WO2017126669A1 - ターゲット分析方法およびこれに用いるターゲット分析キット - Google Patents

ターゲット分析方法およびこれに用いるターゲット分析キット Download PDF

Info

Publication number
WO2017126669A1
WO2017126669A1 PCT/JP2017/001958 JP2017001958W WO2017126669A1 WO 2017126669 A1 WO2017126669 A1 WO 2017126669A1 JP 2017001958 W JP2017001958 W JP 2017001958W WO 2017126669 A1 WO2017126669 A1 WO 2017126669A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid molecule
polynucleotide
target analysis
target
Prior art date
Application number
PCT/JP2017/001958
Other languages
English (en)
French (fr)
Inventor
嘉仁 吉田
克紀 堀井
穣 秋冨
金子 直人
晃尚 清水
藤田 智子
巌 和賀
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to US16/071,977 priority Critical patent/US20190071735A1/en
Priority to JP2017562926A priority patent/JP6687251B2/ja
Priority to CN201780007622.9A priority patent/CN108474023A/zh
Priority to EP17741546.0A priority patent/EP3406735B1/en
Publication of WO2017126669A1 publication Critical patent/WO2017126669A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles

Definitions

  • the present invention relates to a target analysis method and a target analysis kit used therefor.
  • Target analysis is being conducted in various fields such as clinical medicine, food, and environment.
  • the target analysis method for example, an analysis method using an immunochromatography method is known.
  • the analysis time by the immunochromatography method requires about 15-20 minutes, so that further speedup is required.
  • an object of the present invention is to provide a new target analysis method capable of quickly analyzing a target and a target analysis kit used therefor.
  • the target analysis method of the present invention includes a sample, a labeled binding nucleic acid molecule that binds to the target (hereinafter also referred to as “binding nucleic acid molecule”), and the labeled binding nucleic acid. Reacting a carrier on which a blocking nucleic acid molecule that binds to the molecule is immobilized; Separating the fraction of the carrier and the fraction other than the carrier; Analyzing the target in the sample by detecting the label of the labeled binding nucleic acid molecule in at least one of the fraction of the carrier and the fraction other than the carrier.
  • the target analysis kit of the present invention (hereinafter also referred to as “analysis kit”) includes a labeled binding nucleic acid molecule that binds to a target and a carrier on which a blocking nucleic acid molecule that binds to the labeled binding nucleic acid molecule is immobilized. Including It is used for the target analysis method of the present invention.
  • the target can be analyzed quickly.
  • FIG. 1 is a graph showing the light emission amount in Example 1.
  • FIG. 2 is a graph showing the light emission amount in Example 2.
  • FIG. 3 is a graph showing the light emission amount in Example 3.
  • FIG. 4 is a graph showing the light emission amount in Example 4.
  • FIG. 5 is a graph showing the light emission amount in Example 5.
  • FIG. 6 is a graph showing the light emission amount in Example 6.
  • FIG. 7 is a graph showing the light emission amount in Example 7.
  • the analysis method of the present invention includes, for example, a step of reacting the sample with the labeled binding nucleic acid molecule, and a step of reacting the mixture of the sample and the labeled binding nucleic acid molecule with the carrier.
  • the blocking nucleic acid molecule is a nucleic acid molecule containing a base sequence complementary to the labeled binding nucleic acid molecule.
  • the analysis method and analysis kit of the present invention are, for example, nucleic acid molecules in which the blocking nucleic acid molecule includes a base sequence complementary to the base sequence that binds to the target in the labeled binding nucleic acid molecule.
  • the base length of the blocking nucleic acid molecule is in the range of 1/1 to 1/20 of the base length of the labeled binding nucleic acid molecule.
  • the analysis method and analysis kit of the present invention include, for example, a polynucleotide in which the blocking nucleic acid molecule has a base sequence having a complementarity in the range of 5 to 100% with respect to the base sequence of the labeled binding nucleic acid molecule.
  • a nucleic acid molecule A nucleic acid molecule.
  • the labeled binding nucleic acid molecule includes the following polynucleotide (a).
  • a polynucleotide of the following (a1) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or 2
  • the blocking nucleic acid molecule contains the polynucleotide (b) below.
  • the carrier is a bead, and preferably a polystyrene bead.
  • the beads are, for example, magnetic beads.
  • the magnetic beads are separated from the magnetic beads by separating the magnetic beads with a magnetic material.
  • the label is an enzyme
  • the enzyme reaction of the labeled binding nucleic acid molecule in at least one of the carrier fraction and the fraction other than the carrier is detected, and preferably the enzyme reaction is detected in the presence of the enzyme substrate.
  • the enzyme is luciferase.
  • the sample is a food-derived sample.
  • the target is a peanut allergen.
  • the peanut allergen is, for example, conarachin or a subunit thereof.
  • the subunit is, for example, Ara h1.
  • the peanut allergen is a native allergen or a heat-denatured allergen.
  • the label is an enzyme, preferably luciferase.
  • the analysis kit of the present invention further includes, for example, a substrate for the enzyme.
  • the target analysis method of the present invention comprises a step of reacting a sample, a labeled binding nucleic acid molecule that binds to a target, and a carrier on which a blocking nucleic acid molecule that binds to the labeled binding nucleic acid molecule is immobilized. (Reaction process), the step of separating the fraction of the carrier and the fraction other than the carrier (separation step), and the labeled binding in at least one of the fraction of the carrier and the fraction other than the carrier And a step of analyzing a target in the sample (analysis step) by detecting a label of the nucleic acid molecule.
  • the analysis method of the present invention is characterized in that the reaction step, the separation step, and the analysis step are performed using the carrier on which the labeled binding nucleic acid molecule and the blocking nucleic acid molecule are immobilized.
  • the conditions are not particularly limited.
  • a target can be analyzed in an extremely short time of about 3 minutes and with excellent analysis sensitivity.
  • the analysis method of the present invention for example, although the mechanism is unknown, non-specific binding of the binding nucleic acid molecule can be suppressed, and thus, for example, a target can be analyzed with excellent analysis accuracy (specificity). .
  • the analysis method of the present invention may be, for example, a qualitative analysis that analyzes the presence or absence of a target in the sample, or may be a quantitative analysis that analyzes the degree (for example, amount) of the target in the sample. .
  • the sample used for analysis is not particularly limited, and examples thereof include food-derived samples.
  • the food-derived sample include foods, food raw materials, food additives, deposits in food processing plants or kitchens, washing liquids after washing, and the like.
  • the form of the sample is not particularly limited, and may be, for example, a liquid sample or a solid sample.
  • a mixed solution, an extract, a dissolved solution, or the like may be prepared using a solvent and used as the sample.
  • the solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the sample may be, for example, a sample including the target, a sample not including the target, or a sample unknown whether the target is included.
  • the target is not particularly limited and can be any target.
  • examples of the target include food allergens, and specific examples include peanut allergen, wheat allergen, milk allergen, egg allergen, buckwheat allergen, shrimp allergen, and soybean allergen.
  • examples of the peanut allergen include conarachin or a subunit thereof, or a domain thereof, which is a main allergen of peanut.
  • Conarachin is, for example, Conarachin I and Conarachin II ( ⁇ -Conarachin).
  • Examples of the subunits of the conarachin include Ara h1, Ara h2, and Ara h6.
  • Examples of the wheat allergen include glutenin, gluten, gliadin, gliadin ⁇ 5, subunits thereof, and domains thereof.
  • milk allergen examples include casein, ⁇ -casein, s1 casein, ⁇ -lactoglobulin, subunits thereof, and domains thereof.
  • egg allergen examples include ovomucoid, ovotransferrin, these subunits, and these domains, which are major egg allergens.
  • buckwheat allergen examples include Fage II, a subunit thereof, and a domain thereof.
  • shrimp allergen include tropomyosin, a subunit, or a domain thereof, which is a major allergen of shrimp. Specific examples of the tropomyosin include Pen a 1, Pen i 1, Met e 1, and the like.
  • the soybean allergen includes, for example, ⁇ -conglycinin, a subunit thereof, or a domain thereof, which is a major allergen of soybean.
  • the allergen may be, for example, a non-denatured allergen or a heat-denatured allergen.
  • the labeled binding nucleic acid molecule is a nucleic acid molecule that binds to a target and is labeled.
  • the binding nucleic acid molecule is not particularly limited, and examples thereof include an aptamer that binds to the target.
  • the binding between the binding nucleic acid molecule and the target can be confirmed by, for example, surface plasmon resonance molecular interaction (SPR) analysis.
  • SPR surface plasmon resonance molecular interaction
  • ProteON trade name, manufactured by BioRad
  • the binding nucleic acid molecule is preferably a nucleic acid molecule that binds significantly and specifically to the peanut allergen, for example, as compared with soybean protein.
  • the binding nucleic acid molecule that binds to the peanut allergen includes, for example, a nucleic acid molecule containing the following polynucleotide (a).
  • a at least one polynucleotide selected from the group consisting of the following (a1) to (a3) and (a4)
  • (a1) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or 2 (a2) of (a1) above A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted and / or added in any base sequence, and which binds to a peanut allergen (a3) any base of (a1) above
  • the polynucleotide (a1) is a polynucleotide comprising the base sequence of SEQ ID NO: 1 or 2.
  • Peanut binding nucleic acid molecule 1 (SEQ ID NO: 1) 5'-GGATATTGCCTCGCCAC AGTTAAGTCAGGTGGTTGG TTATGGTTGGGACTGACTCTCTACAGGGAACGCTCGGATTATC-3 '
  • Peanut binding nucleic acid molecule 2 (SEQ ID NO: 2) 5'-GGTAAGGTCCTCAGTCCTCGATTAGCT ATCCTCCCGTTTCCTCTAC TTTCTGCGTGATCACGGCGGCTCTCATTAC -3 '
  • “1 or several” may be in a range where the polynucleotide of (a2) binds to the peanut allergen, for example.
  • the “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any one of the base sequences of (a1).
  • the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 5 bases” means all disclosures of “1, 2, 3, 4, 5 bases” (the same applies hereinafter).
  • identity may be, for example, within a range in which the polynucleotide of (a3) binds to a peanut allergen.
  • the identity is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
  • the “hybridizable polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (a1).
  • the hybridization can be detected by, for example, various hybridization assays.
  • the hybridization assay is not particularly limited, for example, Zanburuku (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
  • the “stringent conditions” may be, for example, any of low stringent conditions, medium stringent conditions, and high stringent conditions.
  • Low stringent conditions are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C.
  • Medium stringent conditions are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C.
  • “High stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C.
  • the degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like.
  • “Stringent conditions” are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press ( 1989)] etc. may be employed.
  • the phrase “the other sequence is complementary to a certain sequence” means, for example, a sequence that can be annealed between the two.
  • the term “complementary” means, for example, the complementarity when two kinds of sequences are aligned is, for example, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% Above, preferably 100%, that is, completely complementary.
  • the sequence from one 5 ′ side to the 3 ′ side is compared with the sequence from the other 3 ′ side to the 5 ′ side.
  • the binding nucleic acid molecule may include, for example, one of the polynucleotide base sequences (a1) to (a4) or a plurality of the polynucleotide base sequences. In the latter case, it is preferable that a plurality of polynucleotides are linked to form a single-stranded polynucleotide.
  • each of the plurality of polynucleotides may be directly linked, or each may be indirectly linked via a linker. The linker will be described later.
  • the polynucleotide is preferably linked directly or indirectly at each end.
  • the plurality of polynucleotides may be the same or different, for example.
  • the plurality of polynucleotides are preferably the same, for example.
  • the number of the polynucleotides is not particularly limited and is, for example, 2 or more, specifically, for example, 2 to 20, 2 to 10, 2 or 3.
  • the labeled binding nucleic acid molecule is labeled with, for example, a labeling substance.
  • the labeling substance is not particularly limited, and examples thereof include enzymes, fluorescent substances, dyes, isotopes and the like.
  • the enzyme is not particularly limited, and examples thereof include luciferase, alkaline phosphatase, peroxidase, ⁇ -galactosidase, glucuronidase, and the like, and luciferase is preferable because analysis sensitivity is improved.
  • fluorescent substance examples include fluorophores such as pyrene, TAMRA, fluorescein, Cy (registered trademark) 3 dye, Cy (registered trademark) 5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, and TYE.
  • fluorophores such as pyrene, TAMRA, fluorescein, Cy (registered trademark) 3 dye, Cy (registered trademark) 5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, and TYE.
  • Alexa dyes such as Alexa (registered trademark) 488 and Alexa (registered trademark) 647.
  • the labeling substance is preferably bound to, for example, at least one of the 5 'end and the 3' end of the binding nucleic acid molecule, and more preferably the 5 'end.
  • the labeling substance may be directly linked to the binding nucleic acid molecule or indirectly linked via a linker.
  • the linker is not particularly limited, and examples thereof include non-nucleic acid molecules or nucleic acid molecules.
  • examples of the non-nucleic acid molecule include avidin-biotin, a molecule having an amino group, and a combination of molecules having a carboxyl group.
  • the structural unit of the linker is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue.
  • the linker is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues.
  • linker examples include polydeoxythymine (poly dT), polydeoxyadenine (poly dA), poly dAdT which is a repeating sequence of A and T, and preferably poly dT and poly dAdT.
  • the length of the linker is not particularly limited, and is, for example, 1 to 200 bases long, 1 to 20 bases long, 3 to 12 bases long, and 5 to 9 bases long.
  • the blocking nucleic acid molecule is a nucleic acid molecule that binds to the binding nucleic acid molecule.
  • the blocking nucleic acid molecule is, for example, a nucleic acid molecule that inhibits binding between the target and the binding nucleic acid molecule.
  • Examples of the blocking nucleic acid molecule include a nucleic acid molecule that specifically binds to the binding nucleic acid molecule, and specific examples include a nucleic acid molecule that includes a base sequence complementary to the binding nucleic acid molecule.
  • the blocking nucleic acid molecule is, for example, completely or partially complementary to the binding nucleic acid molecule.
  • the blocking nucleic acid molecule is, for example, a base sequence having complementarity in the range of 5 to 100%, 5 to 50%, or 5 to 20% with respect to the base sequence of the binding nucleic acid molecule.
  • a nucleic acid molecule comprising a polynucleotide consisting of
  • the blocking nucleic acid molecule examples include a base sequence complementary to the base sequence of the 3 ′ end side, the base sequence of the 5 ′ end side, or the base sequence of the other region of the binding nucleic acid molecule.
  • the base sequence on the 3 'end side is, for example, a base sequence that is continuous or discontinuous from the base on the 3' end of the binding nucleic acid molecule.
  • the base sequence on the 5 ′ end side is, for example, a base sequence that is continuous or discontinuous from the base on the 5 ′ end of the binding nucleic acid molecule.
  • the method for immobilizing the blocking nucleic acid molecule is not particularly limited, and a known nucleic acid molecule immobilization method can be used.
  • the blocking nucleic acid molecule is preferably a nucleic acid molecule containing a base sequence complementary to a base sequence (binding sequence) that binds to the target in the labeled binding nucleic acid molecule, for example.
  • the blocking nucleic acid molecule may be, for example, completely complementary or partially complementary to the binding sequence.
  • the binding sequence is not particularly limited and can be appropriately determined according to the base sequence of the binding nucleic acid molecule.
  • the binding nucleic acid molecule is a polynucleotide comprising the base sequence of SEQ ID NO: 1
  • examples of the binding sequence include the base sequence indicated by the underline in the base sequence of SEQ ID NO: 1.
  • examples of the binding sequence include the base sequence indicated by the underline in the base sequence of SEQ ID NO: 2.
  • the ratio of the base length of the binding nucleic acid molecule and the base length of the blocking nucleic acid molecule is not particularly limited.
  • the base length of the blocking nucleic acid molecule is, for example, in the range of 1/1 to 1/20 with respect to the base length of the labeled binding nucleic acid molecule.
  • examples of the blocking nucleic acid molecule include a nucleic acid molecule containing a polynucleotide (b) below.
  • the following (b2) to (b4) are polynucleotides that bind (hybridize) to at least one polynucleotide selected from the group consisting of (a1) to (a3) and (a4), for example.
  • (B) at least one polynucleotide selected from the group consisting of (b1) to (b3) and (b4) below (b1) a polynucleotide comprising the base sequence of SEQ ID NO: 3 or 4 (b2) of (b1) above Polynucleotide (b3) consisting of a base sequence in which one or several bases are deleted, substituted, inserted and / or added in any base sequence (b3) A polynucleotide comprising a nucleotide sequence having at least% identity (b4) A base complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any of the nucleotide sequences of (b1) above Polynucleotide consisting of sequence
  • the polynucleotide (b1) is a polynucleotide comprising the base sequence of SEQ ID NO: 3 or 4.
  • Complementary strand 1 (SEQ ID NO: 3) 5'-AAAAAAAAAAAAAAAAAAAATAGAGAGTCAGTCCCAACCA-3 '
  • Complementary strand 2 (SEQ ID NO: 4) 5'-AAAAAAAAAAAAAAAAAGTAGAGGAAACGGGAGGAT-3 '
  • “one or several” means, for example, that the polynucleotide of (b2) is at least one polynucleotide selected from the group consisting of (a1) to (a3) and (a4). What is necessary is just the range to combine.
  • the “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1, or 2 in any one of the base sequences of (b1).
  • identity means, for example, that the polynucleotide of (b3) binds to at least one polynucleotide selected from the group consisting of (a1) to (a3) and (a4). Any range is acceptable.
  • the identity is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the “hybridizable polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide of (b1).
  • the hybridization and stringent conditions for example, the above description can be used.
  • the blocking nucleic acid molecule may include, for example, one of the nucleotide sequences of the polynucleotides (b1) to (b4) or a plurality of the nucleotide sequences of the polynucleotides. In the latter case, it is preferable that a plurality of polynucleotides are linked to form a single-stranded polynucleotide.
  • each of the plurality of polynucleotides may be directly linked, or each may be indirectly linked via a linker. About the said linker, the above-mentioned description can be used, for example.
  • the polynucleotide is preferably linked directly or indirectly at each end.
  • the plurality of polynucleotides may be the same or different, for example.
  • the plurality of polynucleotides are preferably the same, for example.
  • the number of the polynucleotides is not particularly limited and is, for example, 2 or more, specifically, for example, 2 to 20, 2 to 10, 2 or 3.
  • the binding nucleic acid molecule includes a plurality of the polynucleotides of (a)
  • the number of polynucleotides of (b) included in the blocking nucleic acid molecules is, for example, the number of polynucleotides of (a) included in the binding nucleic acid molecules
  • the former may be the same or different, but the former is preferred.
  • the combination of the polynucleotide (a) and the polynucleotide (b) is not particularly limited.
  • the following (a) corresponding to the case where the polynucleotides (a1) and (b1) are the following combinations:
  • a combination of the polynucleotide and the polynucleotide (b) can be mentioned.
  • the blocking nucleic acid molecule is immobilized on the carrier.
  • the carrier is not particularly limited, and examples thereof include beads, plates, and containers.
  • the material of the carrier is not particularly limited.
  • the carrier include a polystyrene carrier, a silica carrier, an agarose carrier, a glass carrier, an acrylic resin carrier, a polyvinyl alcohol resin carrier, a polycarbonate carrier, and the like. Is a polystyrene carrier.
  • the size of the carrier is not particularly limited.
  • the shape of the carrier is not particularly limited, and when the carrier is a bead, examples of the shape include a sphere such as an ellipse and a perfect circle.
  • the blocking nucleic acid molecule may be immobilized on the carrier at, for example, either the 5 'end or the 3' end, and preferably the 5 'end.
  • the blocking nucleic acid molecule may be directly immobilized on the carrier or indirectly immobilized on the carrier, for example. In the latter case, for example, it is preferably immobilized on the carrier via the linker.
  • the linker for example, the above description can be used.
  • the reaction system is preferably a liquid system in which the reaction is performed in a liquid, for example.
  • the liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the reaction step is a step of reacting a labeled binding nucleic acid molecule that binds to a sample and a target and a carrier on which a blocking nucleic acid molecule that binds to the binding nucleic acid molecule is immobilized.
  • the reaction order of the sample, the labeled binding nucleic acid molecule, and the carrier is not particularly limited, and examples thereof include the following (x1) to (x3).
  • (X1) The sample and the labeled binding nucleic acid molecule are reacted, and a mixture of the sample and the labeled binding nucleic acid molecule is further reacted with the carrier.
  • the reaction conditions are not particularly limited.
  • the reaction temperature is, for example, 4 to 37 ° C. or 18 to 25 ° C.
  • the reaction time is, for example, 1 to 30 minutes or 1 to 5 minutes.
  • the reaction time of the first reaction is, for example, 0 to 0.5 minutes, 0 to 1 minute
  • the reaction time of the second reaction Is, for example, 1 to 30 minutes, 1 to 3 minutes.
  • the separation step is a step of separating a fraction of the carrier and a fraction other than the carrier.
  • the separation method of the fraction of the carrier and the fraction other than the carrier is not particularly limited, and can be performed by, for example, a known solid-liquid separation method. Specific examples of the separation method include filtration, membrane separation, centrifugation, and precipitation. In the case of the filtration process and the membrane separation process, the separation method may promote the filtration process and the membrane separation process, for example, by applying pressure.
  • the carrier is a magnetic carrier
  • a fraction of the magnetic carrier and a fraction other than the magnetic carrier may be separated by separating the magnetic carrier with a magnetic material.
  • One type of separation method may be used, or two or more types may be used in combination.
  • the separation step may further include a step of collecting at least one of the fraction of the carrier and the fraction other than the carrier.
  • the fraction to be collected can be appropriately determined according to the fraction to be analyzed, for example, in the analysis step described later.
  • the separation step when separation is performed by the filtration treatment or the membrane separation treatment, for example, by passing through a filter medium or a membrane, a fraction of the carrier and a fraction other than the carrier can be separated.
  • the fraction that has passed through the filter medium or membrane can be collected as a fraction other than the carrier, and the fraction that has not passed through the filter medium or membrane can be collected as a fraction of the carrier.
  • the pore size of the filter medium and the membrane is not particularly limited, and can be set as appropriate according to the size of the carrier. Specifically, the pore size can separate the fraction of the carrier and the fraction other than the carrier. I just need it.
  • the fraction of the carrier and the fraction other than the carrier can be separated by, for example, centrifugation or precipitation treatment.
  • a fraction of the carrier a fraction other than the precipitate can be collected as a fraction other than the carrier.
  • the separation step when fractions other than the carrier are collected, for example, all fractions other than the carrier may be collected, or a part thereof may be collected.
  • the analysis step is a step of analyzing the target in the sample by detecting the label of the labeled binding nucleic acid molecule in at least one of the carrier fraction and the fraction other than the carrier.
  • the fraction to be analyzed may be, for example, a fraction of the carrier or a fraction other than the carrier, or both.
  • a fraction other than the carrier preferable. In both cases, it is preferable to collect the fraction of the carrier and the fraction other than the carrier, respectively, and subject them to analysis.
  • the detection of the label in the analysis step is not particularly limited, and can be appropriately determined according to, for example, the type of the label.
  • the detection of the label is, for example, detection of an enzyme reaction, and more specifically, detection of an optical signal, an electric signal, or the like generated by the enzyme reaction.
  • the optical signal may be detected, for example, by visual observation of light emission, fluorescence, color development, or the like, or may be detected by an optical technique using light emission intensity, fluorescence intensity, absorbance, reflectance, etc. as signals.
  • Examples of the electrical signal include current.
  • the electrical signal can be detected by, for example, an electrical technique.
  • the enzyme reaction is not particularly limited, and examples thereof include an oxidation-reduction reaction.
  • the detection of the label is, for example, detection of fluorescence caused by the fluorescent material.
  • the detection of the label is, for example, detection of a radiation signal due to the isotope.
  • the radiation signal can detect, for example, fluorescence action, ionization action, etc., such as ⁇ -ray, ⁇ -ray, ⁇ -ray, positron beam, X-ray, etc. by optical or electrical techniques.
  • the analysis step when the enzyme reaction is detected, the analysis step preferably detects the enzyme reaction in the presence of the enzyme substrate.
  • the substrate is not particularly limited, and can be determined as appropriate depending on, for example, the type of the enzyme.
  • the enzyme is luciferase
  • examples of the substrate include luciferin and coelenterazine.
  • the analysis method of the present invention may further include a calculation step of calculating the concentration of the target in the sample from the detection result in the analysis step.
  • the detection result include an optical signal and an electric signal.
  • the concentration of the target can be calculated based on, for example, a detection result and a correlation between the detection result and the concentration of the target in the sample.
  • the correlation can be obtained, for example, by plotting the detection result obtained by the analysis method of the present invention and the concentration of the target of the standard sample for a standard sample whose concentration of the target is known. it can.
  • the standard sample is preferably a dilution series of the target.
  • the constituent units of the binding nucleic acid molecule and the blocking nucleic acid molecule are, for example, nucleotide residues, and examples include deoxyribonucleotide residues and ribonucleotide residues.
  • the polynucleotide is, for example, DNA consisting of deoxyribonucleotide residues, DNA containing deoxyribonucleotide residues and ribonucleotide residues, and may further contain non-nucleotide residues. In the latter case, “one or several” is not particularly limited. For example, in the polynucleotide, for example, 1 to 91, 1 to 30, 1 to 15, 1 to 7, 1 to 3 One or two.
  • the polynucleotide may include a modified base.
  • the modified base is not particularly limited, and examples thereof include a base modified with a natural base (non-artificial base), and preferably has the same function as the natural base.
  • the natural base is not particularly limited, and examples thereof include a purine base having a purine skeleton and a pyrimidine base having a pyrimidine skeleton.
  • the purine base is not particularly limited, and examples thereof include adenine (a) and guanine (g).
  • the pyrimidine base is not particularly limited, and examples thereof include cytosine (c), thymine (t), uracil (u) and the like.
  • the base modification site is not particularly limited.
  • examples of the purine base modification site include the 7th and 8th positions of the purine skeleton.
  • examples of the modification site of the pyrimidine base include the 5th and 6th positions of the pyrimidine skeleton.
  • modified uracil or modified thymine when “ ⁇ O” is bonded to carbon at position 4 and a group other than “—CH 3 ” or “—H” is bonded to carbon at position 5, it is called modified uracil or modified thymine. Can do.
  • the modifying group of the modifying base is not particularly limited, and examples thereof include a methyl group, a fluoro group, an amino group, a thio group, a benzylaminocarbonyl group represented by the following formula (1), and a tryptaminocarbonyl represented by the following formula (2).
  • the modified base is not particularly limited.
  • modified adenine modified with adenine, modified thymine modified with thymine, modified guanine modified with guanine, modified cytosine modified with cytosine and modified modified with uracil examples include uracil and the like, and the modified thymine, the modified uracil and the modified cytosine are preferable.
  • modified adenine examples include 7'-deazaadenine and the like.
  • modified guanine examples include, for example, 7'-deazaguanine.
  • modified thymine examples include 5'-benzylaminocarbonylthymine, 5'-tryptaminocarbonylthymine, 5'-isobutylaminocarbonylthymine and the like.
  • modified uracil examples include 5'-benzylaminocarbonyluracil (BndU), 5'-tryptaminocarbonyluracil (TrpdU), 5'-isobutylaminocarbonyluracil and the like.
  • the polynucleotide may contain, for example, only one of the modified bases or two or more kinds of the modified bases.
  • the number of the modified base is not particularly limited.
  • the number of the modified base is not particularly limited.
  • the modified base is, for example, 1-100, 1-90, 1-80, 1-70, 1-60, 1-40, 1-20, 1-10. 1 to 5 and all the bases may be the modified bases.
  • the number of the modified bases may be, for example, the number of any one of the modified bases or the total number of the two or more modified bases.
  • the ratio of the modified base is not particularly limited.
  • the ratio of the modified base is, for example, 1/100 or more, 1/40 or more, 1/20 or more, 1/10 or more, 1/4 or more, or 1/3 or more of the total number of bases of the polynucleotide. .
  • the ratio of the modified base is expressed as a fraction, and the total number of bases and the number of modified bases that satisfy this are positive integers.
  • the binding nucleic acid molecule and the blocking nucleic acid molecule may include, for example, a modified nucleotide.
  • the modified nucleotide may be a nucleotide having the modified base described above, a nucleotide having a modified sugar in which a sugar residue is modified, or a nucleotide having the modified base and the modified sugar.
  • the sugar residue is not particularly limited, and examples thereof include deoxyribose residue or ribose residue.
  • the modification site in the sugar residue is not particularly limited, and examples thereof include the 2'-position and the 4'-position of the sugar residue, and both of them may be modified.
  • Examples of the modifying group of the modified sugar include a methyl group, a fluoro group, an amino group, and a thio group.
  • the base when the base is a pyrimidine base, for example, the 2'-position and / or the 4'-position of the sugar residue is preferably modified.
  • Specific examples of the modified nucleotide residue include, for example, a 2′-methylated-uracil nucleotide residue and a 2′-methylated-cytosine nucleotide residue in which the deoxyribose residue or the 2 ′ position of the ribose residue is modified.
  • the number of the modified nucleotides is not particularly limited, and is, for example, 1 to 100, 1 to 90, 1 to 80, 1 to 70 in the polynucleotide. Further, the modified nucleotides in the full length of the binding nucleic acid molecule containing the polynucleotide and the blocking nucleic acid molecule are not particularly limited, and specifically, for example, are the same as those described above.
  • the binding nucleic acid molecule and the blocking nucleic acid molecule may include, for example, one or several artificial nucleic acid monomer residues.
  • the “one or several” is not particularly limited, and is, for example, 1 to 100, 1 to 50, 1 to 30, or 1 to 10 in the polynucleotide.
  • Examples of the artificial nucleic acid monomer residue include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acids) and the like.
  • the nucleic acid in the monomer residue is the same as described above, for example.
  • the binding nucleic acid molecule and the blocking nucleic acid molecule may further have an additional sequence, for example.
  • the additional sequence is bound to at least one of an unlabeled end of the binding nucleic acid molecule and an end to which the blocking nucleic acid molecule is not immobilized.
  • the additional sequence is not particularly limited.
  • the length of the additional sequence is not particularly limited, and is, for example, 1 to 200 bases long, 1 to 50 bases long, 1 to 25 bases long, or 18 to 24 bases long.
  • the structural unit of the additional sequence is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue.
  • the additional sequence is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues. Specific examples of the additional sequence include poly dT and poly dA.
  • the method for producing the binding nucleic acid molecule and the blocking nucleic acid molecule is not particularly limited, and can be synthesized by a genetic engineering technique such as a nucleic acid synthesis method using chemical synthesis or a known method.
  • the binding nucleic acid molecule can also be obtained, for example, by a so-called SELEX method using a target.
  • the target analysis kit of the present invention includes a labeled binding nucleic acid molecule that binds to a target and a carrier on which a blocking nucleic acid molecule that binds to the labeled binding nucleic acid molecule is immobilized. It is used for a target analysis method.
  • the analysis kit of the present invention includes the labeled binding nucleic acid molecule and the carrier, and is characterized by being used in the analysis method of the present invention. Other configurations and conditions are not particularly limited. For example, the description of the analysis method of the present invention can be cited for the analysis kit of the present invention. According to the target analysis kit of the present invention, for example, the analysis method of the present invention can be easily carried out.
  • the target can be analyzed with an excellent analysis sensitivity in an extremely short time of about 3 minutes.
  • the analysis kit of the present invention for example, since non-specific binding of the binding nucleic acid molecule can be suppressed, for example, a target can be analyzed with excellent analysis accuracy.
  • the binding nucleic acid molecule and the carrier may be accommodated in separate containers, for example, or may be mixed or not mixed in the same container.
  • the analysis kit of the present invention can also be referred to as an analysis reagent, for example.
  • the analysis kit of the present invention may further include other components, for example.
  • the component include the substrate, a reagent such as a buffer, and instructions for use.
  • the reagent may be housed in a separate container with the binding nucleic acid molecule and the carrier, or may be housed in a container that is the same or mixed or unmixed.
  • the substrate is housed in a separate container from the binding nucleic acid molecule and the carrier, for example.
  • the peanut-binding nucleic acid molecule of the present invention comprises at least one polynucleotide selected from the group consisting of the following (c1) to (c3) and (c4) (hereinafter also referred to as “the polynucleotide of (c)”). It is characterized by that.
  • (C1) a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1, 2, 5, and 6 (c2) one or several bases deleted or substituted in any one of the nucleotide sequences of (c1),
  • peanut-binding nucleic acid molecule of the present invention for example, the description of the target analysis method of the present invention can be cited. According to the peanut-binding nucleic acid molecule of the present invention, for example, peanut allergen can be analyzed.
  • the polynucleotide (c1) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOs: 1, 2, 5, and 6.
  • Peanut binding nucleic acid molecule 3 (SEQ ID NO: 5) 5'-AGTTAAGTCAGGTGGTTGG-3 '
  • Peanut binding nucleic acid molecule 4 (SEQ ID NO: 6) 5'-ATCCTCCCGTTTCCTCTAC-3 '
  • the peanut-binding nucleic acid molecule of the present invention may be, for example, double stranded.
  • one single-stranded polynucleotide includes at least one polynucleotide selected from the group consisting of the above (c1) to (c3) and (c4), and the other single-stranded polynucleotide.
  • Nucleotides are not limited. Examples of the other single-stranded polynucleotide include a polynucleotide containing a base sequence complementary to at least one polynucleotide selected from the group consisting of (c1) to (c3) and (c4).
  • Examples of the complementary base sequence include the following polynucleotide (b).
  • the following (b2) to (b4) are, for example, (complementary) polynucleotides that bind to at least one polynucleotide selected from the group consisting of (c1) to (c3) and (c4).
  • (B) at least one polynucleotide selected from the group consisting of (b1) to (b3) and (b4) below (b1) a polynucleotide comprising the base sequence of SEQ ID NO: 3 or 4 (b2) of (b1) above Polynucleotide (b3) consisting of a base sequence in which one or several bases are deleted, substituted, inserted and / or added in any base sequence (b3) A polynucleotide comprising a nucleotide sequence having at least% identity (b4) A base complementary to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any of the nucleotide sequences of (b1) above Polynucleotide consisting of sequence
  • the combination of the polynucleotide (c) and the polynucleotide (b) is not particularly limited.
  • the following (c) corresponding to the case where the polynucleotides (c1) and (b1) are the following combinations:
  • a combination of the polynucleotide and the polynucleotide (b) can be mentioned.
  • Example 1 It was confirmed that a target such as peanut could be analyzed quickly by the analysis method and analysis kit of the present invention.
  • the mixture after shaking was centrifuged overnight at 10,000 g at room temperature. Next, after collecting the supernatant, the supernatant was filtered using a filter (pore size 0.8 ⁇ m) to prepare a peanut extract 1. And about the said peanut extract 1, the peanut protein concentration was quantified using the protein concentration measuring kit (Protein
  • a binding nucleic acid molecule solution containing a labeled binding nucleic acid molecule that binds to a peanut allergen is a solution containing a polynucleotide (peanut aptamer) consisting of the base sequence of SEQ ID NO: 1 in which the 5 ′ end is biotinylated, It was prepared by mixing with a solution containing streptavidin-labeled luciferase (Streptavidin-Lucia, manufactured by Invivogen).
  • streptavidin-labeled luciferase streptavidin-Lucia, manufactured by Invivogen.
  • 400 pmol of the binding nucleic acid molecule was immobilized per 100 pmol of the streptavidin.
  • the concentration of the bound nucleic acid molecule in the bound nucleic acid molecule solution was 1 pmol / L.
  • the carrier on which the blocking nucleic acid molecule is immobilized is a mixture of the polynucleotide consisting of SEQ ID NO: 3 in which the 5 ′ end is biotinylated and streptavidin labeled beads (manufactured by Invitrogen), and shaken at room temperature for 30 minutes. Thereafter, it was prepared by washing with the SB1T buffer.
  • the carrier on which the blocking nucleic acid molecule was immobilized immobilized (immobilized blocking nucleic acid molecule) immobilized 500 pmol of the blocking nucleic acid molecule per 1 mg of the beads. After the washing, the beads were suspended in the SB1T buffer so as to be 40 mg / mL to prepare a bead solution.
  • the beads are magnetic beads.
  • the concentration of the peanut protein in the reaction solution after mixing the peanut extract 1 with the bound nucleic acid molecule and the beads is a predetermined concentration (0.0004, 0.002, 0.01, 0.05, 0). .25, 1.25, or 6.25 ppm), and diluted with the SB1T buffer to prepare a peanut diluted solution.
  • 4 ⁇ L of the bead solution and 16 ⁇ L of the SB1T buffer solution were added to each well of the U-bottom plate to prepare a diluted bead solution.
  • 25 ⁇ L of the binding nucleic acid molecule solution was added to each well of another U-bottom plate, and 25 ⁇ L of the peanut dilution solution was further added to each well. After the addition, it was incubated at room temperature for 1 minute.
  • 20 ⁇ L of the diluted bead solution was added to each well after the incubation, and the mixture was shaken for 2 minutes at room temperature and 1000 rpm using the shaker.
  • the plate was placed on a magnetic bead separation plate and separated into a fraction of the magnetic beads and a fraction other than the magnetic beads. After the separation, 30 ⁇ L of the supernatant was collected from each well and added to each well of a measurement plate (white half plate, manufactured by Greiner). Further, 30 ⁇ L of the substrate solution was added and then pipetting was performed, and the luminescence amount of each well was measured with a plate reader (Infinite M1000 Pro, manufactured by TECAN). When the enzyme was luciferase, Quanti-Luc (trade name, manufactured by Invivogen) was used as the substrate solution.
  • a polynucleotide consisting of the base sequence of SEQ ID NO: 2 is used, and instead of streptavidin-labeled luciferase, streptavidin-labeled alkaline phosphatase (GE Healthcare) (Manufactured by Bioscience), a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 4 is used instead of the polynucleotide comprising SEQ ID NO: 3, and the predetermined concentration is 0, 0.25, 1, 4, 16
  • the amount of luminescence was measured in the same manner except that CDP-star (Emerald II) (trade name, manufactured by Roche) was used as the substrate solution.
  • FIG. 1 is a graph showing the light emission amount.
  • (A) shows the results when the enzyme is luciferase
  • (B) shows the results when the enzyme is alkaline phosphatase.
  • the horizontal axis represents the peanut protein concentration
  • the vertical axis represents the amount of luminescence.
  • the analysis method and analysis kit of this invention can analyze targets, such as a peanut allergen, rapidly.
  • Example 2 It was confirmed that peanuts in foods can be analyzed by the analysis method and analysis kit of the present invention.
  • the cookie extract, the chocolate extract and the biscuit extract are used, respectively, and derived from each extract in the reaction solution after mixing with the bound nucleic acid molecule and the beads. And the concentration of peanut protein in the reaction solution becomes a predetermined concentration (0.01, 0.05, 0.25, 1.25, or 6.25 ppm). As described above, the amount of luminescence was measured in the same manner as in Example 1 (2) except that the peanut extract 1 was added.
  • FIG. 2 is a graph showing the light emission amount.
  • (A) is the result for the cookie extract
  • (B) is the result for the chocolate extract
  • (C) is the result for the biscuit extract. is there.
  • the horizontal axis represents the peanut protein concentration
  • the vertical axis represents the amount of luminescence.
  • the amount of luminescence increased depending on the peanut protein concentration. From these results, it was found that according to the analysis method and analysis kit of the present invention, peanuts in foods can be analyzed even in foods with a lot of impurities.
  • Example 3 It was confirmed that peanuts can be analyzed using the different carrier and the analysis method and analysis kit of the present invention.
  • Sample A peanut extract 1 was prepared in the same manner as in Example 1 (1).
  • streptavidin-labeled beads streptavidin-labeled agarose beads (Invitrogen) or streptavidin-labeled resin (polystyrene) beads (SA-resin beads, Bio-rad) are used as the enzyme.
  • the amount of luminescence was measured in the same manner as in Example 1 (2) except that the luciferase was used.
  • FIG. 3 is a graph showing the light emission amount.
  • (A) shows the result in the case of agarose beads
  • (B) shows the result in the case of resin beads.
  • the horizontal axis indicates the peanut protein concentration
  • the vertical axis indicates the amount of luminescence.
  • the amount of luminescence increased depending on the peanut protein concentration. It was also found that when resin beads were used, proteins could be detected at a wider concentration. From these results, it was found that according to the analysis method and analysis kit of the present invention, peanuts can be analyzed using any carrier.
  • Example 4 The analysis method and analysis kit of the present invention confirmed that peanuts could be analyzed and that non-specific binding was reduced.
  • Example 1 (1) Sample In the same manner as in Example 1 (1), peanut extract 1 was prepared and the protein concentration was quantified. Moreover, it replaced with the said peanut and prepared soybean extract except having used commercially available soybean (seed), and quantified protein concentration. In addition, it is known that soybean contains a protein having high homology to the peanut allergen.
  • Example 2 Analysis The bound nucleic acid molecule solution was prepared in the same manner as in Example 1 (2).
  • a bead solution was prepared in the same manner as in Example 1 (2) except that the streptavidin-labeled resin beads were used as the streptavidin-labeled beads and the luciferase was used as the enzyme.
  • the protein concentration in the reaction solution after mixing the peanut extract 1 with the binding nucleic acid molecule and the beads is adjusted to a predetermined concentration (0, 1.25, 5, 20 or 80 ppm). Diluted with SB1T buffer to prepare a peanut diluted solution.
  • 40 ⁇ L of the bead solution and 160 ⁇ L of the SB1T buffer solution were added to the tube to prepare a diluted bead solution.
  • the reaction solution after the incubation was filtered using a 5 mL syringe and a filter (pore size: 0.45 ⁇ m), and the filtrate was collected in a measuring container to which 800 ⁇ L of the substrate solution had been added in advance. After the collection, the measurement container was stirred and incubated for 30 seconds to 1 minute. And the luminescence quantity of the measurement sample in the said measurement container was measured using the luminometer (Clean-Trace (trademark), 3M company make). Further, instead of the peanut diluent, the soybean extract is diluted with the SB1T buffer so that the protein concentration in the reaction solution after mixing with the binding nucleic acid molecule and the beads is 80 ppm. The amount of luminescence was measured in the same manner except that the prepared soybean dilution was used.
  • FIG. 4 is a graph showing the light emission amount.
  • the horizontal axis indicates the peanut or soy protein concentration
  • the vertical axis indicates the amount of luminescence.
  • the analysis method and analysis kit of the present invention can analyze a target such as peanut and reduce nonspecific binding.
  • Example 5 It was confirmed that peanuts could be analyzed by the analysis method and analysis kit of the present invention.
  • Example 1 (1) Sample A mixed solution after shaking was prepared in the same manner as in Example 1 (1) except that the peanut powder and the SB1T buffer were mixed and then shaken for 1 minute. The mixture after shaking was centrifuged at 10,000 g at room temperature for 30 minutes. Next, after recovering the supernatant, the supernatant was filtered using a filter (pore size 0.8 ⁇ m) to prepare a peanut extract 2. And about the said peanut extract 2, it carried out similarly to the said Example 1 (1), and quantified the peanut protein density
  • a sample was prepared by diluting the peanut extract 2 with the SB1T buffer so that the peanut protein concentration was a predetermined concentration (0, 1, 10, 100, 1000, or 7700 ppm). After applying 100 ⁇ L of the sample to an aluminum foil, the aluminum foil was wiped with a cotton swab. The swab was brought into contact with 400 ⁇ L of the SB1T buffer and incubated at room temperature for 1 minute to extract the target held on the swab and obtain an extract. 25 ⁇ L of the bound nucleic acid molecule solution was added to 25 ⁇ L of the extract so that the amount of the bound nucleic acid molecule derived from the labeled bound nucleic acid molecule was 1 pmol, and these were mixed at room temperature for 1 minute.
  • the labeled binding nucleic acid molecule was bound to the target peanut allergen.
  • 4 ⁇ L of the bead solution 40 pmol of the blocking nucleic acid molecule
  • the amount of blocking nucleic acid molecule derived from the labeled binding nucleic acid molecule was the same as that of the binding nucleic acid molecule (10 ⁇ mol / L).
  • the immobilized blocking nucleic acid molecule was bound to the bound nucleic acid molecule of the labeled binding nucleic acid molecule that was not bound to the target.
  • the obtained mixed solution was placed in a magnetic holder and separated into a fraction of the magnetic beads and a fraction other than the magnetic beads, and the latter was collected. Then, 30 ⁇ L of the substrate solution (Quanti-Luc (trademark), manufactured by Invivogen) is added to 30 ⁇ L of the supernatant, followed by pipetting, and the amount of luminescence of each sample is measured using a plate reader (Infinite® M1000® Pro, manufactured by TECAN). did.
  • the substrate solution Quanti-Luc (trademark), manufactured by Invivogen
  • FIG. 5 is a graph showing the light emission amount.
  • the horizontal axis represents the peanut protein concentration in the mixed solution after mixing the extract and the bound nucleic acid molecule solution
  • the vertical axis represents the amount of luminescence.
  • the amount of luminescence increased depending on the concentration of peanut protein. From these results, it was found that a target such as peanut can be analyzed by the analysis method and analysis kit of the present invention.
  • Example 6 It was confirmed that peanuts could be analyzed by the analysis method and analysis kit of the present invention.
  • the peanut extract 2 is added to the SB1T buffer so that the peanut protein concentration is a predetermined concentration (0, 0.002, 0.01, 0.05, 0.25, 1.25, or 6.25 ppm). And diluted to prepare a sample. 25 ⁇ L of the bound nucleic acid molecule solution was added to 25 ⁇ L of the sample so that the amount of the bound nucleic acid molecule derived from the labeled bound nucleic acid molecule was 1 pmol, and these were mixed at room temperature for 1 minute. Thereby, the labeled binding nucleic acid molecule was bound to the target peanut allergen.
  • FIG. 6 is a graph showing the light emission amount.
  • the horizontal axis indicates the peanut protein concentration
  • the vertical axis indicates the amount of luminescence.
  • the amount of luminescence increased depending on the concentration of peanut protein. From these results, it was found that a target such as peanut can be analyzed by the analysis method and analysis kit of the present invention.
  • Example 7 It was confirmed that peanuts could be analyzed by the analysis method and analysis kit of the present invention.
  • the peanut extract 2 is added with the SB1T buffer so that the peanut protein concentration becomes a predetermined concentration (0, 0.002, 0.01, 0.05, 0.25, 1.25, 6.25). Diluted and prepared sample. 25 ⁇ L of the bead solution was added to 25 ⁇ L of the sample so that the blocking nucleic acid molecular weight derived from the immobilized blocking nucleic acid molecule was 1 pmol, and these were mixed at room temperature for 1 minute.
  • the bound nucleic acid molecule solution (40 pmol of the bound nucleic acid molecule) is added to this mixed solution so that the amount of bound nucleic acid molecule (10 ⁇ mol / L) is the same as the amount of the blocking nucleic acid molecule derived from the immobilized blocking nucleic acid molecule. And mixed for 4 minutes at room temperature.
  • the labeled binding nucleic acid molecule was bound to the target peanut allergen, and the immobilized blocking nucleic acid molecule was bound to the bound nucleic acid molecule of the labeled binding nucleic acid molecule that was not bound to the target.
  • the obtained mixed solution was placed in a magnetic holder and separated into a fraction of the magnetic beads and a fraction other than the magnetic beads, and the latter was collected. Then, 30 ⁇ L of the substrate solution was added to 3 ⁇ L of the supernatant, followed by pipetting, and the amount of luminescence of each sample was measured with the plate reader.
  • FIG. 7 is a graph showing the light emission amount.
  • the horizontal axis indicates the peanut protein concentration
  • the vertical axis indicates the light emission amount.
  • the amount of luminescence increased depending on the concentration of peanut protein. From these results, it was found that a target such as peanut can be analyzed by the analysis method and analysis kit of the present invention.
  • a target can be analyzed with an excellent analysis sensitivity in an extremely short time of about 3 minutes.
  • the analysis method of the present invention for example, although the mechanism is unknown, non-specific binding of the binding nucleic acid molecule can be suppressed, and thus, for example, a target can be analyzed with excellent analysis accuracy (specificity). .
  • the present invention can be said to be an extremely useful technique for research and examination in various fields such as clinical medicine, food, and environment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Sustainable Development (AREA)
  • Mycology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

新たなターゲット分析方法およびこれに用いるターゲット分析キットを提供する。 本発明のターゲット分析方法は、試料と、ターゲットと結合する標識化結合核酸分子と、前記標識化結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを反応させる工程と、 前記担体の画分と、前記担体以外の画分とを分離する工程と、 前記担体の画分および前記担体以外の画分の少なくとも一方における前記標識化結合核酸分子の標識を検出することにより、前記試料中のターゲットを分析する工程とを含むことを特徴とする。

Description

ターゲット分析方法およびこれに用いるターゲット分析キット
 本発明は、ターゲット分析方法およびこれに用いるターゲット分析キットに関する。
 臨床医療、食品、環境等の様々な分野において、ターゲット分析が行なわれている。前記ターゲットの分析方法としては、例えば、イムノクロマト法を用いた分析方法が知られている。しかしながら、イムノクロマト法による分析時間は、15-20分程度要するため、より迅速化が求められている。
 そこで、本発明は、迅速にターゲットを分析できる新たなターゲット分析方法およびこれに用いるターゲット分析キットを提供することを目的とする。
 本発明のターゲット分析方法(以下、「分析方法」ともいう。)は、試料と、ターゲットと結合する標識化結合核酸分子(以下、「結合核酸分子」ともいう。)と、前記標識化結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを反応させる工程と、
前記担体の画分と、前記担体以外の画分とを分離する工程と、
前記担体の画分および前記担体以外の画分の少なくとも一方における前記標識化結合核酸分子の標識を検出することにより、前記試料中のターゲットを分析する工程を含むことを特徴とする。
 本発明のターゲット分析キット(以下、「分析キット」ともいう。)は、ターゲットと結合する標識化結合核酸分子と、前記標識化結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを含み、
前記本発明のターゲット分析方法に使用することを特徴とする。
 本発明のターゲット分析方法およびこれに用いる分析キットによれば、ターゲットを迅速に分析できる。
図1は、実施例1における発光量を示すグラフである。 図2は、実施例2における発光量を示すグラフである。 図3は、実施例3における発光量を示すグラフである。 図4は、実施例4における発光量を示すグラフである。 図5は、実施例5における発光量を示すグラフである。 図6は、実施例6における発光量を示すグラフである。 図7は、実施例7における発光量を示すグラフである。
 本発明の分析方法は、例えば、前記試料と、前記標識化結合核酸分子とを反応させる工程と、前記試料および前記標識化結合核酸分子の混合物と、前記担体とを反応させる工程とを含む。
 本発明の分析方法および分析キットは、例えば、前記ブロッキング核酸分子が、前記標識化結合核酸分子に相補的な塩基配列を含む核酸分子である。
 本発明の分析方法および分析キットは、例えば、前記ブロッキング核酸分子が、前記標識化結合核酸分子における前記ターゲットと結合する塩基配列に相補的な塩基配列を含む核酸分子である。
 本発明の分析方法および分析キットは、例えば、前記ブロッキング核酸分子の塩基長が、前記標識化結合核酸分子の塩基長に対して、1/1~1/20の範囲の塩基長である。
 本発明の分析方法および分析キットは、例えば、前記ブロッキング核酸分子が、前記標識化結合核酸分子の塩基配列に対して、5~100%の範囲の相補性を有する塩基配列からなるポリヌクレオチドを含む核酸分子である。
 本発明の分析方法および分析キットは、例えば、前記標識化結合核酸分子が、下記(a)のポリヌクレオチドを含む。
(a)下記(a1)のポリヌクレオチド
(a1)配列番号1または2の塩基配列からなるポリヌクレオチド
 本発明の分析方法および分析キットは、例えば、前記ブロッキング核酸分子が、下記(b)のポリヌクレオチドを含む。
(b)下記(b1)のポリヌクレオチド
(b1)配列番号3または4の塩基配列からなるポリヌクレオチド
 本発明の分析方法および分析キットは、例えば、前記担体が、ビーズであり、好ましくは、ポリスチレン製ビーズである。前記ビーズが、例えば、磁性ビーズである。
 本発明の分析方法は、例えば、磁性体により前記磁性ビーズを分離することで、前記磁性ビーズの画分と前記磁性ビーズ以外の画分とを分離する。
 本発明の分析方法は、例えば、前記標識が、酵素であり、
前記担体の画分および前記担体以外の画分の少なくとも一方における前記標識化結合核酸分子の酵素反応を検出し、好ましくは、前記酵素の基質の存在下、前記酵素反応を検出する。
 本発明の分析方法は、例えば、前記酵素が、ルシフェラーゼである。
 本発明の分析方法は、例えば、前記試料が、食品由来試料である。
 本発明の分析方法および分析キットは、例えば、前記ターゲットが、ピーナッツアレルゲンである。前記ピーナッツアレルゲンが、例えば、コンアラキン(conarachin)またはそのサブユニットである。前記サブユニットが、例えば、Ara h1である。
 本発明の分析方法および分析キットは、例えば、前記ピーナッツアレルゲンが、未変性アレルゲンまたは加熱変性アレルゲンである。
 本発明の分析キットは、例えば、前記標識が、酵素であり、好ましくは、ルシフェラーゼである。
 本発明の分析キットは、例えば、さらに、前記酵素の基質を含む。
<ターゲット分析方法>
 本発明のターゲット分析方法は、前述のように、試料と、ターゲットと結合する標識化結合核酸分子と、前記標識化結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを反応させる工程(反応工程)と、前記担体の画分と、前記担体以外の画分とを分離する工程(分離工程)と、前記担体の画分および前記担体以外の画分の少なくとも一方における前記標識化結合核酸分子の標識を検出することにより、前記試料中のターゲットを分析する工程(分析工程)とを含むことを特徴とする。
 本発明の分析方法は、前記標識化結合核酸分子および前記ブロッキング核酸分子が固定化された担体を用い、前記反応工程、前記分離工程、および前記分析工程を行うことが特徴であり、その他の工程および条件は、特に制限されない。本発明の分析方法によれば、例えば、3分程度と極めて短時間で、且つ優れた分析感度でターゲットを分析できる。また、本発明の分析方法によれば、例えば、メカニズムは不明であるが、前記結合核酸分子の非特異的な結合を抑制できるため、例えば、優れた分析精度(特異性)でターゲットを分析できる。
 本発明の分析方法は、例えば、前記試料中のターゲットの有無を分析する定性分析であってもよいし、前記試料中のターゲットの程度(例えば、量)を分析する定量分析であってもよい。
 本発明の分析方法において、分析に供する試料は、特に制限されず、例えば、食品由来試料等があげられる。前記食品由来試料は、例えば、食品、食品原料、食品添加物、食品加工場または調理場等における付着物、洗浄後の洗浄液等があげられる。前記試料の形態は、特に制限されず、例えば、液体試料でもよいし、固体試料でもよい。前記固体試料の場合、例えば、溶媒を用いて、混合液、抽出液、溶解液等を調製し、これを前記試料として使用してもよい。前記溶媒は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。前記試料は、例えば、前記ターゲットを含む試料でもよいし、前記ターゲットを含まない試料でもよいし、ターゲットを含むか不明の試料であってもよい。
 前記ターゲットは、特に制限されず、任意のターゲットとできる。前記試料が食品由来試料の場合、前記ターゲットは、例えば、食物アレルゲンがあげられ、具体例として、ピーナッツアレルゲン、小麦アレルゲン、乳アレルゲン、卵アレルゲン、そばアレルゲン、エビアレルゲン、ダイズアレルゲン等があげられる。前記ピーナッツアレルゲンは、例えば、ピーナッツの主要アレルゲンである、コンアラキン(conarachin)またはそのサブユニット、またはそのドメインがあげられる。コンアラキンは、例えば、コンアラキンIおよびコンアラキンII(α-コンアラキン)である。前記コンアラキンのサブユニットは、例えば、Ara h1、Ara h2、Ara h6があげられる。前記小麦アレルゲンは、例えば、グルテニン、グルテン、グリアジン、グリアジンω5、これらのサブユニット、またはこれらのドメインがあげられる。前記乳アレルゲンは、例えば、カゼイン、αカゼイン、s1カゼイン、βラクトグロブリン、これらのサブユニット、またはこれらのドメインがあげられる。前記卵アレルゲンは、例えば、卵の主要アレルゲンである、オボムコイド、オボトランスフェリン(Ovotransferrin)、これらサブユニット、またはこれらドメインがあげられる。前記そばアレルゲンは、例えば、Fage 2、そのサブユニット、またはそのドメインがあげられる。前記エビアレルゲンは、例えば、エビの主要アレルゲンであるトロポミオシン、そのサブユニット、またはそのドメインがあげられる。具体例として、前記トロポミオシンは、例えば、Pen a 1、Pen i 1、Met e 1等があげられる。前記ダイズアレルゲンは、例えば、ダイズの主要アレルゲンである、β-コングリシニン(β-conglycinin)、そのサブユニット、またはそのドメインがあげられる。前記アレルゲンは、例えば、未変性アレルゲンでもよいし、加熱変性アレルゲンでもよい。
 前記標識化結合核酸分子は、ターゲットに結合し、且つ標識された核酸分子である。前記結合核酸分子は、特に制限されず、例えば、前記ターゲットに結合するアプタマー等があげられる。前記結合核酸分子と、前記ターゲットとの結合は、例えば、表面プラズモン共鳴分子相互作用(SPR;Surface Plasmon resonance)解析等により確認できる。前記解析は、例えば、ProteON(商品名、BioRad社製)が使用できる。
 前記ターゲットがピーナッツアレルゲンである場合、前記結合核酸分子は、例えば、ダイズタンパク質と比較し、前記ピーナッツアレルゲンに対して有意に特異的に結合する核酸分子であることが好ましい。
 具体例として、前記ピーナッツアレルゲンと結合する結合核酸分子は、例えば、下記(a)のポリヌクレオチドを含む核酸分子があげられる。
(a)下記(a1)~(a3)および(a4)からなる群から選択された少なくとも1つのポリヌクレオチド
(a1)配列番号1または2の塩基配列からなるポリヌクレオチド
(a2)前記(a1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、ピーナッツアレルゲンに結合するポリヌクレオチド
(a3)前記(a1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、ピーナッツアレルゲンに結合するポリヌクレオチド
(a4)前記(a1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、ピーナッツアレルゲンに結合するポリヌクレオチド
 前記(a1)のポリヌクレオチドは、前記配列番号1または2の塩基配列からなるポリヌクレオチドである。
ピーナッツ結合核酸分子1(配列番号1)
5’-GGATATTGCCTCGCCACAGTTAAGTCAGGTGGTTGGTTATGGTTGGGACTGACTCTCTACAGGGAACGCTCGGATTATC-3’
ピーナッツ結合核酸分子2(配列番号2)
5’-GGTAAGGTCCTCAGTCCTCGATTAGCTATCCTCCCGTTTCCTCTACTTTCTGCGTGATCACGGCGGCTCTCATTAC-3’
 前記(a2)において、「1もしくは数個」は、例えば、前記(a2)のポリヌクレオチドが、ピーナッツアレルゲンに結合する範囲であればよい。前記「1もしくは数個」は、前記(a1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。本発明において、塩基数および配列数等の個数の数値範囲は、例えば、その範囲に属する正の整数を全て開示するものである。つまり、例えば、「1~5塩基」との記載は、「1、2、3、4、5塩基」の全ての開示を意味する(以下、同様)。
 前記(a3)において、「同一性」は、例えば、前記(a3)のポリヌクレオチドが、ピーナッツアレルゲンに結合する範囲であればよい。前記同一性は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。前記同一性は、例えば、BLAST、FASTA等の解析ソフトウェアを用いて、デフォルトのパラメータにより算出できる(以下、同様)。
 前記(a4)において、「ハイブリダイズ可能なポリヌクレオチド」は、例えば、前記(a1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記ハイブリダイゼーションアッセイは、特に制限されず、例えば、ザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載されている方法を採用することもできる。
 前記(a4)において、「ストリンジェントな条件」は、例えば、低ストリンジェントな条件、中ストリンジェントな条件、高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。ストリンジェンシーの程度は、当業者であれば、例えば、温度、塩濃度、プローブの濃度および長さ、イオン強度、時間等の条件を適宜選択することで、設定可能である。「ストリンジェントな条件」は、例えば、前述したザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載の条件を採用することもできる。
 本発明において、ある配列に対して他の配列が相補的であるとは、例えば、両者間でアニーリングが生じ得る配列であることを意味する。前記(a4)において、相補的とは、例えば、2種類の配列をアラインメントした際の相補性が、例えば、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上であり、好ましくは100%、すなわち完全相補である。また、ある配列に対して他の配列が相補的であるとは、一方の5’側から3’側に向かう配列と、他方の3’側から5’側に向かう配列とを対比させた際に、互いの塩基が相補的であることを意味する。
 前記結合核酸分子は、例えば、前記(a1)~(a4)のいずれかのポリヌクレオチドの塩基配列を1つ含んでもよいし、前記ポリヌクレオチドの塩基配列を複数含んでもよい。後者の場合、複数のポリヌクレオチドが連結して、一本鎖のポリヌクレオチドを形成していることが好ましい。前記複数のポリヌクレオチドは、例えば、それぞれが直接的に連結してもよいし、リンカーを介して、それぞれが間接的に連結してもよい。前記リンカーについては、後述する。前記ポリヌクレオチドは、それぞれの末端において、直接的または間接的に連結していることが好ましい。前記複数のポリヌクレオチドは、例えば、同じでもよいし、異なってもよい。前記複数のポリヌクレオチドは、例えば、同じであることが好ましい。前記ポリヌクレオチドを複数含む場合、前記ポリヌクレオチドの数は、特に制限されず、例えば、2以上であり、具体的には、例えば、2~20、2~10、2または3である。
 前記標識化結合核酸分子は、例えば、標識物質により標識されている。前記標識物質は、特に制限されず、例えば、酵素、蛍光物質、色素、同位体等があげられる。前記酵素は、特に制限されず、例えば、例えば、ルシフェラーゼ、アルカリフォスファターゼ、ペルオキシダーゼ、β-ガラクトシダーゼ、グルクロニダーゼ等があげられ、分析感度が向上することから、好ましくは、ルシフェラーゼである。前記蛍光物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy(登録商標)3色素、Cy(登録商標)5色素、FAM色素、ローダミン色素、テキサスレッド色素、JOE、MAX、HEX、TYE等の蛍光団があげられ、前記色素は、例えば、Alexa(登録商標)488、Alexa(登録商標)647等のAlexa色素等があげられる。
 前記標識物質は、例えば、前記結合核酸分子の5’末端および3’末端の少なくとも一方に結合していることが好ましく、より好ましくは5’末端である。前記標識物質は、例えば、前記結合核酸分子に直接的に連結してもよいし、リンカーを介して、間接的に連結してもよい。
 前記リンカーは、特に制限されず、例えば、非核酸分子または核酸分子があげられる。前者の場合、前記非核酸分子は、例えば、アビジン-ビオチン、アミノ基を有する分子-カルボキシル基を有する分子の組合せ等があげられる。後者の場合、前記リンカーの構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基等があげられる。前記リンカーは、特に制限されず、例えば、デオキシリボヌクレオチド残基からなるDNA、リボヌクレオチド残基を含むDNA等のポリヌクレオチドがあげられる。前記リンカーの具体例として、例えば、ポリデオキシチミン(ポリdT)、ポリデオキシアデニン(ポリdA)、AとTの繰り返し配列であるポリdAdT等があげられ、好ましくはポリdT、ポリdAdTである。前記リンカーの長さは、特に制限されず、例えば、1~200塩基長、1~20塩基長、3~12塩基長、5~9塩基長である。
 前記ブロッキング核酸分子は、前記結合核酸分子に結合する核酸分子である。前記ブロッキング核酸分子は、例えば、前記ターゲットと前記結合核酸分子との結合を阻害する核酸分子である。前記ブロッキング核酸分子は、例えば、前記結合核酸分子に特異的に結合する核酸分子があげられ、具体例として、前記結合核酸分子に相補的な塩基配列を含む核酸分子があげられる。前記ブロッキング核酸分子は、例えば、前記結合核酸分子に完全または部分的に相補的である。具体的に、後者の場合、前記ブロッキング核酸分子は、例えば、前記結合核酸分子の塩基配列に対して、5~100%、5~50%、5~20%の範囲の相補性を有する塩基配列からなるポリヌクレオチドを含む核酸分子があげられる。
 前記ブロッキング核酸分子は、例えば、前記結合核酸分子の3’端側の塩基配列、5’端側の塩基配列、またはそれ以外の領域の塩基配列に対し、相補的な塩基配列があげられる。前記3’端側の塩基配列は、例えば、前記結合核酸分子の3’端の塩基から連続的または非連続的な塩基配列である。また、前記5’端側の塩基配列は、例えば、前記結合核酸分子の5’端の塩基から連続的または非連続的な塩基配列である。前記ブロッキング核酸分子の固定化方法は、特に制限されず、公知の核酸分子の固定化方法が使用できる。
 前記ブロッキング核酸分子は、例えば、前記標識化結合核酸分子における前記ターゲットと結合する塩基配列(結合配列)に相補的な塩基配列を含む核酸分子であることが好ましい。前記ブロッキング核酸分子は、例えば、前記結合配列に完全に相補的でもよいし、部分的に相補的でもよい。前記標識化結合核酸分子において、前記結合配列は、特に制限されず、前記結合核酸分子の塩基配列に応じて、適宜決定できる。前記結合核酸分子が配列番号1の塩基配列からなるポリヌクレオチドの場合、前記結合配列は、例えば、前記配列番号1の塩基配列における下線で示した塩基配列があげられる。前記結合核酸分子が配列番号2の塩基配列からなるポリヌクレオチドの場合、前記結合配列は、例えば、前記配列番号2の塩基配列における下線で示した塩基配列があげられる。
 前記結合核酸分子の塩基長と前記ブロッキング核酸分子との塩基長との比は、特に制限されない。前記ブロッキング核酸分子の塩基長が、前記標識化結合核酸分子の塩基長に対して、例えば、1/1~1/20の範囲の塩基長である。
 具体例として、前記結合核酸分子が前記(a)のポリヌクレオチドを含む核酸分子の場合、前記ブロッキング核酸分子は、例えば、下記(b)のポリヌクレオチドを含む核酸分子があげられる。下記(b2)~(b4)は、例えば、前記(a1)~(a3)および(a4)からなる群から選択された少なくとも1つのポリヌクレオチドに結合する(ハイブリダイズする)ポリヌクレオチドである。
(b)下記(b1)~(b3)および(b4)からなる群から選択された少なくとも1つのポリヌクレオチド
(b1)配列番号3または4の塩基配列からなるポリヌクレオチド
(b2)前記(b1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド
(b3)前記(b1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド
(b4)前記(b1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド
 前記(b1)のポリヌクレオチドは、前記配列番号3または4の塩基配列からなるポリヌクレオチドである。
相補鎖1(配列番号3)
5’-AAAAAAAAAAAAAAAAAAAATAGAGAGTCAGTCCCAACCA-3’
相補鎖2(配列番号4)
5’-AAAAAAAAAAAAAAAAAAAAAGTAGAGGAAACGGGAGGAT-3’
 前記(b2)において、「1もしくは数個」は、例えば、前記(b2)のポリヌクレオチドが、前記(a1)~(a3)および(a4)からなる群から選択された少なくとも1つのポリヌクレオチドに結合する範囲であればよい。前記「1もしくは数個」は、前記(b1)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。
 前記(b3)において、「同一性」は、例えば、前記(b3)のポリヌクレオチドが、前記(a1)~(a3)および(a4)からなる群から選択された少なくとも1つのポリヌクレオチドに結合する範囲であればよい。前記同一性は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(b4)において、「ハイブリダイズ可能なポリヌクレオチド」は、例えば、前記(b1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズおよびストリンジェントな条件は、例えば、前述の説明を援用できる。
 前記ブロッキング核酸分子は、例えば、前記(b1)~(b4)のいずれかのポリヌクレオチドの塩基配列を1つ含んでもよいし、前記ポリヌクレオチドの塩基配列を複数含んでもよい。後者の場合、複数のポリヌクレオチドが連結して、一本鎖のポリヌクレオチドを形成していることが好ましい。前記複数のポリヌクレオチドは、例えば、それぞれが直接的に連結してもよいし、リンカーを介して、それぞれが間接的に連結してもよい。前記リンカーについては、例えば、前述の説明を援用できる。前記ポリヌクレオチドは、それぞれの末端において、直接的または間接的に連結していることが好ましい。前記複数のポリヌクレオチドは、例えば、同じでもよいし、異なってもよい。前記複数のポリヌクレオチドは、例えば、同じであることが好ましい。前記ポリヌクレオチドを複数含む場合、前記ポリヌクレオチドの数は、特に制限されず、例えば、2以上であり、具体的には、例えば、2~20、2~10、2または3である。前記結合核酸分子が前記(a)のポリヌクレオチドを複数含む場合、前記ブロッキング核酸分子が含む(b)のポリヌクレオチドの数は、例えば、前記結合核酸分子が含む(a)のポリヌクレオチドの数と同じでもよいし、異なってもよいが、好ましくは、前者である。
 前記(a)のポリヌクレオチドと前記(b)のポリヌクレオチドとの組合せは、特に制限されず、例えば、下記(a1)および(b1)のポリヌクレオチドが下記組合せの場合の対応する(a)のポリヌクレオチドと(b)のポリヌクレオチドとの組合せがあげられる。
前記(a1)の配列番号1の塩基配列からなるポリヌクレオチドと、前記(b1)の配列番号3の塩基配列からなるポリヌクレオチドとの組合せ
前記(a1)の配列番号2の塩基配列からなるポリヌクレオチドと、前記(b1)の配列番号4の塩基配列からなるポリヌクレオチドとの組合せ
 前記担体は、前述のように、前記ブロッキング核酸分子が固定化されている。前記担体は、特に制限されず、例えば、ビーズ、プレート、容器等があげられる。前記担体の素材は、特に制限されない。前記担体は、例えば、ポリスチレン製担体、シリカ製担体、アガロース製担体、ガラス製担体、アクリル樹脂製担体、ポリビニルアルコール樹脂製担体、ポリカーボネート製担体等があげられ、分析感度が向上することから、好ましくは、ポリスチレン製担体である。前記担体の大きさは、特に制限されない。前記担体の形状は、特に制限されず、前記担体がビーズの場合、その形状は、例えば、楕円、真円等の球状があげられる。
 前記ブロッキング核酸分子は、例えば、5’末端および3’末端のいずれかで前記担体に固定化されてもよく、好ましくは、5’末端である。前記ブロッキング核酸分子は、例えば、直接的に前記担体に固定化してもよいし、間接的に前記担体に固定化してもよい。後者の場合、例えば、前記リンカーを介して前記担体に固定化することが好ましい。前記リンカーは、例えば、前述の説明を援用できる。
 つぎに、各工程について説明する。以下の各工程は、例えば、前記試料、前記結合核酸分子、前記担体等を含む反応系で実施できる。前記反応系は、例えば、液体中で反応が実施される液体系であることが好ましい。前記液体は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。
 前記反応工程は、前述のように、試料とターゲットと結合する標識化結合核酸分子と、前記結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを反応させる工程である。前記反応工程において、前記試料と、前記標識化結合核酸分子と、前記担体との反応順序は、特に制限されず、例えば、下記(x1)~(x3)があげられる。
(x1)前記試料と前記標識化結合核酸分子とを反応させ、さらに、前記試料と前記標識化結合核酸分子との混合物を、前記担体と反応させる。
(x2)前記標識化結合核酸分子と前記担体とを反応させ、さらに、前記標識化結合核酸分子と前記担体との混合物を、前記試料と反応させる。
(x3)前記試料と、前記結合核酸分子と、前記担体とを一度に反応させる。
 前記反応工程において、反応条件は、特に制限されない。反応温度は、例えば、4~37℃、18~25℃であり、反応時間は、例えば、1~30分、1~5分である。前記反応工程が前記(x1)または前記(x2)の順序の場合、1回目の反応の反応時間は、例えば、0~0.5分、0~1分であり、2回目の反応の反応時間は、例えば、1~30分、1~3分である。
 つぎに、前記分離工程は、前記担体の画分と、前記担体以外の画分とを分離する工程である。前記担体の画分と、前記担体以外の画分との分離方法は、特に制限されず、例えば、公知の固液分離方法により実施できる。具体例として、前記分離方法は、例えば、ろ過処理、膜分離処理、遠心分離処理、沈殿処理等があげられる。前記ろ過処理および前記膜分離処理の場合、前記分離方法は、例えば、加圧することにより、前記ろ過処理および前記膜分離処理を促進してもよい。前記担体が磁性担体である場合、磁性体により前記磁性担体を分離することで、前記磁性担体の画分と前記磁性担体以外の画分とを分離してもよい。前記分離方法は、1種類を用いてもよいし、2種類以上を併用してもよい。
 本発明において、前記分離工程は、さらに、前記担体の画分および前記担体以外の画分の少なくとも一方の画分を回収する工程を含んでもよい。回収する画分は、例えば、後述する分析工程において、分析に供する画分に応じて適宜決定できる。
 前記分離工程において、前記ろ過処理または前記膜分離処理により分離する場合、例えば、ろ材または膜を通過させることにより、前記担体の画分と前記担体以外の画分とを分離でき、さらに、例えば、前記ろ材または膜を通過した画分を、前記担体以外の画分として、ろ材または膜を通過しなかった画分を、前記担体の画分として回収できる。前記ろ材および膜の孔径は、特に制限されず、例えば、前記担体の大きさに応じて適宜設定でき、具体的には、前記担体の画分と前記担体以外の画分とを分離できる孔径であればよい。また、前記遠心分離処理または沈殿処理により分離する場合、例えば、遠心処理または沈殿処理により、前記担体の画分と前記担体以外の画分とを分離でき、さらに、例えば、得られた沈殿物を、前記担体の画分として、前記沈殿物以外の画分を、前記担体以外の画分として回収できる。また、前記分離工程において、前記担体以外の画分を回収する場合、例えば、前記担体以外の画分の全てを回収してもよいし、その一部を回収してもよい。
 そして、前記分析工程は、前記担体の画分および前記担体以外の画分の少なくとも一方における前記標識化結合核酸分子の標識を検出することにより、前記試料中のターゲットを分析する工程である。前記分析工程において、分析に供する画分は、例えば、前記担体の画分または前記担体以外の画分でもよいし、両者でもよいが、分析感度が向上することから、前記担体以外の画分が好ましい。両者の場合、前記担体の画分および前記担体以外の画分を、それぞれ回収し、それぞれについて、分析に供することが好ましい。
 前記分析工程において前記標識の検出は、特に制限されず、例えば、前記標識の種類に応じて、適宜決定できる。具体例として、前記標識が酵素の場合、前記標識の検出は、例えば、酵素反応の検出であり、より具体的には、前記酵素反応により生じる光学シグナル、電気シグナル等の検出である。前記光学シグナルは、例えば、発光、蛍光、発色等を目視観察で検出してもよいし、発光強度、蛍光強度、吸光度、反射率等をシグナルとして、光学的手法で検出することもできる。前記電気シグナルは、例えば、電流等があげられる。前記電気シグナルは、例えば、電気的手法により検出できる。前記酵素反応は、特に制限されず、例えば、酸化還元反応等があげられる。前記標識が蛍光物質の場合、前記標識の検出は、例えば、前記蛍光物質に起因する蛍光の検出である。前記標識が同位体の場合、前記標識の検出は、例えば、前記同位体に起因する放射線シグナルの検出である。前記放射線シグナルは、例えば、α線、β線、γ線、陽電子線、X線等の蛍光作用、電離作用等を光学的または電気的手法により検出できる。
 前記分析工程において、前記酵素反応を検出する場合、前記分析工程は、前記酵素の基質の存在下、前記酵素反応を検出することが好ましい。前記基質は、特に制限されず、例えば、前記酵素の種類に応じて適宜決定できる。具体例として、前記酵素がルシフェラーゼの場合、前記基質は、例えば、ルシフェリン、セレンテラジン等があげられる。
 本発明の分析方法は、さらに、分析工程における検出結果から、前記試料中の前記ターゲットの濃度を算出する算出工程を含んでもよい。前記検出結果は、例えば、光学シグナル、電気シグナル等があげられる。前記算出工程において、前記ターゲットの濃度は、例えば、検出結果と、検出結果および試料中の前記ターゲットの濃度の相関関係とに基づき、算出できる。前記相関関係は、例えば、前記ターゲットの濃度が既知である標準試料について、前記本発明の分析方法により得られた検出結果と、前記標準試料の前記ターゲットの濃度とをプロットすることにより求めることができる。前記標準試料は、前記ターゲットの希釈系列が好ましい。このように算出を行うことによって、信頼性の高い定量が可能となる。
 本発明の分析方法において、前記結合核酸分子および前記ブロッキング核酸分子の構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基があげられる。前記ポリヌクレオチドは、例えば、デオキシリボヌクレオチド残基からなるDNA、デオキシリボヌクレオチド残基およびリボヌクレオチド残基を含むDNAであり、さらに、非ヌクレオチド残基を含んでもよい。後者の場合、「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~91個、1~30個、1~15個、1~7個、1~3個、1または2個である。
 前記ポリヌクレオチドは、修飾塩基を含んでもよい。前記修飾塩基は、特に制限されず、例えば、天然塩基(非人工塩基)が修飾された塩基があげられ、前記天然塩基と同様の機能を有することが好ましい。前記天然塩基は、特に制限されず、例えば、プリン骨格を有するプリン塩基、ピリミジン骨格を有するピリミジン塩基等があげられる。前記プリン塩基は、特に制限されず、例えば、アデニン(a)、グアニン(g)があげられる。前記ピリミジン塩基は、特に制限されず、例えば、シトシン(c)、チミン(t)、ウラシル(u)等があげられる。前記塩基の修飾部位は、特に制限されない。前記塩基がプリン塩基の場合、前記プリン塩基の修飾部位は、例えば、前記プリン骨格の7位および8位があげられる。前記塩基がピリミジン塩基の場合、前記ピリミジン塩基の修飾部位は、例えば、前記ピリミジン骨格の5位および6位があげられる。前記ピリミジン骨格において、4位の炭素に「=O」が結合し、5位の炭素に「-CH」または「-H」以外の基が結合している場合、修飾ウラシルまたは修飾チミンということができる。
 前記修飾塩基の修飾基は、特に制限されず、例えば、メチル基、フルオロ基、アミノ基、チオ基、下記式(1)のベンジルアミノカルボニル基(benzylaminocarbonyl)、下記式(2)のトリプタミノカルボニル基(tryptaminocarbonyl)およびイソブチルアミノカルボニル基(isobutylaminocarbonyl)等があげられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 前記修飾塩基は、特に制限されず、例えば、アデニンが修飾された修飾アデニン、チミンが修飾された修飾チミン、グアニンが修飾された修飾グアニン、シトシンが修飾された修飾シトシンおよびウラシルが修飾された修飾ウラシル等があげられ、前記修飾チミン、前記修飾ウラシルおよび前記修飾シトシンが好ましい。
 前記修飾アデニンの具体例としては、例えば、7’-デアザアデニン等があげられる。
 前記修飾グアニンの具体例としては、例えば、7’-デアザグアニン等があげられる。
 前記修飾チミンの具体例としては、例えば、5’-ベンジルアミノカルボニルチミン、5’-トリプタミノカルボニルチミン、5’-イソブチルアミノカルボニルチミン等があげられる。
 前記修飾ウラシルの具体例としては、例えば、5’-ベンジルアミノカルボニルウラシル(BndU)、5’-トリプタミノカルボニルウラシル(TrpdU)および5’-イソブチルアミノカルボニルウラシル等があげられる。
 前記ポリヌクレオチドは、例えば、いずれか1種類の前記修飾塩基のみを含んでもよいし、2種類以上の前記修飾塩基を含んでもよい。
 前記修飾塩基の個数は、特に制限されない。前記ポリヌクレオチドにおいて、前記修飾塩基の個数は、特に制限されない。前記修飾塩基は、前記ポリヌクレオチドにおいて、例えば、1~100個、1~90個、1~80個、1~70個、1~60個、1~40個、1~20個、1~10個、1~5個であり、また、全ての塩基が、前記修飾塩基でもよい。前記修飾塩基の個数は、例えば、いずれか1種類の前記修飾塩基の個数であってもよいし、2種類以上の前記修飾塩基の個数の合計であってもよい。
 前記ポリヌクレオチドが前記修飾塩基を含む場合、前記修飾塩基の割合は、特に制限されない。前記修飾塩基の割合は、前記ポリヌクレオチドの全塩基数のうち、例えば、1/100以上、1/40以上、1/20以上、1/10以上、1/4以上、1/3以上である。前記修飾塩基の割合を分数で示すが、これを満たす全塩基数と修飾塩基数とは、それぞれ正の整数である。
 前記結合核酸分子および前記ブロッキング核酸分子は、例えば、修飾ヌクレオチドを含んでもよい。前記修飾ヌクレオチドは、前述の前記修飾塩基を有するヌクレオチドでもよいし、糖残基が修飾された修飾糖を有するヌクレオチドでもよいし、前記修飾塩基および前記修飾糖を有するヌクレオチドでもよい。
 前記糖残基は、特に制限されず、例えば、デオキシリボース残基またはリボース残基があげられる。前記糖残基における修飾部位は、特に制限されず、例えば、前記糖残基の2’位または4’位があげられ、いずれか一方でも両方が修飾されてもよい。前記修飾糖の修飾基は、例えば、メチル基、フルオロ基、アミノ基、チオ基等があげられる。
 前記修飾ヌクレオチド残基において、塩基がピリミジン塩基の場合、例えば、前記糖残基の2’位および/または4’位が修飾されていることが好ましい。前記修飾ヌクレオチド残基の具体例は、例えば、デオキシリボース残基またはリボース残基の2’位が修飾された、2’-メチル化-ウラシルヌクレオチド残基、2’-メチル化-シトシンヌクレオチド残基、2’-フルオロ化-ウラシルヌクレオチド残基、2’-フルオロ化-シトシンヌクレオチド残基、2’-アミノ化-ウラシルヌクレオチド残基、2’-アミノ化-シトシンヌクレオチド残基、2’-チオ化-ウラシルヌクレオチド残基、2’-チオ化-シトシンヌクレオチド残基等があげられる。
 前記修飾ヌクレオチドの個数は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~100個、1~90個、1~80個、1~70個である。また、前記ポリヌクレオチドを含む前記結合核酸分子および前記ブロッキング核酸分子の全長における前記修飾ヌクレオチドも、特に制限されず、具体的には、例えば、前述の範囲と同様である。
 前記結合核酸分子および前記ブロッキング核酸分子は、例えば、1もしくは数個の人工核酸モノマー残基を含んでもよい。前記「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~100個、1~50個、1~30個、1~10個である。前記人工核酸モノマー残基は、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、ENA(2’-O,4’-C-Ethylenebridged Nucleic Acids)等があげられる。前記モノマー残基における核酸は、例えば、前述と同様である。
 前記結合核酸分子および前記ブロッキング核酸分子は、例えば、さらに付加配列を有してもよい。前記付加配列は、例えば、前記結合核酸分子の標識化されていない末端および前記ブロッキング核酸分子が固定化されていない末端の少なくとも一方に結合している。前記付加配列は、特に制限されない。前記付加配列の長さは、特に制限されず、例えば、1~200塩基長、1~50塩基長、1~25塩基長、18~24塩基長である。前記付加配列の構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基等があげられる。前記付加配列は、特に制限されず、例えば、デオキシリボヌクレオチド残基からなるDNA、リボヌクレオチド残基を含むDNA等のポリヌクレオチドがあげられる。前記付加配列の具体例として、例えば、ポリdT、ポリdA等があげられる。
 本発明の分析方法において、前記結合核酸分子および前記ブロッキング核酸分子の製造方法は、特に制限されず、例えば、化学合成を利用した核酸合成方法等、遺伝子工学的手法、公知の方法により合成できる。また、前記結合核酸分子は、例えば、ターゲットを用い、いわゆるSELEX法によっても得ることができる。
<ターゲット分析キット>
 本発明のターゲット分析キットは、前述のように、ターゲットと結合する標識化結合核酸分子と、前記標識化結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを含み、前記本発明のターゲット分析方法に使用することを特徴とする。本発明の分析キットは、前記標識化結合核酸分子と前記担体とを含み、前記本発明の分析方法に使用することが特徴であり、その他の構成および条件は、特に制限されない。本発明の分析キットは、例えば、前記本発明の分析方法の説明を援用できる。本発明のターゲット分析キットによれば、例えば、前記本発明の分析方法を簡便に実施できる。また、本発明の分析キットによれば、例えば、3分程度と極めて短時間で、且つ優れた分析感度でターゲットを分析できる。本発明の分析キットによれば、例えば、前記結合核酸分子の非特異的な結合を抑制できるため、例えば、優れた分析精度でターゲットを分析できる。
 本発明の分析キットにおいて、前記結合核酸分子および前記担体は、例えば、それぞれ別個の容器に収容されてもよいし、同一の容器に混合または未混同で収容されてもよい。後者の場合、本発明の分析キットは、例えば、分析試薬ということもできる。
 前記本発明の分析キットは、例えば、さらに、その他の構成要素を含んでもよい。前記構成要素は、例えば、前記基質、緩衝液等の試薬、使用説明書等があげられる。前記試薬は、例えば、前記結合核酸分子および前記担体と、別個の容器に収容されてもよいし、いずれかと同一の容器に混合または未混同で収容されてもよい。前記基質は、例えば、前記結合核酸分子および前記担体と、別個の容器に収容されている。
<ピーナッツ結合核酸分子>
 本発明のピーナッツ結合核酸分子は、下記(c1)~(c3)および(c4)からなる群から選択された少なくとも1つのポリヌクレオチド(以下、「(c)のポリヌクレオチド」ともいう。)を含むことを特徴とする。
(c1)配列番号1、2、5、および6のいずれかの塩基配列からなるポリヌクレオチド
(c2)前記(c1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、ピーナッツアレルゲンに結合するポリヌクレオチド
(c3)前記(c1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、ピーナッツアレルゲンに結合するポリヌクレオチド
(c4)前記(c1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、ピーナッツアレルゲンに結合するポリヌクレオチド
 本発明のピーナッツ結合核酸分子は、例えば、前記本発明のターゲットの分析方法の説明を援用できる。本発明のピーナッツ結合核酸分子によれば、例えば、ピーナッツアレルゲンを分析できる。
 前記(c1)のポリヌクレオチドは、前記配列番号1、2、5、および6のいずれかの塩基配列からなるポリヌクレオチドである。
ピーナッツ結合核酸分子3(配列番号5)
5’-AGTTAAGTCAGGTGGTTGG-3’
ピーナッツ結合核酸分子4(配列番号6)
5’-ATCCTCCCGTTTCCTCTAC-3’
 前記(c1)~(c4)は、例えば、前記(a1)~(a4)の説明において、「(a1)」を「(c1)」、「(a2)」を「(c2)」、「(a3)」を「(c3)」、「(a4)」を「(c4)」に読み替えて、その説明を援用できる。
 本発明のピーナッツ結合核酸分子は、例えば、二本鎖でもよい。二本鎖の場合、例えば、一方の一本鎖ポリヌクレオチドは、前記(c1)~(c3)および(c4)からなる群から選択された少なくとも1つのポリヌクレオチドを含み、他方の一本鎖ポリヌクレオチドは、制限されない。前記他方の一本鎖ポリヌクレオチドは、例えば、前記(c1)~(c3)および(c4)からなる群から選択された少なくとも1つのポリヌクレオチドに相補的な塩基配列を含むポリヌクレオチドがあげられる。
 前記相補的な塩基配列は、例えば、下記(b)のポリヌクレオチドがあげられる。下記(b2)~(b4)は、例えば、前記(c1)~(c3)および(c4)からなる群から選択された少なくとも1つのポリヌクレオチドに結合する(相補的な)ポリヌクレオチドである。
(b)下記(b1)~(b3)および(b4)からなる群から選択された少なくとも1つのポリヌクレオチド
(b1)配列番号3または4の塩基配列からなるポリヌクレオチド
(b2)前記(b1)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド
(b3)前記(b1)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド
(b4)前記(b1)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド
 前記(c)のポリヌクレオチドと前記(b)のポリヌクレオチドとの組合せは、特に制限されず、例えば、下記(c1)および(b1)のポリヌクレオチドが下記組合せの場合の対応する(c)のポリヌクレオチドと(b)のポリヌクレオチドとの組合せがあげられる。
前記(c1)の配列番号1の塩基配列からなるポリヌクレオチドと、前記(b1)の配列番号3の塩基配列からなるポリヌクレオチドとの組合せ
前記(c1)の配列番号2の塩基配列からなるポリヌクレオチドと、前記(b1)の配列番号4の塩基配列からなるポリヌクレオチドとの組合せ
前記(c1)の配列番号5の塩基配列からなるポリヌクレオチドと、前記(b1)の配列番号3の塩基配列からなるポリヌクレオチドとの組合せ
前記(c1)の配列番号6の塩基配列からなるポリヌクレオチドと、前記(b1)の配列番号4の塩基配列からなるポリヌクレオチドとの組合せ
 つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコールに基づいて使用した。
[実施例1]
 本発明の分析方法および分析キットにより、迅速にピーナッツ等のターゲットを分析できることを確認した。
(1)試料
 市販のピーナッツ(種子)について、ミルにより粉砕した。得られた粉末5gを20mLのSB1T緩衝液と混合後、振盪機を用い、室温(25℃前後、以下同様)、90-110rpmの条件で終夜(約16時間、以下同様)振盪した。前記SB1T緩衝液の組成は、40mmol/L HEPES(pH7.5)、125mmol/L NaCl、25mmol/L KCl、1mmol/L MgCl、0.05(v/v)% Tween(登録商標)20とした。
 前記振盪後の混合液について、10000g、室温の条件で、終夜遠心した。つぎに、上清を回収後、前記上清について、フィルター(孔径0.8μm)を用いてろ過し、ピーナッツ抽出液1を調製した。そして、前記ピーナッツ抽出液1について、タンパク質濃度測定キット(Protein Assay reagent、Bio-Rad社製)を用いて、ピーナッツタンパク質濃度を定量した。
(2)分析
 ピーナッツアレルゲンに結合する標識化結合核酸分子を含む結合核酸分子液は、5’末端がビオチン化された前記配列番号1の塩基配列からなるポリヌクレオチド(ピーナッツアプタマー)を含む溶液と、ストレプトアビジン標識されたルシフェラーゼ(Streptavidin-Lucia、Invivogen社製)を含む溶液とを混合することにより、調製した。前記標識化結合核酸分子は、前記ストレプトアビジン100pmolあたりに400pmolの前記結合核酸分子を固定化した。前記結合核酸分子液における前記結合核酸分子の濃度は、1pmol/Lとした。また、ブロッキング核酸分子が固定化された担体は、5’末端がビオチン化された前記配列番号3からなるポリヌクレオチドと、ストレプトアビジン標識ビーズ(Invitrogen社製)とを混合し、室温で30分間振盪後、前記SB1T緩衝液で洗浄することにより調製した。前記ブロッキング核酸分子が固定化された担体(固定化ブロッキング核酸分子)は、前記ビーズ1mgあたりに500pmolの前記ブロッキング核酸分子を固定化した。前記洗浄後、前記ビーズは、40mg/mLとなるように前記SB1T緩衝液に懸濁し、ビーズ液を調製した。なお、前記ビーズは、磁性ビーズである。
 つぎに、前記ピーナッツ抽出液1を、前記結合核酸分子および前記ビーズとの混合後の反応液におけるピーナッツタンパク質濃度が、所定濃度(0.0004、0.002、0.01、0.05、0.25、1.25、または6.25ppm)となるように、前記SB1T緩衝液で希釈し、ピーナッツ希釈液を調製した。つぎに、U底プレートの各wellに、4μLの前記ビーズ液および16μLの前記SB1T緩衝液を添加し、希釈ビーズ液を調製した。また、別のU底プレートの各ウェルに、25μLの前記結合核酸分子液を添加し、さらに、25μLの前記ピーナッツ希釈液を各ウェルに添加した。前記添加後、室温で、1分間インキュベートした。さらに、前記インキュベート後の各ウェルに、20μLの前記希釈ビーズ液を添加し、前記振盪機を用い、室温、1000rpmの条件で2分間振盪した。
 つぎに、前記プレートを磁性ビーズ分離プレートに設置し、前記磁性ビーズの画分と、前記磁性ビーズ以外の画分とに分離した。前記分離後、各ウェルから上清30μLを回収し、それぞれ、測定用プレート(white half plate、グライナー社製)の各ウェルに添加した。さらに、30μLの基質液を添加後ピペッティングし、プレートリーダー(Infinite M1000 Pro、TECAN社製)により、各ウェルの発光量を測定した。前記酵素がルシフェラーゼの場合、前記基質液は、Quanti-Luc(商品名、invivogen社製)を使用した。また、前記配列番号1の塩基配列からなるポリヌクレオチドに代えて、前記配列番号2の塩基配列からなるポリヌクレオチドを用い、ストレプトアビジン標識されたルシフェラーゼに代えて、ストレプトアビジン標識アルカリフォスファターゼ(GEヘルスケアバイオサイエンス社製)を用い、前記配列番号3からなるポリヌクレオチドに代えて、前記配列番号4の塩基配列からなるポリヌクレオチドを用い、前記所定濃度を、0、0.25、1、4、16、または64ppmとし、前記基質液として、CDP-star(Emerald II)(商品名、Roche社製)を用いた以外は、同様にして発光量を測定した。
 これらの結果を図1に示す。図1は、発光量を示すグラフである。図1において、(A)は、前記酵素がルシフェラーゼの場合の結果を示し、(B)は、前記酵素がアルカリフォスファターゼの場合の結果を示す。また、図1において、横軸は、ピーナッツタンパク質濃度であり、縦軸は、発光量を示す。図1に示すように、前記標識として、アルカリフォスファターゼおよびルシフェラーゼのいずれを用いた場合においても、ピーナッツタンパク質濃度依存的に発光量が増加した。また、前記標識としてルシフェラーゼを用いた場合、ピーナッツタンパク質濃度が0.001ppm程度でも分析でき、極めて分析感度が高いことが分かった。また、前記分析において合計3分のインキュベーション時間で分析ができたことから、本発明の分析方法および分析キットは、迅速にピーナッツアレルゲン等のターゲットを分析できることが分かった。
[実施例2]
 本発明の分析方法および分析キットにより、食品中のピーナッツを分析できることを確認した。
(1)試料
 前記ピーナッツに代えて、市販のクッキー(ミニバタークッキー、Ito Bicuits Co., LTD.社製)、チョコレート(DARSミルクチョコレート、森永製菓社製)、ビスケット(Sand Biscuit、East pigeon Co,.LTD.社製)を用い、前記SB1T緩衝液と混合後、1分間振盪した以外は、前記実施例1(1)と同様にして、クッキー抽出液、チョコレート抽出液およびビスケット抽出液を調製した。そして、各抽出液について、前記実施例1(1)と同様にして、タンパク質濃度を定量した。
(2)分析
 前記ピーナッツ抽出液1に代えて、前記クッキー抽出液、前記チョコレート抽出液および前記ビスケット抽出液をそれぞれ用い、前記結合核酸分子および前記ビーズとの混合後の反応液における各抽出液由来のタンパク質濃度が10ppmとなるように添加し、さらに、前記反応液におけるピーナッツタンパク質の濃度が、所定濃度(0.01、0.05、0.25、1.25、または6.25ppm)となるように、前記ピーナッツ抽出液1を添加した以外は、前記実施例1(2)と同様にして、発光量を測定した。
 これらの結果を図2に示す。図2は、発光量を示すグラフである。図2において、(A)は、前記クッキー抽出液の場合の結果であり、(B)は、前記チョコレート抽出液の場合の結果であり、(C)は、前記ビスケット抽出液の場合の結果である。図2において、横軸は、ピーナッツタンパク質濃度を示し、縦軸は、発光量を示す。図2に示すように、いずれの食品を用いた場合においても、ピーナッツタンパク質濃度依存的に発光量が増加した。これらの結果から、本発明の分析方法および分析キットによれば、夾雑物等が多い食品においても、食品中のピーナッツを分析できることが分かった。
[実施例3]
 異なる担体を用い、本発明の分析方法および分析キットにより、ピーナッツを分析できることを確認した。
(1)試料
 前記実施例1(1)と同様にして、ピーナッツ抽出液1を調製した。
(2)分析
 前記ストレプトアビジン標識ビーズに代えて、ストレプトアビジン標識アガロースビーズ(Invitrogen社製)またはストレプトアビジン標識レジン(ポリスチレン)ビーズ(SA-resin beads、Bio-rad社製)を用い、前記酵素として、前記ルシフェラーゼを用いた以外は、前記実施例1(2)と同様にして、発光量を測定した。
 これらの結果を図3に示す。図3は、発光量を示すグラフである。図3において、(A)は、アガロースビーズの場合の結果であり、(B)は、レジンビーズの場合の結果である。図3において、横軸は、ピーナッツタンパク質濃度を示し、縦軸は、発光量を示す。図3に示すように、いずれのビーズを用いた場合においても、ピーナッツタンパク質濃度依存的に発光量が増加した。また、レジンビーズを用いた場合、より幅広い濃度でタンパク質を検出できることが分かった。これらの結果から、本発明の分析方法および分析キットによれば、いずれの担体を用いても、ピーナッツを分析できることが分かった。
[実施例4]
 本発明の分析方法および分析キットにより、ピーナッツを分析でき、且つ非特異的な結合が低減されていることを確認した。
(1)試料
 前記実施例1(1)と同様にして、ピーナッツ抽出液1を調製し、タンパク質濃度を定量した。また、前記ピーナッツに代えて、市販のダイズ(種子)を用いた以外は、ダイズ抽出液を調製し、タンパク質濃度を定量した。なお、ダイズは、ピーナッツアレルゲンに相同性の高いタンパク質を含むことが知られている。
(2)分析
 前記結合核酸分子液は、前記実施例1(2)と同様にして調製した。また、前記ストレプトアビジン標識ビーズとして、前記ストレプトアビジン標識レジンビーズを用い、前記酵素として、前記ルシフェラーゼを用いた以外は、前記実施例1(2)と同様にして、ビーズ液を調製した。つぎに、前記ピーナッツ抽出液1を、前記結合核酸分子および前記ビーズとの混合後の反応液におけるタンパク質濃度が、所定濃度(0、1.25、5、20または80ppm)となるように、前記SB1T緩衝液で希釈し、ピーナッツ希釈液を調製した。つぎに、チューブに、40μLの前記ビーズ液および160μLの前記SB1T緩衝液を添加し、希釈ビーズ液を調製した。また、別のチューブに、250μLの前記結合核酸分子液を添加し、さらに、250μLの前記ピーナッツ希釈液をチューブに添加した。前記添加後、攪拌した。さらに、前記チューブに、200μLの前記希釈ビーズ液を添加後、攪拌し、室温で1分間インキュベートした。
 前記インキュベート後の反応液について、5mLのシリンジと、フィルター(孔径0.45μm)を用いてろ過し、800μLの前記基質液が予め添加された測定容器にろ液を回収した。前記回収後、前記測定容器を攪拌し、30秒~1分インキュベートした。そして、ルミノメーター(Clean-Trace(商標)、3M社製)を用い、前記測定容器中の測定サンプルの発光量を測定した。また、前記ピーナッツ希釈液に代えて、前記ダイズ抽出液を、前記結合核酸分子および前記ビーズとの混合後の反応液におけるタンパク質濃度が、80ppmとなるように、前記SB1T緩衝液で希釈することで調製したダイズ希釈液を用いた以外は、同様にして、発光量を測定した。
 これらの結果を図4に示す。図4は、発光量を示すグラフである。図4において、横軸は、ピーナッツまたはダイズタンパク質濃度を示し、縦軸は、発光量を示す。図4に示すように、前記結合核酸分子として、前記ピーナッツアプタマーを用いた場合、前記ピーナッツ抽出液1由来のピーナッツタンパク質濃度依存的に、発光量が増加した。他方、前記ダイズ抽出液を用いた場合、発光量は、バックグラウンドと同程度あり、ダイズタンパク質には結合しないことがわかった。以上のことから、本発明の分析方法および分析キットにより、ピーナッツ等のターゲットを分析でき、且つ非特異的な結合が低減されていることがわかった。
[実施例5]
 本発明の分析方法および分析キットにより、ピーナッツを分析できることを確認した。
(1)試料
 前記ピーナッツの粉末と前記SB1T緩衝液とを混合後、1分間振盪した以外は、前記実施例1(1)と同様にして、振盪後の混合液を調製した。前記振盪後の混合液について、10000g、室温の条件で、30分間遠心した。つぎに、上清を回収後、前記上清について、フィルター(孔径0.8μm)を用いてろ過し、ピーナッツ抽出液2を調製した。そして、前記ピーナッツ抽出液2について、前記実施例1(1)と同様にして、ピーナッツタンパク質濃度を定量した。
 ピーナッツタンパク質濃度が、所定濃度(0、1、10、100、1000、または7700ppm)となるように、前記ピーナッツ抽出液2を前記SB1T緩衝液で希釈し、サンプルを調製した。前記サンプル100μLをアルミ箔に塗布後、綿棒でアルミ箔をぬぐった。前記綿棒を前記SB1T緩衝液400μLと接触させ、室温で1分間インキュベートすることにより、前記綿棒に保持されているターゲットを抽出し、抽出液を得た。前記抽出液25μLに、前記標識化結合核酸分子由来の結合核酸分子量が1pmolとなるように前記結合核酸分子液25μLを添加し、これらを室温で1分、混合した。これにより、前記標識化結合核酸分子をターゲットのピーナッツアレルゲンに結合させた。この混合液に、さらに、前記標識化結合核酸分子由来の結合核酸分子量と同量のブロッキング核酸分子量(10μmol/L)となるように、前記ビーズ液4μL(前記ブロッキング核酸分子40pmol)を添加して、室温で4分、混合した。これにより、前記ターゲットと未結合の前記標識化結合核酸分子の結合核酸分子に、前記固定化ブロッキング核酸分子を結合させた。
 つぎに、得られた混合液を磁気ホルダーに設置し、前記磁性ビーズの画分と、前記磁性ビーズ以外の画分とに分離し、後者を回収した。そして、前記上清30μLに、基質液30μL(Quanti-Luc(商標)、Invivogen社製)を添加後ピペッティングし、プレートリーダー(Infinite M1000 Pro、TECAN社製)により、各サンプルの発光量を測定した。
 この結果を図5に示す。図5は、発光量を示すグラフである。図5において、横軸は、前記抽出液と前記結合核酸分子液とを混合後の混合液におけるピーナッツタンパク質濃度を示し、縦軸は、発光量を示す。図5に示すように、ピーナッツタンパク質の濃度依存的に、発光量が増加した。これらのことから、本発明の分析方法および分析キットにより、ピーナッツ等のターゲットを分析できることがわかった。
[実施例6]
 本発明の分析方法および分析キットにより、ピーナッツを分析できることを確認した。
 まず、前記磁性ビーズに代えて、ストレプトアビジン標識レジンビーズ(Pierce(商標)Streptavidin Plus UltraLink(商標)Resin、PIERCE社製)を用いた以外は、前記実施例1または3と同様にして、ピーナッツ抽出液2、結合核酸分子液、およびビーズ液を調製した。
 ピーナッツタンパク質濃度が、所定濃度(0、0.002、0.01、0.05、0.25、1.25、または6.25ppm)となるように、前記ピーナッツ抽出液2を前記SB1T緩衝液で希釈し、サンプルを調製した。前記サンプル25μLに、前記標識化結合核酸分子由来の結合核酸分子量が1pmolとなるように前記結合核酸分子液25μLを添加し、これらを室温で1分、混合した。これにより、前記標識化結合核酸分子をターゲットのピーナッツアレルゲンに結合させた。この混合液に、さらに、前記標識化結合核酸分子由来の結合核酸分子量と同量のブロッキング核酸分子量(4μmol/L)となるように、前記ビーズ液10μL(前記ブロッキング核酸分子40pmol)を添加して、室温で4分、混合した。これにより、前記ターゲットタンパク質と未結合の前記標識化結合核酸分子の結合核酸分子に、前記固定化ブロッキング核酸分子を結合させた。得られた混合液について、フィルタープレート(孔径0.22μm、マルチスクリーン(登録商標)、ミリポア社製)を用いて遠心ろ過した。得られたろ液30μLに、前記基質液30μLを添加後ピペッティングし、前記プレートリーダーにより、各サンプルの発光量を測定した。
 この結果を図6に示す。図6は、発光量を示すグラフである。図6において、横軸は、ピーナッツタンパク質濃度を示し、縦軸は、発光量を示す。図6に示すように、ピーナッツタンパク質の濃度依存的に、発光量が増加した。これらのことから、本発明の分析方法および分析キットにより、ピーナッツ等のターゲットを分析できることがわかった。
[実施例7]
 本発明の分析方法および分析キットにより、ピーナッツを分析できることを確認した。
 まず、前記実施例1または3と同様にして、ピーナッツ抽出液2、結合核酸分子液、およびビーズ液を調製した。
 ピーナッツタンパク質濃度が、所定濃度(0、0.002、0.01、0.05、0.25、1.25、6.25)となるように、前記ピーナッツ抽出液2を前記SB1T緩衝液で希釈し、サンプルを調製した。前記サンプル25μLに、前記固定化ブロッキング核酸分子由来のブロッキング核酸分子量が1pmolとなるように前記ビーズ液25μLを添加し、これらを室温で1分、混合した。この混合液に、さらに、前記固定化ブロッキング核酸分子由来のブロッキング核酸分子量と同量の結合核酸分子量(10μmol/L)となるように、前記結合核酸分子液4μL(前記結合核酸分子40pmol)を添加して、室温で4分、混合した。これにより、前記標識化結合核酸分子をターゲットのピーナッツアレルゲンに結合させ、また、前記ターゲットと未結合の前記標識化結合核酸分子の結合核酸分子に、前記固定化ブロッキング核酸分子を結合させた。
 つぎに、得られた混合液を磁気ホルダーに設置し、前記磁性ビーズの画分と、前記磁性ビーズ以外の画分とに分離し、後者を回収した。そして、前記上清3μLに、前記基質液30μLを添加後ピペッティングし、前記プレートリーダーにより、各サンプルの発光量を測定した。
 この結果を図7に示す。図7は、発光量を示すグラフである。図7において、横軸は、ピーナッツタンパク質濃度を示し、縦軸は、発光量を示す。図7に示すように、ピーナッツタンパク質の濃度依存的に、発光量が増加した。これらのことから、本発明の分析方法および分析キットにより、ピーナッツ等のターゲットを分析できることがわかった。
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年1月22日に出願された日本出願特願2016-011024を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明の分析方法によれば、例えば、3分程度と極めて短時間で、且つ優れた分析感度でターゲットを分析できる。また、本発明の分析方法によれば、例えば、メカニズムは不明であるが、前記結合核酸分子の非特異的な結合を抑制できるため、例えば、優れた分析精度(特異性)でターゲットを分析できる。このため、本発明は、例えば、臨床医療、食品、環境等の様々な分野における研究および検査に、極めて有用な技術といえる。

Claims (35)

  1. 試料と、ターゲットと結合する標識化結合核酸分子と、前記標識化結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを反応させる工程と、
    前記担体の画分と、前記担体以外の画分とを分離する工程と、
    前記担体の画分および前記担体以外の画分の少なくとも一方における前記標識化結合核酸分子の標識を検出することにより、前記試料中のターゲットを分析する工程とを含むことを特徴とする、ターゲット分析方法。
  2. 前記試料と、前記標識化結合核酸分子とを反応させる工程と、
    前記試料および前記標識化結合核酸分子の混合物と、前記担体とを反応させる工程とを含む、請求項1記載のターゲット分析方法。
  3. 前記ブロッキング核酸分子が、前記標識化結合核酸分子に相補的な塩基配列を含む核酸分子である、請求項1または2記載のターゲット分析方法。
  4. 前記ブロッキング核酸分子が、前記標識化結合核酸分子における前記ターゲットと結合する塩基配列に相補的な塩基配列を含む核酸分子である、請求項1から3のいずれか一項に記載のターゲット分析方法。
  5. 前記ブロッキング核酸分子が、前記標識化結合核酸分子の塩基配列に対して、5~100%の範囲の相補性を有する塩基配列からなるポリヌクレオチドを含む核酸分子である、請求項1から4のいずれか一項に記載のターゲット分析方法。
  6. 前記標識化結合核酸分子が、下記(a)のポリヌクレオチドを含む、請求項1から5のいずれか一項に記載のターゲット分析方法。
    (a)下記(a1)のポリヌクレオチド
    (a1)配列番号1または2の塩基配列からなるポリヌクレオチド
  7. 前記ブロッキング核酸分子が、下記(b)のポリヌクレオチドを含む、請求項1から6のいずれか一項に記載のターゲット分析方法。
    (b)下記(b1)のポリヌクレオチド
    (b1)配列番号3または4の塩基配列からなるポリヌクレオチド
  8. 前記担体が、ビーズである、請求項1から7のいずれか一項に記載のターゲット分析方法。
  9. 前記ビーズが、ポリスチレン製ビーズである、請求項8記載のターゲット分析方法。
  10. 前記ビーズが、磁性ビーズである、請求項8または9記載のターゲット分析方法。
  11. 磁性体により前記磁性ビーズを分離することで、前記磁性ビーズの画分と前記磁性ビーズ以外の画分とを分離する、請求項10記載のターゲット分析方法。
  12. 前記標識が、酵素であり、
    前記担体の画分および前記担体以外の画分の少なくとも一方における前記標識化結合核酸分子の酵素反応を検出する、請求項1から11のいずれか一項に記載のターゲット分析方法。
  13. 前記酵素の基質の存在下、前記酵素反応を検出する、請求項12記載のターゲット分析方法。
  14. 前記酵素が、ルシフェラーゼである、請求項12または13記載のターゲット分析方法。
  15. 前記試料が、食品由来試料である、請求項1から14のいずれか一項に記載のターゲット分析方法。
  16. 前記ターゲットが、ピーナッツアレルゲンである、請求項1から15のいずれか一項に記載のターゲット分析方法。
  17. 前記ピーナッツアレルゲンが、コンアラキン(conarachin)またはそのサブユニットである、請求項16記載のターゲット分析方法。
  18. 前記サブユニットが、Ara h1である、請求項17記載のターゲット分析方法。
  19. 前記ピーナッツアレルゲンが、未変性アレルゲンまたは加熱変性アレルゲンである、請求項16から18のいずれか一項に記載のターゲット分析方法。
  20. ターゲットと結合する標識化結合核酸分子と、前記標識化結合核酸分子に結合するブロッキング核酸分子が固定化された担体とを含み、
    請求項1から19のいずれか一項に記載のターゲット分析方法に使用することを特徴とする、ターゲット分析キット。
  21. 前記ブロッキング核酸分子が、前記標識化結合核酸分子に相補的な塩基配列を含む核酸分子である、請求項20記載のターゲット分析キット。
  22. 前記ブロッキング核酸分子が、前記標識化結合核酸分子における前記ターゲットと結合する塩基配列に相補的な塩基配列を含む核酸分子である、請求項20または21記載のターゲット分析キット。
  23. 前記ブロッキング核酸分子が、前記標識化結合核酸分子の塩基配列に対して、5~100%の範囲の相補性を有する塩基配列からなるポリヌクレオチドを含む核酸分子である、請求項20から22のいずれか一項に記載のターゲット分析キット。
  24. 前記標識化結合核酸分子が、下記(a)のポリヌクレオチドを含む、請求項20から23のいずれか一項に記載のターゲット分析キット。
    (a)下記(a1)のポリヌクレオチド
    (a1)配列番号1または2の塩基配列からなるポリヌクレオチド
  25. 前記ブロッキング核酸分子が、下記(b)のポリヌクレオチドを含む、請求項20から24のいずれか一項に記載のターゲット分析キット。
    (b)下記(b1)のポリヌクレオチド
    (b1)配列番号3または4の塩基配列からなるポリヌクレオチド
  26. 前記担体が、ビーズである、請求項20から25のいずれか一項に記載のターゲット分析キット。
  27. 前記ビーズが、ポリスチレン製ビーズである、請求項26記載のターゲット分析キット。
  28. 前記ビーズが、磁性ビーズである、請求項26または27記載のターゲット分析キット。
  29. 前記標識が、酵素である、請求項20から28のいずれか一項に記載のターゲット分析キット。
  30. 前記酵素が、ルシフェラーゼである、請求項29記載のターゲット分析キット。
  31. さらに、前記酵素の基質を含む、請求項29または30記載のターゲット分析キット。
  32. 前記ターゲットが、ピーナッツアレルゲンである、請求項20から31のいずれか一項に記載のターゲット分析キット。
  33. 前記ピーナッツアレルゲンが、コンアラキン(conarachin)またはそのサブユニットである、請求項32記載のターゲット分析キット。
  34. 前記サブユニットが、Ara h1である、請求項33記載のターゲット分析キット。
  35. 前記ピーナッツアレルゲンが、未変性アレルゲンまたは加熱変性アレルゲンである、請求項32から34のいずれか一項に記載のターゲット分析キット。
PCT/JP2017/001958 2016-01-22 2017-01-20 ターゲット分析方法およびこれに用いるターゲット分析キット WO2017126669A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/071,977 US20190071735A1 (en) 2016-01-22 2017-01-20 Target analysis method and target analysis kit for use in the method
JP2017562926A JP6687251B2 (ja) 2016-01-22 2017-01-20 ターゲット分析方法およびこれに用いるターゲット分析キット
CN201780007622.9A CN108474023A (zh) 2016-01-22 2017-01-20 靶标分析方法和用于该方法的靶标分析试剂盒
EP17741546.0A EP3406735B1 (en) 2016-01-22 2017-01-20 Target analysis method and target analysis kit for use in said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-011024 2016-01-22
JP2016011024 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017126669A1 true WO2017126669A1 (ja) 2017-07-27

Family

ID=59361957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001958 WO2017126669A1 (ja) 2016-01-22 2017-01-20 ターゲット分析方法およびこれに用いるターゲット分析キット

Country Status (5)

Country Link
US (1) US20190071735A1 (ja)
EP (1) EP3406735B1 (ja)
JP (1) JP6687251B2 (ja)
CN (1) CN108474023A (ja)
WO (1) WO2017126669A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116179668A (zh) * 2021-11-26 2023-05-30 复旦大学 靶向反应复合物及其在靶向多重检测中的用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086403A1 (ja) * 2006-01-24 2007-08-02 Techno Medica Co., Ltd. 試料中の被検物質の測定方法及び装置
JP2009201406A (ja) * 2008-02-27 2009-09-10 Sony Corp 標的物質の定量方法
WO2015083391A1 (ja) * 2013-12-04 2015-06-11 Necソリューションイノベータ株式会社 ピーナッツに結合する核酸分子およびその用途
WO2016117701A1 (ja) * 2015-01-22 2016-07-28 Necソリューションイノベータ株式会社 ターゲット分析用具およびターゲット分析方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686592A (en) * 1990-06-11 1997-11-11 Nexstar Pharmaceuticals, Inc. High-affinity oligonucleotide ligands to immunoglobulin E (IgE)
US6582908B2 (en) * 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
US5830712A (en) * 1996-02-06 1998-11-03 Allelix Biopharmaceuticals Inc. Selective template deletion method
US7803542B2 (en) * 2005-11-29 2010-09-28 The Regents Of The University Of California Signal-on architecture for electronic, oligonucleotide-based detectors
US8815576B2 (en) * 2007-12-27 2014-08-26 Lawrence Livermore National Security, Llc. Chip-based sequencing nucleic acids
US8396672B2 (en) * 2008-11-14 2013-03-12 The Invention Science Fund I, Llc Food content detector
US20110003289A1 (en) * 2009-03-17 2011-01-06 University Of Washington Method for detection of pre-neoplastic fields as a cancer biomarker in ulcerative colitis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086403A1 (ja) * 2006-01-24 2007-08-02 Techno Medica Co., Ltd. 試料中の被検物質の測定方法及び装置
JP2009201406A (ja) * 2008-02-27 2009-09-10 Sony Corp 標的物質の定量方法
WO2015083391A1 (ja) * 2013-12-04 2015-06-11 Necソリューションイノベータ株式会社 ピーナッツに結合する核酸分子およびその用途
WO2016117701A1 (ja) * 2015-01-22 2016-07-28 Necソリューションイノベータ株式会社 ターゲット分析用具およびターゲット分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual, 2nd ed.", 1989, COLD SPRING HARBOR LABORATORY PRESS

Also Published As

Publication number Publication date
JPWO2017126669A1 (ja) 2018-11-15
CN108474023A (zh) 2018-08-31
JP6687251B2 (ja) 2020-04-22
EP3406735B1 (en) 2020-11-25
EP3406735A4 (en) 2019-08-14
US20190071735A1 (en) 2019-03-07
EP3406735A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
US20170176422A1 (en) Multiplexed Analyses of Test Samples
JP6038759B2 (ja) 検出可能な核酸タグ
US20190187031A1 (en) Concentration of analytes
CN112852921B (zh) 一种基于即时检测试纸条的核酸检测方法、检测探针及其试剂盒
AU2021290268A1 (en) Immunorepertoire normality assessment method and its use
JP6687618B2 (ja) 組換えタンパク質調製物中の残留宿主細胞タンパク質の検出
WO2018045141A1 (en) Analysis of chromatin using a nicking enzyme
Athar et al. RNA-binding specificity of the human fragile X mental retardation protein
CN111073892A (zh) 一种识别石斑鱼虹彩病毒感染细胞的核酸适配体及其构建方法和应用
CN111073891A (zh) 一种检测石斑鱼虹彩病毒的核酸适配体及其构建方法和应用
CN109504804A (zh) 一种检测3型人腺病毒的rpa方法、其专用引物和探针及用途
WO2023069424A1 (en) Nuclear dna-antibody sequencing for joint profiling of genotype and protein in single nuclei
US11293055B2 (en) Nucleic acid detection kit and nucleic acid detection method using nanoparticles
WO2017126669A1 (ja) ターゲット分析方法およびこれに用いるターゲット分析キット
US20030073091A1 (en) Use of generic oligonucleotide microchips to detect protein-nucleic acid interactions
JP2018171041A (ja) ターゲット分析方法およびこれに用いるターゲット分析キット
CN113416733B (zh) 一组磺胺类抗生素广谱特异性核酸适配体的筛选及其应用
WO2008015419A2 (en) Protein solubilisation
Das et al. Immunoprecipation assay to quantify the amount of tRNAs associated with their interacting proteins in tissue and cell culture
KR100691799B1 (ko) 단일가닥핵산 프로브를 이용한 특정물질의 동정 및 분석방법
CN108396029B (zh) 一组特异性识别不同生长时期大肠杆菌o157:h7的寡核苷酸适配体
WO2018092915A1 (ja) 核酸分子およびその用途
RU2795018C1 (ru) Олигонуклеотиды для определения мутации S:L452R SARS-CoV-2
KR102291584B1 (ko) 반려동물 및 가축의 질병진단을 위한 분자진단 방법
WO2018097220A1 (ja) 核酸分子およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017562926

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741546

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741546

Country of ref document: EP

Effective date: 20180822