volume of the head-mounted display device can be reduced.
  • the polarization conversion component includes a first phase retarder 410, a holographic reflective film 420 and a polarizer, and the first phase retarder 410, the holographic reflective film 420 and the polarizer are arranged in sequence from the direction away from the waveguide.
  • the incident angle on the first surface 101 is greater than or equal to the critical angle of total reflection, and the first light 211 goes from the optically denser medium to the optically thinner medium.
  • the first light 211 is totally reflected, and the first light 211 is reflected toward the second surface 102 .
  • the function of the polarizer is to convert the external light into linearly polarized light.
  • the second image source 220 emits the second light 221 , and the propagation process of the second light 221 also refers to the above-mentioned propagation process of the first light 211 , which will not be repeated here.
  • a polarizer can also be arranged on the light exit surfaces of the first image source 210 and the second image source 220, and the natural light, Circularly or elliptically polarized light is converted to linearly polarized light.
  • This embodiment can also be used in the AR display technology, in which case the external light 610 needs to enter the inside of the head-mounted display device. In order to ensure that light can smoothly enter the interior of the head-mounted display device.
  • the polarization conversion component is also used to transmit the second polarized light in the external light 610 to the first polarized reflection film 310 , so that the second polarized light in the external light 610 can pass through the waveguide 10 .
  • the external light 610 is ambient light in the environment where the optical waveguide device is located. That is to say, the head-mounted display device using the waveguide 10 can transmit background light.
  • the second polarized reflective film 440 has a polarized transmission direction, and the polarized transmitted direction of the second polarized reflective film 440 is the same as the vibration direction of the second polarized light.
  • the second polarized light in the external light 610 can pass through the second polarized reflective film 440 , and the light with other polarized states is reflected and blocked outside the waveguide 10 .
  • the light of the second polarization state sequentially passes through the second quarter-wave plate, the holographic reflection film 420 and the first quarter-wave plate.
  • the light of the second polarization state keeps the polarization state unchanged, and after the light of the second polarization state is incident on the first polarizing reflection film 310, the polarization direction of the second polarization state is the same as the transmission direction of the first polarization reflection film 310, thus , the external light 610 can smoothly pass through the waveguide 10 . Can realize the combination of virtual and real display.
  • the optical structure further includes an anti-reflection polarizing film 320 , and the anti-reflection polarizing film 320 is disposed on a side of the first polarizing reflection film 310 away from the waveguide 10 .
  • the anti-reflection polarizing film 320 further filters out the light of the first polarization state to ensure the smooth transmission of the light of the second polarization state.
  • the anti-reflection polarizing film 320 can also reduce the reflection of this part of light.
  • the first image source 210 and the second image source 220 are any one of laser image source, LED image source, OLED image source or micro-LED image source.
  • the image source is preferably a laser image source, and the image displayed by the laser image source is a laser light source image including a laser-illuminated LCD image or a projected real image projected on the diffusion film by a laser-illuminated micro-projector.
  • the present invention also provides a near-eye display device.
  • the near-eye display device includes a casing and an optical structure, and the optical structure is arranged on the casing.
  • the optical structure includes a waveguide 10, an image source group, a first polarized reflection film 310 and a polarization conversion component.
  • the image source group is arranged close to the waveguide 10 , and may be spaced a certain distance from the waveguide 10 , or may abut against the surface of the waveguide 10 .
  • the first polarized reflective film 310 and the polarization conversion component are respectively disposed on two opposite surfaces of the waveguide 10 .
  • the first polarized reflective film 310 and the polarization conversion component may be independent optical devices, or may be a film layer structure attached to the waveguide 10 .
  • the waveguide 10 has a first surface 101 and a second surface 102 oppositely arranged, and the waveguide 10 also has a first light-incident end surface 103 and a second light-incident end surface 104 oppositely arranged, and the first light-incident end surface 103 is located at the Between the first surface 101 and the second surface 102, the second light-incident end surface 104 is located between the first surface 101 and the second surface 102 of the waveguide 10; wherein, the first surface 101 faces the external environment, and the second surface 102 faces user.
  • the first surface 101 is also a flat surface.
  • the image source group includes a first image source 210 and a second image source 220, the first image source 210 is arranged on the first light-incident end surface 103, the second image source 220 is arranged on the second light-incident end surface 104; the first polarizing reflective film 310 disposed on the second surface 102 of the waveguide 10;
  • the polarization conversion component is disposed on the first surface 101 of the waveguide 10 , and the polarization conversion component is used for directing light from the first image source 210 and the second image source 220 to the second surface 102 of the waveguide 10 .
  • the optical structure can be applied to AR display technology, and can also be applied to VR display technology. When the optical structure is applied to the AR display technology, light from the external environment needs to be incident on the second surface 102 , for this reason, the polarization conversion component can also transmit the light from the outside to the waveguide 10 . Adds together the optics emitted by the image source group and the ambient ambient light.
  • the source of image light is expanded, and the angle of emitted light can be larger.
  • the far end of one image source in the waveguide 10 is the near end of the other image source, thus the arrangement of two image sources can make up for the situation that there is no light emitted from the far end of a single image source, thereby improving the image quality of the entire displayed image.
  • the size increases the user's field of view and improves the user's immersive experience.
  • the first polarized reflective film 310 has a transmission direction.
  • the polarization direction of the light is the same as the transmission direction of the first polarized reflective film 310, the light is transmitted through the first polarized reflective film 310.
  • the direction is different, the light is reflected by the first polarized reflective film.
  • Film 310 is reflective. And, through the action of the polarization conversion component, the light reflected by the first polarizing reflective film 310 goes to the second surface 102 of the waveguide 10 again until the polarization state of the light is the same as the transmission direction of the first polarizing reflective film 310 .
  • the present invention discloses an optical structure and a near-eye display device.
  • the optical structure includes: the waveguide has a first surface and a second surface oppositely arranged, and the waveguide also has a first light incident end surface and a second light incident end surface oppositely arranged, and the first light incident end surface is located Between the surface and the second surface, the second light-incident end surface is located between the first surface and the second surface of the waveguide; the image source group includes a first image source and a second image source, and the first image source is arranged on the first input surface The light end face, the second image source is arranged on the second light incident end face; the first polarized reflection film is arranged on the second surface of the waveguide; the polarization conversion component is arranged on the first surface of the waveguide, and the polarization conversion component is used to convert the first image Light from the source and the second image source is directed toward the second surface of the waveguide.
  • the present invention can increase the screen size of the displayed image, thereby increasing the field of
  • an embodiment of the present invention provides an optical structure, the optical structure includes:
  • a waveguide the waveguide has a first surface and a second surface opposite to each other, the waveguide also has a first light-incident end face and a second light-incident end face opposite to each other, the first light-incident end face is located on the Between the first surface and the second surface of the waveguide, the second light-incident end surface is located between the first surface and the second surface of the waveguide;
  • An image source group includes a first image source and a second image source, the first image source is set on the first light-incident end surface, and the second image source is set on the second light-incident end surface end face;
  • the first polarized reflective film is provided on the second surface of the waveguide;
  • the polarization conversion component is arranged on the first surface of the waveguide, and the polarization conversion component is used to direct the light from the first image source and the second image source to the waveguide second surface.
  • the waveguide includes a first waveguide part and a second waveguide part, the first waveguide part and the second waveguide part are butted, and the first incident light
  • the end surface is located at an end of the first waveguide part away from the second waveguide
  • the second light-incident end surface is located at an end of the second waveguide part away from the first waveguide part.
  • the first waveguide part and the second waveguide part are glued together;
  • the first waveguide part and the second waveguide part are integrally formed.
  • the first waveguide part includes a first subsurface
  • the second waveguide part includes a second subsurface
  • the first subsurface and the second subsurface The surface forms the second surface, the first sub-surface and the second sub-surface are arranged at an included angle, and the included angle is an obtuse angle.
  • the angle between the first light-incident end surface and the first sub-surface is an acute angle
  • the angle between the second light-incident end surface and the second sub-surface The angle is acute.
  • the optical structure further includes a correction compensator for correcting phase difference, and the correction compensator is provided on the second surface of the waveguide.
  • the polarization conversion component includes a first phase retarder, a holographic reflective film, a second phase retarder and a second polarized reflective film, the first phase retarder, The holographic reflective film, the second phase retarder and the second polarized reflective film are sequentially arranged from a direction away from the waveguide;
  • the polarization conversion component includes a first phase retarder, a holographic reflective film and a polarizer, and the first phase retarder, the holographic reflective film and the polarizer are sequentially arranged from a direction away from the waveguide.
  • the optical structure further includes an anti-reflection polarizing film, and the anti-reflection polarizing film is provided on a side of the first polarizing reflection film away from the waveguide.
  • the first image source and the second image source are laser image sources, LED image sources, OLED image sources or micro-LED image sources Either one.
  • an embodiment of the present invention provides a near-eye display device, the near-eye display device comprising a housing and the optical structure according to any one of the first to ninth aspects, the optical structure being arranged on the housing.

Abstract

一种光波导器件、显示装置和显示设备。该光波导器件包括光波导介质体(31)、第一偏振反射层(32)和光学结构层(33);光波导介质体(31)包括相对的第一表面(S1)和第二表面(S2),第一偏振反射层(32)设置在第一表面(S1)上,光学结构层(33)设置在第二表面(S2)上;光波导介质体(31)用于传播光线,该光线包括第一偏振光;第一偏振反射层(32)用于反射第一偏振光、透射第二偏振光;光学结构层(33)用于将以预设角度入射的第一偏振光转换为第二偏振光,并将第二偏振光反射至第一偏振反射层(32),将以其他角度入射的第一偏振光反射至第一偏振反射层(32)。由于第二偏振光的出射区域,不再被限制在不具有反射膜层的区域,因此,增大了光波导器件的出光范围。

Description

一种光波导器件、显示装置和显示设备 技术领域
本申请实施例涉及光学显示技术领域,具体涉及一种光波导器件、显示装置和显示设备。
背景技术
光波导是引导光波在其中传播的介质装置,又称介质光波导。光波导因其轻薄优势,已经成为近眼显示装置的重要组成元件。但是,目前大部分的光波导元件都是利用全反射原理进行光线传播的。虽然可以在光波导元件表面形成反射膜,使得不满足全反射条件的光线,能够通过反射膜的反射继续在光波导元件内传播,避免光线从光波导元件出射影响显示效果,但是,这样又会导致光波导元件内的光线,只能在不具有反射膜的区域出射,形成显示图像,极大地限制了光线的出射范围。
技术问题
本发明解决的问题是提供一种光波导器件、显示装置和显示设备,以增大光波导器件的出光范围。
技术解决方案
为解决上述问题,本发明实施例提供如下技术方案:
本发明第一方面公开了一种光波导器件,包括光波导介质体、第一偏振反射层和光学结构层;所述光波导介质体包括相对的第一表面和第二表面,所述第一偏振反射层设置在所述第一表面上,所述光学结构层设置在所述第二表面上;
所述光波导介质体用于传播光线,所述光线包括第一偏振光;
所述第一偏振反射层用于反射所述第一偏振光、透射第二偏振光,所述第二偏振光与所述第一偏振光的偏振方向垂直;
所述光学结构层用于将以预设角度入射的所述第一偏振光转换为所述第二偏振光,并将所述第二偏振光反射至所述第一偏振反射层,将以其他角度入射的所述第一偏振光反射至所述第一偏振反射层。
本发明第二方面公开了一种显示装置,包括微图像源和如上任一项所述的光波导器件;所述微图像源用于向所述光波导器件出射图像显示所需的光线,所述光线包括第一偏振光。
本发明第三方面公开了一种显示设备,包括如上所述的显示装置。
有益效果
本发明实施例提供的光波导器件、显示装置和显示设备,由于光学结构层能够将以预设角度入射的第一偏振光转换为第二偏振光,并将第二偏振光反射至第一偏振反射层,而第一偏振反射层又能够透射第二偏振光,因此,以预设角度入射的第一偏振光转换成的第二偏振光,能够从光波导器件出射,形成显示图像。
由于光学结构层能够将以其他角度入射的第一偏振光反射至第一偏振反射层,而第一偏振反射层又能够反射第一偏振光,因此,以其他角度入射的第一偏振光能够在光学结构层和第一偏振反射层之间不断反射,使得以其他角度入射的第一偏振光不会从光波导器件出射,干扰图像的显示。
可以看出,本发明实施例中的第一偏振反射层的所有区域都能够反射以其他角度入射的第一偏振 光、透射以预设角度入射的第一偏振光转换成的第二偏振光,基于此,本发明实施例中,第二偏振光的出射区域,不再被限制在不具有反射膜层的区域,从而增大了光波导器件的出光范围,进而增大了包括该光波导器件的显示装置和显示设备的图像显示范围。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为一种利用全反射原理进行光线传播的光波导元件的结构示意图;
图2为另一种光波导元件的结构示意图;
图3为本发明一个实施例提供的光波导器件的剖面结构示意图;
图4为本发明一个实施例提供的光波导器件的立体结构示意图;
图5为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图6为本发明另一些实施例提供的光波导器件的剖面结构示意图;
图7为本发明一个实施例提供的全息反射层的曝光方式示意图;
图8为本发明另一实施例提供的光波导器件的剖面结构示意图;
图9为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图10为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图11为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图12为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图13为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图14为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图15为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图16为本发明另一个实施例提供的光波导器件的剖面结构示意图;
图17为本发明一个实施例提供的显示装置的剖面结构示意图;
图18为本发明一个实施例提供的显示装置的剖面结构示意图;
图19是本发明的光学结构一实施例的结构示意图;
图20是图19中光线传播路径的结构示意图;
图21是图19中部分结构的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
正如背景技术,目前大部分的光波导元件都是利用全反射原理进行光线传播的。如图1所示,图1为一种利用全反射原理进行光线传播的光波导元件的结构示意图,入射光线被反射膜11反射至光波导介质1内,使得入射光线在光波导介质1表面的反射角大于全反射临界角,使得光线在光波导介质1内传播并在到达特定区域后出射,进行图像的显示。但是,若光波导介质1内的光线的反射角小于或等于全反射临界角,则光线会从光波导介质1中出射,这些出射的光线会对进行图像显示的光线造成干扰,影响图像显示效果。
如图2所示,图2为另一种光波导元件的结构示意图,虽然可以在光波导介质20表面形成反射膜21,使得不满足全反射条件的光线,能够通过反射膜21的反射继续在光波导介质20内传播,避免光线从光波导介质20出射,影响图像显示效果。但是,光线只能在具有反射膜21的区域传播,在不具有反射膜21的区域出射,即光线只能在不具有反射膜21的区域出射,形成显示图像,这样就极大地限制了光线的出射范围。
基于此,本发明实施例提供了一种光波导器件、显示装置和显示设备,以通过在光波导介质体的第一表面设置第一偏振反射层,在光波导介质体的第二表面设置光学结构层,并使第一偏振反射层反射第一偏振光、透射第二偏振光,使光学结构层将以预设角度入射的第一偏振光转换为第二偏振光,并将第二偏振光反射至第一偏振反射层,将以其他角度入射的第一偏振光反射至第一偏振反射层,使得第二偏振光的出射区域,不再被限制在不具有反射膜层的区域,从而增大了光波导器件的出光范围,进而增大了包括该光波导器件的显示装置和显示设备的图像显示范围。
作为本发明实施例公开内容的一种可选实现,本发明实施例提供了一种光波导器件,用于实现光线的传输。如图3所示,图3为本发明一个实施例提供的光波导器件的剖面结构示意图,该光波导器件包括光波导介质体31、第一偏振反射层32和光学结构层33。
其中,光波导介质体31包括相对的第一表面S1和第二表面S2,第一偏振反射层32设置在第一表面S1上,光学结构层33设置在第二表面S2上。
光波导介质体31用于传播光线,该光线包括第一偏振光。第一偏振反射层32用于反射第一偏振光、透射第二偏振光,其中第二偏振光与第一偏振光的偏振方向垂直。如,第一偏振光为p偏振光,第二偏振光为s偏振光,或者,第一偏振光为s偏振光,第二偏振光为p偏振光。
光学结构层33用于将以预设角度入射的第一偏振光转换为第二偏振光,并将第二偏振光反射至第一偏振反射层32,将以其他角度入射的第一偏振光反射至第一偏振反射层32。
如图3所示,第一偏振光从光波导介质体31入射至第一偏振反射层32之后,被第一偏振反射层32反射至光学结构层33。若第一偏振光入射至光学结构层33的角度为预设角度α,则光学结构层33会将第一偏振光转换为第二偏振光,并将第二偏振光反射至第一偏振反射层32,使得第二偏振光从第一偏振反射层32出射至外界。
若第一偏振光入射至光学结构层33的角度为其他角度,其他角度是指除预设角度α之外的角度,光学结构层33会将第一偏振光反射至第一偏振反射层32。之后,第一偏振反射层32会再次反射第一偏振光,使得以其他角度入射的第一偏振光在第一偏振反射层32和光学结构层33之间不断反射,从而使得以其他角度入射的第一偏振光不会从光波导器件出射。
需要说明的是,本发明实施例中的预设角度α是一角度范围。若第一偏振光入射至光学结构层33的角度在该角度范围内,则该角度为预设角度α;若第一偏振光入射至光学结构层33的角度不在该角度范围内,则该角度为其他角度。其中,α=ω±t,ω为某一特定角度,0≤t≤15°。
还需要说明的是,本发明实施例中仅以从光波导介质体31出射的第一偏振光先入射至第一偏振反射层32为例进行说明,但是,本发明并不仅限于此,在另一些实施例中,从光波导介质体31出射的第一偏振光也可以先入射至光学结构层33,在此不再赘述。
也就是说,本发明实施例中,由于光学结构层33能够将以预设角度α入射的第一偏振光转换为第二偏振光,并将第二偏振光反射至第一偏振反射层32,而第一偏振反射层32又能够透射第二偏振光,因此,以预设角度α入射的第一偏振光转换成的第二偏振光,能够从光波导器件出射,形成显示图像。
由于光学结构层33能够将以其他角度入射的第一偏振光反射至第一偏振反射层32,而第一偏振反射层32又能够反射第一偏振光,因此,以其他角度入射的第一偏振光能够在光学结构层33和第一偏振反射层32之间不断反射,使得以其他角度入射的第一偏振光不会从光波导器件出射,干扰图像的显 示。
可以看出,本发明实施例中的第一偏振反射层32的所有区域都能够反射以其他角度入射的第一偏振光、透射以预设角度α入射的第一偏振光转换成的第二偏振光,基于此,本发明实施例中,第二偏振光的出射区域,不再被限制在不具有反射膜层的区域,从而增大了光波导器件的出光范围。
本发明一些实施例中,如图3所示,第一表面S1和第二表面S2所在的平面具有第一夹角β,且该第一夹角β为锐角,以改变再次传播到第一偏振反射层32或光学结构层33的第一偏振光的入射角度。
也就是说,由于第一表面S1和第二表面S2所在的平面具有第一夹角β,因此,可以使第一偏振光被第一偏振反射层32反射后,再次入射到光学结构层33的角度发生改变,使第一偏振光被光学结构层33反射后,再次入射到第一偏振反射层32的角度发生改变。
第一偏振光在第一偏振反射层32和光学结构层33之间多次反射后,若入射至光学结构层33的第一偏振光的角度改变为预设角度α,则第一偏振光会被光学结构层33转换为第二偏振光,并反射至第一偏振反射层32,进而被第一偏振反射层32透射至外界,从而进一步提高了第一偏振光的利用率,增加了显示图像的亮度,提高了显示效果。
需要说明的是,本发明实施例中并不仅限于第一表面S1和第二表面S2具有第一夹角β,在另一些实施例中,第一表面S1和第二表面S2也可以相互平行,在另一些实施例中,第一夹角β也可以大于或等于90度。只要通过调整入射至光波导介质体31的第一偏振光的角度,使得以预设角度α入射至光学结构层33的第一偏振光会被转换为第二偏振光,并通过第一偏振反射层32透射至外界,使得以其他角度入射至光学结构层33的第一偏振光,会在第一偏振反射层32和光学结构层33之间不断反射即可。
本发明一些实施例中,如图4所示,图4为本发明一个实施例提供的光波导器件的立体结构示意图,上述图3为图4所示的光波导器件沿切割线AA’的剖面结构示意图,光波导介质体31的形状为三棱柱,第一偏振反射层32设置在三棱柱的第一表面S1上,光学结构层33设置在三棱柱的第二表面S2上,第一表面S1和第二表面S2的夹角为第一夹角β。
本发明一些实施例中,包括第一偏振光的光线可以通过表面S3从外界入射至光波导介质体31。其中,表面S3与第一表面S1和第二表面S2两两相交。当然,在另一些实施例中,根据光波导器件的实际应用情况,光线也可以从除第一表面S1、第二表面S2和表面S3之外的两个表面入射至光波导介质体31,在此不再赘述。
当然,本发明实施例中的光波导介质体31的形状并不仅限于三棱柱,在另一些实施例中,光波导介质体31的形状还可以为四棱柱、五棱柱或其他不规则的形状等。
如图5所示,图5为本发明另一个实施例提供的光波导器件的剖面结构示意图,光波导介质体31的形状为四棱柱,第一偏振反射层32和光学结构层33分别设置在延长线夹角为第一夹角β的第一表面S1和第二表面S2上。
需要说明的是,图3至图5中仅以第一表面S1和第二表面S2都是平面为例进行说明,但是,本发明并不仅限于此,在另一些实施例中,第一表面S1和第二表面S2还可以为弧面或曲面等,只要第一表面S1能够将光线反射至第二表面S2,第二表面S2能够将光线反射至第一表面S1即可,在此不再赘述。
本发明一些实施例中,光学结构层33还用于将外界光线中的第二偏振光透射至第一偏振反射层32,以使外界光线中的第二偏振光透过光波导器件。其中,外界光线是光波导器件所处环境中的环境光。也就是说,采用该光波导器件的显示装置可以透射背景光,可以实现虚实结合的显示方式。
在上述实施例的基础上,本发明一些实施例中,如图6所示,图6为本发明另一些实施例提供的 光波导器件的剖面结构示意图,光学结构层包括第一相位延迟层331、全息反射层332、第二相位延迟层333和第二偏振反射层334。
其中,第一相位延迟层331、全息反射层332、第二相位延迟层333和第二偏振反射层334依次设置在第二表面S2上。第一相位延迟层331和第二相位延迟层333都用于对光线进行相位延迟。并且,偏振光经过第一相位延迟层331和第二相位延迟层333后偏振态不变,第一偏振光偶数次经过第一相位延迟层331或第二相位延迟层333后转换为第二偏振光,第二偏振光偶数次经过第一相位延迟层331或第二相位延迟层333后转换为第一偏振光。全息反射层332用于反射以预设角度α入射的光线、透射以其他角度入射的光线。第二偏振反射层334用于反射第一偏振光、透射第二偏振光。
如图6所示,入射至光学结构层33的第一偏振光,经过第一相位延迟层331之后入射至全息反射层332。若第一偏振光以预设角度α入射至全息反射层332,则全息反射层332会反射第一偏振光,使得第一偏振光再次经过第一相位延迟层331。由于第一偏振光两次经过第一相位延迟层331,因此,第一偏振光被转换为第二偏振光,并出射至第一偏振反射层32,再经过第一偏振反射层32透射至外界。
若第一偏振光以其他角度入射至全息反射层332,则全息反射层332会透射第一偏振光,使得第一偏振光经过第二相位延迟层333后入射至第二偏振反射层334。由于第一偏振光经过第一相位延迟层331和第二相位延迟层333后偏振态不变,即仍为第一偏振光,因此,第二偏振反射层334反射第一偏振光,使得第一偏振光经过第二相位延迟层333入射至全息反射层332,被全息反射层332透射后,经过第一相位延迟层331。由于第一偏振光再次经过第一相位延迟层331和第二相位延迟层333后偏振态不变,因此,第一相位延迟层331将第一偏振光出射至第一偏振反射层32。
由于第二偏振反射层334反射第一偏振光、透射第二偏振光,因此,外界光线中的第二偏振光会透过第二偏振反射层334入射至第二相位延迟层333,经过第二相位延迟层333后入射至全息反射层332,以预设角度α入射至全息反射层332的第二偏振光被反射回外界,以其他角度入射至全息反射层332的第二偏振光被透射至第一相位延迟层331。由于经过第一相位延迟层331和第二相位延迟层333后第二偏振光的偏振态不变,因此,第二偏振光被第一偏振反射层32透射至外界。基于此,外界光线可以从右向左穿透光波导器件,实现虚实结合的显示方式。
本发明一些实施例中,第一相位延迟层331包括1/4波长相位延迟层,该1/4波长相位延迟层可以为1/4波片,第二相位延迟层333包括3/4波长相位延迟层,该3/4波长相位延迟层可以为3/4波片。
第一偏振光经过第一相位延迟层331后相位被延迟1/4个波长,经过第二相位延迟层333后相位再被延迟3/4个波长。也就是说,第一偏振光经过第一相位延迟层331和第二相位延迟层333后相位差为一个波长,因此,第一偏振光的偏振态不变。第一偏振光偶数次经过第一相位延迟层331或第二相位延迟层333后,相位差为1/2个波长,因此,第一偏振光转换为第二偏振光。
当然,本发明并不仅限于此,在另一些实施例中,第一相位延迟层331包括1/4波长相位延迟层,第二相位延迟层333也包括1/4波长相位延迟层,但第二相位延迟层333与第一相位延迟层331的相位延迟方向相反。第一偏振光经过第一相位延迟层331后相位被延迟1/4个波长,经过第二相位延迟层333后相位被提前1/4个波长,使得第一偏振光经过第一相位延迟层331和第二相位延迟层333后相位差为0,使得第一偏振光的偏振态不变。
需要说明的是,本发明一些实施例中,第一偏振光和第二偏振光都为线偏振光。并且,第一相位延迟层331和第二相位延迟层333用于将线偏振光转换为圆偏振光,或,将圆偏振光转换为线偏振光。如,第一偏振光经过第一相位延迟层331后被转换为圆偏振光,圆偏振光经过第一相位延迟层331或第二相位延迟层333后再次被转换为线偏振光。
本发明一些实施例中,全息反射层332是根据全息术原理制成的衍射光学膜层。其中,可以通过 设计全息反射层332的衍射图案设计光线的入射、反射和透射关系,使得全息反射层332具有角度选择性,即,使得全息反射层332能够反射预设角度α的光线,透射其他角度的光线。
需要说明的是,在制作全息反射层332时,通常采用点光源发出的物光和参考光对全息反射层332进行曝光。本发明一些实施例中,可以采用具有RGB三色波长的光对全息反射层332进行整体曝光,使得全息反射层332能够反射以预设角度α入射的光线中的红光、绿光和蓝光,使得全息反射层332反射的红光、绿光和蓝光能够混合形成显示图像所需的各种灰度的光。
当然,本发明并不仅限于此,在另一些实施例中,如图7所示,图7为本发明一个实施例提供的全息反射层的曝光方式示意图,全息反射层332包括阵列排布的多个反射区域7,每个反射区域7都包括相邻设置的第一子反射区7R、第二子反射区7G和第三子反射区7B,并且,多个第一子反射区7R、第二子反射区7G或第三子反射区7B也呈阵列排布。并且,第一子反射区7R用于反射光线中的红光,第二子反射区7G用于反射光线中的绿光,第三子反射区7B用于反射光线中的蓝光。
需要说明的是,图7中仅以子反射区的形状为六边形为例进行说明,但本发明并不仅限于此,在另一些实施例中,子反射区的形状还可以为三角形、矩形或圆形等。其中,每个子反射区的尺寸大小可以为0.5mm~0.6mm。
还需要说明的是,在另一些实施例中,光学结构层33也可以不将外界光线透射至第一偏振反射层32,也就是说,采用该光波导器件的显示装置并不能透射背景光,即不能实现虚实结合的显示。在一些可选示例中,可以将第二偏振反射层334替换为全波长反射层,使得外界光线都被全波长反射层反射,从而不能进入光波导器件。
此外,在另一些实施例中,光波导器件还可以包括透光控制层,以通过透光控制层控制外界光线是否透过光波导器件。其中,透光控制层可以包括液晶光阀、电子开关或液晶雾化膜等。
本发明一些实施例中,如图8所示,图8为本发明另一实施例提供的光波导器件的剖面结构示意图,透光控制层34设置在光学结构层33背离光波导介质体31的一侧。
其中,在第一状态下,透光控制层34透射外界光线,使外界光线入射至光学结构层33,在第二状态下,透光控制层34阻挡外界光线,使外界光线不能入射至光学结构层33。
例如,透光控制层34为液晶光阀时,在第一状态下,液晶光阀开启,使得光线能够穿透液晶光阀,在第二状态下,液晶光阀关闭,使得光线不能穿透液晶光阀。
需要说明的是,本发明实施例中,还可以通过调整入射至光波导介质体31的光线的方向或角度,和/或,调整光波导器件的方向或角度,调整第二偏振光的出射方向,以使光波导器件能够满足实际应用中对出光方向或出光角度的需求。
如图8所示,光波导器件的方向可以为第一表面S1垂直水平面的方向,使得第二偏振光沿垂直于第一表面S1的方向出射,即从第一偏振反射层32出射的第二偏振光的出射方向与第一表面S1垂直。
在另一些实施例中,如图9所示,图9为本发明另一个实施例提供的光波导器件的剖面结构示意图,光波导器件的方向还可以为第二表面S2垂直水平面的方向,使第二偏振光沿垂直于第二表面S2的方向出射,即第一偏振反射层32出射的第二偏振光的出射方向与第二表面S2垂直。
由于在一些实施例中第一表面S1和第二表面S2的夹角为锐角,因此,第二偏振光经过第一偏振反射层32出射后,方向会发生偏移。基于此,本发明一些实施例中,光波导器件还包括光学矫正体,该光学矫正体用于矫正第一偏振反射层32出射的至少部分第二偏振光的出射方向。
如图10所示,图10为本发明另一个实施例提供的光波导器件的剖面结构示意图,光学矫正体35设置在第一偏振反射层32背离光波导介质体31的一侧,以对第一偏振反射层32出射的全部第二偏振光的出射方向进行矫正,使得第二偏振光的出射方向为所需的方向。
或者,如图11所示,图11为本发明另一个实施例提供的光波导器件的剖面结构示意图,光学矫 正体35设置在光学结构层33背离光波导介质体31的一侧,以对第一偏振反射层32出射的部分第二偏振光的出射方向进行矫正,这里的部分第二偏振光是外界光线中透过光波导器件的第二偏振光。
本发明一些实施例中,光学矫正体35与光波导介质体31的折射率相同,并且,如图10或11所示,光学矫正体35包括第三表面S3和第四表面S4,第三表面S3和第四表面S4所在的平面具有第二夹角θ,第二夹角θ与第一夹角β相等。并且,第三表面S3与第一表面S1平行设置,第四表面S4与第二表面S2平行设置,以使外界环境中的第二偏振光穿透光波导器件之后,传播方向基本不变。需要说明的是,由于第一偏振反射层32和光学结构层33较薄,因此,光线在二者中折射导致的方向偏差可以忽略不计。
在上述任一实施例的基础上,本发明一些实施例中,光波导器件还包括偏振吸收层,该偏振吸收层用于吸收第一偏振光、透射第二偏振光。其中,偏振吸收层设置在第一偏振反射层32背离光波导介质体31的一侧,和/或,偏振吸收层设置在光学结构层33背离光波导介质体31的一侧。
需要说明的是,偏振吸收层的极性方向与第一偏振反射层32和第二偏振反射层334极性方向平行,以通过偏振吸收层吸收第一偏振光后,消除光的后向反射,避免第一偏振反射层32或第二偏振反射层334反射外界光线中的第一偏振光,对出射的第二偏振光造成干扰。由于偏振吸收层透射第二偏振光,因此,偏振吸收层并不会影响光波导器件出射和透射第二偏振光。
此外,本发明实施例中的光波导器件结构可以有效抑制界面反射光,该界面反射光也可以称为零级光。虽然每个界面都会产生界面反射光,但是,对于折射率比较接近的两个膜层的界面而言,界面反射光很弱,难以被人眼察觉,因此,可以忽略不计。如光波导介质体31与第一相位延迟层331交界面的反射光、第一相位延迟层331与全息反射层332交界面的反射光、全息反射层332与第二相位延迟层333交界面的反射光以及第二相位延迟层333与第二偏振反射层334交界面的反射光等。
但是,对于与空气接触的界面而言,界面反射光较强,需要消除这个界面反射光带来的干扰。以第二偏振反射层334与空气的接触的界面为例,从光波导介质体31出射的第一偏振光经过第一相位延迟层331、全息反射层332和第二相位延迟层333到达第二偏振反射层334与空气的交界面后仍为第一偏振光,即第二偏振反射层334与空气的交界面的界面反射光为第一偏振光,该界面反射光被反射后再次经过第二相位延迟层333、全息反射层332和第一相位延迟层331,仍为第一偏振光,该第一偏振光会被第一偏振反射层32反射,也就是说,该界面反射光会在第一偏振反射层32和第二偏振反射层334之间不断反射,不会出射至外界,干扰图像的显示。
需要说明的是,虽然第一偏振反射层32和第二偏振反射层334会反射第一偏振光,但是,其具有一定的反射率,仍会有少量第一偏振光会从第一偏振反射层32透射出去。而本发明实施例中,通过在第一偏振反射层32背离光波导介质体31的一侧设置偏振吸收层,使得偏振吸收层吸收掉少量透射出去的第一偏振光,可以进一步地抑制界面反射光。并且,设置偏振吸收层之后,与空气接触的界面为偏振吸收层的表面,由于偏振吸收层对第一偏振光的反射率较低,因此,可以进一步减少与空气接触的界面产生的界面反射光,从而可以进一步抑制界面反射光。
本发明一些实施例中,如图12所示,图12为本发明另一个实施例提供的光波导器件的剖面结构示意图,偏振吸收层36设置在第一偏振反射层32背离光波导介质体31的一侧表面,以及光学结构层33背离光波导介质体31的一侧表面。
当然,本发明并不仅限于此,如图13所示,图13为本发明另一个实施例提供的光波导器件的剖面结构示意图,偏振吸收层36还可以设置在光学结构层33和光学矫正体35之间。或者,如图14所示,图14为本发明另一个实施例提供的光波导器件的剖面结构示意图,偏振吸收层36还可以设置在第一偏振反射层32和光学矫正体35之间。
或者,如图15所示,图15为本发明另一个实施例提供的光波导器件的剖面结构示意图,光学矫 正体35位于光学结构层33和偏振吸收层36之间,或者说,偏振吸收层36还可以设置在光学矫正体35背离光学结构层33的一侧表面。或者,如图16所示,图16为本发明另一个实施例提供的光波导器件的剖面结构示意图,光学矫正体35位于第一偏振反射层32和偏振吸收层36之间,或者说,偏振吸收层36还可以设置在光学矫正体35背离第一偏振反射层32的一侧表面。
作为本发明实施例公开内容的另一种可选实现,本发明实施例还提供了一种显示装置,该显示装置包括如上任一实施例提供的光波导器件和微图像源。其中,微图像源用于向光波导器件出射图像显示所需的光线,该光线包括第一偏振光。
本发明实施例中,可以通过设定微图像源出射光线的角度,使得图像显示所需的第一偏振光都以预设角度入射至光学结构层33。其中,以其他角度入射的光包括环境光等杂散光。
如图17所示,图17为本发明一个实施例提供的显示装置的剖面结构示意图,微图像源40向光波导器件中的光波导介质体31出射图像显示所需的光线,之后,光线中的第一偏振光被第一偏振反射层32反射至光学结构层33。若第一偏振光入射至光学结构层33的角度为预设角度α,则光学结构层33会将第一偏振光转换为第二偏振光,并将第二偏振光反射至第一偏振反射层32,使得第二偏振光从第一偏振反射层32出射至外界的人眼中,人眼可以看到出射的第二偏振光形成的虚像。
若第一偏振光入射至光学结构层33的角度为其他角度,光学结构层33会将第一偏振光反射至第一偏振反射层32,第一偏振反射层32会再次反射第一偏振光,使得以其他角度入射的第一偏振光在第一偏振反射层32和光学结构层33之间不断反射,从而使得以其他角度入射的第一偏振光不会从光波导器件出射,干扰图像的显示。
需要说明的是,本发明一些实施例中,光学结构层33中的全息反射层具有屈光作用,可以对图像进行放大,因此,人眼可以看到放大后的图像,从而可以提升观看效果。
本发明一些实施例中,如图18所示,图18为本发明另一个实施例提供的显示装置的剖面结构示意图,光波导器件可以透射外界光线中的第二偏振光,因此,人眼不仅可以看到第二偏振光形成的虚拟图像,还可以看到现实物体反射的第二偏振光,即可以透过显示装置看到现实物体,从而可以看到虚实结合的图像。
基于此,本发明实施例中的显示装置可以是增强现实(AR)显示装置或虚拟现实(VR)显示装置等。并且,本发明实施例中的显示装置还可以为近眼显示装置。
本发明实施例中,微图像源包括激光图像源、LED图像源、OLED图像源或micro-LED图像源等。微图像源最优选为激光图像源,该激光图像源显示的图像为激光光源图像包括激光照明的LCD图像或者激光照明的微型投影仪投射在扩散膜上的投影实像。
次优选为自发光微图像源,该自发光微图像源显示的图像包括OLED微显示器显示的图像或者micro-LED显示的微显示图像。其中,可以在微图像源与光波导器件之间附加一个窄带滤光片,以对微图像源出射至光波导器件的光线进行过滤,提高显示效果。
最次选为非相干微图像源,该非相干微图像源显示的图像包括LED照明的LCD图像、不带窄带滤光片的OLED微显示器显示的图像或者micro-LED显示器显示的微显示图像。
作为本发明实施例公开内容的另一种可选实现,本发明实施例还提供了一种显示设备,该显示设备包括如上任一实施例提供的显示装置。本发明实施例的显示设备包括但不仅限于智能手机、平板电脑、智能电视、近眼显示设备如VR眼镜或AR眼镜等。
其中,头戴显示设备(Head mounted display)是一种能够提供身临其境体验的电子产品,头戴显示设备的显示原理包括增强现实(Augmented Reality)技术,简称AR显示技术。头戴显示设备的显示原理还包括VR(Virtual Reality)技术,简称VR显示技术。AR显示用于将内部光线和外部光线叠加在一起,从而在外界真实画面的基础上添加虚拟图像。VR显示用于显示电脑模拟的虚拟画面。
目前的头戴显示设备中设置单一图像源,单一图像源在波导体内传播,光线在向远端传播时,光线难以在波导体的远端位置出射。由此造成,显示图像画面的尺寸较小,用户能够看到的图像视场范围较小,用户的视场范围受限,不利于用户的沉浸式体验。
基于此,针对目前的头戴显示设备中显示图像画面的尺寸较小,导致用户的视场范围受限,不利于用户的沉浸式体验的问题,有必要提供一种光学结构和近眼显示设备,能够提高显示图像的画面尺寸,提高用户的视场范围,提高用户的沉浸式体验。
为实现上述目的,本发明还提出一种光学结构,所述光学结构包括:
波导体,所述波导体具有相对设置的第一表面和第二表面,所述波导体还具有相对设置的第一入光端面和第二入光端面,所述第一入光端面位于所述波导体的第一表面和第二表面之间,所述第二入光端面位于所述波导体的第一表面和第二表面之间;
图像源组,所述图像源组包括第一图像源和第二图像源,所述第一图像源设于所述第一入光端面,所述第二图像源设于所述第二入光端面;
第一偏振反射膜,所述第一偏振反射膜设于所述波导体的第二表面;
偏振转换组件,所述偏振转换组件设于所述波导体的第一表面,所述偏振转换组件用于将所述第一图像源和所述第二图像源的光线射向所述波导体的第二表面。
在其中一实施例中,所述波导体包括第一波导部和第二波导部,所述第一波导部和所述第二波导部对接,所述第一入光端面位于所述第一波导部远离所述第二波导体的一端,所述第二入光端面位于所述第二波导部远离所述第一波导部的一端。
在其中一实施例中,所述第一波导部和所述第二波导部胶合拼接;
或,所述第一波导部和所述第二波导部一体成型。
在其中一实施例中,所述第一波导部包括第一子表面,所述第二波导部包括第二子表面,所述第一子表面和所述第二子表面形成所述第二表面,所述第一子表面和所述第二子表面呈夹角设置,所述夹角为钝角。
在其中一实施例中,所述第一入光端面和所述第一子表面的夹角为锐角,所述第二入光端面和所述第二子表面的夹角为锐角。
在其中一实施例中,所述光学结构还包括用于矫正相差的矫正补偿件,所述矫正补偿件设于所述波导体的第二表面。
在其中一实施例中,所述偏振转换组件包括第一相位延迟片、全息反射膜、第二相位延迟片和第二偏振反射膜,所述第一相位延迟片、所述全息反射膜、所述第二相位延迟片和所述第二偏振反射膜自远离所述波导体的方向依次设置;
或,所述偏振转换组件包括第一相位延迟片、全息反射膜、第二相位延迟片和偏光片,所述第一相位延迟片、所述全息反射膜和所述偏光片自远离所述波导体的方向依次设置。
在其中一实施例中,所述光学结构还包括抗反射偏振膜,所述抗反射偏振膜设于所述第一偏振反射膜背离所述波导体的一侧。
在其中一实施例中,所述第一图像源和第二图像源为激光图像源、LED图像源、OLED图像源或micro-LED图像源中的任一一种。
此外,为了实现上述目的,本发明还提供一种近眼显示设备,所述近眼显示设备包括壳体和如上文所述的光学结构,所述光学结构设于所述壳体。
本技术方案中,通过在波导体的两端分别设置图像源,相比现有的单一图像源,扩大了图像光线的来源,发射光线的角度可以更大。在波导体中一个图像源的远端,就是另一图像源的近端,由此两个图像源的设置能够弥补单一图像源的远端没有光线出射的情况,进而提高整个显示图像画面的尺寸, 增加用户的视场角,提高用户的沉浸式体验。其中,为了保证图像源组发射的光线能够准确的射向用户。第一偏振反射膜具有透射方向,当光线的偏振方向和第一偏振反射膜的透射方向相同时,光线透射第一偏振反射膜,在与其方向不同时,光线则被第一偏振反射膜反射。并且,通过偏振转换组件的作用,经过第一偏振反射膜反射的光线再次射向波导体的第二表面,直到光线的偏振状态和第一偏振反射膜的透射方向相同。
下面将结合本发明实施例中的附图,对本发明实施例中的光学结构和近眼显示设备的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
参阅图19-图21所示,本实施例提供一种光学结构,光学结构包括:波导体10、图像源组、第一偏振反射膜310和偏振转换组件。图像源组靠近波导体10设置,可以和波导体10间隔一定距离,也可以抵接在波导体10的表面。第一偏振反射膜310和偏振转换组件分别设置在波导体10相对的两个表面上。第一偏振反射膜310和偏振转换组件可以为独立的光学器件,也可以是依附于波导体10的膜层结构。
波导体10具有相对设置的第一表面101和第二表面102,波导体10还具有相对设置的第一入光端面103和第二入光端面104,第一入光端面103位于波导体10的第一表面101和第二表面102之间,第二入光端面104位于波导体10的第一表面101和第二表面102之间;其中,第一表面101面向外界环境,第二表面102面向用户。第一表面101也是一个平整的表面。
图像源组包括第一图像源210和第二图像源220,第一图像源210设于第一入光端面103,第二图像源220设于第二入光端面104;第一偏振反射膜310设于波导体10的第二表面102;
偏振转换组件设于波导体10的第一表面101,偏振转换组件用于将第一图像源210和第二图像源220的光线射向波导体10的第二表面102。该光学结构可以应用于AR显示技术,也可以应用于VR显示技术。当光学结构应用于AR显示技术时,需要外界环境的光线射入第二表面102,为此,偏振转换组件还能够透射外界射向波导体10的光线。将图像源组发射的光学和外界环境光线叠加到一起。
本实施例的技术方案中,通过在波导体10的两端分别设置图像源,相比现有的单一图像源,扩大了图像光线的来源,发射光线的角度可以更大。在波导体10中一个图像源的远端,就是另一图像源的近端,由此两个图像源的设置能够弥补单一图像源的远端没有光线出射的情况,进而提高整个显示图 像画面的尺寸,增加用户的视场角,提高用户的沉浸式体验。其中,为了保证图像源组发射的光线能够准确的射向用户。第一偏振反射膜310具有透射方向,当光线的偏振方向和第一偏振反射膜310的透射方向相同时,光线透射第一偏振反射膜310,在与其方向不同时,光线则被第一偏振反射膜310反射。并且,通过偏振转换组件的作用,经过第一偏振反射膜310反射的光线再次射向波导体10的第二表面102,直到光线的偏振状态和第一偏振反射膜310的透射方向相同。
进一步地,通过在波导体10的两端分别设置图像源可以将增加视场角,如果图像源增加在头戴显示设备的上下两端,增加的上下方向视角,如果图像源增加在头戴显示设备的左右两端,增加左右方向的视角。
在其中一实施例中,波导体10包括第一波导部110和第二波导部120,第一波导部110和第二波导部120对接,第一入光端面103位于第一波导部110远离第二波导体10的一端,第二入光端面104位于第二波导部120远离第一波导部110的一端。
其中,波导体10的设置方式至少有两种。其中一种情况时,第一波导部110和第二波导部120胶合拼接;此时第一波导部110和第二波导部120之间的折射率可以相同,也可以不同。具体地,在第一波导部110和第二波导部120之间设置光学胶,将第一波导部110和第二波导部120对接,进行光学图像的校准拼接,从而完成波导体10的设置。通过,第一波导部110和第二波导部120的分开设置,易于光学器件的加工。光学图像的校准拼接,也可以保证叠加的图像不会出现重影。
第二种情况是,第一波导部110和第二波导部120一体成型。此时,第一波导部110和第二波导部120的材质折射率相同。一体成型设置的波导体10作为一个整体器件减少了图像校准的步骤,易于安装。
另外,第一波导部110和第二波导部120的结构外形可以相同。即第一波导部110和第二波导部120以对接位置的平面为对称面,第一波导部110和第二波导部120对称设置。
在其中一实施例中,第一波导部110包括第一子表面102a,第二波导部120包括第二子表面102b,第一子表面102a和第二子表面102b形成第二表面102,第一子表面102a和第二子表面102b呈夹角设置,夹角为钝角。第一子表面102a和第二子表面102b在面向用户的一侧呈现钝角设置。由此,可以形成一个V形空间,用户的双眼可以位于该V形空间内。通过V形空间的包裹,还可以提高用户的沉浸式体验。
在上述实施例中,第一入光端面103和第一子表面102a的夹角为锐角,第二入光端面104和第二子表面102b的夹角为锐角。两个锐角的角度相同,保证光线传播的路径对称,减少重影。另外,通过锐角设置,第一图像源210射向第一子表面102a的入射角,以及第二图像源220射向第二子表面102b的入射角均满足全反射时的临界角。此时,第一图像源210的出光面朝向第一子表面102a,第二图像源220的出光面朝向第二子表面102b。
除此之外,第一入光端面103和第一子表面102a的夹角为钝角,第二入光端面104和第二子表面102b的夹角为钝角。两个钝角的角度相同。此时,第一图像源210的出光面朝向第二表面102,第二图像源220的出光面朝向第二表面102。
在其中一实施例中,光学结构在应用于AR显示技术时,外界环境光线射向波导体10,在经过偏振转换组件和波导体10的传播后,光线的传播路径发生变化,难以成像的同一个表面上。由此会形成相差,例如光学畸变等。为了减少光学畸变。光学结构还包括用于矫正相差的矫正补偿件50,矫正补偿件50设于波导体10的第二表面102。矫正补偿件50的材质可以和波导体10的材质相同,也可以不同。矫正补偿件50用于矫正经过的光线路径,使其经过光学结构,成像的同一表面,进而减少畸变。
在其中一实施例中,偏振转换组件包括第一相位延迟片410、全息反射膜420、第二相位延迟片430和第二偏振反射膜440,第一相位延迟片410、全息反射膜420、第二相位延迟片430和第二偏振反射膜440自远离波导体10的方向依次设置。其中,第一相位延迟片410为四分之波导,第二相位延迟片430为四分之一波片或四分之三波片,第一相位延迟片410和第二相位延迟片430相位延迟相差四分之一个波 长。全息反射膜420是根据全息术原理制成的衍射光学膜层。其中,可以通过设计全息反射膜420的衍射图案设计光线的入射、反射和透射关系,使得全息反射膜420具有角度选择性,即,使得全息反射膜420能够反射预设角度的光线,透射其他角度的光线。需要说明的是,在制作全息反射膜420时,通常采用点光源发出的物光和参考光对全息反射膜420进行曝光。本发明一些实施例中,可以采用具有RGB三色波长的光对全息反射膜420进行整体曝光,使得全息反射膜420能够反射以预设角度入射的光线中的红光、绿光和蓝光,使得全息反射膜420反射的红光、绿光和蓝光能够混合形成显示图像所需的各种灰度的光。第二偏振反射膜440具有偏振透射方向,与其偏振透射方向相同的光线透射,与其偏振透射方向相反的光线被反射。
具体说明本实施例中,光线的传播过程。第一图像源210和第二图像源220发射的光线均为线偏振光,线偏振光具有第一偏振态和第二偏振态,即P光和S光。第一图像源210发射出第一光线211,第一光线211具有第一偏振态,第一偏振态的光线射向波导体10的第二表面102,此时,第一光线211经过第一偏振反射膜310时,第一光线211的振动方向与第一偏振反射膜的透射方向不同,第一光线211被第一次反射向波导体10的第一表面101。第一光线211射向第一四分之波片后,转化为圆偏振光。此时,第一光线211以预设角度以外射向全息反射膜420,第一光线211透射全息反射膜420。第一光线211经过第二四分之一波片,圆偏振光转化为线偏振。此时的线偏振态的偏振方向和第二偏振反射膜440的透射方向不同。第一光线211被第二偏振反射膜440反射。被反射的第一光线211,依次穿过第二四分之一波片、全息反射膜420和第一四分之一波片。第一光线211依次经过第二四分之一波和第一四分之一波片后,偏振态不变。此时,第一光线211射向第一偏振反射膜310,第一光线211的偏振方向和第一偏振反射膜310的透射方向不同,第一光线211第二次被反射向第一表面101。第一光线211经过第一四分之波片后,第一光线211以预设角度入射的第一偏振态的圆偏振光射向全息反射膜420,全息反射膜420将第一光线211反射。第一光线211再次经过第一四分之一波片后,转化为线偏振光,此时,第一光线211的偏振状态和第一偏振反射膜310的透射方向相同。第一光线211穿过第一偏振反射膜310。其中,全息反射膜420能够反射以预设角度的光线,反射以其他预设角度以外的光线。经过光线在波导体10内的折反射,可以有效的减少光线传播空间,减少头戴显示设备的体积。
另外,偏振转换组件包括第一相位延迟片410、全息反射膜420和偏光片,第一相位延迟片410、全息反射膜420片和偏光片自远离波导体的方向依次设置。如此,第一光线211在第一次射向第一表面101时,在第一表面101的入射角大于或等于全反射临界角,第一光线211由光密介质射向光疏介质。第一光线211发生全反射,第一光线211被反射向第二表面102。偏光片的作用在于将外界光线转化为线偏振态的光线。
同样地,第二图像源220发射第二光线221,第二光线221的传播过程也参考上述第一光线211的传播过程,在此,不再赘述。
此外,为了保证第一图像源210和第二图像源220发射的光线为线偏振光,还可以在第一图像源210和第二图像源220的出光面设置偏振片,通过偏振片将自然光、圆偏振光或椭圆偏振光转化为线偏振光。
本实施例还可以用在AR显示技术中,此时需要外界光线610进入到头戴显示设备的内部。为了保证光线能够顺利进入到头戴显示设备的内部。偏振转换组件还用于将外界光线610中的第二偏振光透射至第一偏振反射膜310,以使外界光线610中的第二偏振光透过波导体10。其中,外界光线610是光波导器件所处环境中的环境光。也就是说,采用该波导体10的头戴显示设备可以透射背景光。第二偏振反射膜440具有偏振透射方向,第二偏振反射膜440的偏振透射方向和第二偏振光的振动方向相同。外界光线610中的第二偏振光可以穿过第二偏振反射膜440,其它偏振态的光线被反射,阻挡在波导体10的外部。第二偏振态的光线,依次经过第二四分之一波片、全息反射膜420和第一四分之一波片。第二偏振态的光线保持偏振状态不变,在第二偏振态的光线射向第一偏振反射膜310后,第二偏振态的偏振方 向和第一偏振反射膜310的透射方向相同,由此,外界光线610可以顺利的透射波导体10。可以实现虚实结合的显示方式。
在其中一实施例中,光学结构还包括抗反射偏振膜320,抗反射偏振膜320设于第一偏振反射膜310背离波导体10的一侧。抗反射偏振膜320在于进一步过滤掉第一偏振态的光线,保证第二偏振态的光线顺利透射。另外,用户方向也会存在射向第二表面102的光线,这部分光线的存在用户能够看到自身这一侧的图像,这部分光线的存在会影响用户观看的效果。通过抗反射偏振膜320的设置也能够减少这部分光线的反射。
在其中一实施例中,第一图像源210和第二图像源220为激光图像源、LED图像源、OLED图像源或micro-LED图像源中的任一一种。图像源优选为激光图像源,该激光图像源显示的图像为激光光源图像包括激光照明的LCD图像或者激光照明的微型投影仪投射在扩散膜上的投影实像。
本发明还提供一种近眼显示设备,所述近眼显示设备包括壳体和光学结构,光学结构设于壳体。光学结构包括波导体10、图像源组、第一偏振反射膜310和偏振转换组件。图像源组靠近波导体10设置,可以和波导体10间隔一定距离,也可以抵接在波导体10的表面。第一偏振反射膜310和偏振转换组件分别设置在波导体10相对的两个表面上。第一偏振反射膜310和偏振转换组件可以为独立的光学器件,也可以是依附于波导体10的膜层结构。
波导体10具有相对设置的第一表面101和第二表面102,波导体10还具有相对设置的第一入光端面103和第二入光端面104,第一入光端面103位于波导体10的第一表面101和第二表面102之间,第二入光端面104位于波导体10的第一表面101和第二表面102之间;其中,第一表面101面向外界环境,第二表面102面向用户。第一表面101也是一个平整的表面。
图像源组包括第一图像源210和第二图像源220,第一图像源210设于第一入光端面103,第二图像源220设于第二入光端面104;第一偏振反射膜310设于波导体10的第二表面102;
偏振转换组件设于波导体10的第一表面101,偏振转换组件用于将第一图像源210和第二图像源220的光线射向波导体10的第二表面102。该光学结构可以应用于AR显示技术,也可以应用于VR显示技术。当光学结构应用于AR显示技术时,需要外界环境的光线射入第二表面102,为此,偏振转换组件还能够透射外界射向波导体10的光线。将图像源组发射的光学和外界环境光线叠加到一起。
本实施例的技术方案中,通过在近眼显示设备的波导体10的两端分别设置图像源,相比现有的单一图像源,扩大了图像光线的来源,发射光线的角度可以更大。在波导体10中一个图像源的远端,就是另一图像源的近端,由此两个图像源的设置能够弥补单一图像源的远端没有光线出射的情况,进而提高整个显示图像画面的尺寸,增加用户的视场角,提高用户的沉浸式体验。其中,为了保证图像源组发射的光线能够准确的射向用户。第一偏振反射膜310具有透射方向,当光线的偏振方向和第一偏振反射膜310的透射方向相同时,光线透射第一偏振反射膜310,在与其方向不同时,光线则被第一偏振反射膜310反射。并且,通过偏振转换组件的作用,经过第一偏振反射膜310反射的光线再次射向波导体10的第二表面102,直到光线的偏振状态和第一偏振反射膜310的透射方向相同。
其中,近眼显示设备的其他实施方式参考上述光学结构的设计,在此不再赘述。
可以看出,本发明公开了一种光学结构和近眼显示设备。其中,光学结构包括:波导体具有相对设置的第一表面和第二表面,波导体还具有相对设置的第一入光端面和第二入光端面,第一入光端面位于波导体的第一表面和第二表面之间,第二入光端面位于波导体的第一表面和第二表面之间;图像源组包括第一图像源和第二图像源,第一图像源设于第一入光端面,第二图像源设于第二入光端面;第一偏振反射膜设于波导体的第二表面;偏振转换组件设于波导体的第一表面,偏振转换组件用于将第一图像源和第二图像源的光线射向波导体的第二表面。本发明能够提高显示图像的画面尺寸,进而 提高用户的视场范围,保证用户的沉浸式体验。
综上所述,第1方面,本发明实施例提供一种光学结构,所述光学结构包括:
波导体,所述波导体具有相对设置的第一表面和第二表面,所述波导体还具有相对设置的第一入光端面和第二入光端面,所述第一入光端面位于所述波导体的第一表面和第二表面之间,所述第二入光端面位于所述波导体的第一表面和第二表面之间;
图像源组,所述图像源组包括第一图像源和第二图像源,所述第一图像源设于所述第一入光端面,所述第二图像源设于所述第二入光端面;
第一偏振反射膜,所述第一偏振反射膜设于所述波导体的第二表面;以及
偏振转换组件,所述偏振转换组件设于所述波导体的第一表面,所述偏振转换组件用于将所述第一图像源和所述第二图像源的光线射向所述波导体的第二表面。
第2方面,根据第1方面所述的光学结构,所述波导体包括第一波导部和第二波导部,所述第一波导部和所述第二波导部对接,所述第一入光端面位于所述第一波导部远离所述第二波导体的一端,所述第二入光端面位于所述第二波导部远离所述第一波导部的一端。
第3方面,根据第2方面所述的光学结构,所述第一波导部和所述第二波导部胶合拼接;
或,所述第一波导部和所述第二波导部一体成型。
第4方面,根据第2方面所述的光学结构,所述第一波导部包括第一子表面,所述第二波导部包括第二子表面,所述第一子表面和所述第二子表面形成所述第二表面,所述第一子表面和所述第二子表面呈夹角设置,所述夹角为钝角。
第5方面,根据第4方面所述的光学结构,所述第一入光端面和所述第一子表面的夹角为锐角,所述第二入光端面和所述第二子表面的夹角为锐角。
第6方面,根据第1至5中任一方面所述的光学结构,所述光学结构还包括用于矫正相差的矫正补偿件,所述矫正补偿件设于所述波导体的第二表面。
第7方面,根据第6方面所述的光学结构,所述偏振转换组件包括第一相位延迟片、全息反射膜、第二相位延迟片和第二偏振反射膜,所述第一相位延迟片、所述全息反射膜、所述第二相位延迟片和所述第二偏振反射膜自远离所述波导体的方向依次设置;
或,所述偏振转换组件包括第一相位延迟片、全息反射膜和偏光片,所述第一相位延迟片、所述全息反射膜和所述偏光片自远离所述波导体的方向依次设置。
第8方面,根据第7方面所述的光学结构,所述光学结构还包括抗反射偏振膜,所述抗反射偏振膜设于所述第一偏振反射膜背离所述波导体的一侧。
第9方面,根据第1至5中任一方面所述的光学结构,所述第一图像源和第二图像源为激光图像源、LED图像源、OLED图像源或micro-LED图像源中的任一一种。
第10方面,本发明实施例提供一种近眼显示设备,所述近眼显示设备包括壳体和如第1至9中任一方面所述的光学结构,所述光学结构设于所述壳体。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种光波导器件,其特征在于,包括光波导介质体、第一偏振反射层和光学结构层;
    所述光波导介质体包括相对的第一表面和第二表面,所述第一偏振反射层设置在所述第一表面上,所述光学结构层设置在所述第二表面上;
    所述光波导介质体用于传播光线,所述光线包括第一偏振光;
    所述第一偏振反射层用于反射所述第一偏振光、透射第二偏振光,所述第二偏振光与所述第一偏振光的偏振方向垂直;
    所述光学结构层用于将以预设角度入射的所述第一偏振光转换为所述第二偏振光,并将所述第二偏振光反射至所述第一偏振反射层,将以其他角度入射的所述第一偏振光反射至所述第一偏振反射层。
  2. 根据权利要求1所述的光波导器件,其特征在于,所述第一表面和所述第二表面所在的平面具有第一夹角,所述第一夹角为锐角,以改变再次传播到所述第一偏振反射层或所述光学结构层的第一偏振光的入射角度。
  3. 根据权利要求1所述的光波导器件,其特征在于,所述光学结构层还用于将外界光线中的第二偏振光透射至所述第一偏振反射层,以使所述外界光线中的第二偏振光透过所述光波导器件。
  4. 根据权利要求3所述的光波导器件,其特征在于,所述光波导器件还包括透光控制层;所述透光控制层设置在所述光学结构层背离所述光波导介质体的一侧;
    在第一状态下,所述透光控制层透射外界光线,使所述外界光线入射至所述光学结构层;在第二状态下,所述透光控制层阻挡所述外界光线,使所述外界光线不能入射至所述光学结构层。
  5. 根据权利要求3或4所述的光波导器件,其特征在于,所述光学结构层包括第一相位延迟层、全息反射层、第二相位延迟层和第二偏振反射层;
    所述第一相位延迟层、所述全息反射层、所述第二相位延迟层和所述第二偏振反射层依次设置在所述第二表面上;
    所述第一相位延迟层和所述第二相位延迟层都用于对光线进行相位延迟;其中,所述第一偏振光经过所述第一相位延迟层和所述第二相位延迟层后偏振态不变,所述第一偏振光偶数次经过所述第一相位延迟层或所述第二相位延迟层后转换为所述第二偏振光;
    所述全息反射层用于反射以所述预设角度入射的光线、透射以所述其他角度入射的光线;
    所述第二偏振反射层用于反射所述第一偏振光、透射所述第二偏振光。
  6. 根据权利要求5所述的光波导器件,其特征在于,所述第一相位延迟层包括1/4波长相位延迟层;
    所述第二相位延迟层包括3/4波长相位延迟层;
    或者,所述第二相位延迟层包括1/4波长相位延迟层,但所述第二相位延迟层与所述第一相位延迟层的相位延迟方向相反。
  7. 根据权利要求5所述的光波导器件,其特征在于,所述全息反射层仅反射以所述预设角度入射的光线中的红光、绿光和蓝光。
  8. 根据权利要求7所述的光波导器件,其特征在于,所述全息反射层包括阵列排布的多个反射区域;
    每个所述反射区域都包括第一子反射区、第二子反射区和第三子反射区;所述第一子反射区用于反射所述光线中的红光;所述第二子反射区用于反射所述光线中的绿光;所述第三子反射区用于反射所述光线中的蓝光。
  9. 根据权利要求2所述的光波导器件,其特征在于,所述光波导器件还包括光学矫正体;
    所述光学矫正体设置在所述第一偏振反射层或所述光学结构层背离所述光波导介质体的一侧;所述光学矫正体用于矫正所述第一偏振反射层出射的至少部分第二偏振光的出射方向。
  10. 根据权利要求9所述的光波导器件,其特征在于,所述光学矫正体与所述光波导介质体的折射率相同;
    所述光学矫正体包括第三表面和第四表面,所述第三表面和所述第四表面所在的平面具有第二夹角,所述第二夹角与所述第一夹角相等;
    并且,所述第三表面与所述第一表面平行设置,所述第四表面与所述第二表面平行设置。
  11. 根据权利要求1所述的光波导器件,其特征在于,所述光波导器件还包括偏振吸收层;
    所述偏振吸收层设置在所述第一偏振反射层背离所述光波导介质体的一侧,和/或,所述偏振吸收层设置在所述光学结构层背离所述光波导介质体的一侧;
    所述偏振吸收层用于吸收所述第一偏振光、透射所述第二偏振光。
  12. 根据权利要求1所述的光波导器件,其特征在于,从所述第一偏振反射层出射的第二偏振光的出射方向与所述第二表面垂直,或者,从所述第一偏振反射层出射的第二偏振光的出射方向与所述第一表面垂直。
  13. 一种显示装置,其特征在于,包括微图像源和如权利要求1~12任一项所述的光波导器件;所述微图像源用于向所述光波导器件出射图像显示所需的光线,所述光线包括第一偏振光。
  14. 根据权利要求13所述的显示装置,其特征在于,所述微图像源包括激光图像源、LED图像源、OLED图像源或micro-LED图像源。
  15. 一种显示设备,其特征在于,包括权利要求13或14所述的显示装置。
PCT/CN2022/126652 2021-12-24 2022-10-21 一种光波导器件、显示装置和显示设备 WO2023116163A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111594430.7A CN113985519B (zh) 2021-12-24 2021-12-24 一种光波导器件、显示装置和显示设备
CN202111594430.7 2021-12-24
CN202220635648.6U CN216870952U (zh) 2022-03-22 2022-03-22 光学结构和近眼显示设备
CN202220635648.6 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023116163A1 true WO2023116163A1 (zh) 2023-06-29

Family

ID=86901225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126652 WO2023116163A1 (zh) 2021-12-24 2022-10-21 一种光波导器件、显示装置和显示设备

Country Status (1)

Country Link
WO (1) WO2023116163A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002829A (en) * 1992-03-23 1999-12-14 Minnesota Mining And Manufacturing Company Luminaire device
CN1559000A (zh) * 2001-09-26 2004-12-29 皇家飞利浦电子股份有限公司 波导、边缘发光照明装置和包含这种装置的显示器
CN102667549A (zh) * 2009-11-18 2012-09-12 日本电气株式会社 光学元件、光源装置和投影式显示装置
CN111025659A (zh) * 2019-12-31 2020-04-17 上海视欧光电科技有限公司 一种增强现实光学模组及增强现实设备
CN112130332A (zh) * 2020-10-28 2020-12-25 南京爱奇艺智能科技有限公司 增强现实显示结构及应用其的ar设备
CN113448085A (zh) * 2020-03-24 2021-09-28 深圳铅笔视界科技有限公司 近眼显示装置以及眼镜
CN113985519A (zh) * 2021-12-24 2022-01-28 深圳铅笔视界科技有限公司 一种光波导器件、显示装置和显示设备
CN216870952U (zh) * 2022-03-22 2022-07-01 深圳铅笔视界科技有限公司 光学结构和近眼显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002829A (en) * 1992-03-23 1999-12-14 Minnesota Mining And Manufacturing Company Luminaire device
CN1559000A (zh) * 2001-09-26 2004-12-29 皇家飞利浦电子股份有限公司 波导、边缘发光照明装置和包含这种装置的显示器
CN102667549A (zh) * 2009-11-18 2012-09-12 日本电气株式会社 光学元件、光源装置和投影式显示装置
CN111025659A (zh) * 2019-12-31 2020-04-17 上海视欧光电科技有限公司 一种增强现实光学模组及增强现实设备
CN113448085A (zh) * 2020-03-24 2021-09-28 深圳铅笔视界科技有限公司 近眼显示装置以及眼镜
CN112130332A (zh) * 2020-10-28 2020-12-25 南京爱奇艺智能科技有限公司 增强现实显示结构及应用其的ar设备
CN113985519A (zh) * 2021-12-24 2022-01-28 深圳铅笔视界科技有限公司 一种光波导器件、显示装置和显示设备
CN216870952U (zh) * 2022-03-22 2022-07-01 深圳铅笔视界科技有限公司 光学结构和近眼显示设备

Similar Documents

Publication Publication Date Title
TWI676047B (zh) 一種成像顯示系統
TWI684790B (zh) 用於近眼式顯示器之小型化影像組合器
JP7191838B2 (ja) 統合された偏光器を有するディスプレイデバイスのための方法およびシステム
EP2788809B1 (en) Compact illumination module for head mounted display
US7242524B2 (en) Optical system for forming a real image in space
TW202026685A (zh) 具有反射鏡的光導顯示器
US7570859B1 (en) Optical substrate guided relay with input homogenizer
JP2022506705A (ja) ダイクロイックビームスプリッタカラーコンバイナを有する光学デバイスおよび光学システム
CN113985519B (zh) 一种光波导器件、显示装置和显示设备
WO2012158574A1 (en) Efficient polarized directional backlight
TWI724732B (zh) 波導裝置及光學引擎
US10215908B1 (en) Optical waveguide and optical device
US20230176382A1 (en) Waveguide display with cross-polarized eye pupil expanders
EP3698202B1 (en) Near-eye system having polarization waveguide
WO2015007201A1 (zh) 可佩带的平视光学系统
TWM596873U (zh) 微型頭戴式顯示器之光學系統
JP2023532092A (ja) 装置、方法及びニアアイディスプレイシステム
WO2023116163A1 (zh) 一种光波导器件、显示装置和显示设备
CN216870952U (zh) 光学结构和近眼显示设备
JP2020016877A (ja) 投影装置
US20220155513A1 (en) Liquid crystal reflective polarizer and pancake lens assembly having the same
TW202332960A (zh) 具有偏振體全像光柵的波導
US20200292828A1 (en) Display apparatus and head mounted display
CN113238382A (zh) 一种单目增强现实系统、双目增强现实系统及头戴显示器
CN220855351U (zh) 一种ar/vr双模式显示系统及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909481

Country of ref document: EP

Kind code of ref document: A1