WO2017126646A1 - 核酸アプタマーをスクリーニングするための方法 - Google Patents

核酸アプタマーをスクリーニングするための方法 Download PDF

Info

Publication number
WO2017126646A1
WO2017126646A1 PCT/JP2017/001873 JP2017001873W WO2017126646A1 WO 2017126646 A1 WO2017126646 A1 WO 2017126646A1 JP 2017001873 W JP2017001873 W JP 2017001873W WO 2017126646 A1 WO2017126646 A1 WO 2017126646A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
selex
acid aptamer
aptamer
target molecule
Prior art date
Application number
PCT/JP2017/001873
Other languages
English (en)
French (fr)
Inventor
敬太郎 吉本
幸二 和久井
古性 均
Original Assignee
国立大学法人 東京大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 日産化学工業株式会社 filed Critical 国立大学法人 東京大学
Priority to KR1020187023677A priority Critical patent/KR20180104031A/ko
Priority to CN201780007417.2A priority patent/CN108779467B/zh
Priority to EP17741523.9A priority patent/EP3406721B1/en
Priority to US16/071,836 priority patent/US10975370B2/en
Priority to JP2017562916A priority patent/JP6994198B2/ja
Publication of WO2017126646A1 publication Critical patent/WO2017126646A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1048SELEX
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/205Aptamer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2541/00Reactions characterised by directed evolution
    • C12Q2541/10Reactions characterised by directed evolution the purpose being the selection or design of target specific nucleic acid binding sequences
    • C12Q2541/101Selex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/50Detection characterised by immobilisation to a surface
    • C12Q2565/518Detection characterised by immobilisation to a surface characterised by the immobilisation of the nucleic acid sample or target

Definitions

  • the present invention relates to a method for screening a nucleic acid aptamer.
  • Nucleic acid aptamers are single-stranded DNA or RNA having molecular recognition ability, and were first reported in 1990 by Ellington et al. And Tuerk et al. Nucleic acid aptamers can be obtained by an evolutionary technique called Systematic Evolution of Ligands by Exponential Enrichment (SELEX), and many have been reported to have binding ability and specificity comparable to antibodies. Furthermore, aptamers can be obtained for various targets such as proteins and cells, and low molecular compounds for which it is difficult to obtain antibodies, and application to therapeutic agents and diagnostic agents is expected. However, the acquisition probability of antibodies is said to be 90% or more, whereas the acquisition probability of current nucleic acid aptamers is said to be 30% or less. That is, it can be said that improvement of nucleic acid aptamer acquisition probability technology is a major issue for the future widespread use of nucleic acid aptamers.
  • Nucleic acid aptamers are attracting attention as new molecular recognition elements replacing antibodies, but the acquisition rate of nucleic acid aptamers is 30% or less, and the development of highly efficient aptamer acquisition methods is desired.
  • CE-SELEX is a rapid nucleic acid aptamer screening method that utilizes the excellent resolution of capillary electrophoresis.
  • the setting of the sorting area is an important factor that determines the aptamer acquisition rate. It is necessary to sort out a region containing the ssDNA library that does not have the ability to bind to the target and does not contain a ssDNA library that forms a complex with the target.
  • the ideal sorting region is the peak range derived from the ssDNA library and target complex.
  • the target molecule is likely to interact with ssDNA like MutS protein and a highly sensitive fluorescence detector is not used, it is difficult to detect the complex of the ssDNA library and the target.
  • Non-patent Document 1 Non-patent Document 1
  • the present invention provides a novel CE-SELEX that takes advantage of CE-SELEX and solves the drawbacks such as difficulty in setting experimental conditions and the lack of applicable target molecular species.
  • the present invention relates to a method for screening a nucleic acid aptamer that combines particles and CE-SELEX. So far, methods for quantitative analysis of RNA and antigen combining particles and capillary electrophoresis have been reported, but methods for combining particles and CE-SELEX have not yet been reported.
  • the present invention relates to the following. [1] The following steps: (A) contacting a target molecule immobilized on a solid phase carrier with a nucleic acid aptamer candidate; (B) separating a nucleic acid aptamer candidate bound to a target molecule by capillary electrophoresis; (C) amplifying a nucleic acid aptamer candidate by PCR; A method for screening nucleic acid aptamers comprising: [2] The method according to [1], further comprising (d) single-stranded the amplified PCR product; [3] The method according to [1] or [2], wherein the solid support is a particle; [4] The method according to any one of [1] to [3], wherein the minimum particle diameter is 0.05 ⁇ m; [5] The method according to any one of [1] to [4],
  • any material capable of immobilizing a target molecule on the surface can be used.
  • layered graphene, carbon nanotubes, fullerenes and particles can be mentioned.
  • any conventionally known particles can be used. Examples thereof include silica beads, polystyrene beads, latex beads, and metal colloids.
  • the particles of the present invention can be magnetic particles.
  • the maximum value of the average particle diameter of the particles can be determined according to the inner diameter of the capillary. Preferably, it is 100 ⁇ m, more preferably 10 ⁇ m, and even more preferably 1 ⁇ m.
  • the minimum value of the average particle size of the particles is preferably 100 nm, more preferably 10 nm, even more preferably 1 nm.
  • the average particle diameter of the particles can be determined using any known method.
  • a sieving method, a microscope method, a sedimentation method, a laser diffraction scattering method, and an electric detection method can be exemplified.
  • microscopy is used.
  • the particle In order to use a visible light absorbance detector without using an expensive fluorescence detector, the particle needs to have a sufficient particle size to be detected by scattering of visible light.
  • the minimum value of the average particle diameter of the particles is preferably 0.05 ⁇ m, more preferably 0.5 ⁇ m, and even more preferably 5 ⁇ m.
  • the target molecule refers to a molecule that is a detection target in a detection method using a nucleic acid aptamer.
  • the chemical species of the target molecule is not particularly limited, and can include various chemical species such as a low molecular compound, a high molecular compound, and a biological substance.
  • the target molecule can be immobilized on the surface of the solid phase carrier. More specifically, examples include saccharides, lipids, oligopeptides, proteins, and nucleic acids. Examples of target molecule functions include antigens, antibodies, ligands, receptors, interacting proteins, and the like.
  • the nucleic acid aptamer refers to a nucleic acid molecule that has a high affinity for a predetermined target molecule and can specifically bind thereto.
  • a nucleic acid molecule having such properties is called a nucleic acid aptamer, and is not limited by the base sequence, the size of the molecule, the three-dimensional structure of the molecule, etc. unless otherwise specified.
  • the nucleic acid aptamer is single stranded RNA or DNA.
  • the target molecule immobilized on the solid phase carrier means that the target molecule is hydrophobic interaction, electrostatic interaction, covalent bond, coordinate bond, non-covalent intermolecular interaction (biotin-streptavidin Etc.) is fixed on the surface of the solid support.
  • the nucleic acid aptamer candidate means a pool composed of a plurality of RNAs and / or DNAs.
  • a single-stranded nucleic acid library consisting of a single-stranded nucleic acid is preferred, and a single-stranded DNA library consisting of a single-stranded DNA is more preferred.
  • a part of the double-stranded nucleic acid formed by pairing all or part of the bases of the single-stranded nucleic acid may be included.
  • capillary electrophoresis means that the capillary is filled with an aqueous solution, and an aqueous solution containing the target substance is introduced and placed in an electric field, so that effects such as charge transfer and affinity and electroosmotic flow work, and separation and purification. Will be possible.
  • An arbitrary capillary inner diameter can be used.
  • nucleic acid aptamer candidates bound to the target molecule are collected by capillary electrophoresis.
  • a capillary tube that has been pretreated is installed in the capillary electrophoresis system.
  • electrophoresis is performed in a running buffer.
  • the absorbance at wavelengths such as 195, 260, 280, and 550 nm can be measured over time with a diode array detector, and the magnetic particle portion can be recovered using the obtained peak as an index ((a ) Step and (b) step).
  • the sorted nucleic acid aptamer candidate is amplified by PCR.
  • PCR is a polymerase chain reaction, and a specific DNA region can be amplified several hundred thousand times by repeating a DNA synthesis reaction by a DNA synthesizing enzyme in a test tube.
  • the primer used at this time varies depending on the fixed sequence (sequence complementary to the primer sequence) of the DNA library to be used, and examples thereof include AGCAGCACAGAGGGTCAGATG (forward primer) and TTCACGGGTAGCACGCATAGG (reverse primer).
  • DNA polymerase, Tris-HCl, KCl, MgCl 2 , and dNTPs are mixed with the separated nucleic acid aptamer candidates, the heating temperature and time are adjusted with a thermal cycler, and the cycle is repeated, so that the DNA region is It can be amplified (step (c)).
  • the amplified PCR product is optionally made into a single strand.
  • a PCR product amplified using a biotinylated primer is mixed with streptavidin-immobilized magnetic particles (for example, magnosphere MS300 / Streptavidin (Invitrogen)), and the steps of removing and washing the supernatant are repeated as appropriate. Thereafter, NaOH of an appropriate concentration is added to elute the target ssDNA from the surface of the magnetic particles and collect it (step (d)).
  • streptavidin-immobilized magnetic particles for example, magnosphere MS300 / Streptavidin (Invitrogen)
  • the above steps (a) to (d) can be arbitrarily repeated.
  • the above steps (a) to (d) are repeated a maximum of 3 times.
  • the present invention is a very simple method of immobilizing a target molecule on the particle surface, but in theory it may be able to solve almost all the problems that CE-SELEX has so far.
  • the setting of the sorting area in CE-SELEX (hereinafter referred to as MB-CE-SELEX) using the magnetic particles of the present invention is much easier than in conventional CE-SELEX. Since the particles can be detected with high sensitivity by light scattering, an expensive fluorescence detector is unnecessary.
  • a peak derived from magnetic particles can be used as a fractionation region (FIG. 2).
  • FOG. 2 fractionation region
  • the present invention has an excellent acquisition rate as compared with the conventional CE-SELEX. Therefore, a desired aptamer can be selected with a smaller number of rounds.
  • the differences between the conventional SELEX and the present invention will be described below.
  • FIG. 1 shows the difference between the conventional CE-SELEX and the present invention.
  • FIG. 2 shows the evaluation of the binding ability of thrombin aptamer candidates using the SPR sensor (conventional CE-SELEX).
  • Each figure A to J (10 in total) shows the examination results of 10 aptamer candidate sequences shown in the upper part of Table 3.
  • FIG. 3 shows the evaluation of the binding ability of thrombin aptamer candidates using the SPR sensor (MB-CE-SELEX of the present invention).
  • Each figure A to J (10 in total) shows the examination results of 10 aptamer candidate sequences shown in the middle of Table 3.
  • FIG. 4 shows the evaluation of the binding ability of thrombin aptamer candidates using the SPR sensor (MB-CE-SELEX improved version of the present invention).
  • FIG. 5 shows T_beads_re_apt. 1, T_beads_re_apt. 5 unique dissociation phases are shown.
  • A 200 nM T_beads_re_apt. It is a response curve of 1 and an enlarged view.
  • B 200 nM T_beads_re_apt. 5 is a response curve of 5 and an enlarged view.
  • FIG. 6 shows the acquisition rate of thrombin aptamer in each selection method (calculated from only the top 10 sequences).
  • Magnetic particles having carboxy groups on the surface Dynabeads MyOne (trademark) Carboxylic Acid (Invitrogen) were used as a carrier to immobilize molecules according to the protocol attached to the product.
  • 100 ⁇ l of 20 mM Tris-HCl, 10 mM NaCl, 1 mM MgCl 2 buffer (pH 7.4) was added and stored at 4 ° C. as a magnetic particle stock solution of 10 mg / ml.
  • CE-SELEX condition optimization Capillary electrophoresis conditions A capillary electrophoresis system (Agilent 7100: Otsuka Electronics) was used.
  • As the capillary a 75 ⁇ m inner diameter bubble cell fused silica capillary (Agilent technologies) having a length of 80.6 cm and an effective length (length to the detection window) of 72.2 cm was used.
  • the capillaries were set in a cassette so that capillaries of equal length emerged between the electrodes on the inlet side (injection port, positive electrode side) and outlet side (elution port, cathode side).
  • 0.1 M NaOH aqueous solution was allowed to flow for 10 to 20 minutes by applying a pressure of about 1 bar.
  • the inside of the capillary was equilibrated by flowing a running buffer (100 mM borate buffer, pH 8.5) for 10 to 20 minutes.
  • sample buffer (20 mM Tris-HCl, 10 mM NaCl, 1 mM MgCl 2 buffer, pH 7.4).
  • sample buffer 20 mM Tris-HCl, 10 mM NaCl, 1 mM MgCl 2 buffer, pH 7.4
  • ssDNA library a total of 70 mer of synthetic oligo DNA in which both ends (5 ′ side and 3 ′ side) of a 30 mer random sequence were sandwiched by a 20 mer fixed sequence was used.
  • Sample buffer and 100 ⁇ M ssDNA library were placed in a PCR tube and mixed by pipetting.
  • the ssDNA library solution was heated at 95 ° C. for 2 minutes by a thermal cycler (Takara Bio), and then cooled to 25 ° C. at a rate of 0.1 ° C. per second to carry out annealing.
  • V is the injection amount (nl)
  • ⁇ P is the pressure change (bar)
  • d is the capillary inner diameter (m)
  • is the circumference
  • T is the injection time (s)
  • is the solution viscosity
  • L is the total capillary length (m) Represents.
  • V ⁇ Pd 4 ⁇ T / 128 ⁇ L ⁇ 10 12 [nL]
  • Amplification of preparative sample by PCR A ssDNA sample fractionated by capillary electrophoresis was amplified by PCR. In a 1.5 ml tube, mix 2 ⁇ premix 400 ⁇ l, DEPC treated water 192 ⁇ l, 4 ⁇ M forward primer 80 ⁇ l, 4 ⁇ M 5′-biotinylated reverse primer 80 ⁇ l and mix in 8 200 ⁇ l PCR tubes 94 ⁇ l each. Dispensed. 6 ⁇ l of the aliquot sample was added to each of the 6 tubes, and 6 ⁇ l each of 1 to 10 pM ssDNA library and DEPC-treated water were added to the remaining two tubes as positive / negative controls. After heating at 94 ° C.
  • Nucleotide sequence analysis by next-generation sequencer Sample preparation and emulsion PCR A sample for emulsion PCR was prepared according to the attached protocol, and it was confirmed by PAGE whether the DNA of the desired size was amplified. Thereafter, column purification of the PCR product was performed by Fast Gene Gel / PCR Extraction Kit (Nippon Genetics). Finally, emulsion PCR and bead purification were performed using Ion OneTouch TM 2 system (Life Technologies) and Ion PGM Template OT2 200 Kit (Life Technologies). The attached protocol referred to is Publication Number MAN0007220, Rev. 5.0.
  • Biacore X100 (GE healthcare) was used to immobilize target protein on the sensor surface and analyze interaction with aptamer according to the attached manual.
  • HBS-EP HBS-EP (HEPES, 150 mM NaCl, pH 7.0) was used as the running buffer.
  • Carboxymethyldextran-modified CM5 sensor chip (GE healthcare) was set in the channel, and an EDC / NHS solution was allowed to flow at a flow rate of 10 ⁇ l / min for 7 minutes to activate the carboxy group on the sensor chip.
  • aptamer candidates for which a specific response was obtained a plurality of diluted samples were prepared in the range of 6.25 to 400 nM, and multikinetic analysis was performed. However, aptamer candidates that could not be regenerated with 1M NaCl solution were subjected to single kinetic analysis (the regeneration process was not sandwiched in the middle). The dissociation constant was calculated using Evaluation software.
  • the aptamer candidate sequences obtained in each round (1 to 3 rounds) of conventional CE-SELEX, MB-CE-SELEX (first round), and MB-CE-SELEX (improved version) are used as next-generation sequencers. (Ion PGM system).
  • the total number of read sequences per round was 90000-800000 (Table 2).
  • the analysis was mainly carried out on 10 sequences having a large number of counts.
  • the sequence name is T_apt. 1-10 (conventional CE-SELEX), T_beads_apt. 1 to 10 (MB-CE-SELEX), T_beads_re_apt. 1 to 10 (MB-CE-SELEX improved version).
  • Binding ability of aptamer candidate sequences Table 4 shows the binding ability of each candidate sequence to thrombin calculated using a surface plasmon resonance (SPR) sensor.
  • T_apt With respect to 10, although a slight increase in response was observed, the peak shape was box-shaped, that is, the dissociation was very fast, and thus the binding ability was considered to be low (FIG. 2B, K). As a control, TBA_like_apt. Having the same sequence as TBA 15 was used. When a binding experiment was conducted for 1 as well, a specific response was obtained (FIG. 2L).
  • Specific responses were obtained for the four aptamer candidates (Fig. 3).
  • T_beads_re_apt. 6 T_beads_apt.
  • Specific responses were obtained in 8 aptamer candidates other than 9 (FIG. 4).
  • a unique response curve not obtained with other aptamers was obtained.
  • These two aptamers maintained a constant response after drawing a relatively fast dissociation curve (FIG. 5). In other words, it was considered that a certain number of aptamers are firmly bound to thrombin and cannot be separated.
  • the ratio of the top sequences of each selection method that showed high binding capacity was 3/10 for conventional CE-SELEX, 4/10 for MB-CE-SELEX, and 8 for MB-CE-SELEX (improved version). / 10.
  • the aptamer acquisition probability (sum of the counts of sequences having high binding ability / sum of the counts of sequences examined for binding ability) is calculated from the count numbers (presence) of each of the 10 upper sequences
  • the conventional CE- SELEX was 23%
  • MB-CE-SELEX was 83%
  • MB-CE-SELEX (improved version) was 91% (FIG. 6).
  • thrombin aptamers can be obtained with higher probability than conventional CE-SELEX.
  • the dissociation rate constant is mainly small when the aptamer acquisition probability (sum of counts of sequences having high binding ability / sum of counts of sequences examined for binding ability) increases.
  • Nucleic acid aptamer (not easily dissociated) was removed.
  • T_beads_re_apt. which has binding ability such that the slope of the dissociation curve cannot be obtained.
  • T_beads_re_apt. 5 or T_beads_re_apt. which was able to calculate the dissociation constant only by single kinetic analysis. 10 was obtained.
  • the difference between the first MB-CE-SELEX that intentionally widens the sorting window and the MB-CE-SELEX (improved version) that narrows the sorting window is about 18 seconds. It was revealed that it contributes to the dissociation rate constant. There is a possibility that this system can be further improved by optimizing the preparative window and making the peak derived from magnetic particles sharper.
  • the present invention is useful for screening nucleic acid aptamers.

Abstract

本発明は、下記工程: (a)固相担体上に固定した標的分子を、核酸アプタマー候補と接触させること、 (b)キャピラリー電気泳動によって、標的分子と結合した核酸アプタマー候補を分取すること、 (c)PCRによって、核酸アプタマー候補を増幅すること、 を含む、核酸アプタマーをスクリーニングするための方法に関する。

Description

核酸アプタマーをスクリーニングするための方法
 本発明は、核酸アプタマーをスクリーニングするための方法に関する。
 核酸アプタマーとは分子認識能をもつ一本鎖DNAまたはRNAのことであり、1990年にEllingtonらと、Tuerkらによって始めて報告された。核酸アプタマーはSystematic Evolution of Ligands by Exponential enrichment (SELEX)と呼ばれる進化工学的な手法によって獲得することが可能であり、抗体に匹敵する結合能や特異性を有するものも多数報告されている。さらに、タンパク質や細胞をはじめ、抗体の取得が困難な低分子化合物といった様々な標的に対してアプタマーを取得することができ、治療薬や診断薬への応用が期待されている。しかしながら、抗体の獲得確率は90%以上といわれているのに対し、現在の核酸アプタマーの獲得確率は30%以下といわれている。つまり、核酸アプタマーの獲得確率技術の向上は、今後核酸アプタマーが広く産業的に利用をされるための主要な課題であるといえる。
 核酸アプタマーは、抗体に替わる新たな分子認識素子として注目されているが、核酸アプタマーの獲得率は30%以下とされており、高効率なアプタマー獲得法の開発が望まれている。CE-SELEXは、キャピラリー電気泳動の優れた分離能を利用する迅速な核酸アプタマーのスクリーニング法である。しかしながら、実験条件設定(分取領域の設定)の難しさや、標的となる分子はssDNAライブラリーとの結合時に大きな電気泳動移動度が変化するような一定以上の大きさでなければならないといった制約から、汎用性の乏しさは否めない。
 CE-SELEXにおいて、分取領域の設定は、アプタマー獲得率を左右する重要な要素である。標的に対して結合能をもたないssDNAライブラリーの混入がなく、標的と複合体を形成しているssDNAライブラリーを確実に含む領域を分取する必要がある。理想的な分取領域は、ssDNAライブラリーと標的の複合体由来のピーク範囲である。しかし、標的分子がMutSタンパク質のようにssDNAと相互作用しやすいものであり、かつ、高感度な蛍光検出器を用いない限り、ssDNAライブラリーと標的の複合体を検出することは困難である。これまでに、標的タンパク質を蛍光修飾によって可視化したり、リアルタイムPCRによって標的・アプタマー複合体の検出位置を予測したりするなど、分取領域の最適化のために様々な工夫がなされてきた。しかし、未だに複合体の検出は難しく、標的分子の検出位置からssDNAライブラリーが検出される直前までを分取領域とするのが一般的であった。この分取領域の設定法には、途中で解離した結合能が低い配列も分取領域に含まれやすいという問題点がある(図1A)。
 また、低分子化合物などの小さな分子を標的とする場合、ssDNAライブラリーとの結合時の電気泳動移動度変化はほとんど期待できないため、CE-SELEXの適用は困難であるとされている。CE-SELEXによって低分子化合物に対するアプタマーを獲得した例は、現在までにたった一つしかないことからも、その難しさが伺える(非特許文献1)。
Yang, J. & Bowser, M. T. Capillary Electrophoresis-SELEX Selection of Catalytic DNA Aptamers for a Small-Molecule Porphyrin Target. Anal. Chem. 85, 1525-1530 (2013).
 本発明は、CE-SELEXの長所を生かしながらも、実験条件設定の難しさや適用可能な標的分子種の少なさといった欠点の解決した新規のCE-SELEXを提供する。具体的には、粒子とCE-SELEXを組み合わせた核酸アプタマーをスクリーニングするための方法に関する。これまでに粒子とキャピラリー電気泳動を組み合わせたRNAや抗原の定量解析法は報告されているが、粒子とCE-SELEXを組み合わせた方法は、まだ報告されていない。
 本発明者らは、鋭意研究の結果、粒子とCE-SELEXを組み合わせることによって、従来の課題を解決し得ることを見出し、本発明を完成させた。
 本発明は、以下に関する。
 [1]下記工程:
(a)固相担体上に固定した標的分子を、核酸アプタマー候補と接触させること、
(b)キャピラリー電気泳動によって、標的分子と結合した核酸アプタマー候補を分取すること、
(c)PCRによって、核酸アプタマー候補を増幅すること、
を含む、核酸アプタマーをスクリーニングするための方法;
 [2]さらに、(d)増幅されたPCR産物を一本鎖化することを含む、[1]に記載の方法;
 [3]固相担体が、粒子である、[1]又は[2]に記載の方法;
 [4]粒子の粒径の最小値が0.05μmである、[1]~[3]のいずれか記載の方法;
 [5]標的分子が、タンパク質又は低分子量化合物である、[1]~[4]のいずれか記載の方法;
 [6]核酸アプタマー候補が、一本鎖DNAライブラリーである、[1]~[5]のいずれか1項記載の方法;
 [7]工程(a)~(d)を最大3回反復する、[2]~[6]のいずれか記載の方法。
 固相担体は、その表面上に標的分子を固定することができる任意のものをもちいることができる。たとえば、層状のグラフェン、カーボンナノチューブ、フラーレン及び粒子を挙げることができる。粒子は、従来公知の任意の粒子を用いることができる。たとえば、シリカビーズ、ポリスチレンビーズ、ラテックスビーズ、金属コロイドを挙げることができる。本発明の粒子は、磁性粒子であることができる。粒子の平均粒径の最大値は、キャピラリーの内径に応じて決定することができる。好ましくは、100μm、より好ましくは、10μm、さらにより好ましくは、1μmである。粒子の平均粒径の最小値は、好ましくは、100nm、より好ましくは、10nm、さらにより好ましくは、1nmである。粒子の平均粒径は、公知の任意の方法を用いて決定することができる。たとえば、ふるい分け法、顕微鏡法、沈降法、レーザー回折散乱法、電気検知法をあげることができる。好ましくは、顕微鏡法である。
 高価な蛍光検出器を用いず、可視部の吸光度検出器を用いるためには、粒子は、可視光の散乱によって検出されるために十分な粒径である必要がある。この場合の粒子の平均粒径の最小値は、好ましくは、0.05μm、より好ましくは、0.5μm、さらにより好ましくは、5μmである。
 本発明において標的分子とは、核酸アプタマーを利用した検出方法などにおいて、検出の標的となる分子のことをいう。標的分子の化学種は特に制限されず、低分子化合物、高分子化合物、および生体由来物質など様々な化学種を含むことができる。また、標的分子は、固相担体の表面に固定することができる。より具体的には、たとえば、糖類、脂質類、オリゴペプチド、タンパク質、及び核酸を挙げることができる。標的分子機能としては、たとえば、抗原、抗体、リガンド、レセプター、相互作用タンパク質などを挙げることができる。
 本発明において核酸アプタマーとは、核酸分子であって、所定の標的分子に対する親和性が高く、特異的に結合し得る分子のことをいう。このような性質を有する核酸分子を核酸アプタマーといい、特に断らない限り、塩基配列、分子の大きさ、分子の立体構造などによって限定されるものではない。好ましくは、核酸アプタマーは、一本鎖のRNA又はDNAである。
 本発明において固相担体上に固定した標的分子とは、標的分子が、疎水性相互作用や静電相互作用、共有結合、配位結合、非共有結合性の分子間相互作用(ビオチン-ストレプトアビジンなど)などで固相担体表面に固定されていることをいう。
 本発明において核酸アプタマー候補とは、複数のRNA及び/又はDNAで構成されるプールをいう。好ましくは、一本鎖の核酸からなる一本鎖核酸ライブラリー、より好ましくは、一本鎖のDNAからなる一本鎖DNAライブラリーである。なお、一本鎖核酸の全部又は一部の塩基が互いに対合することによって形成される二本鎖核酸がその一部に含まれていてもよい。
 本発明においてキャピラリー電気泳動とは、キャピラリー内に水溶液を満たし、目的物を含む水溶液を導入して電場中に置くことにより、電荷の移動と親和性や電気浸透流などの作用が働き、分離精製が可能になるというものである。キャピラリーの内径は、任意のものを用いることができる。
 本発明においては、キャピラリー電気泳動によって、標的分子と結合した核酸アプタマー候補を分取する。キャピラリー電気泳動システムに、予め前処理を行ったキャピラリー管を設置する。その後、ssDNAライブラリーと標的物質を固定化した粒子を混合したサンプルをインジェクトした後、ランニングバッファー中で電気泳動を行う。泳動中は、たとえば、ダイオードアレイ検出器によって195、260、280、550nmなどの波長における吸光度を経時的に測定し、得られたピークを指標として磁性粒子部分の回収を行うことができる((a)工程及び(b)工程)。
 本発明においては、分取された核酸アプタマー候補をPCRによって増幅する。PCRとは、ポリメラーゼ連鎖反応のことで、DNA合成酵素によるDNA合成反応の試験管内での繰り返しにより、その特定のDNA領域を数10万倍に増幅することができる。このとき使用するプライマーは、使用するDNAライブラリーの固定配列(プライマー配列と相補的な配列)によって異なるが、たとえばAGCAGCACAGAGGTCAGATG(順方向プライマー)、TTCACGGTAGCACGCATAGG(逆方向プライマー)などがあげられる。DNAポリメラーゼ、Tris-HCl、KCl、MgCl、およびdNTPsをプライマーと分取された核酸アプタマー候補を混合し、サーマルサイクラーにて加熱温度、時間を調整し、そのサイクルを繰り返すことにより、DNA領域を増幅することができる((c)工程)。
 本発明においては、場合により、増幅されたPCR産物を一本鎖化する。たとえば、ビオチン化プライマーを用いて増幅したPCR産物にストレプトアビジン固定化磁性粒子(例えばmagnosphere MS300/Streptavidin(Invitrogen)など)を混合し、上清の除去、洗浄、の工程を適宜繰り返す。その後、適切な濃度のNaOHを加えて目的のssDNAを磁性粒子表面から溶出させ、回収する((d)工程)。
 本発明においては、上記工程(a)~(d)を任意に反復することができる。好ましくは、上記工程(a)~(d)を最大3回反復する。
 本発明は、標的分子を粒子表面に固定化するだけの非常にシンプルな手法であるが、理論上はこれまでCE-SELEXが抱えてきた問題をほとんど解決することができる可能性がある。まず、本発明の磁性粒子を用いるCE-SELEX(以下、MB-CE-SELEXという。)における分取領域の設定は、従来のCE-SELEXと比較してはるかに容易である。粒子を光の散乱によって吸光検出器高感度に検出することができるため、高価な蛍光検出器が不要である。どのような標的分子でも磁性粒子由来のピークを分取領域とすることができる(図2)。標的・アプタマー候補複合体ピークをピンポイントで分取領域とすることで、途中で解離した結合能が低いssDNAライブラリーの排除が可能であり、アプタマー獲得率の向上が期待できる。
 また、本発明では、従来のCE-SELEXに比べて、優れた獲得率を有する。したがって、より少ないラウンド数で、所望のアプタマーを選択することができる。
 以下に、従来のSELEXと本発明の相違点を示す。
Figure JPOXMLDOC01-appb-T000001
図1は、従来のCE-SELEXと本発明の相違点を示す。 図2は、SPRセンサーによるトロンビンアプタマー候補の結合能評価(従来のCE-SELEX)を示す。各figure A~J(計10個)は、表3上段に示した10個のアプタマー候補配列の検討結果を示す。 図3は、SPRセンサーによるトロンビンアプタマー候補の結合能評価(本発明のMB-CE-SELEX)を示す。各figure A~J(計10個)は、表3中段に示した10個のアプタマー候補配列の検討結果を示す。 図4は、SPRセンサーによるトロンビンアプタマー候補の結合能評価(本発明のMB-CE-SELEX 改良版)を示す。各figure A~J(計10個)は、表3下段に示した10個のアプタマー候補配列の検討結果を示す。 図5は、T_beads_re_apt.1、T_beads_re_apt.5の独特な解離相を示す。(A)200nM T_beads_re_apt.1のレスポンスカーブと拡大図である。(B)200nM T_beads_re_apt.5のレスポンスカーブと拡大図である。 図6は、各選抜法におけるトロンビンアプタマーの獲得率(上位10配列のみから算出した)を示す。従来のCE-SELEX:23%、MB-CE-SELEX:83%、MB-CE-SELEX(改良版):91%
 以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
 磁性粒子への標的分子の固定化
 表面にカルボキシ基を有する磁性粒子Dynabeads MyOne(商標) Carboxylic Acid(Invitrogen)を担体として、製品に付属のプロトコールにしたがい分子の固定化を行った。20mM Tris-HCl、10mM NaCl,1mM MgClバッファー(pH7.4)を100μl添加し、10mg/mlの磁性粒子ストック溶液として4℃で保存した。
 CE-SELEX条件最適化
 キャピラリー電気泳動条件
 キャピラリー電気泳動システム(Agilent 7100:大塚電子)を用いた。キャピラリーは長さ80.6cm、有効長(検出窓までの長さ)72.2cmの75μm内径バブルセルフューズドシリカキャピラリー(Agilent technologies)を用いた。インレット側(注入口、陽電極側)とアウトレット側(溶出口、陰極側)の電極の間から、等しい長さのキャピラリーが出るようにキャピラリーをカセットにセットした。前処理として約1barの圧力適用により0.1M NaOH水溶液を10~20分間流した。さらに、ランニングバッファー(100mM ホウ酸バッファー、pH8.5)を10~20分間流すことでキャピラリー内を平衡化させた。
 標的に結合するssDNAの分離と分取
 サンプルの調整
 標的タンパク質のトロンビンやssDNAライブラリーは、サンプルバッファー(20mM Tris-HCl、10mM NaCl,1mM MgClバッファー、pH7.4)で溶解または希釈した。ssDNAライブラリーには、30merのランダム配列の両端(5’側と3’側)を20merの固定配列ではさんだ計70merの合成オリゴDNAを用いた。サンプルバッファーと100μM ssDNAライブラリーをPCRチューブに入れ、ピペッティングにより混合した。サーマルサイクラー(タカラバイオ)によってssDNAライブラリー溶液を95℃で2分間加熱した後、0.1℃毎秒の速さで25℃まで冷却することで、アニーリングをおこなった。
 サンプルの注入
 アニーリング後、2μMのトロンビン、あるいは5~10mg/mlトロンビン固定化磁性粒子溶液を1μl加え、30分以上室温(25℃)でインキュベートした。ターゲット・ssDNAライブラリー混合溶液は、100mbarの圧力を6~9秒間かけることでキャピラリーのインレット側から注入した。Hagen-poiseuilleの法則に基づいて以下の式からおおよその注入量を予測することができる。Vは注入量(nl)、ΔPは圧力変化(bar)、dはキャピラリー内径(m)、πは円周率、Tは注入時間(s)、ηは溶液粘度、Lはキャピラリー全長(m)を表す。
   V=ΔPdπT/128ηL×1012[nL]
 サンプルの電気泳動
 50μlのランニングバッファーが入ったバイアルをインレット側(注入口、+電極側)とアウトレット側(溶出口、-電極側)それぞれにセットし、30kVの定電圧を引加して電気泳動をおこなった。電気泳動中は、ダイオードアレイ検出器によって195、260、280、550nmにおける吸光度を経時的に測定した。泳動速度は常に一定であると仮定し、以下の式から溶出時間を算出することで、分取時間を設定した。T溶出は溶出時間、T検出は検出時間、L全長はキャピラリー全長、L有効長はキャピラリー有効長を表す。
   T溶出=T検出×L全長/L有効長
 サンプルの回収
 トロンビン固定化磁性粒子を用いた分取サンプルは、サーマルサイクラーを用いて95 ℃で10分間加熱することで磁性粒子表面のタンパク質を変性させ、ssDNAを遊離させた。マグネットスタンドに1分間静置した後、上静を回収した。
 PCRによる分取サンプルの増幅
 キャピラリー電気泳動によって分取したssDNAサンプルをPCRによって増幅した。1.5mlチューブに2×premixを400μl、DEPC処理水を192μl、4μMのフォワードプライマーを80μl、4μMの5’-ビオチン化リバースプライマーを80μlを入れて混合し、8つの200μlのPCRチューブに94μlずつ分注した。6つのチューブに分取サンプルを6μlずつ添加し、残りの二つのチューブにはポジティブ・ネガティブコントロールとして1~10pM ssDNAライブラリーとDEPC処理水をそれぞれ6μlずつ添加した。サーマルサイクラー(タカラバイオ)を用いて94℃で1分間加熱した後、「94℃で15秒、55℃で5秒、72℃で20秒」という操作を23~28回繰り返した。PCR終了後は、ポリアクリルアミドゲル電気泳動(PAGE)によって目的のサイズのDNAが増幅されているかどうかを調べた。電気泳動後のゲルを染色液に浸し、10分間振盪した。UV照射器によって、染色後のDNAのバンドを検出した。
 PCR産物の精製と一本鎖化
 PCR産物を一本鎖化し、次のラウンドで用いるssDNAライブラリーとした。ストレプトアビジン固定化磁性粒子であるmagnosphere MS300/Streptavidin(Invitrogen)を用いて、添付の説明書通りに固定化、洗浄操作を行った。調製しておいた0.1M NaOHを50μl添加し、10~15回ゆっくりとピペッティングして懸濁した後、4分間常温で静置することでアプタマー候補を遊離・抽出した。
 次世代シークエンサーによる塩基配列解析
 サンプルの調製とエマルジョンPCR
 エマルジョンPCR用のサンプルは付属のプロトコルに従って調製し、PAGEによって、目的のサイズのDNAが増幅されているかを確認した。その後、Fast Gene Gel/PCR Extraction Kit(日本ジェネティクス)によって、PCR産物のカラム精製をおこなった。最終的に、Ion OneTouchTM 2 system (Life Technologies)とIon PGM Template OT2 200 Kit (Life Technologies)を用いてエマルジョンPCRとビーズ精製をおこなった。参照した付属のプロトコールはPublication Number MAN0007220, Rev.5.0である。
 次世代シーケンサーによる大規模配列解析
 エマルジョンPCR後の精製ビーズを用いて、Ion PGM system (Life technologies)と半導体チップIon 314 chipとIon 318 chip (Life technologies)、Ion PGM Sequencing 200 Kit v2 (Life technologies)による大規模配列解析をおこなった。操作は付属のプロトコール(Publication Number MAN0007273, Rev.3.0)にしたがった。シーケンスデータはFASTAQファイルとして出力し、CLC Genomics Workbench (CLC bio)でDNA ライブラリーのprimer領域の配列(固定配列)を除き、28~32 merのランダム配列のみを抽出した。さらに重複配列のカウント数も調べ、配列情報をexcel ファイルとして出力した。Excel (microsoft)上で配列をFASTA形式に変換し、テキストファイルとして出力した。Mafftによってアライメントをおこない、類似した配列(ファミリー配列)を抽出した。さらにMEME suite 4.11.0を用いてファミリー配列を調べた。
 選抜されたアプタマーの結合能評価
 標的タンパク質のセンサーチップへの固定化
 Biacore X100 (GE healthcare)によって、添付のマニュアルに従い、標的タンパク質のセンサー表面への固定化、ならびにアプタマーとの相互作用解析をおこなった。
 ランニングバッファーにはHBS-EP(HEPES,150mM NaCl,pH7.0)を用いた。カルボキシメチルデキストラン修飾されたCM5 sensor chip (GE healthcare)を流路にセットし、10μl/minの流速でEDC/NHS溶液を7分間流し、センサーチップ上のカルボキシ基を活性化した。10mM酢酸/酢酸ナトリウムバッファー,pH6.0で希釈した10~20μg/ml トロンビン溶液を7分間流した。最後にエタノールアミンを7分間流してブロッキングをしてカップリング反応を完了させた。
 相互作用解析による解離定数の算出
 アプタマー候補サンプルを、ランニングバッファーによって2~4μMに希釈した。サーマルサイクラーを用いて95℃で2分間加熱した後、0.1℃毎秒の速さで25℃まで冷却することで、アニーリングをおこなった。アニーリング後、ランニングバッファーでさらに50~200nMに希釈した。トロンビン固定化チップを流路にセットし、30μl/minの流速で希釈したアプタマー候補を流した際に、特異的なレスポンスを示すかどうかを調べた。再生溶液として、1M NaCl溶液を用いた。特異的なレスポンスが得られたアプタマー候補については、6.25~400nMの範囲で複数の希釈サンプルを調整し、マルチカイネティクス解析をおこなった。ただし、1M NaCl溶液で再生できなかったアプタマー候補については、シングルカイネティクス解析(途中に再生の工程をはさまない)をおこなった。Evaluation softwareを用いて、解離定数を算出した。
 次世代シークエンサーによるトロンビンアプタマー候補配列の同定
 次世代シークエンサーを用いてトロンビンアプタマー候補配列を決定した手順・結果を以下に示す。
 大規模配列解析
 従来のCE-SELEX、MB-CE-SELEX(1回目)、MB-CE-SELEX(改良版)の各ラウンド(1~3ラウンド)で得られたアプタマー候補配列を、次世代シークエンサー(Ion PGM system)によって解析した。ラウンド毎の総リード配列数は、90000~800000であった(表2)。各選抜法で得られた3ラウンド目の配列のうち、主にカウント数が多かった10個の配列について解析を進めることにした。配列名を、T_apt.1~10(従来のCE-SELEX)、T_beads_apt.1~10(MB-CE-SELEX)、T_beads_re_apt.1~10(MB-CE-SELEX 改良版)とした。
表2 各ラウンドで選抜されたアプタマー候補配列の総リード数
Figure JPOXMLDOC01-appb-T000002
 上位塩基配列の濃縮効率の算出
まず、上位配列の存在率「(各配列のカウント数/総リード配列数)×100(%)」を調べたところ、各選抜法で最も濃縮されていた配列の存在率は、従来のCE-SELEXでは0.16%、MB-CE-SELEXでは12%、MB-CE-SELEX(改良版)では5.1%であった(表3)。Bowserらによって報告されたCE-SELEXを用いたVEGFアプタマーの取得に関する論文よれば、CE-SELEXで獲得されるアプタマーは多様性に富み、特定の配列の濃縮はかかり難いという仮定がなされており、実際に4ラウンド目終了時点で最も濃縮がかかった配列の存在率0.8%程度であった。本研究の結果と比較すると、従来のCE-SELEXで得られた上位配列の存在率に関しては、先行研究と同様の傾向がみられた。一方、MB-CE-SELEXによる選抜で得られた上位配列の存在率に関しては、従来のCE-SELEXで得られたものと比べて50~100倍ほど高い存在率を示しており、先行研究と比較してかなり高い濃縮効果を示していることが明らかとなった。MB-CE-SELEXでは特定の結合能をもつssDNAが濃縮されやすい条件であると考えられる。
 表3 各選抜法の3ラウンド目における上位配列のラウンド毎のカウント数・存在率
Figure JPOXMLDOC01-appb-T000003
 アプタマー候補配列の結合能
 表面プラズモン共鳴(SPR)センサー用いて算出された各候補配列のトロンビンに対する結合能を表4に示す。
 従来のCE-SELEXとMB-CE-SELEXのアプタマー獲得率の比較
 上位配列のうち、トロンビンに対して高い結合能を有する配列の割合を比較することによって、新規のMB-CE-SELEXの性能を評価した。 まず、従来のCE-SELEXで得られた上位配列(計10配列)の結合能の有無を調べた(図2)。予備実験から、ssDNAライブラリーでは特異的なレスポンスの上昇が観測されなかったことから、トロンビンはssDNAと非特異的に相互作用しないということが明らかになった(図2A)。T_apt.1~10のうち、T_apt.3、T_apt.4、T_apt.6の3つのアプタマー候補において特異的なレスポンスが得られた(図2B~K)。T_apt.1、T_apt.10に関しては、わずかにレスポンスの上昇が観測されたものの、ピークの形状が箱型、すなわち解離が非常に早いことから、結合能は低いと考えられた(図2B、K)。コントロールとして、TBA 15と全く同じ配列を有するTBA_like_apt.1についても結合実験をおこなったところ、特異的なレスポンスが得られた(図2L)。
 同様にして、MB-CE-SELEXで得られた上位配列(計10配列)の結合能の有無を調べた結果、T_beads_apt.1、T_beads_apt.3、T_beads_apt.7、T_beads_apt.8の4つのアプタマー候補において特異的なレスポンスが得られた(図3)
 最後に、MB-CE-SELEX(改良版)で得られた上位配列(計10配列)の結合能の有無を調べた結果、T_beads_re_apt.6、T_beads_apt.9以外の8つのアプタマー候補において、特異的なレスポンスが得られた(図4)。特に、T_beads_re_apt.1とT_beads_re_apt.5に関しては、他のアプタマーでは見られない独特のレスポンスカーブが得られた。これら2つのアプタマーは、比較的速い解離曲線を描いた後に一定の高さのレスポンスを保っていた(図5)。つまり、一定数のアプタマーが強固にトロンビンと結合して離れない状態にあると考えられた。
 各選抜法の上位配列のうち、高い結合能を示したものの割合は、従来のCE-SELEXが3/10、MB-CE-SELEXが4/10、MB-CE-SELEX(改良版)が8/10であった。10個の各上位配列のカウント数(存在率)からアプタマー獲得確率(高い結合能を有する配列のカウント数の和/結合能を調べた配列のカウント数の和)を算出すると、従来のCE-SELEXが23%、MB-CE-SELEXが83%、MB-CE-SELEX(改良版)が91%であった(図6)。MB-CE-SELEXでは、従来のCE-SELEXよりも高確率でトロンビンアプタマーを取得可能であるということが明らかになった。
 トロンビンアプタマーの解離定数の算出
 特異的なレスポンスカーブが得られた配列に関して、マルチカイネティクス解析あるいはシングルカイネティクス解析によって結合速度定数(ka)、解離速度定数(kd)、解離定数KDを算出した(図7 、表4)。T_beads_re_apt.10に関しては、解離が非常に遅いうえに高濃度のNaClでもトロンビンから解離しなかったため、シングルカイネティクス解析によって解離定数を算出した(図7J)。T_beads_re_apt.1とT_beads_re_apt.5は高い結合能を有している可能性が高いが、解離曲線の傾きがないために解離速度(kd)の算出が困難であり(図AとE)、SPRセンサーで解離定数(KD)の算出することは出来なかった。
各選抜法の3ラウンド目における上位配列と結合速度定数、解離速度定数、解離定数
Figure JPOXMLDOC01-appb-T000004
 MB-CE-SELEX(改良版)では、アプタマー獲得確率(高い結合能を有する配列のカウント数の和/結合能を調べた配列のカウント数の和)が高くなると主に、解離速度定数が小さな(解離しにくい)核酸アプタマーが取れた。例えば、解離曲線の傾きが得られないほどの結合能を有していたT_beads_re_apt.1とT_beads_re_apt.5や、唯一シングルカイネティクス解析によって解離定数の算出が可能であったT_beads_re_apt.10が得られた。分取ウインドウを意図的に広げた一回目のMB-CE-SELEXと、分取ウインドウを狭めたMB-CE-SELEX(改良版)における分取領域のたった18秒ほどの差が、アプタマー獲得率や解離速度定数に寄与するということが明らかになった。分取ウインドウの最適化や磁性粒子由来のピークがよりシャープになるような工夫をすることで、本系がさらに改善される可能性がある。
 本発明は、核酸アプタマーをスクリーニングするために有用である。

Claims (7)

  1.  下記工程:
    (a)固相担体上に固定した標的分子を、核酸アプタマー候補と接触させること、
    (b)キャピラリー電気泳動によって、標的分子と結合した核酸アプタマー候補を分取すること、
    (c)PCRによって、核酸アプタマー候補を増幅すること、
    を含む、核酸アプタマーをスクリーニングするための方法。
  2.  さらに、(d)増幅されたPCR産物を一本鎖化することを含む、請求項1に記載の方法。
  3.  固相担体が、粒子である、請求項1又は2に記載の方法。
  4.  粒子の粒径の最小値が0.05μmである、請求項1~3のいずれか1項記載のに記載の方法。
  5.  標的分子が、タンパク質又は低分子量化合物である、請求項1~4のいずれか1項記載の方法。
  6.  核酸アプタマー候補が、一本鎖DNAライブラリーである、請求項1~5のいずれか1項記載の方法。
  7.  工程(a)~(d)を最大3回反復する、請求項2~6のいずれか1項記載の方法。
PCT/JP2017/001873 2016-01-22 2017-01-20 核酸アプタマーをスクリーニングするための方法 WO2017126646A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187023677A KR20180104031A (ko) 2016-01-22 2017-01-20 핵산 앱타머를 스크리닝하기 위한 방법
CN201780007417.2A CN108779467B (zh) 2016-01-22 2017-01-20 用于筛选核酸适配体的方法
EP17741523.9A EP3406721B1 (en) 2016-01-22 2017-01-20 Method for screening nucleic acid aptamer
US16/071,836 US10975370B2 (en) 2016-01-22 2017-01-20 Methods for screening nucleic acid aptamers
JP2017562916A JP6994198B2 (ja) 2016-01-22 2017-01-20 核酸アプタマーをスクリーニングするための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-010415 2016-01-22
JP2016010415 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017126646A1 true WO2017126646A1 (ja) 2017-07-27

Family

ID=59362541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001873 WO2017126646A1 (ja) 2016-01-22 2017-01-20 核酸アプタマーをスクリーニングするための方法

Country Status (7)

Country Link
US (1) US10975370B2 (ja)
EP (1) EP3406721B1 (ja)
JP (1) JP6994198B2 (ja)
KR (1) KR20180104031A (ja)
CN (1) CN108779467B (ja)
TW (1) TWI731028B (ja)
WO (1) WO2017126646A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146676A1 (ja) * 2018-01-25 2019-08-01 国立大学法人 東京大学 核酸アプタマー
CN110577979A (zh) * 2018-06-08 2019-12-17 首都师范大学 一种基于交联反应的核酸适配体的快速筛选方法及筛选获得的结构开关型核酸适配体
CN114207132A (zh) * 2019-07-18 2022-03-18 国立癌中心 新型dna适体及其用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371031A (zh) * 2018-11-23 2019-02-22 北京化工大学 一种特异性结合牛血清白蛋白核酸适配体的筛选方法
CN110305868B (zh) * 2019-07-03 2022-08-02 合肥工业大学 凝血酶环状核酸适配体及其应用
CN110982821B (zh) * 2019-12-27 2023-07-07 广东石油化工学院 一种具有黄嘌呤氧化酶抑制活性的核酸适配体及其应用
WO2023148646A1 (en) * 2022-02-03 2023-08-10 Tsinghua University Mirror-image selection of l-nucleic acid aptamers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171795A (ja) * 2015-03-16 2016-09-29 株式会社シノテスト アプタマーの選抜方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012295913A1 (en) * 2011-08-12 2014-03-13 Tagcyx Biotechnologies Production method for nucleic acid aptamer
CN103937781A (zh) * 2013-03-15 2014-07-23 河南省农业科学院 一种可实时监测的固相指数富集的配体系统进化技术
US20150119285A1 (en) * 2013-10-28 2015-04-30 Chin-Yih Hong Magnetic-assisted rapid aptamer selection method for generating high affinity dna aptamer
CN105018461B (zh) * 2014-04-29 2018-05-01 中国科学技术大学 一种核酸适配体的快速筛选方法
CN104297325B (zh) * 2014-09-29 2017-06-27 北京理工大学 毛细管电泳在线反应分离蛋白质‑寡核酸复合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171795A (ja) * 2015-03-16 2016-09-29 株式会社シノテスト アプタマーの選抜方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MOSING RK ET AL.: "Capillary electrophoresis- SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase", ANALYTICAL CHEMISTRY, vol. 77, 2005, pages 6107 - 6112, XP003020888 *
WAKUI K ET AL.: "Development of in vitro selection method for DNA aptamers based on the combined use of CE-SELEX and magnetic beads", CSJ: CHEMICAL SOCIETY OF JAPAN 96TH CSJ ANNUAL MEETING, vol. 96, 24 March 2016 (2016-03-24), pages Abstr. 1PB-055 - 055, XP009512736 *
WAKUI K ET AL.: "In vitro selection of DNA aptamer by beads based capillary electrophoresis", 43RD ISNAC, 27 September 2016 (2016-09-27), pages 252 - 253, XP009513844 *
YANG J ET AL.: "Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small- molecule porphyrin target", ANALYTICAL CHEMISTRY, vol. 85, no. 3, 5 February 2013 (2013-02-05), pages 1525 - 1530, XP055507535 *
YANG, J.; BOWSER, M. T.: "Capillary Electrophoresis-SELEX Selection of Catalytic DNA Aptamers for a Small-Molecule Porphyrin Target", ANAL. CHEM., vol. 85, 2013, pages 1525 - 1530

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146676A1 (ja) * 2018-01-25 2019-08-01 国立大学法人 東京大学 核酸アプタマー
CN110577979A (zh) * 2018-06-08 2019-12-17 首都师范大学 一种基于交联反应的核酸适配体的快速筛选方法及筛选获得的结构开关型核酸适配体
CN110577979B (zh) * 2018-06-08 2022-09-27 首都师范大学 一种基于交联反应的核酸适配体的快速筛选方法及筛选获得的结构开关型核酸适配体
CN114207132A (zh) * 2019-07-18 2022-03-18 国立癌中心 新型dna适体及其用途

Also Published As

Publication number Publication date
KR20180104031A (ko) 2018-09-19
EP3406721B1 (en) 2023-10-04
JPWO2017126646A1 (ja) 2018-11-15
EP3406721A4 (en) 2019-09-11
EP3406721A1 (en) 2018-11-28
CN108779467B (zh) 2021-08-31
JP6994198B2 (ja) 2022-02-04
US10975370B2 (en) 2021-04-13
TWI731028B (zh) 2021-06-21
US20200332281A1 (en) 2020-10-22
TW201803991A (zh) 2018-02-01
CN108779467A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017126646A1 (ja) 核酸アプタマーをスクリーニングするための方法
JP6525872B2 (ja) 細胞中の複数のエピトープを同定するためのダイナミックレンジを高めること
Zhao et al. Applications of aptamer affinity chromatography
Jin et al. Cancer biomarker discovery using DNA aptamers
Meyer et al. Aptamers: versatile probes for flow cytometry
JP4706019B2 (ja) アプタマーの同定方法
SG189839A1 (en) Systems and methods for automated reusable parallel biological reactions
JP2002537781A (ja) 固定化捕捉プローブを有する生化学的精製装置およびその使用
JP6942129B2 (ja) ポリメラーゼ複合体の精製
Hamedani et al. Capillary electrophoresis for the selection of DNA aptamers recognizing activated protein C
Datinská et al. Recent progress in nucleic acids isotachophoresis
JP2008154493A (ja) 分離精製方法とマイクロ流体回路
Zhu et al. Recent progress of SELEX methods for screening nucleic acid aptamers
Zhu et al. Online reaction based single-step CE for Protein-ssDNA complex obtainment to assist aptamer selection
WO2013125124A1 (ja) 標的粒子の検出方法
JP6831776B2 (ja) 2個のリガンドと1個のレセプタとからなる高親和性錯体の特定方法と該方法を実行する装置及び該方法に用いられる自己集合型ケミカルライブラリ
US20210207128A1 (en) Aptamer of nattokinase and method for screening the aptamer
JP2017510278A (ja) 改善された濃縮方法
JP5759351B2 (ja) ボロン酸基固定化支持体を用いたピロリン酸検出法
JP6781883B2 (ja) アプタマーの選抜方法
Abu Jalboush et al. Improving the Performance of Selective Solid-State Nanopore Sensing Using a Polyhistidine-Tagged Monovalent Streptavidin
KR20220164163A (ko) 단백체의 프로파일 또는 단백질의 정량을 위한 자기 수집을 이용한 압타머 풀의 제조 및 이의 자동화 장비
KR20220163640A (ko) 단백체의 집단적 정량을 위한 자성 수집을 이용한 단백체 결합 압타머 풀의 제조 및 이의 자동화 장비
JP5233296B2 (ja) ターゲット評価方法および装置
US20120094875A1 (en) Production process of high affinity and high specificity oligonucleotides for organic and inorganic molecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023677

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023677

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017741523

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741523

Country of ref document: EP

Effective date: 20180822