WO2023246436A1 - 光学系统以及显示装置 - Google Patents

光学系统以及显示装置 Download PDF

Info

Publication number
WO2023246436A1
WO2023246436A1 PCT/CN2023/097007 CN2023097007W WO2023246436A1 WO 2023246436 A1 WO2023246436 A1 WO 2023246436A1 CN 2023097007 W CN2023097007 W CN 2023097007W WO 2023246436 A1 WO2023246436 A1 WO 2023246436A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
aspheric surface
plane
transflective film
Prior art date
Application number
PCT/CN2023/097007
Other languages
English (en)
French (fr)
Inventor
王元鹏
Original Assignee
北京字跳网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京字跳网络技术有限公司 filed Critical 北京字跳网络技术有限公司
Publication of WO2023246436A1 publication Critical patent/WO2023246436A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil

Definitions

  • Embodiments of the present disclosure relate to an optical system and a display device.
  • Virtual Reality (VR) product is a human-computer interaction product created with the help of computers and the latest sensor technology. It comprehensively utilizes computer graphics systems and various reality and control interface devices to generate interactive three-dimensional images on the computer. Provides a sense of immersion in the environment.
  • Embodiments of the present disclosure relate to an optical system and a display device.
  • An optical system includes a lens, a polarizing transflective film, a phase retardation film, and a transflective film.
  • the lens includes a plane and an aspheric surface, the aspheric surface is a convex surface, and the side of the plane away from the aspheric surface is the light exit side of the lens; a polarizing transflective film is arranged on the plane of the lens away from the non-spherical surface.
  • One side of the spherical surface; a phase retardation film is disposed between the polarizing transflective film and the plane of the lens; the transflective film is disposed on the side of the aspheric surface of the lens away from the plane.
  • the lens is an integrated lens, the plane and the aspherical surface are located on opposite sides of the integrated lens, the focal length of the optical system is 26-28 mm, and the effective diameter of the lens is 50-52 mm mm, and the radius of curvature of the aspheric surface is -93 ⁇ -97 mm.
  • the focal length of the lens is 160 to 180 millimeters.
  • the maximum thickness of the lens is 6 to 8 mm.
  • the exit pupil distance of the optical system is 13 to 21 millimeters.
  • the exit pupil distance of the optical system is not less than 15 mm.
  • the maximum field of view angle of the optical system is 100° ⁇ 110°.
  • the modulation transfer function value of the optical system at the maximum field of view is not less than 0.7 at a spatial frequency of 20 line pairs/mm.
  • the modulation transfer function value of the optical system at the maximum field of view is not less than 0.8 at a spatial frequency of 15 line pairs/mm.
  • the refractive index of the lens is 1.5 ⁇ 1.6.
  • the phase retardation film and the polarizing transflective film are attached to the plane.
  • An embodiment of the present disclosure provides a display device, including a display screen and any of the above optical systems.
  • the display screen is located on the side of the aspheric surface of the lens away from the plane, and the display surface of the display screen is located on the focal plane of the light incident side of the optical system.
  • the distance between the aspherical surface and the display surface of the display screen is 26 to 28 mm.
  • the maximum size of the display surface of the display screen is 2 to 3 inches.
  • the optical system provided by the embodiment of the present disclosure adopts a folded optical path, and at the same time, the lens is set as an integrated lens including an aspheric surface, and parameters such as the focal length of the optical system, the effective aperture of the integrated lens, and the radius of curvature of the aspheric surface are adjusted. Settings can enable the optical system to achieve a large field of view display while having a large exit pupil distance, improving the user experience.
  • Figure 1 is a schematic structural diagram of a lens provided according to an embodiment of the present disclosure.
  • Figure 2 is a schematic optical path diagram of an optical system including the lens shown in Figure 1.
  • Figure 3 is a modulation transfer function curve of the optical system provided by an embodiment of the present disclosure when the cut-off frequency is 20 line pairs/mm.
  • Figure 4 shows the adjustment of the optical system provided by the embodiment of the present disclosure when the cutoff frequency is 15 line pairs/mm. transfer function curve.
  • FIG. 5 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the exit pupil distance (eye relief, ERF) of current virtual reality pancake products is generally 13 to 15 mm.
  • this exit pupil distance is difficult for myopic users to wear glasses, thus affecting the user experience.
  • Embodiments of the present disclosure provide an optical system and a display device.
  • the optical system includes lenses, polarizing transflective films, phase retardation films and transflective films.
  • the lens includes a flat surface and an aspherical surface.
  • the aspherical surface is a convex surface.
  • the side of the flat surface away from the aspherical surface is the light exit side of the lens.
  • the polarizing transflective film is disposed on the side of the plane of the lens away from the aspheric surface; the phase retardation film is disposed between the polarizing transflective film and the plane of the lens; the transflective film is disposed on the side of the aspheric surface of the lens away from the plane.
  • the lens is an integrated lens.
  • the flat surface and aspheric surface are located on opposite sides of the integrated lens.
  • the focal length of the optical system is 26 to 28 mm.
  • the effective diameter of the lens is 50 to 52 mm.
  • the curvature radius of the aspheric surface is -93 ⁇ - 97mm.
  • the optical system provided by the embodiment of the present disclosure can be an optical system using a folded optical path (Pancake). While a polarizing transflective film, a phase retardation film and a transflective film are provided on both sides of the lens, the lens is configured to include an aspherical surface.
  • the integrated lens sets the focal length of the optical system, and sets and optimizes parameters such as the effective diameter of the integrated lens and the radius of curvature of the aspherical surface, so that the optical system can achieve ultra-short focal length,
  • the large field of view display also has a large exit pupil distance, which improves the user experience.
  • FIG. 1 is a schematic structural diagram of a lens provided according to an embodiment of the present disclosure
  • FIG. 2 is a schematic optical path diagram of an optical system including the lens shown in FIG. 1
  • the optical system includes a lens 100.
  • the lens 100 includes a flat surface 110 and an aspheric surface 120.
  • the aspheric surface 120 is a convex surface.
  • the side of the flat surface 110 away from the aspheric surface 120 is the light exit side of the lens 100.
  • FIG. 1 is a schematic structural diagram of a lens provided according to an embodiment of the present disclosure
  • FIG. 2 is a schematic optical path diagram of an optical system including the lens shown in FIG. 1
  • the optical system includes a lens 100.
  • the lens 100 includes a flat surface 110 and an aspheric surface 120.
  • the aspheric surface 120 is a convex surface.
  • the side of the flat surface 110 away from the aspheric surface 120 is the light exit side of the lens 100.
  • the optical system further includes a polarizing transflective film 500 , which is disposed on the side of the plane 110 away from the aspheric surface 120 , and a phase retardation film 600 , which is disposed between the polarizing transflective film 500 and the plane 110 .
  • the optical system further includes a transflective film 700 , which is disposed on the side of the aspheric surface 120 away from the plane 110 .
  • the lens 100 is an integrated lens 100.
  • the flat surface 110 and the aspheric surface 120 are located on opposite sides of the integrated lens 100.
  • the focal length of the optical system is 26-28 mm, and the effective aperture of the lens 100 is 50-52 mm. mm, the radius of curvature of the aspherical surface 120 is -93 ⁇ -97 mm.
  • the optical system provided by the embodiments of the present disclosure may be an optical system using a folded optical path (Pancake).
  • a polarizing transflective film and a phase retardation film are provided on one side of the lens, and while a transflective film is provided on the other side of the lens, through
  • Setting the lens to be an integrated lens including an aspheric surface, setting the focal length of the optical system, and setting and optimizing parameters such as the effective aperture of the integrated lens and the radius of curvature of the aspheric surface can make the optical system achieve ultra-short
  • the focal length and large field of view display also have a large exit pupil distance, which improves the user experience.
  • the flat surface 110 and the aspherical surface 120 included in the above-mentioned integrated lens 100 are two surfaces of the lens 100.
  • the above-mentioned integrated lens 100 can be called a single lens.
  • the integrated lens 100 may be a plano-convex lens.
  • the aspheric surface 120 is curved toward a side away from the plane 110 to form a convex surface.
  • the focal length of lens 100 is 160-180 millimeters.
  • the focal length of the lens 100 may be 162 to 178 millimeters.
  • the focal length of the lens 100 may be 165-175 mm.
  • the focal length of the lens 100 may be 167-172 mm.
  • the focal length of the lens 100 may be 169-170 mm.
  • the focal length of the above lens refers to the focal length when there is no coating on the surface of the lens.
  • the polarizing transflective film 500 and the phase retardation film 600 are located on the near eye side of the lens 100 , and the transflective film 700 is located on the near image source side of the lens 100 .
  • polarizing transflective film 500 and phase The retardation film 600 is disposed on the side of the plane 110 away from the aspheric surface 120
  • the transflective film 700 is disposed on the side of the aspheric surface 120 away from the plane 110 .
  • the phase retardation film 600 and the polarizing transflective film 500 can be attached to the plane 110 of the lens 100 as a composite film layer.
  • the transflective film 700 can be coated or plated on the aspheric surface 120 .
  • the polarizing transflective film 500 may include a polarizing transmissive film and a reflective polarizing film.
  • the polarizing transmissive film is located on a side of the reflective polarizing film away from the phase retardation film 600 .
  • the polarizing transflective film 500 and the phase retardation film 600 form a folded optical path polarizing device, also known as a composite film.
  • the composite film is attached to the flat surface 110 of the lens 100 .
  • the function of a reflective polarizing film is to transmit polarized light in one direction (such as s-line polarized light) and reflect polarized light in another direction (such as p-line polarized light).
  • reflective polarizing films also called polarizing beam splitting films
  • the transmittance (parallel transmittance) of the polarization component of the incident light parallel to this direction is >80%.
  • the parallel transmittance is >85%.
  • the reflectance (parallel reflectance) of this component is ⁇ 5%.
  • the parallel reflectivity is ⁇ 1%.
  • the transmittance of the polarization component of the incident light perpendicular to this direction is ⁇ 0.5%.
  • orthogonal transmittance ⁇ 0.1%.
  • the reflectivity (orthogonal reflectance) of this component is >80%.
  • orthogonal reflectance >85%.
  • the reflective polarizing film may be a plastic reflective film.
  • the light transmission axis of the polarizing transmission film is parallel to the light transmission axis of the reflective polarizing film.
  • the polarizing transmission film can be a linearly polarizing film to further filter other stray light and only allow polarized light (such as s) to pass through the polarizing transmission film. Linearly polarized light) enters the human eye.
  • the phase retardation film 600 is configured such that transmitted light achieves conversion between circular polarization and linear polarization states.
  • the phase retardation film 600 may be a quarter wave plate.
  • the transflective film 700 may be configured to reflect a portion of the light and transmit another portion of the light.
  • the transflective film 700 can reflect 50% of light and transmit 50% of light.
  • the above-mentioned polarizing transflective film 500, phase retardation film 600 and transflective film 700 are used to form a folded optical path.
  • the principle of the folded optical path is as follows: the display screen located on the side of the aspheric surface 120 away from the plane 110 A wave plate can be provided on the display surface 300 side.
  • the image light emitted from the display surface 300 is converted into right-handed circularly polarized light after passing through the wave plate.
  • the polarization state of the right-handed circularly polarized light remains unchanged after being transmitted through the transflective film 700 .
  • the light enters the lens 100 and is transmitted through the lens 100 before arriving at the phase
  • the retardation film 600 converts right-handed circularly polarized light incident to the phase retardation film 600 into p-linearly polarized light, and the p-linearly polarized light is reflected back to the phase retardation film 600 by the polarizing transflective film 500, where the first reflection occurs. Then, the p linearly polarized light is converted into right-handed circularly polarized light after passing through the phase retardation film 600.
  • the right-handed circularly polarized light is transmitted through the lens 100 and reaches the transflective film 700, and is reflected at the transflective film 700.
  • a second reflection is transmitted through the lens 100 and reaches the transflective film 700, and is reflected at the transflective film 700.
  • the reflected light changes from right-hand circularly polarized light to left-hand circularly polarized light.
  • the left-hand circularly polarized light reaches the phase retardation film 600 after being transmitted through the lens 100. After passing through the phase retardation film 600, it becomes s-line polarized light.
  • the s-line polarized light is then transmitted through the polarizing transflective film 500 and then emitted to the exit pupil 200. , like human eyes.
  • the above-mentioned folding light path can change the polarization state of the light propagating between the polarizing transflective film and the transflective film, thereby realizing the folding of the light, so that the original focal length of the lens is improved by the installation of the above-mentioned polarizing transflective film, phase retardation film and transflective film.
  • the additional, for example, two reflections are folded, thereby greatly compressing the space required between the human eye and the optical system, thereby making the optical system smaller and lighter.
  • the effective aperture values of the lens 100 in each direction perpendicular to the optical axis may be the same or different, and may be set according to product requirements.
  • the aspherical surface 120 may be an even-order aspherical surface (EVENASPH), and the curvature radius of the aspherical surface 120 is the curvature radius of the base spherical surface of the aspherical surface 120 .
  • EVENASPH even-order aspherical surface
  • basic spherical surface means that the aspheric surface is further deformed based on the spherical surface, and the spherical surface as the basis of the aspheric surface is the basic spherical surface of the aspheric surface.
  • the imaging surface 300 of the optical system is located on the side of the aspheric surface 120 away from the plane 110, and the above-mentioned imaging surface 300 is used by the optical system for display devices.
  • the position of the display surface of the display screen For example, the side of the aspheric surface 120 of the lens 100 away from the plane 110 may be provided with a display surface 300 for displaying images.
  • the image distance of the virtual image formed by the optical system can be 1200 to 2000 mm.
  • the maximum thickness of lens 100 is 6-8 millimeters.
  • the maximum thickness of the lens 100 along the extending direction of its optical axis is 6 to 8 mm.
  • the distance between the intersection point of the plane 110 and the optical axis and the intersection point of the aspheric surface 120 and the optical axis is 6 to 8 millimeters.
  • the size of the lens 100 cut by its optical axis is 6 to 8 mm.
  • the maximum thickness of the lens 100 may be 6.5-7.5 mm.
  • the maximum thickness of lens 100 may be 7 millimeters.
  • the optical system has an exit pupil distance of 13 to 21 millimeters.
  • the distance between the plane 110 of the lens 100 and the exit pupil 200 may be 13 to 21 mm.
  • the maximum field of view of the optical system is 100° to 110°.
  • the maximum field of view angle of the optical system can be 100° to 103°.
  • the maximum field of view angle of the optical system can be 104° to 109°.
  • the maximum field of view angle of the optical system can be 105° to 108°.
  • the maximum field of view angle of the optical system can be 101° to 102°.
  • the maximum field of view angle of the optical system can be 100.5° to 101.5°.
  • the aspheric surface shape is represented by the following numerical formula:
  • Table 1 schematically shows the optical surface numbers (Surface) numbered sequentially from the human eye (aperture stop) to the display screen, the curvature radius (R) of each optical surface on the optical axis, the ⁇ ) to the distance (T) between each surface on the optical axis of the display screen and the latter optical surface.
  • Optical surface 2 represents the plane 110 of the lens 100
  • optical surface 3 represents the aspherical surface 120 of the lens 100 .
  • the aspherical surface 120 may be an even-order aspherical surface.
  • the radius of curvature of the aspheric surface 120 is -95.657 mm; the image distance of the virtual image formed by the optical system is 2000 mm, the exit pupil distance is 17 mm, and the thickness of the lens 100 is 7 mm.
  • sagittal line 402 is the sagittal line when the half field of view angle is 20°
  • sagittal line 404 is the sagittal line when the half field of view angle is 10°
  • sagittal line 405 is when the half field of view angle is 5°
  • the sagittal line 408 is the sagittal line when the half field of view angle is 45°
  • the sagittal line 410 is the sagittal line when the half field of view angle is 51°.
  • the modulation transfer function (MTF) curve can comprehensively reflect the imaging quality of the optical system.
  • Figure 3 shows the modulation transfer function curve when the cut-off frequency is 20 line pairs/mm (lp/mm).
  • the figure shows the modulation transfer function curves corresponding to multiple field of view rays.
  • the overall modulation transfer function curve is smooth, and the modulation transfer function value under the edge field of view (such as 102°) can reach more than 0.7.
  • the optical system provided by the present disclosure combines the lens with the folded optical path and sets the lens to include an integrated lens.
  • the convex surface is changed from a spherical surface to an aspherical surface to set the focal length of the optical system.
  • the optical system can be made to have an ultra-short focal length.
  • sagittal line 402 is the sagittal line when the half field of view angle is 20°
  • sagittal line 404 is the sagittal line when the half field of view angle is 10°
  • sagittal line 405 is when the half field of view angle is 5°
  • the sagittal line 408 is the sagittal line when the half field of view angle is 45°
  • the sagittal line 410 is the sagittal line when the half field of view angle is 51°.
  • the display device sets the lens as an integrated lens including an aspheric surface, and sets parameters such as the focal length, effective aperture, curvature radius of the aspheric surface, thickness of the lens, and refractive index of the lens of the integrated lens, At the same time, by setting a polarizing transflective film and a phase retardation film on one side of the lens, and a transflective film on the other side of the lens, the light can be folded, the focal length of the optical system can be greatly reduced, and the optical system can have a larger On the basis of the small size, the maximum field of view of the optical system reaches more than 100°, while the exit pupil distance reaches 17 mm or more, and the image distance of the virtual image reaches 2000 mm; in order to connect the lens and the display surface of the display screen. The distance between them is shortened to 27 mm, which is beneficial to improving the viewing experience of myopic users wearing glasses while reducing the size of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(10)以及显示装置。光学系统(10)包括镜片(100)、偏振透反膜(500)、相位延迟膜(600)以及透反膜(700)。镜片(100)包括平面(110)和非球面(120),非球面(120)为凸面。相位延迟膜(600)以及透反膜(700)设置在镜片(100)的平面(110)远离非球面(120)的一侧;透反膜(700)设置在镜片(100)的非球面(120)远离平面(110)的一侧。镜片(100)为一体的镜片,平面(110)和非球面(120)位于一体的镜片(100)的相对的两侧,光学系统(10)的焦距为26~28毫米,镜片(100)的有效口径为50~52毫米,非球面(120)的曲率半径为-93~-97毫米。光学系统(10)采用折叠光路的同时,通过将镜片(100)设置为包括非球面(120)的一体的镜片(100),且对光学系统(10)的焦距、一体的镜片(100)的有效口径以及非球面(120)的曲率半径等参数进行优化,可以使得光学系统(10)实现大视场角显示的同时具有较大的出瞳距离,提高用户的使用体验。

Description

光学系统以及显示装置
本申请要求于2022年6月22日递交的中国专利申请第202210714718.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种光学系统以及显示装置。
背景技术
虚拟现实(Virtual Reality,VR)产品是借助计算机及最新传感器技术创造的一种人机交互产品,其综合利用计算机图形系统和各种现实及控制等接口设备,在计算机上生成的可交互的三维环境中提供沉浸感觉。
随着虚拟现实产品的逐渐普及,用户对于虚拟现实产品的使用要求越来越高。目前,越来越多的用户选择使用虚拟现实产品观看电影,因此具有大视场角(FOV)显示效果的虚拟现实显示装置成为主流。
发明内容
本公开实施例涉及一种光学系统以及显示装置。
本公开实施例提供一种光学系统一种光学系统,包括镜片、偏振透反膜、相位延迟膜以及透反膜。镜片包括平面和非球面,所述非球面为凸面,所述平面远离所述非球面的一侧为所述镜片的出光侧;偏振透反膜设置在所述镜片的所述平面远离所述非球面的一侧;相位延迟膜设置在所述偏振透反膜与所述镜片的所述平面之间;透反膜设置在所述镜片的所述非球面远离所述平面的一侧。所述镜片为一体的镜片,所述平面和所述非球面位于所述一体的镜片的相对的两侧,所述光学系统的焦距为26~28毫米,所述镜片的有效口径为50~52毫米,且所述非球面的曲率半径为-93~-97毫米。
例如,根据本公开实施例,所述镜片的焦距为160~180毫米。
例如,根据本公开实施例,所述镜片的最大厚度为6~8毫米。
例如,根据本公开实施例,所述光学系统的出瞳距离为13~21毫米。
例如,根据本公开实施例,所述光学系统的出瞳距离不小于15毫米。
例如,根据本公开实施例,所述光学系统的最大视场角为100°~110°。
例如,根据本公开实施例,所述光学系统在所述最大视场角下的调制传递函数值在空间频率为20线对/毫米位置处不小于0.7。
例如,根据本公开实施例,所述光学系统在所述最大视场角下的调制传递函数值在空间频率为15线对/毫米位置处不小于0.8。
例如,根据本公开实施例,所述镜片的折射率为1.5~1.6。
例如,根据本公开实施例,所述相位延迟膜和所述偏振透反膜贴合在所述平面上。
本公开实施例提供一种显示装置,包括显示屏以及上述任一光学系统。所述显示屏位于所述镜片的所述非球面远离所述平面的一侧,所述显示屏的显示面位于所述光学系统的入光侧的焦平面。
例如,根据本公开实施例,所述非球面与所述显示屏的显示面之间的距离为26~28毫米。
例如,根据本公开实施例,所述显示屏的显示面的最大尺寸为2~3英寸。
本公开实施例提供的光学系统采用折叠光路的同时,通过将镜片设置为包括非球面的一体的镜片,且对光学系统的焦距、该一体的镜片的有效口径以及非球面的曲率半径等参数进行设置,可以使得该光学系统实现大视场角显示的同时具有较大的出瞳距离,提高用户的使用体验。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开实施例提供的镜片的结构示意图。
图2为包括图1所示镜片的光学系统的光路简图。
图3为本公开实施例提供的光学系统在截止频率为20线对/毫米时的调制传递函数曲线。
图4为本公开实施例提供的光学系统在截止频率为15线对/毫米时的调 制传递函数曲线。
图5为根据本公开实施例提供的显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
在研究中,本申请的发明人发现:为实现大视场角(FOV)的观看效果,目前的虚拟现实折叠光路(Pancake)产品的出瞳距离(eye relief,ERF)一般为13~15毫米。然而,该出瞳距离很难满足近视用户佩戴眼镜使用,进而影响了用户的使用体验。
本公开实施例提供一种光学系统以及显示装置。光学系统包括镜片、偏振透反膜、相位延迟膜以及透反膜。镜片包括平面和非球面,非球面为凸面,平面远离非球面的一侧为镜片的出光侧。偏振透反膜设置在镜片的平面远离非球面的一侧;相位延迟膜设置在偏振透反膜与镜片的平面之间;透反膜设置在镜片的非球面远离平面的一侧。镜片为一体的镜片,平面和非球面位于一体的镜片的相对的两侧,光学系统的焦距为26~28毫米,镜片的有效口径为50~52毫米,非球面的曲率半径为-93~-97毫米。本公开实施例提供的光学系统可以为采用折叠光路(Pancake)的光学系统,在镜片的两侧设置偏振透反膜、相位延迟膜和透反膜的同时,通过将镜片设置为包括非球面的一体的镜片,对光学系统的焦距进行设置,且对该一体的镜片的有效口径以及非球面的曲率半径等参数进行设置并优化,可以使得该光学系统实现超短焦距、 大视场角显示的同时具有较大的出瞳距离,提高用户的使用体验。
下面结合附图对本公开实施例提供的光学系统以及显示装置进行描述。
图1为根据本公开实施例提供的镜片的结构示意图,图2为包括图1所示镜片的光学系统的光路简图。如图1和图2所示,光学系统包括镜片100,镜片100包括平面110和非球面120,非球面120为凸面,平面110远离非球面120的一侧为镜片100的出光侧。如图1所示,光学系统还包括偏振透反膜500,设置在平面110远离非球面120的一侧,以及相位延迟膜600,设置在偏振透反膜500与平面110之间。如图1所示,光学系统还包括透反膜700,设置在非球面120远离平面110的一侧。
如图1所示,镜片100为一体的镜片100,平面110和非球面120位于一体的镜片100的相对的两侧,光学系统的焦距为26~28毫米,镜片100的有效口径为50~52毫米,非球面120的曲率半径为-93~-97毫米。
本公开实施例提供的光学系统可以为采用折叠光路(Pancake)的光学系统,在镜片的一侧设置偏振透反膜和相位延迟膜,且在镜片的另一侧设置透反膜的同时,通过将镜片设置为包括非球面的一体的镜片,对光学系统的焦距进行设置,且对该一体的镜片的有效口径以及非球面的曲率半径等参数进行设置并优化,可以使得该光学系统实现超短焦距、大视场角显示的同时具有较大的出瞳距离,提高用户的使用体验。
例如,上述一体的镜片100包括的平面110和非球面120为镜片100的两个表面,如上述一体的镜片100可以称为单镜片。例如,上述一体的镜片100可以为平凸透镜。
例如,非球面120向远离平面110的一侧弯曲以形成凸面。
例如,光学系统的焦距可以为26.5~27.5毫米。例如,光学系统的焦距可以为27~27.3毫米。
在一些示例中,镜片100的焦距为160~180毫米。例如,镜片100的焦距可以为162~178毫米。例如,镜片100的焦距可以为165~175毫米。例如,镜片100的焦距可以为167~172毫米。例如,镜片100的焦距可以为169~170毫米。上述镜片的焦距指镜片表面没有镀膜时的焦距。
例如,如图1所示,偏振透反膜500和相位延迟膜600位于镜片100的近眼侧,透反膜700位于镜片100的近像源侧。例如,偏振透反膜500和相 位延迟膜600设置在平面110远离非球面120的一侧,透反膜700设置在非球面120远离平面110的一侧。
在一些示例中,相位延迟膜600和偏振透反膜500可以作为复合膜层贴合在镜片100的平面110上。例如,透反膜700可以涂敷或镀设在非球面120上。
例如,如图1和图2所示,偏振透反膜500可以包括偏振透射膜和反射偏振膜,偏振透射膜位于反射偏振膜远离相位延迟膜600的一侧。
例如,偏振透反膜500和相位延迟膜600组成折叠光路偏振器件,又称复合膜。例如,该复合膜贴合在镜片100的平面110上。
例如,反射偏振膜的功能是透射一个方向的偏振光(如s线偏振光)而反射另一个方向的偏振光(如p线偏振光)。例如,反射偏振膜(又称偏振分束膜)具有如下特性:膜材平面上存在一个光轴方向,入射光平行于该方向的偏振分量的透过率(平行透过率)>80%。例如,该平行透过率>85%。同时该分量的反射率(平行反射率)<5%。例如,该平行反射率<1%。入射光垂直于该方向的偏振分量的透过率(直交透过率)<0.5%。例如,直交透过率<0.1%。同时该分量的反射率(直交反射率)>80%。例如,直交反射率>85%。例如,反射偏振膜可以为塑料反射膜。
例如,偏振透射膜的透光轴与反射偏振膜的透光轴平行,如偏振透射膜可以为线偏振膜,用于进一步过滤其他杂光,只允许通过偏振透反膜的偏振光(如s线偏振光)进入人眼。
例如,如图1和图2所示,相位延迟膜600被配置为使得透过的光实现圆偏振和线偏振状态之间的转换。例如,相位延迟膜600可以为1/4波片。
例如,如图1和图2所示,透反膜700可以被配置为反射一部分光,且透射另一部分光。例如,透反膜700可以反射50%的光线,且透射50%的光线。
如图1和图2所示,采用上述偏振透反膜500、相位延迟膜600以及透反膜700形成了折叠光路,折叠光路的原理如下:位于非球面120远离平面110一侧的显示屏的显示面300侧可以设置波片,从显示面300出射的图像光经过波片后转换为右旋圆偏振光,右旋圆偏振光经过透反膜700的透射后偏振状态不变。该光线进入镜片100中,且经镜片100透射后到达位于相位 延迟膜600,入射到相位延迟膜600的右旋圆偏振光转换为p线偏振光,p线偏振光被偏振透反膜500反射回相位延迟膜600,此处发生了第一次反射。而后,p线偏振光经过相位延迟膜600后转换为右旋圆偏振光,该右旋圆偏振光经过镜片100透射后到达透反膜700,并在透反膜700处被反射,此处发生了第二次反射。由于半波损失,反射的光由右旋圆偏振光变为左旋圆偏振光。左旋圆偏振光经镜片100透射后到达相位延迟膜600,在透过相位延迟膜600后变成s线偏振光,然后该s线偏振光经过偏振透反膜500透射后射向出射光瞳200,如人眼。
上述折叠光路可以改变在偏振透反膜和透反膜之间传播的光线的偏振态,实现光线的折叠,使得原本该镜片的焦距因为设置上述偏振透反膜、相位延迟膜以及透反膜而增加的例如两次反射而被折叠,从而大大压缩了人眼与光学系统之间所需的空间,从而使光学系统体积更小更轻薄。
例如,镜片100的有效口径指光线能够经过镜片100的最大口径,该有效口径是以镜片100的最大光通量确定的。例如,镜片100的有效口径可以为50.5~51.5微米。例如,镜片100的有效口径可以为51~51.8微米。
例如,镜片100在垂直于光轴的各个方向上的有效口径的值可以均相同,也可以不同,可以根据产品需求进行设置。
上述镜片的有效口径的尺寸的设置既可以保证其垂直于光轴的方向的尺寸较小,还可以满足视场范围的要求。
例如,非球面120的曲率半径可以为-95~-95.8微米。例如,非球面120的曲率半径可以为-93~-95.5微米。例如,非球面120的曲率半径可以为-94~-95微米。
例如,如图1和图2所示,非球面120可以为偶次非球面(EVENASPH),非球面120的曲率半径为其表面的基球面的曲率半径。上述的“基球面”指非球面是以球面为基础进一步变形形成的,作为该非球面基础的球面即为该非球面的基球面。
例如,镜片100的平面110远离非球面120的一侧包括出射光瞳200。例如,出瞳直径可以为4毫米。
例如,在光学系统进行优化参数的过程中,光学系统的成像面300位于非球面120远离平面110的一侧,而上述成像面300为光学系统用于显示装 置时,显示屏的显示面所在位置。例如,镜片100的非球面120远离平面110的一侧可以设置用于显示图像的显示面300。例如,光学系统所成虚像的像距可以为1200~2000毫米。
在一些示例中,如图1和图2所示,镜片100的最大厚度为6~8毫米。例如,镜片100沿其光轴的延伸方向(如图1所示的X方向)上的最大厚度为6~8毫米。例如,平面110与光轴交点距非球面120与光轴交点之间的距离为6~8毫米。例如,镜片100被其光轴所截的尺寸为6~8毫米。例如,镜片100的最大厚度可以为6.5~7.5毫米。例如,镜片100的最大厚度可以为7毫米。
本实施例提供的光学系统中的镜片沿其光轴方向的尺寸较小,从而可以减小光学系统的尺寸以提高包括该光学系统的显示装置的紧凑性。
在一些示例中,如图1和图2所示,光学系统的出瞳距离为13~21毫米。例如,镜片100的平面110与出射光瞳200之间的距离可以为13~21毫米。
在一些示例中,光学系统的出瞳距离不小于15毫米。例如,光学系统的出瞳距离可以为16~21毫米。例如,光学系统的出瞳距离可以为17~19毫米。例如,光学系统的出瞳距离可以为18~20毫米。本公开提供的光学系统具有较大的出瞳距离,可满足近视用户佩戴眼镜使用。
在一些示例中,如图1和图2所示,光学系统的最大视场角为100°~110°。例如,光学系统的最大视场角可以为100°~103°。例如,光学系统的最大视场角可以为104°~109°。例如,光学系统的最大视场角可以为105°~108°。例如,光学系统的最大视场角可以为101°~102°。例如,光学系统的最大视场角可以为100.5°~101.5°。
在一些示例中,镜片10的折射率为1.5~1.6。例如,镜片10的折射率可以为1.52~1.58。例如,镜片10的折射率可以为1.53~1.57。例如,镜片10的折射率可以为1.54~1.56。例如,镜片10的折射率可以为1.55。
例如,镜片10的材料包括光学树脂,如光学树脂的材料可以包括环烯烃类共聚物(APL5014XH),其折射率为1.555。
本公开提供的光学系统,通过将镜片配合上述折叠光路的同时,将镜片设置为包括非球面的一体的镜片,对该光学系统的焦距进行设置,且该一体的镜片的焦距、有效口径、非球面的曲率半径、镜片的厚度以及镜片的折射 率等参数进行设置,可以在光学系统具有较小尺寸的基础上,使得该光学系统的最大视场角达到100°~110°的同时出瞳距离达到13~21毫米,甚至不小于15毫米,有利于提高用户的使用体验,如可满足近视用户佩戴眼镜使用。
例如,非球面面型用下列数值公式表示:
例如,上述公式中非球面沿垂直于光轴的方向的高度是Y,从非球面顶点到非球面上高度为Y处在光轴上的投影之间的距离是z,即,z是沿光轴方向的坐标;C是曲率(曲率半径R的倒数),k是圆锥系数(Coin Constant),αi是各高次项的系数,2i是非球面的高次方(the order of Aspherical Coefficient)。
在实际优化镜片各参数的合理配置时,将镜片的曲率半径、圆锥系数、高度以及非球面系数等值放入上述数值公式中,通过光学模拟计算以得到能够校正镜片的像差的各个优化参数。通过优化过程得到镜片的曲率半径、沿光轴的厚度、有效口径以及圆锥系数的优选值。
表1
例如,上述表1示意性示出由人眼(光阑STOP)到显示屏依序编号的光学面号码(Surface)、在光轴上各光学面的曲率半径(R)、从人眼(光阑)到显示屏的光轴上各面与后一光学表面的距离(T)。光学面2表示镜片100的平面110,光学面3表示镜片100的非球面120。例如,非球面120可以为偶次非球面。
例如,偶次非球面的圆锥系数可以为-5~-0.5。例如,圆锥系数可以为-3~-0.8。例如,圆锥系数可以为-2~-1。
例如,如表1所示,非球面120的曲率半径为-95.657毫米;光学系统所成虚像的像距为2000毫米,出瞳距离为17毫米,镜片100的厚度为7毫米, 即平面与非球面之间的距离为7毫米,非球面120与显示屏的显示面300之间的距离为18.9毫米;镜片10的材料为环烯烃类共聚物(APL5014XH);出瞳直径的一半为2微米,镜片100的有效口径的一半为26微米,成像面的尺寸的一半为23毫米,虚像尺寸的一半为2514.344597837911毫米;非球面120的圆锥系数为-1。
本公开提供的光学系统,通过对出瞳距离、镜片的厚度、镜片与显示屏的显示面之间的距离、镜片的折射率、非球面的曲率半径、圆锥系数以及偶次非球面系数的优化,可以得到大视场以及长出瞳距下成像效果良好的光学系统。
图3为本公开实施例提供的光学系统在截止频率为20线对/毫米时的调制传递函数(Modulation Transfer Function,MTF)曲线。例如,图3示出了光学系统在不同视场下的子午线403、子午线406、子午线407、子午线409以及子午线411(图中实线所示)在不同空间频率下的调制传递函数值以及光学系统在不同视场下的弧矢线402、弧矢线404、弧矢线405、弧矢线408以及弧矢线410(图中虚线所示)在不同空间频率下的调制传递函数值,如MTF值。例如,曲线401表示衍射极限。例如,子午线403为半视场角为51°时的子午线,子午线406为半视场角为5°时的子午线,子午线407为半视场角为10°时的子午线,子午线409为半视场角度为45°时的子午线,子午线411为半视场角为20°时的子午线。例如,弧矢线402为半视场角度为20°时的弧矢线,弧矢线404为半视场角为10°时的弧矢线,弧矢线405为半视场角为5°时的弧矢线,弧矢线408为半视场角为45°时的弧矢线,弧矢线410为半视场角为51°时的弧矢线。
例如,上述调制传递函数值也可以称为解像力,解像力是分辨被摄原物细节的能力,为可以用来描述缩微摄影系统再现被摄原件细微部分能力的物理量。
调制传递函数(MTF)曲线可以综合反映光学系统的成像质量,其曲线形状越平滑,且MTF值越高,光学系统的成像质量越好。图3示出了在截止频率为20线对/毫米(lp/mm)时的调制传递函数曲线,图中示出了多个视场光线对应的调制传递函数曲线。如图3所示,整体调制传递函数曲线平滑,其中边缘视场(如102°)下的调制传递函数值可达到0.7以上。
在一些示例中,如图3所示,光学系统在最大视场角下的调制传递函数值在空间频率为20线对/毫米位置处不小于0.7。例如,光学系统在102°视场下的调制传递函数值在空间频率为20线对/毫米位置处不小于0.7。例如,光学系统在102°视场下的调制函数曲线在空间频率为20线对/毫米位置处不小于0.72。
例如,上述各子午线和弧矢线可以均为绿光(如中心波长为550nm)的子午线和弧矢线。
本公开提供的光学系统,通过将镜片与折叠光路配合的同时,将镜片设置为包括一体的镜片,在平凸透镜的基础上,将凸面由球面改为非球面,对光学系统的焦距进行设置,且对该一体的镜片的焦距、有效口径、非球面的曲率半径、镜片的厚度以及镜片的折射率等参数进行设置和优化,可以在光学系统具有超短焦距的基础上,使得该光学系统的最大视场角达到100°以上的同时出瞳距离达到17毫米或以上,所成虚像的像距达到2000毫米;与此同时,通过对非球面高次项系数进行优化,可以使得光学系统边缘视场调制传递函数值(MTF值)在空间频率为20线对/毫米位置处不小于0.7,该光学系统具有良好的成像效果,可以满足近视用户佩戴眼镜的观看使用。
例如,如图3所示,光学系统在40°视场下的调制传递函数值在空间频率为20线对/毫米位置处不小于0.8。
例如,如图3所示,光学系统在20°视场下的调制传递函数值在空间频率为20线对/毫米位置处不小于0.5。
图4为本公开实施例提供的光学系统在截止频率为15线对/毫米时的调制传递函数曲线。
例如,如图4所示,曲线401表示衍射极限。例如,子午线403为半视场角度为51°时的子午线,子午线406为半视场角为5°时的子午线,子午线407为半视场角为10°时的子午线,子午线409为半视场角为45°时的子午线,子午线411为半视场角为20°时的子午线。例如,弧矢线402为半视场角为20°时的弧矢线,弧矢线404为半视场角为10°时的弧矢线,弧矢线405为半视场角为5°时的弧矢线,弧矢线408为半视场角为45°时的弧矢线,弧矢线410为半视场角为51°时的弧矢线。
在一些示例中,如图4所示,光学系统在最大视场角下的调制传递函数 值在空间频率为15线对/毫米位置处不小于0.8。例如,光学系统在102°视场下的调制传递函数值在空间频率为15线对/毫米位置处不小于0.8。例如,光学系统在102°视场下的调制传递函数值在空间频率为15线对/毫米位置处不小于0.82。
例如,如图4所示,光学系统在40°视场下的调制传递函数值在空间频率为15线对/毫米位置处不小于0.85。
例如,如图4所示,光学系统在20°视场下的调制传递函数值在空间频率为15线对/毫米位置处不小于0.65。
例如,如图4所示,光学系统在10°视场下的调制传递函数值在空间频率为15线对/毫米位置处不小于0.5。
本公开提供的光学系统,通过将镜片与折叠光路配合的同时,将镜片设置为包括一体的镜片,在平凸透镜的基础上,将凸面由球面改为非球面,且对该一体的镜片的焦距、有效口径、非球面的曲率半径、镜片的厚度以及镜片的折射率等参数进行设置和优化,可以在光学系统具有超短焦距的基础上,使得该光学系统的最大视场角达到100°以上的同时出瞳距离达到17毫米或以上,所成虚像的像距达到2000毫米;与此同时,通过对非球面高次项系数进行优化,可以使得光学系统边缘视场调制传递函数值(MTF值)在空间频率为15线对/毫米位置处不小于0.8,该光学系统具有良好的成像效果,可以满足近视用户佩戴眼镜的观看使用。
例如,镜片100的非球面120可以通过研磨加工、机加工做成非球面,将玻璃透过模具形成为非球面形状的玻璃模具可以是非球面、在玻璃的表面将树脂形成为非球面形状的复合型非球面的一种。
图5为根据本公开实施例提供的显示装置的结构示意图。如图5所示,显示装置包括显示屏20以及上述实施例所示的光学系统10。显示屏20位于非球面120远离平面110的一侧,显示屏20的显示面位于光学系统10的入光侧的焦平面。
在一些示例中,如图5所示,非球面120与显示屏20的显示面之间的距离为26~28毫米。例如,非球面120与显示屏20的显示面之间的距离为27毫米。例如,非球面120与显示屏20的显示面之间的距离为26.5~27.5毫米。例如,非球面120与显示屏20的显示面之间的距离为26.2~27.8毫米。 例如,非球面120与显示屏20的显示面之间的距离为26.4~27.6毫米。例如,非球面120与显示屏20的显示面之间的距离为26.8~27.2毫米。
本公开提供的显示装置,将镜片设置为包括非球面的一体的镜片,且对该一体的镜片的焦距、有效口径、非球面的曲率半径、镜片的厚度以及镜片的折射率等参数进行设置,与此同时,通过在镜片的一侧设置偏振透反膜和相位延迟膜,在镜片的另一侧设置透反膜,可以实现光线的折叠,大大缩小光学系统的焦距,可以在光学系统具有较小尺寸的基础上,使得该光学系统的最大视场角达到100°以上的同时出瞳距离达到17毫米或以上,所成虚像的像距达到2000毫米;以将镜片与显示屏的显示面之间的距离缩短至27毫米,有利于提高近视用户佩戴眼镜的观看体验的同时缩小显示装置的体积。
在一些示例中,显示屏20的显示面的最大尺寸为2~3英寸。例如,显示屏20的显示面的最大尺寸为2.5英寸。例如,显示屏20的显示面的形状可以为矩形,矩形的对角线的尺寸可以为2.5英寸。
例如,显示屏20可以为任何类型的显示屏例如液晶显示屏、有机发光二极管显示屏、无机发光二极管显示屏、量子点显示屏、投影仪(例如LCOS微型投影机)等。
例如,显示装置可以为虚拟现实显示装置。例如,虚拟现实显示装置可以为采用超短焦折叠光路的显示装置。
例如,该显示装置可以为近眼显示装置,该近眼显示装置可以为可穿戴VR头盔、VR眼镜等,本公开实施例不限于此。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (13)

  1. 一种光学系统,包括:
    镜片,包括平面和非球面,所述非球面为凸面,所述平面远离所述非球面的一侧为所述镜片的出光侧;
    偏振透反膜,设置在所述镜片的所述平面远离所述非球面的一侧;
    相位延迟膜,设置在所述偏振透反膜与所述镜片的所述平面之间;
    透反膜,设置在所述镜片的所述非球面远离所述平面的一侧,
    其中,所述镜片为一体的镜片,所述平面和所述非球面位于所述一体的镜片的相对的两侧,所述光学系统的焦距为26~28毫米,所述镜片的有效口径为50~52毫米,且所述非球面的曲率半径为-93~-97毫米。
  2. 根据权利要求1所述的光学系统,其中,所述镜片的焦距为160~180毫米。
  3. 根据权利要求1或2所述的光学系统,其中,所述镜片的最大厚度为6~8毫米。
  4. 根据权利要求1-3任一项所述的光学系统,其中,所述光学系统的出瞳距离为13~21毫米。
  5. 根据权利要求4所述的光学系统,其中,所述光学系统的出瞳距离不小于15毫米。
  6. 根据权利要求4或5所述的光学系统,其中,所述光学系统的最大视场角为100°~110°。
  7. 根据权利要求6所述的光学系统,其中,所述光学系统在所述最大视场角下的调制传递函数值在空间频率为20线对/毫米位置处不小于0.7。
  8. 根据权利要求6或7所述的光学系统,其中,所述光学系统在所述最大视场角下的调制传递函数值在空间频率为15线对/毫米位置处不小于0.8。
  9. 根据权利要求1-8任一项的光学系统,其中,所述镜片的折射率为1.5~1.6。
  10. 根据权利要求1-9任一项所述的光学系统,其中,所述相位延迟膜和所述偏振透反膜贴合在所述平面上。
  11. 一种显示装置,包括显示屏以及权利要求1-10任一项所述的光学系 统,其中,所述显示屏位于所述镜片的所述非球面远离所述平面的一侧,所述显示屏的显示面位于所述光学系统的入光侧的焦平面。
  12. 根据权利要求11所述的显示装置,其中,所述非球面与所述显示屏的显示面之间的距离为26~28毫米。
  13. 根据权利要求11或12所述的显示装置,其中,所述显示屏的显示面的最大尺寸为2~3英寸。
PCT/CN2023/097007 2022-06-22 2023-05-30 光学系统以及显示装置 WO2023246436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210714718.1 2022-06-22
CN202210714718.1A CN117310982A (zh) 2022-06-22 2022-06-22 光学系统以及显示装置

Publications (1)

Publication Number Publication Date
WO2023246436A1 true WO2023246436A1 (zh) 2023-12-28

Family

ID=89235869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097007 WO2023246436A1 (zh) 2022-06-22 2023-05-30 光学系统以及显示装置

Country Status (2)

Country Link
CN (1) CN117310982A (zh)
WO (1) WO2023246436A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327940A (ja) * 1994-12-19 1996-12-13 Sharp Corp 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
US20190018255A1 (en) * 2017-07-11 2019-01-17 Google Llc Compact near-eye optical system including a refractive beam-splitting convex lens
CN110308559A (zh) * 2019-06-28 2019-10-08 上海视涯信息科技有限公司 一种虚拟现实光学模组及虚拟现实设备
CN111929906A (zh) * 2020-09-25 2020-11-13 歌尔光学科技有限公司 图像显示结构和头戴显示设备
CN212111989U (zh) * 2020-05-27 2020-12-08 歌尔光学科技有限公司 光学系统及虚拟现实设备
CN112136084A (zh) * 2018-05-18 2020-12-25 脸谱科技有限责任公司 具有偏振体全息元件的光学组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327940A (ja) * 1994-12-19 1996-12-13 Sharp Corp 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
US20190018255A1 (en) * 2017-07-11 2019-01-17 Google Llc Compact near-eye optical system including a refractive beam-splitting convex lens
CN112136084A (zh) * 2018-05-18 2020-12-25 脸谱科技有限责任公司 具有偏振体全息元件的光学组件
CN110308559A (zh) * 2019-06-28 2019-10-08 上海视涯信息科技有限公司 一种虚拟现实光学模组及虚拟现实设备
CN212111989U (zh) * 2020-05-27 2020-12-08 歌尔光学科技有限公司 光学系统及虚拟现实设备
CN111929906A (zh) * 2020-09-25 2020-11-13 歌尔光学科技有限公司 图像显示结构和头戴显示设备

Also Published As

Publication number Publication date
CN117310982A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
JP7329207B2 (ja) 拡張現実装置、ならびに、そのための光学システム及び半反射体
US20210018955A1 (en) Thin light optical system for a wearable virtual reality display device
WO2019033748A1 (zh) 一种基于双自由曲面反射的成像系统及增强现实装置
WO2021238079A1 (zh) 光学系统及虚拟现实设备
WO2020173180A1 (zh) 近眼显示装置
WO2021139725A1 (zh) 近眼显示装置
WO2017161485A1 (zh) 短距离光学放大模组、眼镜、头盔及vr系统
CN114675419B (zh) 一种近眼型虚拟现实光学模组
WO2023092705A1 (zh) 光学模组和头戴显示设备
CN206321883U (zh) 隐形眼镜式的光学系统以及装配该光学系统的头戴显示器
CN215986726U (zh) 一种增强现实显示系统
TW202134734A (zh) 微型頭戴顯示器之光學系統
TWI797563B (zh) 超短距目鏡系統
Yan et al. Surface micro-reflector array for augmented reality display
TWM591624U (zh) 短距離之光學系統
JP7406028B1 (ja) 光学系
WO2023071032A1 (zh) 一种短焦折叠光学系统以及虚拟现实显示设备
WO2023246436A1 (zh) 光学系统以及显示装置
CN116859562A (zh) 光学模组以及头戴显示设备
CN217932284U (zh) 光学透镜组及头戴式电子装置
TWM633841U (zh) 光學透鏡組和頭戴式電子裝置
US20230418080A1 (en) Optical system and display device
TWI798853B (zh) 擴增實境顯示裝置
CN112505920A (zh) 微型化短距离光学系统
CN220872787U (zh) 近眼显示光学系统及近眼显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826085

Country of ref document: EP

Kind code of ref document: A1