WO2017126510A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2017126510A1
WO2017126510A1 PCT/JP2017/001439 JP2017001439W WO2017126510A1 WO 2017126510 A1 WO2017126510 A1 WO 2017126510A1 JP 2017001439 W JP2017001439 W JP 2017001439W WO 2017126510 A1 WO2017126510 A1 WO 2017126510A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
lithium ion
separator
ion secondary
Prior art date
Application number
PCT/JP2017/001439
Other languages
English (en)
French (fr)
Inventor
広喜 葛岡
英介 羽場
駿介 長井
西村 拓也
謙次 高岡
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201780007346.6A priority Critical patent/CN108475809A/zh
Priority to US16/071,129 priority patent/US20210167393A1/en
Priority to JP2017562824A priority patent/JPWO2017126510A1/ja
Publication of WO2017126510A1 publication Critical patent/WO2017126510A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • a lithium ion secondary battery is an energy device having a high energy density, and is widely used as a power source for portable information terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants).
  • an electrode group is configured by alternately stacking positive and negative electrodes through separators.
  • the negative electrode active material a carbon material having a multilayer structure capable of inserting and releasing lithium ions between layers is mainly used.
  • lithium-containing metal composite oxides are mainly used as the positive electrode active material.
  • a polyolefin porous membrane is mainly used for the separator.
  • a lithium ion secondary battery composed of such a material has high battery capacity (discharge capacity) and output, and good charge / discharge cycle characteristics.
  • Lithium ion secondary batteries are at a high level in terms of safety.
  • the lithium ion secondary battery has a high capacity and a high output, further improvement is demanded in terms of safety. For example, if a lithium ion secondary battery is overcharged, it may generate heat or run out of heat. Therefore, the method of Patent Document 1 has been proposed as a method of interrupting current and suppressing heat generation.
  • Patent Document 1 when the temperature of a lithium ion secondary battery is increased by providing a PTC (Positive Temperature Coefficient) layer containing conductive particles, polyolefin particles, and a water-soluble polymer on a positive electrode current collector, It is disclosed that the effect of suppressing the overheating of the lithium ion secondary battery is exhibited by increasing the internal resistance of the lithium ion secondary battery to make it difficult for the current to flow.
  • PTC Physical Temperature Coefficient
  • the lithium ion secondary battery described in Patent Document 1 has a problem that the manufacturing process becomes complicated because the PTC layer is formed between the current collector and the active material layer.
  • the present invention has been made in view of the above circumstances, and has a function of increasing the internal resistance of a battery (hereinafter sometimes referred to as DC resistance) when the temperature rises, and has excellent battery characteristics and safety during normal operation.
  • An object of the present invention is to provide a lithium ion secondary battery that has high performance and a simple manufacturing process.
  • a positive electrode, a negative electrode, a separator, and an electrolyte are provided.
  • the positive electrode has a current collector and a positive electrode active material layer formed on the current collector,
  • the positive electrode active material layer includes a positive electrode active material, polyolefin particles, conductive particles, and a binder,
  • the separator is a lithium ion secondary battery having a heat shrinkage rate at 160 ° C. of 30% or less.
  • the separator includes a porous substrate and inorganic particles, the porous substrate includes two or more different resins, and the resin includes a polypropylene resin, a polyethylene resin, a polyvinyl alcohol resin, a polyethylene terephthalate resin,
  • the lithium ion secondary battery according to ⁇ 1> selected from the group consisting of polyacrylonitrile resin and aramid resin.
  • ⁇ 3> The lithium ion secondary battery according to ⁇ 2>, wherein the porous substrate includes a polyethylene resin and a polypropylene resin.
  • ⁇ 4> The lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein the heat shrinkage rate of the separator at 160 ° C. is 20% or less.
  • ⁇ 5> The lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 4>, wherein the separator has a Gurley value of 1000 seconds / 100 cc or less.
  • ⁇ 6> The lithium ion secondary battery according to ⁇ 1>, wherein the separator includes a porous substrate and inorganic particles, and the porous substrate includes a polyester resin.
  • the polyester resin includes a polyethylene terephthalate resin.
  • a positive electrode, a negative electrode, a separator and an electrolyte are provided.
  • the positive electrode has a current collector and a positive electrode active material layer formed on the current collector,
  • the positive electrode active material layer includes a positive electrode active material, polyolefin particles, conductive particles, and a binder,
  • the separator includes a porous substrate and inorganic particles, and the porous substrate is a lithium ion secondary battery in which a polypropylene resin and a polyethylene resin are alternately laminated.
  • the positive electrode has a current collector and a positive electrode active material layer formed on the current collector,
  • the positive electrode active material layer includes a positive electrode active material, polyolefin particles, conductive particles, and a binder,
  • the separator is a lithium ion secondary battery including a woven or nonwoven fabric of polyethylene terephthalate resin and inorganic particles.
  • the inorganic particles according to any one of ⁇ 2>, ⁇ 6>, ⁇ 8>, and ⁇ 9>, wherein the inorganic particles include at least one of aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ). Lithium ion secondary battery.
  • ⁇ 11> The lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 10>, wherein the separator has a thickness of 5 ⁇ m to 100 ⁇ m.
  • ⁇ 12> The lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 11>, wherein the binder contains a resin containing a structural unit derived from a nitrile group-containing monomer.
  • a lithium ion secondary battery having a function of increasing the internal resistance of a battery when the temperature rises, having excellent battery characteristics and safety during normal operation, and having a simple manufacturing process is provided. can do.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acrylonitrile means acrylonitrile or methacrylonitrile
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylamide Means acrylamide or methacrylamide
  • (meth) allyl means allyl or methallyl.
  • the technology of the present disclosure can be widely applied to various nonaqueous secondary batteries including an electrode in a form in which an active material layer (a positive electrode active material layer and a negative electrode active material layer) is formed on a current collector. Details will be described below.
  • a first lithium ion secondary battery of the present disclosure is a lithium ion secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, and the positive electrode includes a current collector and a positive electrode active formed on the current collector.
  • the positive electrode active material layer includes a positive electrode active material, polyolefin particles, conductive particles, and a binder, and the separator has a heat shrinkage rate at 160 ° C. of 30% or less.
  • the second lithium ion secondary battery of the present disclosure is a lithium ion secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, and the positive electrode is formed on the current collector and the current collector.
  • a positive electrode active material layer includes a positive electrode active material, polyolefin particles, conductive particles, and a binder; the separator includes a porous substrate and inorganic particles;
  • the base material is a laminate in which polypropylene resin and polyethylene resin are alternately laminated.
  • the third lithium ion secondary battery of the present disclosure is a lithium ion secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, and the positive electrode is formed on the current collector and the current collector.
  • a positive electrode active material layer includes a positive electrode active material, polyolefin particles, conductive particles, and a binder, and the separator includes a woven or nonwoven fabric of polyethylene terephthalate resin and inorganic particles.
  • the first lithium ion secondary battery, the second lithium ion secondary battery, and the third lithium ion secondary battery may be collectively referred to as a lithium ion secondary battery of the present disclosure.
  • a positive electrode (positive electrode) for a lithium ion secondary battery of the present disclosure has a current collector (positive electrode current collector) and a positive electrode active material layer.
  • the positive electrode active material layer includes a positive electrode active material, conductive particles, and polyolefin particles. And a binder.
  • the positive electrode active material layer contains a positive electrode active material, conductive particles, polyolefin particles, and a binder, and is formed on the positive electrode current collector. More specifically, the positive electrode active material layer is formed on one or both surfaces in the thickness direction of the positive electrode current collector.
  • limiting in the formation method it forms as follows.
  • the positive electrode active material, polyolefin particles, conductive particles, binder and other materials used as needed are mixed in a dry manner without using a dispersion solvent and formed into a sheet, which is used as a positive electrode current collector. There is a method of pressure bonding (dry method).
  • the positive electrode active material, polyolefin particles, conductive particles, binder and other materials used as necessary are dissolved or dispersed in a dispersion solvent to form a positive electrode mixture paste, which is applied to the positive electrode current collector. And a method of drying (wet method).
  • the positive electrode current collector examples thereof include sheets and foils containing stainless steel, aluminum, titanium and the like. Among these, an aluminum sheet or foil is preferable.
  • the thickness of the sheet and foil is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m, and more preferably 1.5 ⁇ m to 200 ⁇ m, from the viewpoint of ensuring the strength and workability required for the current collector.
  • the thickness is more preferably 2 ⁇ m to 80 ⁇ m, and particularly preferably 5 ⁇ m to 50 ⁇ m.
  • the positive electrode active material examples include lithium-containing metal oxides, olivine-type lithium salts, chalcogen compounds, and manganese dioxide.
  • the lithium-containing metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element.
  • examples of the different elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, and Mn, Al, Co, Ni, Mg and the like are preferable.
  • 1 type may be sufficient as a heterogeneous element, or 2 or more types may be sufficient as it.
  • a lithium-containing metal composite oxide is preferable as the positive electrode active material.
  • the lithium-containing metal composite oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1 1-y O z (formula M 1 represents at least one element selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B.) , Li x Ni 1-y M 2 y O z where M 2 is from Na, Mg, Sc, Y, Mn, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, V, and B And at least one element selected from the group consisting of Li x Mn 2 O 4 , and Li x Mn 2 -y M 3 y O 4 (wherein M 3 is Na, Mg, Sc, Y, Fe) , Co
  • x is 0 ⁇ x ⁇ 1.2
  • y is 0 to 0.9
  • z is 2.0 to 2.3.
  • the x value indicating the molar ratio of lithium is increased or decreased by charging and discharging.
  • the olivine type lithium salts for example, LiFePO 4, and the like.
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • a positive electrode active material can be used individually by 1 type, or can use 2 or more types together.
  • the positive electrode active material preferably contains lithium manganese oxide represented by Li x Mn 2 O 4 or Li x Mn 2 -y M 3 y O 4 from the viewpoint of safety, and includes lithium, nickel, manganese, More preferably, it contains a cobalt composite oxide.
  • the content of lithium manganese oxide is preferably 30% by mass or more, and more preferably 40% by mass or more, based on the total amount of the positive electrode active material. .
  • the polyolefin particles used for the positive electrode active material layer are not particularly limited as long as they are non-conductive and thermoplastic resin particles.
  • Examples of the material of such polyolefin particles include polyethylene, polypropylene, polymethylpentene, polybutene and the like.
  • other resin particles other than the polyolefin particles may be used in combination.
  • resin particle materials include ethylene-vinyl acetate copolymer (EVA), polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, polyamide, polystyrene, polyacrylonitrile, thermoplastic elastomer, polyethylene oxide, Examples include polyacetal, thermoplastic modified cellulose, polysulfones, and polymethyl (meth) acrylate.
  • polyolefin particles such as polyethylene and polypropylene are preferable from the viewpoint of excellent swelling resistance to an electrolytic solution and electrochemical stability.
  • Polyolefin particles can be used singly or in combination of two or more.
  • the proportion of the polyolefin particles based on the total mass of the polyolefin particles and other resin particles is preferably 70% by mass to 100% by mass, and more preferably 80% by mass to 100% by mass.
  • the average particle diameter of the polyolefin particles is preferably 0.1 ⁇ m to 30 ⁇ m, and preferably 0.5 ⁇ m to 15 ⁇ m, from the viewpoint of easy dispersion and the ability to uniformly form the positive electrode active material layer on the current collector. More preferably, it is 2.5 ⁇ m to 10 ⁇ m.
  • the larger the average particle size of the polyolefin particles the better the battery characteristics.
  • the average particle diameter of the polyolefin particles is, for example, a transmission type in which the positive electrode active material layer containing the polyolefin particles is formed to have a thickness of about 70 ⁇ m and the central portion has a length of 50 ⁇ m ⁇ width 50 ⁇ m.
  • the value of the major axis length of all polyolefin particles in the image of the electron micrograph can be a numerical value obtained by arithmetic averaging.
  • the resistance of the positive electrode active material layer increases when the positive electrode active material layer exceeds a predetermined temperature due to heat generation of the lithium ion secondary battery, and the current flowing in the positive electrode active material layer Can be provided (hereinafter also referred to as a PTC function).
  • the temperature at which the PTC function is manifested can be adjusted by the melting point (Tm) of the polyolefin particles. That is, when the temperature of the positive electrode active material layer reaches the vicinity of the melting point of the polyolefin particles, the polyolefin particles expand or melt, whereby the conductive path in the positive electrode active material layer is cut and the PTC function is expressed.
  • the melting point (Tm) of the polyolefin particles is not particularly limited, but is preferably from 70 ° C. to 160 ° C. from the viewpoints of handleability and safety of the lithium ion secondary battery, operating temperature range of the battery, and productivity.
  • the temperature is from 80 ° C to 140 ° C, more preferably from 80 ° C to 150 ° C, and particularly preferably from 90 ° C to 120 ° C.
  • Tm melting point
  • the PTC function is exhibited at a lower temperature, so that safety can be improved.
  • the melting point (Tm) of the polyolefin particles is higher, malfunction during normal use can be suppressed, and the drying temperature of the positive electrode can be set higher, so that productivity can be improved.
  • the melting point (Tm) of the polyolefin particles can be calculated from the endothermic peak temperature after measuring the specific heat capacity of the polyolefin particles in the inert gas as a temperature function using, for example, a differential scanning calorimeter.
  • the content of the polyolefin particles is 0.1% by mass to 10% by mass in the total amount of the positive electrode active material layer from the viewpoint of achieving both battery characteristics and PTC function. It is preferably 0.5% by mass to 8% by mass, more preferably 2.5% by mass to 6.5% by mass. The higher the proportion of polyolefin particles tends to be a positive electrode active material layer excellent in PTC function, and the smaller the proportion of polyolefin particles tends to be a positive electrode active material layer excellent in battery characteristics.
  • the addition form of the polyolefin particles to the sheet or paste is not particularly limited as long as the polyolefin maintains a particulate form, and a form in which the powder is dried, a form in which the powder is dispersed in a solvent, and the like can be applied. From the viewpoint of preventing moisture from being mixed into the positive electrode mixture paste, it is preferable to use the powder after drying. From the viewpoint of achieving good dispersion of the polyolefin particles in the positive electrode mixture paste, it is preferable to use the powder after being dispersed in a solvent. .
  • the solvent for dispersing the polyolefin particles is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), tetrahydrofuran, and dimethylformamide.
  • the conductive particles used in the positive electrode active material layer those commonly used in this field can be used, and carbon black, graphite, carbon fiber, metal fiber, and the like can be used.
  • carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • Examples of graphite include natural graphite and artificial graphite.
  • the conductive particles can be used singly or in combination of two or more.
  • the content of the conductive particles in the case where the conductive particles are used for the positive electrode active material layer is the mass ratio of the polyolefin particles and the conductive particles contained in the positive electrode active material layer from the viewpoint of achieving both battery characteristics and PTC function.
  • the amount of (polyolefin particles / conductive particles) is preferably 0.15 / 0.85 to 0.85 / 0.15, and the amount of 0.3 / 0.7 to 0.7 / 0.3 is preferably More preferred is an amount of 0.4 / 0.6 to 0.6 / 0.4.
  • the proportion of the conductive particles is larger, the positive electrode active material layer tends to be excellent in battery characteristics, and as the proportion of the conductive particles is smaller, the positive electrode active material layer tends to be excellent in PTC function.
  • binder that may be used for the positive electrode active material layer
  • those commonly used in this field can be used, for example, a resin containing a structural unit derived from a nitrile group-containing monomer, polyvinyl acetate, polymethyl methacrylate
  • examples include nitrocellulose, fluororesin, and rubber.
  • fluororesin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and vinylidene fluoride-hexafluoropropylene copolymer.
  • rubber include styrene-butadiene rubber and acrylonitrile rubber.
  • the resin containing a structural unit derived from a nitrile group-containing monomer is preferably soluble or easily soluble in an organic solvent.
  • a binder can be used individually by 1 type, and can be used in combination of 2 or more type as needed.
  • Examples of the resin containing a structural unit derived from a nitrile group-containing monomer include a copolymer of (meth) acrylonitrile and another compound having an ethylenically unsaturated bond.
  • a resin containing a structural unit derived from a nitrile group-containing monomer is represented by a structural unit derived from a nitrile group-containing monomer and the following formula (I): And at least one structural unit selected from the group consisting of monomer-derived structural units represented by the following formula (II).
  • the resin containing a structural unit derived from a nitrile group-containing monomer preferably includes a structural unit derived from a carboxy group-containing monomer and containing a carboxy group.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group
  • n is an integer of 1 to 50
  • R 3 is a hydrogen atom or a methyl group
  • R 4 is an alkyl group having 4 to 100 carbon atoms.
  • the nitrile group-containing monomer is not particularly limited, but acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile, cyan nitrile group-containing monomers such as ⁇ -cyanoacrylate and dicyanovinylidene, fumaronitrile Fumaric nitrile group-containing monomers such as Among these, acrylonitrile is preferable from the viewpoints of flexibility and flexibility of the electrode. These nitrile group-containing monomers can be used singly or in combination of two or more.
  • the total content of the structural unit derived from acrylonitrile and the structural unit derived from methacrylonitrile is a nitrile group-containing monomer that is a binder. It is preferably 40% by mass to 98% by mass, more preferably 50% by mass to 96% by mass, and 60% by mass to 95% by mass with respect to the total amount of the resin including the derived structural unit. Is more preferable.
  • R 1 is a hydrogen atom or a methyl group.
  • n is an integer of 1 to 50, preferably an integer of 2 to 30, and more preferably an integer of 2 to 10.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group, for example, preferably a hydrocarbon group having 1 to 50 carbon atoms, more preferably a hydrocarbon group having 1 to 25 carbon atoms, A hydrocarbon group having a number of 1 to 12 is more preferable. If the number of carbon atoms of the hydrocarbon group is 50 or less, sufficient swelling resistance to the electrolytic solution tends to be obtained.
  • R 2 is particularly preferably an alkyl group having 1 to 12 carbon atoms or a phenyl group. This alkyl group may be either linear or branched.
  • R 2 is an alkyl group or a phenyl group
  • the hydrogen atom that the alkyl group or the phenyl group has is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, a nitrogen atom-containing group, a phosphorus atom-containing group, an aromatic It may be substituted with a group, a cycloalkyl group having 3 to 10 carbon atoms, or the like.
  • EO means an ethyleneoxy group
  • n means the number of structural units of the ethyleneoxy group.
  • methoxytriethylene glycol acrylate (R 1 in the general formula (I) is a hydrogen atom
  • R 2 is a methyl group, from the viewpoint of reactivity when copolymerized with a nitrile group-containing monomer, A compound in which n is 3) is more preferable.
  • These monomers represented by the formula (I) can be used singly or in combination of two or more.
  • R 3 is a hydrogen atom or a methyl group.
  • R 4 is a hydrogen atom or an alkyl group having 4 to 100 carbon atoms.
  • R 4 is preferably an alkyl group having 4 to 50 carbon atoms, more preferably an alkyl group having 6 to 30 carbon atoms, and still more preferably an alkyl group having 8 to 15 carbon atoms. If the carbon number of the alkyl group is 4 or more, the electrode tends to exhibit sufficient flexibility, and if the carbon number of the alkyl group is 100 or less, sufficient swelling resistance to the electrolytic solution can be obtained. There is a tendency.
  • the alkyl group constituting R 4 may be linear, branched or cyclic.
  • the hydrogen atom contained in the alkyl group constituting R 4 is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, a nitrogen atom-containing group, a phosphorus atom-containing group, an aromatic group, or a carbon number of 3 to 10 May be substituted with a cycloalkyl group.
  • alkyl group constituting R 4 in addition to a linear, branched or cyclic saturated alkyl group, a halogenated alkyl group such as a fluoroalkyl group, a chloroalkyl group, a bromoalkyl group, an alkyl iodide group, etc. Is mentioned.
  • R 4 is a linear, branched or cyclic saturated alkyl group, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t- Butyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, Decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate
  • R 4 is a fluoroalkyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl acrylate, 2,2,3,3,4,4,4-heptafluoro Butyl acrylate, 2,2,3,4,4,4-hexafluorobutyl acrylate, nonafluoroisobutyl acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl acrylate, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl acrylate, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl acrylate, 2, 2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate, 3,3,4,4,5,5,6,6 7, 7, 8, 8, 9, 9, 10, 10, 10-heptadecafluorodecyl acrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9
  • the structural unit derived from the monomer represented by the formula (I) and the formula (II) is based on the total amount of the resin including the structural unit derived from the nitrile group-containing monomer as the binder, The content is preferably 1% by mass to 50% by mass, more preferably 2% by mass to 30% by mass, and still more preferably 3% by mass to 20% by mass.
  • the content of the structural unit derived from the monomer represented by the formula (I) or the structural unit derived from the monomer represented by the formula (II) increases, the flexibility and the binding property are likely to increase. The smaller the amount, the higher the swelling resistance to the electrolyte and the electrochemical stability when applying the positive electrode.
  • the carboxy group-containing monomer is not particularly limited.
  • the carboxy group-containing monomer include maleic monomers such as acrylic carboxy group-containing monomers such as acrylic acid and methacrylic acid, croton carboxy group-containing monomers such as crotonic acid, maleic acid, and anhydrides thereof.
  • examples include carboxy group-containing monomers, itaconic carboxy group-containing monomers such as itaconic acid and its anhydride, and citraconic carboxy group-containing monomers such as citraconic acid and its anhydride.
  • acrylic acid is preferable from the viewpoints of electrode flexibility and binding properties.
  • These carboxy group-containing monomers can be used singly or in combination of two or more.
  • the content of the structural unit derived from the carboxy group-containing monomer is based on the total amount of the resin including the structural unit derived from the nitrile group-containing monomer as the binder.
  • the content is preferably 0.1% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and still more preferably 2% by mass to 6% by mass.
  • the resin containing a structural unit derived from a nitrile group-containing monomer includes a structural unit derived from a nitrile group-containing monomer, a structural unit derived from a carboxy group-containing monomer and containing a carboxy group, and a compound represented by formula (I): At least one structural unit selected from the group consisting of a structural unit derived from a monomer and a structural unit derived from a monomer represented by formula (II), and other different from these monomers Monomer structural units may be combined as appropriate.
  • monomers include, but are not limited to, short chain (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, vinyl chloride, vinyl bromide, chloride Vinyl halide compounds such as vinylidene, maleic imide, phenylmaleimide, (meth) acrylamide, styrene, ⁇ -methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate, styrenesulfone Examples thereof include sodium acid, 2-acrylamido-2-methylpropanesulfonic acid and salts thereof. These other monomers can be used singly or in combination of two or more.
  • a resin containing a structural unit derived from a nitrile group-containing monomer is a structural unit derived from a nitrile group-containing monomer, a structural unit derived from a carboxy group-containing monomer and containing a carboxy group, and a formula (I)
  • a structural unit derived from a monomer and a structural unit derived from a monomer represented by formula (II) derived from a nitrile group-containing monomer
  • the molar ratio with at least one structural unit selected from the group consisting of derived structural units is, for example, derived from a carboxy group-containing monomer with respect to 1 mol of a structural unit derived from
  • a structural unit containing a carboxy group is preferred Is from 0.01 mol to 0.2 mol, more preferably from 0.02 mol to 0.1 mol, still more preferably from 0.03 mol to 0.06 mol, and in formula (I) or formula (II)
  • the monomer-derived structural unit represented is preferably 0.001 mol to 0.2 mol, more preferably 0.003 mol to 0.05 mol, still more preferably 0.005 mol to 0.02 mol. .
  • the structural unit derived from a carboxy group-containing monomer and containing a carboxy group is 0.01 mol to 0.2 mol, and the structural unit derived from the monomer represented by the formula (I) or the formula (II) is 0.00. If it is 001 mol to 0.2 mol, the adhesion to the current collector, particularly the positive electrode current collector using aluminum foil, and the swelling resistance to the electrolyte solution are excellent, and the flexibility and flexibility of the electrode are good. Become.
  • the content thereof is preferably 0.005 mol to 0.1 mol, more preferably 0.01 mol to 0.1 mol with respect to 1 mol of the nitrile group-containing monomer.
  • the ratio is 0.06 mol, more preferably 0.03 mol to 0.05 mol.
  • the structural unit derived from the nitrile group-containing monomer is preferably 50 mol% or more based on the total amount of the resin including the structural unit derived from the nitrile group-containing monomer as the binder, and is 70 mol. % Or more is more preferable, and 80 mol% or more is still more preferable.
  • the more structural units derived from the nitrile group-containing monomer the higher the resistance to swelling to the electrolyte and the electrochemical stability when applying the positive electrode.
  • the current interruption temperature of the positive electrode is preferably set to 70 ° C. to 160 ° C., more preferably 90 ° C. to 120 ° C. If the current interruption temperature is set to 70 ° C. to 160 ° C., the current is interrupted to suppress heat generation when an abnormality occurs in the lithium ion secondary battery itself or various devices equipped with the lithium ion secondary battery. Since the supply of power from the lithium ion secondary battery to various devices can be stopped, high safety can be obtained. Further, if the current interruption temperature is set to 90 ° C. to 120 ° C., there is an advantage that there is no malfunction during normal use, and the current can be reliably interrupted in the event of an abnormality such as overcharging.
  • the current interruption temperature as described above depends on the melting point (Tm) of the polyolefin particles.
  • Tm melting point
  • polyethylene particles are preferably used as the polyolefin particles.
  • said electric current interruption temperature shall be the temperature from which a DC resistance increase rate will be 110% or more with respect to DC resistance in 25 degreeC of a battery.
  • the positive electrode active material layer can be formed, for example, by applying a positive electrode mixture paste on a positive electrode current collector, drying, and rolling as necessary.
  • the positive electrode mixture paste can be prepared by adding a positive electrode active material to a dispersion medium together with conductive particles, polyolefin particles, a binder and the like and mixing them.
  • the dispersion medium N-methyl-2-pyrrolidone (NMP), tetrahydrofuran, dimethylformamide or the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • tetrahydrofuran dimethylformamide or the like
  • the packing density of the positive electrode active material layer when forming the positive electrode active material layer including the positive electrode active material, the conductive particles, the polyolefin particles, and the binder as described above, the packing density of the positive electrode active material layer If it becomes too high, the non-aqueous electrolyte is less likely to penetrate into the positive electrode active material layer, and the diffusion of lithium ions during charging / discharging with a large current may be delayed, resulting in deterioration of cycle characteristics.
  • the packing density of the positive electrode active material layer is low, sufficient contact between the positive electrode active material and the conductive particles is not ensured, resulting in an increase in electrical resistance and a decrease in discharge rate.
  • the packing density of the positive electrode active material layer is preferably in the range of 2.2 g / cm 3 to 2.8 g / cm 3 , and preferably in the range of 2.3 g / cm 3 to 2.7 g / cm 3 . More preferably, it is more preferably in the range of 2.4 g / cm 3 to 2.6 g / cm 3 . If the packing density of the positive electrode active material layer is 2.8 g / cm 3 or less, the non-aqueous electrolyte easily penetrates into the positive electrode active material layer, and the diffusion of lithium ions during charge / discharge with a large current is accelerated. Cycle characteristics tend to improve. On the other hand, when the packing density of the positive electrode active material layer is 2.2 g / cm 3 or more, the contact between the positive electrode active material and the conductive particles is sufficiently ensured to lower the electrical resistance and improve the discharge rate characteristics. Tend to.
  • the positive electrode mixture paste when the positive electrode mixture paste is applied to the positive electrode current collector to form the positive electrode active material layer, the amount of the positive electrode mixture paste applied increases, and the positive electrode active material layer When it is too thick, when charging / discharging with a large current, non-uniform reaction occurs in the thickness direction and the cycle characteristics tend to deteriorate. On the other hand, if the positive electrode active material layer becomes too thin because the amount of the positive electrode mixture paste applied is small, there is a tendency that sufficient battery capacity cannot be obtained.
  • the coating amount of the mixture paste for the positive electrode collector is preferably in the range of 50g / m 2 ⁇ 300g / m 2 as solid content of the positive electrode mixture paste, 80 g / m 2
  • the range is more preferably in the range of ⁇ 250 g / m 2 , and still more preferably in the range of 100 g / m 2 to 220 g / m 2 .
  • the solid content of the positive electrode mixture paste refers to a component obtained by removing volatile components such as a dispersion medium from the positive electrode mixture paste.
  • the thickness of the positive electrode active material layer is preferably 30 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 180 ⁇ m, and even more preferably 70 ⁇ m to 150 ⁇ m.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode current collector those commonly used in the field of lithium ion secondary batteries can be used.
  • a sheet containing stainless steel, nickel, copper, or the like, a foil, or the like can be given.
  • the thickness of the sheet and foil is not particularly limited.
  • the thickness is preferably 1 ⁇ m to 500 ⁇ m, more preferably 1.5 ⁇ m to 200 ⁇ m, still more preferably 2 ⁇ m to 100 ⁇ m, and 5 ⁇ m to 50 ⁇ m. It is particularly preferred.
  • the negative electrode active material layer is formed on one or both surfaces in the thickness direction of the negative electrode current collector, contains the negative electrode active material, and further contains a binder, conductive particles, a thickener and the like as necessary. You may contain.
  • the negative electrode active material a material that can occlude and release lithium ions and that is commonly used in the field of lithium ion secondary batteries can be used.
  • metal lithium, a lithium alloy, an intermetallic compound, a carbon material, an organic compound, an inorganic compound, a metal complex, an organic polymer compound, and the like can be given.
  • a negative electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • a carbon material is preferable.
  • the carbon material include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and carbon fiber.
  • the volume average particle diameter of the carbon material is preferably 0.1 ⁇ m to 60 ⁇ m, and more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the BET specific surface area of the carbon material is preferably 1 m 2 / g to 10 m 2 / g.
  • the spacing (d 002 ) between carbon hexagonal planes in the X-ray wide angle diffraction method is 3.35 to 3.40 mm (0.335 nm to 0). .340 nm)
  • the c-axis direction crystallite (Lc) is preferably 100 ⁇ (10 nm) or more.
  • the distance (d 002 ) between carbon hexagonal planes in the X-ray wide angle diffraction method is 3.5 to 3.95 mm (0.350 nm to 0). .. 395 nm) is preferred.
  • the amorphous carbon include graphitizable carbon and non-graphitizable carbon.
  • the average particle diameter of the negative electrode active material is measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant.
  • a laser diffraction particle size distribution analyzer for example, SALD-3000J manufactured by Shimadzu Corporation
  • the value (median diameter (D50)) when the integration from the small diameter side is 50% is used.
  • a BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example.
  • AUTOSORB-1 trade name
  • QUANTACHROME can be used.
  • pretreatment for moisture removal by heating.
  • a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C).
  • the evaluation temperature is 77K
  • the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • Examples of the conductive particles that may be used for the negative electrode active material layer include the same conductive particles as those exemplified for the positive electrode active material layer.
  • the binder that may be used for the negative electrode active material layer those commonly used in the field of lithium ion secondary batteries can be used, such as polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, and styrene-butadiene rubber. And acrylic rubber.
  • a thickener may be used from the viewpoints of stability and applicability of the negative electrode mixture paste. As the thickener that may be used, those commonly used in the field of lithium ion secondary batteries can be used.
  • the thickener examples include carboxymethyl cellulose (CMC).
  • CMC carboxymethyl cellulose
  • the negative electrode active material layer can be formed, for example, by applying a negative electrode mixture paste to the surface of the negative electrode current collector, drying, and rolling as necessary.
  • the negative electrode mixture paste can be prepared by adding a negative electrode active material to a dispersion medium together with a binder, conductive particles, a thickener and the like, if necessary.
  • As the dispersion medium N-methyl-2-pyrrolidone (NMP), water or the like can be used.
  • the negative electrode active material layer may contain polyolefin particles, and examples thereof include the same polyolefin particles as those exemplified for the positive electrode active material layer.
  • electrolyte examples include a liquid non-aqueous electrolyte (electrolytic solution), a gel-like non-aqueous electrolyte, a solid electrolyte (for example, a polymer solid electrolyte), and the like.
  • the liquid non-aqueous electrolyte contains a solute (supporting salt) and a non-aqueous solvent, and further contains various additives as necessary. Solutes usually dissolve in non-aqueous solvents.
  • the separator is impregnated with the liquid non-aqueous electrolyte.
  • LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 examples include lower aliphatic lithium carboxylates, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts, and the like.
  • borates include lithium bis (1,2-benzenediolate (2-)-O, O ′) borate, bis (2,3-naphthalenedioleate (2-)-O, O ′) boric acid.
  • imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like.
  • a solute may be used individually by 1 type, and may be used in combination of 2 or more type as needed.
  • the amount of the solute dissolved in the nonaqueous solvent is preferably 0.5 mol / L to 2 mol / L.
  • non-aqueous solvent examples thereof include cyclic carbonate esters, chain carbonate esters, and cyclic carboxylic acid esters.
  • examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type as needed.
  • VC vinylene carbonate
  • the content when vinylene carbonate (VC) is contained is preferably 0.1% by mass to 2% by mass, and preferably 0.2% by mass to 1.5% by mass with respect to the total amount of the nonaqueous solvent. It is more preferable.
  • the separator is disposed between the positive electrode and the negative electrode.
  • the first separator used in the present disclosure has a heat shrinkage rate at 160 ° C. of 30% or less.
  • the second separator used in the present disclosure includes a porous substrate and inorganic particles, and the porous substrate is a laminate in which polypropylene resin and polyethylene resin are alternately laminated.
  • the third separator used in the present disclosure includes a woven or nonwoven fabric of polyethylene terephthalate resin and inorganic particles.
  • the first separator, the second separator, and the third separator may be collectively referred to as a separator of the present disclosure.
  • the first separator may have a heat shrinkage rate at 160 ° C. of 30% or less, preferably 25% or less, more preferably 23% or less, and still more preferably 20% or less.
  • the heat shrinkage rate of the second separator and the third separator is not limited, and may be, for example, 30% or less, preferably 25% or less, and more preferably 23% or less. More preferably, it is 20% or less.
  • the lower limit of the heat shrinkage rate at 160 ° C. is preferably 0%, but from a practical viewpoint, it is 1% or more.
  • the heat shrinkage rate at 160 ° C. is also referred to as area shrinkage rate
  • the separator was cut into 50 mm (MD: Machine Direction) ⁇ 50 mm (TD: Transverse Direction) and placed on a glass substrate and adjusted to 160 ° C. It heats in a tank for 1 hour, calculates the area of the separator after heating, and calculates
  • Thermal shrinkage (area shrinkage) (%) (area before heating ⁇ area after heating) / area before heating ⁇ 100
  • the Gurley value [second / 100 cc] of the separator of the present disclosure is preferably 1000 seconds / 100 cc or less, more preferably 800 seconds / 100 cc or less, still more preferably 600 seconds / 100 cc or less, 300 It is still more preferable that it is 2 seconds / 100 cc or less, it is especially preferable that it is 200 seconds / 100 cc or less, and it is very preferable that it is 100 seconds / 100 cc or less. Further, the Gurley value [second / 100 cc] of the separator of the present disclosure is preferably 1 second / 100 cc to 1000 seconds / 100 cc, more preferably 1 second / 100 cc to 800 seconds / 100 cc.
  • it is 100 cc to 600 seconds / 100 cc, even more preferably 1 second / 100 cc to 300 seconds / 100 cc, particularly preferably 1 second / 100 cc to 200 seconds / 100 cc, 1 second / 100 cc. It is very preferable that it is ⁇ 100 sec / 100 cc.
  • the Gurley value of the separator of the present disclosure When the Gurley value of the separator of the present disclosure is within the range of 1 second / 100 cc to 1000 seconds / 100 cc, the ion permeability tends to be good and the discharge rate characteristics tend to be excellent. Further, when the Gurley value of the separator of the present disclosure is in the range of 1 second / 100 cc to 300 seconds / 100 cc, the ion permeability tends to be better and the discharge rate characteristics tend to be further improved.
  • the Gurley value is the air permeability resistance calculated by the Gurley test method, and represents the difficulty of passing ions in the thickness direction of the separator. If the Gurley value is small, it means that ions are easy to pass through, and if the value is large, it is difficult to pass ions. In this specification, the Gurley value is a value measured according to the Gurley test method (JIS P8117: 2009).
  • the fourth lithium ion secondary battery of the present disclosure is a lithium ion secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, and the positive electrode is formed on the current collector and the current collector.
  • a porous substrate and inorganic particles are included, and the porous substrate includes a polyester resin.
  • the thermal contraction rate of the separator according to the fourth lithium ion secondary battery for example, it may be 30% or less, preferably 25% or less, and more preferably 23% or less. More preferably, it is 20% or less.
  • the separator of the present disclosure may include a porous substrate and inorganic particles.
  • the resin contained in the porous substrate include polypropylene resins, olefin resins such as polyethylene resins, fluorine resins such as polytetrafluoroethylene, polyester resins such as polyethylene terephthalate resin (PET), aramid resins, polyacrylonitrile resins, A polyvinyl alcohol resin, a polyimide resin, etc. are mentioned.
  • PET polyethylene terephthalate resin
  • aramid resins polyacrylonitrile resins
  • a polyvinyl alcohol resin, a polyimide resin, etc. are mentioned.
  • the resin contained in the porous substrate one kind may be used alone, or two or more kinds may be used in combination as necessary.
  • the separator includes a porous substrate and inorganic particles, and the porous substrate includes two or more different resins, and the resin is a polypropylene resin, a polyethylene resin, a polyvinyl alcohol resin, a polyethylene terephthalate resin, a polyacrylonitrile. It may be selected from the group consisting of a resin and an aramid resin, and preferably contains a polyethylene resin and a polypropylene resin.
  • the separator may include a porous substrate and inorganic particles, and the porous substrate may include a polyester resin.
  • polyester resins contained in the porous substrate polyethylene terephthalate resin (PET) is suitable as a porous substrate because of its excellent heat resistance and electrical insulation.
  • PET polyethylene terephthalate resin
  • the “nonwoven fabric” means a sheet-like object formed by intertwining fibers without weaving them.
  • porous base material contains 2 or more types of resin
  • the porous substrate when the porous substrate is a laminate in which two or more kinds of resins are laminated, the porous substrate preferably has a two-layer structure or a three-layer structure.
  • the method for producing the porous substrate is not particularly limited, and can be selected from known methods.
  • the porous substrate may be a woven fabric or a non-woven fabric, and is preferably a non-woven fabric.
  • the melting point of the porous substrate is preferably 120 ° C. or higher, more preferably 140 ° C. or higher, and further preferably 160 ° C. or higher.
  • the separator has a shutdown function and can prevent a short circuit inside the battery.
  • fusing point of a porous base material is 300 degrees C or less.
  • the melting point means a melting temperature measured using a differential scanning calorimeter (DSC) in accordance with JISK7121.
  • the melting point was measured using a differential scanning calorimeter (DSC7 manufactured by Perkin Elma) in a nitrogen atmosphere with a temperature rising rate of 10 ° C./min, a measuring temperature range of 25 ° C. to 350 ° C., and a flow rate of 20 ⁇ 5 ml / min. Under the conditions, it is measured by performing differential scanning calorimetry of a 3 mg to 5 mg sample sealed in an aluminum pan. From the result obtained from the differential scanning calorimetry, the temperature at which the energy change accompanying the phase transition occurs (endothermic reaction peak) is defined as the melting point.
  • DSC7 differential scanning calorimeter
  • the inorganic particles include aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), barium titanate (BaTiO 3 ), ZrO 2 (zirconia), boehmite and the like.
  • Al 2 O 3 silicon oxide
  • SiO 2 silicon oxide
  • TiO 2 titanium oxide
  • BaTiO 3 barium titanate
  • ZrO 2 zirconia
  • boehmite boehmite and the like.
  • One kind of inorganic particles may be used alone, or two or more kinds may be used in combination as necessary.
  • the inorganic particles are preferably at least one of aluminum oxide (hereinafter also referred to as alumina) and silicon oxide (hereinafter also referred to as silica).
  • the inorganic particles have a function of protecting the porous substrate so that the porous substrate is not thermally deformed or contracted while maintaining the shutdown function of the porous substrate that melts due to the abnormally high temperature of the battery.
  • the inorganic particles may be applied on the surface of the porous substrate, or may be impregnated in the pores of the porous substrate.
  • the separator may include a layer containing inorganic particles on one surface of the porous substrate, and the separator may be arranged so that the layer containing inorganic particles faces the positive electrode.
  • the layer containing inorganic particles can function as a heat-resistant layer that protects the porous substrate from thermal deformation or thermal shrinkage.
  • a preferable combination in the three-layered porous substrate is a laminate of porous films containing resins having different melting temperatures, more preferably an olefin.
  • a combination of porous substrates containing a resin, more preferably a laminate of polypropylene resin / polyethylene resin / polypropylene resin (hereinafter sometimes referred to as “PP / PE / PP”). is there. It is preferable to combine the porous base materials with the above combination because the separator has a shutdown function and is excellent in electrochemical stability.
  • the layer containing polyethylene resin is sandwiched between layers containing polypropylene resin, so even if the layer containing polyethylene resin melts, it exists on the porous substrate surface or impregnates the pores
  • the inorganic particles that are used exhibit a function as a heat-resistant layer, and maintain the function of separating the positive electrode and the negative electrode.
  • the polyethylene resin does not flow even when the polyethylene resin is melted, the shutdown function is efficiently exhibited.
  • the polypropylene resin melts in the temperature range of 160 ° C. to 170 ° C., and the polyethylene resin and the polypropylene resin block the voids in the porous substrate, so that a safer shutdown function is exhibited. .
  • the average particle diameter (D50) of the inorganic particles is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.2 ⁇ m to 9 ⁇ m, and still more preferably 0.3 ⁇ m to 8 ⁇ m. If the average particle diameter of the inorganic particles is within the above range, the adhesion between the inorganic particles and the porous substrate is good, and the thermal contraction rate of the separator is lowered even when the battery temperature is increased.
  • the average particle size of the inorganic particles in the present specification is a volume measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant.
  • a laser diffraction particle size distribution analyzer for example, SALD-3000J manufactured by Shimadzu Corporation
  • the value (median diameter (D50)) when the integration from the small diameter side is 50% is used.
  • the mass-based ratio ( ⁇ 1: ⁇ 1) of the content of inorganic particles ( ⁇ 1) and the content of resin such as polyethylene terephthalate resin ( ⁇ 1) in the separator of the present disclosure is such as the thermal contraction rate and flexibility of the separator. From the viewpoint, a range of 1:50 to 20: 1 is preferable, a range of 1:25 to 10: 1 is more preferable, and a range of 1: 5 to 4: 1 is still more preferable.
  • ⁇ 2) is preferably in the range of 1: 100 to 10: 1, more preferably in the range of 1:50 to 5: 1, from the viewpoint of the thermal contraction rate, flexibility, etc. of the separator. More preferably, it is in the range of 10-2: 1.
  • the thickness of the separator is preferably in the range of 5 ⁇ m to 100 ⁇ m, more preferably 7 ⁇ m to 50 ⁇ m, and even more preferably 15 ⁇ m to 30 ⁇ m. In other embodiments, the thickness of the separator is preferably in the range of 5 ⁇ m to 100 ⁇ m, more preferably in the range of 13 ⁇ m to 70 ⁇ m, and still more preferably in the range of 15 ⁇ m to 50 ⁇ m. When the thickness of the separator is in the range of 5 ⁇ m to 100 ⁇ m, excellent volume energy density and safety can be obtained while maintaining ion permeability.
  • the laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce positive and negative electrode terminals. An electrode laminate in which a separator is disposed between the positive electrode and the negative electrode to form a laminate is prepared. In this state, the laminate is accommodated in an aluminum laminate pack, and the positive and negative electrode terminals are taken out of the aluminum laminate pack and sealed. Next, an electrolytic solution is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
  • FIG. 1 shows a cross-sectional view of a lithium ion secondary battery to which the present disclosure is applied.
  • a lithium ion secondary battery 1 of the present disclosure has a bottomed cylindrical battery container 6 made of nickel-plated steel.
  • the battery case 6 accommodates an electrode group 5 in which a strip-like positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral shape with a separator 4 interposed therebetween.
  • the separator 4 has a width of 58 mm and a thickness of 30 ⁇ m.
  • a ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out on the upper end surface of the electrode group 5.
  • the other end of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is disposed on the upper side of the electrode group 5 and serves as a positive electrode external terminal.
  • a ribbon-like negative electrode tab terminal made of copper with one end fixed to the negative electrode plate 3 is led out on the lower end surface of the electrode group 5.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to the opposite sides of the both end faces of the electrode group 5, respectively.
  • omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5.
  • the battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed. In addition, an electrolyte solution (not shown) is injected into the battery container 6.
  • the reaction solution was suction filtered and the precipitated resin was filtered off.
  • the filtered resin was washed with 1000 g of purified water (manufactured by Wako Pure Chemical Industries, Ltd.). The washed resin was dried with a vacuum dryer set at 60 ° C. and 150 Pa for 24 hours to obtain a resin containing a structural unit derived from a nitrile group-containing monomer.
  • PVDF Polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • binder 92: 8.
  • Product was added and kneaded to form a negative electrode mixture paste.
  • This negative electrode mixture paste was applied substantially uniformly and uniformly to both surfaces of a rolled copper foil having a thickness of 10 ⁇ m, which is a negative electrode current collector. Note that the negative electrode mixture density (filling density of the negative electrode active material layer) was 1.15 g / cm 3, and the single-sided coating amount of the negative electrode mixture paste was 90 g / m 2 as the solid content of the negative electrode mixture paste.
  • the wound electrode group was inserted into a battery container, and a negative electrode tab terminal previously welded to the negative electrode current collector was welded to the bottom of the can.
  • the positive electrode tab terminal previously welded to the positive electrode current collector was welded so as to be electrically connected to the positive electrode external terminal, the positive electrode cap was placed on the top of the can, and an insulating gasket was inserted.
  • 6 ml of the electrolyte solution Ube Industries, Ltd.
  • the upper part of the battery container was crimped to seal the battery, and a 18650 type lithium ion secondary battery was produced.
  • Polyolefin particles used for the positive electrode plate are made of an NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mitsui Chemicals catalog) Value), NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) W308, average particle size: 6.0 ⁇ m (Mitsui Chemicals catalog value) ), Melting point 132 ° C. (Mitsui Chemicals catalog value), manufactured by Mitsui Chemicals Co., Ltd., replaced with NMP), and manufactured 18650 type lithium ion secondary battery in the same manner as in Experimental Example 1A did.
  • NMP dispersion of polyethylene particles trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mitsui Chemicals catalog) Value
  • Polyolefin particles used for the positive electrode plate are made of an NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mitsui Chemicals catalog) Value), NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) WP100, average particle diameter: 1.0 ⁇ m (Mitsui Chemicals catalog value) ), Melting point: 148 ° C. (Mitsui Chemicals catalog value), manufactured by Mitsui Chemicals Co., Ltd. did.
  • NMP dispersion of polyethylene particles trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mitsui Chemicals catalog) Value
  • NMP dispersion of polyethylene particles trade name: Chemipearl (registered trademark
  • the electrolyte solution (made by Ube Industries Co., Ltd.) added by 8 mass% was used, and 6 ml of this electrolyte solution was injected into the battery container. Thereafter, the upper part of the battery container was caulked and sealed to produce a 18650 type lithium ion secondary battery.
  • Example 5A Similar to Experimental Example 1A, except that the coating type PP / PE / PP separator having a thickness of 25 ⁇ m and a width of 58.5 mm was changed to a polyethylene separator having a thickness of 30 ⁇ m and a width of 58.5 mm (hereinafter also referred to as PE separator). Thus, a 18650 type lithium ion secondary battery was produced.
  • Example 6A Similar to Experimental Example 4A, except that the coating type PP / PE / PP separator having a thickness of 25 ⁇ m and a width of 58.5 mm was changed to a polyethylene separator having a thickness of 30 ⁇ m and a width of 58.5 mm (hereinafter also referred to as PE separator). Thus, a 18650 type lithium ion secondary battery was produced.
  • thermocouple and a ribbon heater were wound around the surface of the 18650 type battery obtained in Experimental Examples 1A to 6A, and a heat insulating material was wound thereon.
  • an overcharge test was conducted at a charge rate of 3CA (2.7 A). The overcharge test observed the behavior of the 18650 type battery when the voltage was continued until the voltage reached 18 V, and safety was evaluated according to the following evaluation criteria. The safety was judged to be highest for A and lowest for C.
  • Experimental Examples 1A to 6A were all the same. However, while Experimental Examples 1A to 3A including the polyolefin particles in the positive electrode active material layer and having the coating type PP / PE / PP separator have high safety, the experiments in which the positive electrode active material layer does not include the polyolefin particles In Example 4A, Experimental Example 6A, and Experimental Example 5A and Experimental Example 6A having no coating type PP / PE / PP separator, the safety was lowered. From this result, a positive electrode, a negative electrode, a separator, and an electrolyte are provided, the positive electrode has a current collector and a positive electrode active material layer formed on the current collector, and the positive electrode active material layer is a positive electrode active material.
  • a lithium ion secondary battery having a heat shrinkage rate of 160% or less at 160 ° C. is useful as a battery having excellent battery characteristics and safety. It has been suggested.
  • the PTC function can be imparted to the lithium ion secondary battery without providing a separate PTC layer, so that the manufacturing process is also simple.
  • PVDF Polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • binder 92: 8.
  • Product was added and kneaded to form a negative electrode mixture paste.
  • This negative electrode mixture paste was applied substantially uniformly and uniformly to both surfaces of a rolled copper foil having a thickness of 10 ⁇ m, which is a negative electrode current collector. Note that the negative electrode mixture density (filling density of the negative electrode active material layer) was 1.15 g / cm 3, and the single-sided coating amount of the negative electrode mixture paste was 90 g / m 2 as the solid content of the negative electrode mixture paste.
  • Polyolefin particles used for the positive electrode plate are made of an NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mitsui Chemicals catalog) Value), NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) W308, average particle size: 6.0 ⁇ m (Mitsui Chemicals catalog value) ), Melting point 132 ° C. (Mitsui Chemicals catalog value), manufactured by Mitsui Chemicals Co., Ltd. with NMP dispersed medium), and manufactured 18650 type lithium ion secondary battery in the same manner as Experimental Example 1B did.
  • NMP dispersion of polyethylene particles trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mitsui Chemicals catalog)
  • Polyolefin particles used for the positive electrode plate are made of an NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mitsui Chemicals catalog) Value), NMP dispersion of polyethylene particles (trade name: Chemipearl (registered trademark) WP100, average particle diameter: 1.0 ⁇ m (Mitsui Chemicals catalog value) ), Melting point 148 ° C. (Mitsui Chemicals catalog value), manufactured by Mitsui Chemicals Co., Ltd. with a dispersion medium substituted with NMP), and manufactured 18650 type lithium ion secondary battery in the same manner as Experimental Example 1B did.
  • NMP dispersion of polyethylene particles trade name: Chemipearl (registered trademark) W410, average particle size 9.5 ⁇ m (Mitsui Chemicals catalog value), melting point 110 ° C. (Mits
  • Example 5B 18650 type lithium as in Experimental Example 1B, except that a polyethylene separator having a thickness of 30 ⁇ m and a Gurley value of 600 seconds / 100 cc (hereinafter also referred to as PE separator or PE separator) was used as the separator.
  • PE separator a polyethylene separator having a thickness of 30 ⁇ m and a Gurley value of 600 seconds / 100 cc
  • Example 6B A 18650 type lithium ion secondary battery was fabricated in the same manner as in Experimental Example 4B, except that a polyethylene separator having a thickness of 30 ⁇ m and a Gurley value of 600 seconds / 100 cc was used as the separator.
  • thermocouple and a ribbon heater were wound around the surface of the 18650 type battery obtained in Experimental Examples 1B to 6B, and a heat insulating material was wound thereon.
  • an overcharge test was conducted at a charge rate of 3CA (2.7 A). The overcharge test observed the behavior of the 18650 type battery when the voltage was continued until the voltage reached 18 V, and safety was evaluated according to the following evaluation criteria. The safety was judged to be highest for A and lowest for C.
  • Experimental Examples 1B to 6B were all the same.
  • Experimental Examples 1B to 4B using a PET nonwoven fabric as the separator are superior in discharge rate characteristics as compared to Experimental Examples 5B and 6B using PE separator as the separator. This result is due to the difference in the Gurley values of the separators.
  • Experimental Examples 1B to 3B using polyolefin particles in the positive electrode active material layer and PET nonwoven fabric as the separator include Experimental Examples 4B and 6B in which the positive electrode active material layer does not include polyolefin particles, and the positive electrode active material layer includes polyolefin particles.
  • the battery safety is excellent. This result is attributed to the effect of increasing the resistance of the positive electrode active material layer to the heat generation of the lithium ion secondary battery and the effect of maintaining the shape of the separator when the battery generates heat.
  • a positive electrode, a negative electrode, a separator, and an electrolyte are provided, the positive electrode has a current collector and a positive electrode active material layer formed on the current collector, and the positive electrode active material layer is a positive electrode active material.
  • a lithium ion secondary battery having a heat shrinkage rate of 160% or less at 160 ° C. is useful as a battery having excellent battery characteristics and safety. It has been suggested.
  • the PTC function can be imparted to the lithium ion secondary battery without providing a separate PTC layer, so that the manufacturing process is also simple.
  • the lithium ion secondary battery of the present invention has high safety.
  • it can be suitably used as a power source for various portable electronic devices such as a mobile phone, a notebook personal computer, a portable information terminal, an electronic dictionary, and a game device.
  • portable electronic devices such as a mobile phone, a notebook personal computer, a portable information terminal, an electronic dictionary, and a game device.
  • heat generation is suppressed, so that the battery is prevented from becoming hot or swollen.
  • rupture, ignition, etc. of the lithium ion secondary battery are suppressed.
  • the lithium ion secondary battery of this invention is applicable also to uses, such as for transportation apparatuses, such as an object for electric power storage, an electric vehicle, and a hybrid vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、温度が上昇した場合に電池の内部抵抗を上昇させる機能を備え、通常作動時には優れた電池特性及び安全性を有し、且つ製造工程も簡便なリチウムイオン二次電池を提供することを目的とする。 本発明のリチウムイオン二次電池は、正極、負極、セパレータ及び電解質を備え、前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、前記セパレータは、160℃における熱収縮率が30%以下である。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関するものである。
 リチウムイオン二次電池は高いエネルギー密度を有するエネルギーデバイスであり、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)のような携帯情報端末の電源として汎用されている。
 代表的なリチウムイオン二次電池では、セパレータを介して正極と負極を交互に積層して電極群が構成されている。負極の活物質としては、リチウムイオンの層間への挿入及び放出が可能な多層構造を有する炭素材料が主に用いられている。また、正極の活物質としては、リチウム含有金属複合酸化物が主に用いられている。また、セパレータにはポリオレフィン製多孔質膜が主に用いられている。このような材料から構成されるリチウムイオン二次電池は、電池容量(放電容量)及び出力が高く、充放電サイクル特性も良好である。
 リチウムイオン二次電池は安全性の面でも高水準にある。一方で、リチウムイオン二次電池は高容量及び高出力ゆえに、安全性の面でさらなる向上が要望されている。例えば、リチウムイオン二次電池が過充電されると、発熱したり熱暴走したりする可能性がある。そこで、電流を遮断して発熱を抑制する方法として、特許文献1の方法が提案されている。特許文献1には、正極集電体上に導電性粒子とポリオレフィン粒子と水溶性高分子を含むPTC(Positive Temperature Coefficient)層を設けることによって、リチウムイオン二次電池の温度が上昇した場合には、リチウムイオン二次電池の内部抵抗を上昇させて電流を流れにくくし、リチウムイオン二次電池の過熱を抑制する効果が発揮されることが開示されている。
国際公開第2015/046469号
 しかしながら、特許文献1に記載されているリチウムイオン二次電池では、集電体と活物質層との間にPTC層を形成するため、製造工程が煩雑となるという問題がある。
 本発明は上記事情に鑑みてなされたものであり、温度が上昇した場合に電池の内部抵抗(以下、直流抵抗という場合もある)を上昇させる機能を備え、通常作動時には優れた電池特性及び安全性を有し、且つ製造工程も簡便なリチウムイオン二次電池を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 正極、負極、セパレータ及び電解質を備え、
 前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、
 前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、
 前記セパレータは、160℃における熱収縮率が30%以下であるリチウムイオン二次電池。
  <2> 前記セパレータは多孔質基材と無機物粒子とを含み、前記多孔質基材は異なる2種以上の樹脂を含み、前記樹脂は、ポリプロピレン樹脂、ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリエチレンテレフタレート樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される<1>に記載のリチウムイオン二次電池。
  <3> 前記多孔質基材は、ポリエチレン樹脂とポリプロピレン樹脂とを含む<2>記載のリチウムイオン二次電池。
  <4> 前記セパレータの160℃における熱収縮率が20%以下である<1>~<3>のいずれか1項に記載のリチウムイオン二次電池。
  <5> 前記セパレータのガーレ値が1000秒/100cc以下である<1>~<4>のいずれか1項に記載のリチウムイオン二次電池。
  <6> 前記セパレータは多孔質基材と無機物粒子を含み、前記多孔質基材はポリエステル樹脂を含む<1>に記載のリチウムイオン二次電池。
  <7> 前記ポリエステル樹脂はポリエチレンテレフタレート樹脂を含む<6>に記載のリチウムイオン二次電池。
  <8> 正極、負極、セパレータ及び電解質を備え、
 前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、
 前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、
 前記セパレータは多孔質基材と無機物粒子とを含み、前記多孔質基材はポリプロピレン樹脂及びポリエチレン樹脂が交互に積層された積層体であるリチウムイオン二次電池。
  <9> 正極、負極、セパレータ及び電解質を備え、
 前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、
 前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、
 前記セパレータはポリエチレンテレフタレート樹脂の織布又は不織布及び無機物粒子を含むリチウムイオン二次電池。
  <10> 前記無機物粒子が酸化アルミニウム(Al)及び酸化ケイ素(SiO)の少なくとも一方を含む<2>、<6>、<8>及び<9>のいずれか1項に記載のリチウムイオン二次電池。
  <11> 前記セパレータの厚さが5μm~100μmである<1>~<10>いずれか1項に記載のリチウムイオン二次電池。
  <12> 前記結着剤が、ニトリル基含有単量体由来の構造単位を含む樹脂を含有する<1>~<11>のいずれか1項に記載のリチウムイオン二次電池。
 本発明によれば、温度が上昇した場合に電池の内部抵抗を上昇させる機能を備え、通常作動時には優れた電池特性及び安全性を有し、且つ製造工程も簡便なリチウムイオン二次電池を提供することができる。
本開示を適用したリチウムイオン二次電池の断面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面における寸法関係(長さ、幅、厚さ等)は、実際の寸法関係を反映するものではない。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本明細書において、(メタ)アクリレートはアクリレート又はメタクリレートを意味し、(メタ)アクリロニトリルはアクリロニトリル又はメタクリロニトリルを意味し、(メタ)アクリル酸はアクリル酸又はメタクリル酸を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味し、(メタ)アリルはアリル又はメタリルを意味する。
 本開示の技術は、集電体に活物質層(正極活物質層及び負極活物質層)が形成された形態の電極を備える各種の非水二次電池に広く適用され得る。以下、詳細を説明する。
 本開示の第一のリチウムイオン二次電池は、正極、負極、セパレータ及び電解質を備えるリチウムイオン二次電池であって、前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、前記セパレータは、160℃における熱収縮率が30%以下である。
 また、本開示の第二のリチウムイオン二次電池は、正極、負極、セパレータ及び電解質を備えるリチウムイオン二次電池であって、前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、前記セパレータは多孔質基材と無機物粒子とを含み、前記多孔質基材はポリプロピレン樹脂及びポリエチレン樹脂が交互に積層された積層体である。
 また、本開示の第三のリチウムイオン二次電池は、正極、負極、セパレータ及び電解質を備えるリチウムイオン二次電池であって、前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、前記セパレータはポリエチレンテレフタレート樹脂の織布又は不織布及び無機物粒子を含む。
 以下、第一のリチウムイオン二次電池、第二のリチウムイオン二次電池及び第三のリチウムイオン二次電池を併せて本開示のリチウムイオン二次電池と称することがある。
(正極)
 本開示のリチウムイオン二次電池用正極(正極)は、集電体(正極集電体)及び正極活物質層を有し、この正極活物質層は、正極活物質、導電性粒子、ポリオレフィン粒子、及び結着剤を含有する。
<正極活物質層>
 正極活物質層は、正極活物質、導電性粒子、ポリオレフィン粒子及び結着剤を含有し、正極集電体上に形成される。より具体的には、正極活物質層は、正極集電体の厚さ方向における一方又は両方の面に形成される。
 その形成方法に制限はないが、例えば次のように形成される。正極活物質、ポリオレフィン粒子、導電性粒子、結着剤及び必要に応じて用いられる他の材料を、分散溶媒を用いることなく乾式で混合してシート状に成形し、これを正極集電体に圧着する方法が挙げられる(乾式法)。または、正極活物質、ポリオレフィン粒子、導電性粒子、結着剤及び必要に応じて用いられる他の材料を分散溶媒に溶解又は分散させて正極合剤ペーストとし、これを正極集電体に塗布し、乾燥する方法が挙げられる(湿式法)。
 正極集電体としては、この分野で常用されるものを使用でき、例えば、ステンレス鋼、アルミニウム、チタン等を含有するシート、箔などが挙げられる。
 これらの中でも、アルミニウムのシート又は箔であることが好ましい。シート及び箔の厚さは特に限定されないが、集電体として必要な強度及び加工性を確保する観点から、例えば、1μm~500μmであることが好ましく、1.5μm~200μmであることがより好ましく、2μm~80μmであることが更に好ましく、5μm~50μmであることが特に好ましい。
 正極活物質としては、この分野で常用されるものを使用でき、例えば、リチウム含有金属酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウム含有金属酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、例えば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、B等が挙げられ、Mn、Al、Co、Ni、Mg等が好ましい。異種元素は1種でもよく、又は2種以上でもよい。
 これらの中でも、正極活物質としては、リチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo 1-y(式中、MはNa、Mg、Sc、Y、Mn、Fe、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiNi1-y (式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V、及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiMn、及びLiMn2-y (式中、MはNa、Mg、Sc、Y、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、及びBからなる群より選ばれる少なくとも1種の元素を示す。)。ここで、各式中、xは0<x≦1.2であり、yは0~0.9であり、zは2.0~2.3である。リチウムのモル比を示すx値は、充放電により増減する。また、オリビン型リチウム塩としては、例えば、LiFePO等が挙げられる。カルコゲン化合物としては、例えば、二硫化チタン、二硫化モリブデン等が挙げられる。正極活物質は1種を単独で使用でき又は2種以上を併用できる。
 正極活物質としては、安全性の観点から、LiMn又はLiMn2-y で表されるリチウムマンガン酸化物を含むことが好ましく、リチウム・ニッケル・マンガン・コバルト複合酸化物を含むことがより好ましい。正極活物質としてリチウムマンガン酸化物を用いる場合におけるリチウムマンガン酸化物の含有率は、正極活物質の総量に対して、30質量%以上であることが好ましく、40質量%以上であることがより好ましい。
 正極活物質層に用いるポリオレフィン粒子としては、非導電性であり、かつ熱可塑性樹脂の粒子であれば特に制限されない。このようなポリオレフィン粒子の材質としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリブテン等が挙げられる。また、本開示においては、ポリオレフィン粒子以外のその他の樹脂粒子を併用してもよい。その他の樹脂粒子の材質としては、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルクロライド、ポリビニリデンクロライド、ポリビニルフルオライド、ポリビニリデンフルオライド、ポリアミド、ポリスチレン、ポリアクリロニトリル、熱可塑性エラストマー、ポリエチレンオキサイド、ポリアセタール、熱可塑性変性セルロース、ポリスルホン類、ポリメチル(メタ)アクリレート等が挙げられる。これらの中でも、電解液に対する耐膨潤性及び電気化学的な安定性に優れる観点から、ポリエチレン、ポリプロピレン等のポリオレフィン粒子が好ましい。ポリオレフィン粒子は、1種を単独で又は2種以上を組み合わせて使用できる。
 ポリオレフィン粒子及びその他の樹脂粒子の合計に占めるポリオレフィン粒子の質量基準の割合は、70質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましい。
 上記ポリオレフィン粒子の平均粒径は、分散のし易さ及び正極活物質層を均一に集電体上に形成できるとの観点から、0.1μm~30μmであることが好ましく、0.5μm~15μmであることがより好ましく、2.5μm~10μmであることが更に好ましい。ポリオレフィン粒子の平均粒径が大きいほど分散し易く、ポリオレフィン粒子の平均粒径が小さいほど正極活物質層を均一に集電体上に形成できる傾向にある。また、ポリオレフィン粒子の平均粒径が大きい程、電池特性が向上する傾向にある。ポリオレフィン粒子の平均粒径は、例えば、ポリオレフィン粒子を含む正極活物質層を、厚さが約70μmになるように形成した集電体について、その中央部の縦50μm×横50μmの範囲の透過型電子顕微鏡写真の画像内における全てのポリオレフィン粒子の長軸長さの値を算術平均化した数値とすることができる。
 ポリオレフィン粒子が正極活物質層内に存在することで、リチウムイオン二次電池の発熱により正極活物質層が所定の温度以上になると正極活物質層の抵抗が高くなり正極活物質層内に流れる電流を抑制できる機能(以下、PTC機能という場合もある)を付与できる。
 PTC機能が発現する温度は、ポリオレフィン粒子の融点(Tm)により、調節できる。すなわち、正極活物質層の温度が、ポリオレフィン粒子の融点近傍に達することで、ポリオレフィン粒子が膨張又は溶融することで正極活物質層内の導電路が切断され、PTC機能が発現する。ポリオレフィン粒子の融点(Tm)は、特に制限されないが、リチウムイオン二次電池の取り扱い性、安全性、電池の使用温度範囲及び生産性の観点から、70℃~160℃であることが好ましく、70℃~140℃であることがより好ましく、80℃~150℃であることが更に好ましく、90℃~120℃であることが特に好ましい。
 ポリオレフィン粒子の融点(Tm)が低い程、より低温でPTC機能が発現するため、安全性を向上できる。一方、ポリオレフィン粒子の融点(Tm)が高い程、通常使用時の誤作動を抑制することができ、また、正極の乾燥温度を高く設定できるために生産性を向上できる。ポリオレフィン粒子の融点(Tm)は、例えば、示差走査熱量計を用いて、温度関数として不活性ガス中におけるポリオレフィン粒子の比熱容量を測定後、吸熱ピーク温度から算出できる。
 ポリオレフィン粒子を正極活物質層に使用する場合におけるポリオレフィン粒子の含有率は、電池特性とPTC機能とを両立する観点から、正極活物質層の総量中、0.1質量%~10質量%であることが好ましく、0.5質量%~8質量%であることがより好ましく、2.5質量%~6.5質量%であることが更に好ましい。ポリオレフィン粒子の割合が多い程、PTC機能に優れた正極活物質層となる傾向にあり、ポリオレフィン粒子の割合が少ない程、電池特性に優れた正極活物質層となる傾向にある。
 ポリオレフィン粒子のシート又はペーストへの添加形態は、ポリオレフィンが粒子状を保っていれば特に制限されず、粉末を乾燥した形態、溶媒中に分散した形態等が適用できる。正極合剤ペースト中に水分を混入させない観点からは、粉末を乾燥させて用いることが好ましく、正極合剤ペースト中でポリオレフィン粒子を良分散させる観点からは、溶媒中に分散させて用いることが好ましい。ポリオレフィン粒子を分散させる溶媒としては、特に制限はないが、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン、ジメチルホルムアミド等が挙げられる。
 正極活物質層に用いる導電性粒子としては、この分野で常用されるものを使用でき、カーボンブラック、黒鉛、炭素繊維、金属繊維等を使用できる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛等が挙げられる。導電性粒子は1種を単独で又は2種以上を組み合わせて使用できる。
 導電性粒子を正極活物質層に使用する場合における導電性粒子の含有量は、電池特性とPTC機能とを両立する観点から、正極活物質層に含まれるポリオレフィン粒子と導電性粒子との質量比(ポリオレフィン粒子/導電性粒子)が、0.15/0.85~0.85/0.15となる量が好ましく、0.3/0.7~0.7/0.3となる量がより好ましく、0.4/0.6~0.6/0.4となる量が更に好ましい。導電性粒子の割合が多い程、電池特性に優れた正極活物質層となる傾向にあり、導電性粒子の割合が少ない程、PTC機能に優れた正極活物質層となる傾向にある。
 正極活物質層に用いてもよい結着剤としては、この分野で常用されるものを使用でき、例えば、ニトリル基含有単量体由来の構造単位を含む樹脂、ポリ酢酸ビニル、ポリメチルメタクリレート、ニトロセルロース、フッ素樹脂及びゴムが挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等が挙げられる。ゴムとしては、スチレン-ブタジエンゴム、アクリロニトリルゴム等が挙げられる。これらの中でも特に、電解液への耐膨潤性及び結着性の観点から、ニトリル基含有単量体由来の構造単位を含む樹脂を用いることが好ましい。
(ニトリル基含有単量体由来の構造単位を含む樹脂)
 ニトリル基含有単量体由来の構造単位を含む樹脂としては、有機溶媒に可溶又は易溶であることが好ましい。結着剤は1種を単独で使用でき、必要に応じて2種以上を組み合わせて使用できる。
 ニトリル基含有単量体由来の構造単位を含む樹脂としては、例えば、(メタ)アクリロニトリルとその他のエチレン性不飽和結合を有する化合物との共重合体等が挙げられる。可撓性及び結着性をより向上できる観点からは、ニトリル基含有単量体由来の構造単位を含む樹脂は、ニトリル基含有単量体由来の構造単位と、下記式(I)で表される単量体由来の構造単位及び下記式(II)で表される単量体由来の構造単位からなる群より選択される少なくとも1つの構造単位とを含むことが好ましい。また、結着性を更に向上できる観点から、ニトリル基含有単量体由来の構造単位を含む樹脂は、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子又はメチル基であり、Rは水素原子又は1価の炭化水素基であり、nは1~50の整数である。)
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子又はメチル基であり、Rは炭素数4~100のアルキル基である。)
<ニトリル基含有単量体>
 ニトリル基含有単量体としては、特に制限はないが、アクリロニトリル、メタクリロニトリル等のアクリル系ニトリル基含有単量体、α-シアノアクリレート、ジシアノビニリデン等のシアン系ニトリル基含有単量体、フマロニトリル等のフマル系ニトリル基含有単量体などが挙げられる。これらの中では、電極の柔軟性及び可撓性の観点から、アクリロニトリルが好ましい。これらのニトリル基含有単量体は、1種を単独で又は2種以上を組み合わせて用いることができる。
 ニトリル基含有単量体としてアクリロニトリル及びメタクリロニトリルの少なくとも一方を使用する場合、アクリロニトリル由来の構造単位及びメタクリロニトリル由来の構造単位の合計含有率は、結着剤であるニトリル基含有単量体由来の構造単位を含む樹脂の全量に対して、40質量%~98質量%であることが好ましく、50質量%~96質量%であることがより好ましく、60質量%~95質量%であることが更に好ましい。
<式(I)で表される単量体>
 式(I)で表される単量体としては、特に限定されない。式(I)中、Rは水素原子又はメチル基である。nは1~50の整数であり、好ましくは2~30の整数であり、より好ましくは2~10の整数である。Rは、水素原子又は1価の炭化水素基であり、例えば、炭素数1~50の炭化水素基であることが好ましく、炭素数1~25の炭化水素基であることがより好ましく、炭素数1~12の炭化水素基であることが更に好ましい。炭化水素基の炭素数が50以下であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。
 ここで、炭化水素基としては、例えば、アルキル基及びフェニル基であることが好ましい。Rは、特に、炭素数1~12のアルキル基又はフェニル基であることが好ましい。このアルキル基は、直鎖状及び分岐鎖状のいずれであってもよい。
 Rがアルキル基又はフェニル基である場合、アルキル基又はフェニル基が有する水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子含有基、リン原子含有基、芳香族基、炭素数3~10のシクロアルキル基などで置換されていてもよい。
 式(I)で表される単量体としては、例えば市販の、エトキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートEC-A)、メトキシトリエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートMTG-A及び新中村化学工業株式会社製、商品名:NKエステルAM-30G)、メトキシポリ(n=9)エチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレート130-A及び新中村化学工業株式会社製、商品名:NKエステルAM-90G)、メトキシポリ(n=13)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:商品名:NKエステルAM-130G)、メトキシポリ(n=23)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-230G)、オクトキシポリ(n=18)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルA-OC-18E)、フェノキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートP-200A及び新中村化学工業株式会社製、商品名:NKエステルAMP-20GY)、フェノキシポリ(n=6)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAMP-60G)、ノニルフェノールEO付加物(n=4)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-4EA)、ノニルフェノールEO付加物(n=8)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-8EA)、メトキシジエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMC及び新中村化学工業株式会社製、商品名:NKエステルM-20G)、メトキシトリエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMTG)、メトキシポリ(n=9)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル130MA及び新中村化学工業株式会社製、商品名:NKエステルM-90G)、メトキシポリ(n=23)エチレングリコールメタクリレート(新中村化学工業株式会社製、商品名:NKエステルM-230G)並びにメトキシポリ(n=30)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル041MA)が挙げられる。「EO」はエチレンオキシ基を意味し、「n」はエチレンオキシ基の構造単位数を意味する。これらの中では、ニトリル基含有単量体と共重合させる場合の反応性等の点から、メトキシトリエチレングリコールアクリレート(一般式(I)のRが水素原子で、Rがメチル基で、nが3の化合物)がより好ましい。これらの式(I)で表される単量体は、1種を単独で又は2種以上を組み合わせて用いることができる。
<式(II)で表される単量体>
 式(II)で表される単量体としては、特に限定されない。式(II)中、Rは水素原子又はメチル基である。
 Rは、水素原子又は炭素数4~100のアルキル基である。Rは好ましくは炭素数4~50のアルキル基であり、より好ましくは炭素数6~30のアルキル基であり、更に好ましくは炭素数8~15のアルキル基である。アルキル基の炭素数が4以上であれば、電極が十分な可撓性を示す傾向にあり、アルキル基の炭素数が100以下であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。
 このRを構成するアルキル基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。
 また、Rを構成するアルキル基が有する水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子含有基、リン原子含有基、芳香族基、炭素数3~10のシクロアルキル基などで置換されていてもよい。Rを構成するアルキル基としては、直鎖状、分岐鎖状又は環状の飽和アルキル基の他に、フルオロアルキル基、クロロアルキル基、ブロモアルキル基、ヨウ化アルキル基等のハロゲン化アルキル基などが挙げられる。
 式(II)で表される単量体としては、Rが直鎖状、分岐鎖状又は環状の飽和アルキル基である場合、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素数が4~100のアルキル基を含む(メタ)アクリル酸エステル類が挙げられる。また、Rがフルオロアルキル基である場合、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエチルアクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルアクリレート、2,2,3,4,4,4-へキサフルオロブチルアクリレート、ノナフルオロイソブチルアクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルアクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ノナデカフルオロデシルアクリレート等のアクリレート化合物、ノナフルオロ-t-ブチルメタクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチルメタクリレート、ヘプタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノニルメタクリレート等のメタクリレート化合物などが挙げられる。これらの式(II)で表される単量体は、1種を単独で又は2種以上を組み合わせて用いることができる。
 式(I)で表される単量体又は式(II)で表される単量体を使用する場合、式(I)で表される単量体由来の構造単位及び式(II)で表される単量体由来の構造単位からなる群より選択される少なくとも1つの構造単位の含有率は、結着剤であるニトリル基含有単量体由来の構造単位を含む樹脂の全量に対して、1質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましく、3質量%~20質量%であることが更に好ましい。式(I)で表される単量体由来の構造単位又は式(II)で表される単量体由来の構造単位の含有量が多いほど可撓性及び結着性が高くなりやすく、含有量が少ないほど電解液への耐膨潤性及び正極適用時の電気化学的な安定性が高くなりやすい。
<カルボキシ基含有単量体>
 カルボキシ基含有単量体としては、特に制限されない。カルボキシ基含有単量体としては、例えば、アクリル酸、メタクリル酸等のアクリル系カルボキシ基含有単量体、クロトン酸等のクロトン系カルボキシ基含有単量体、マレイン酸及びその無水物等のマレイン系カルボキシ基含有単量体、イタコン酸及びその無水物等のイタコン系カルボキシ基含有単量体、シトラコン酸及びその無水物等のシトラコン系カルボキシ基含有単量体などが挙げられる。これらの中では、電極の柔軟性及び結着性の観点から、アクリル酸が好ましい。
これらのカルボキシ基含有単量体は、1種を単独で又は2種以上組み合わせて用いることができる。
 カルボキシ基含有単量体を使用する場合、カルボキシ基含有単量体由来の構造単位の含有率は、結着剤であるニトリル基含有単量体由来の構造単位を含む樹脂の全量に対して、0.1質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましく、2質量%~6質量%であることが更に好ましい。カルボキシ基含有単量体の含有量が多いほど可撓性及び結着性が高くなりやすく、含有量が少ないほど電解液への耐膨潤性及び正極適用時の電気化学的な安定性が高くなりやすい。
<その他の単量体>
 ニトリル基含有単量体由来の構造単位を含む樹脂は、ニトリル基含有単量体由来の構造単位と、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位と、式(I)で表される単量体由来の構造単位及び式(II)で表される単量体由来の構造単位からなる群より選択される少なくとも1つの構造単位と、これらの単量体とは異なる他の単量体の構造単位を適宜組合せることもできる。他の単量体としては、特に限定されないが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の短鎖(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル化合物、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩などが挙げられる。これらの他の単量体は、1種を単独で又は2種以上を組み合わせて用いることができる。
<各単量体由来の構造単位の含有量>
 ニトリル基含有単量体由来の構造単位を含む樹脂が、ニトリル基含有単量体由来の構造単位と、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位と、式(I)で表される単量体由来の構造単位及び式(II)で表される単量体由来の構造単位からなる群より選択される少なくとも1つの構造単位とを含む場合、ニトリル基含有単量体由来の構造単位と、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位と、式(I)で表される単量体由来の構造単位及び式(II)で表される単量体由来の構造単位からなる群より選択される少なくとも1つの構造単位とのモル比は、例えば、ニトリル基含有単量体由来の構造単位1モルに対して、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位が好ましくは0.01モル~0.2モル、より好ましくは0.02モル~0.1モル、更に好ましくは、0.03モル~0.06モルであり、式(I)又は式(II)で表される単量体由来の構造単位が好ましくは0.001モル~0.2モル、より好ましくは0.003モル~0.05モル、更に好ましくは0.005モル~0.02モルである。カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位が0.01モル~0.2モル、式(I)又は式(II)で表される単量体由来の構造単位が0.001モル~0.2モルであれば、集電体、特にアルミニウム箔を用いた正極集電体との接着性及び電解液に対する耐膨潤性に優れ、電極の柔軟性及び可撓性が良好となる。
 また、他の単量体を使用する場合、その含有量は、ニトリル基含有単量体1モルに対して、好ましくは0.005モル~0.1モル、より好ましくは、0.01モル~0.06モル、更に好ましくは、0.03モル~0.05モルの割合である。
 尚、ニトリル基含有単量体由来の構造単位は、結着剤であるニトリル基含有単量体由来の構造単位を含む樹脂の全量を基準に、50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。ニトリル基含有単量体由来の構造単位が多い程、電解液への耐膨潤性、及び正極適用時の電気化学的な安定性が高くなりやすい。
(正極の電流遮断温度)
 正極の電流遮断温度は、70℃~160℃に設定することが好ましく、90℃~120℃に設定することがより好ましい。電流遮断温度を70℃~160℃に設定すれば、リチウムイオン二次電池自体又はリチウムイオン二次電池が装着された各種機器に異常が発生したときに電流を遮断して発熱を抑制し、更にリチウムイオン二次電池から各種機器への電力の供給等を停止できるので、高い安全性が得られる。また、電流遮断温度を90℃~120℃に設定すれば、通常使用時の誤作動がなく、過充電等の異常時に電流を確実に遮断できるという利点が得られる。上記のような電流遮断温度は、ポリオレフィン粒子の融点(Tm)に依存する。電流遮断温度を90℃~120℃に設定する場合は、ポリオレフィン粒子としてポリエチレン粒子を用いることが好ましい。
 なお、上記の電流遮断温度は、電池の25℃における直流抵抗に対して、直流抵抗上昇率が110%以上となる温度とする。
 正極活物質層は、例えば、正極合剤ペーストを正極集電体上に塗布し、乾燥し、更に必要に応じて圧延することにより形成できる。正極合剤ペーストは、正極活物質を、導電性粒子、ポリオレフィン粒子、結着剤等とともに分散媒に添加して混合することにより調製できる。分散媒には、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン、ジメチルホルムアミド等を使用できる。なお、分散媒は、結着剤を溶解又は分散するものであり、且つポリオレフィン粒子を溶解しないものを選択するのが好ましい。
 ポリオレフィン粒子が溶解すると、目的とするPTC機能が得られ難くなる。ポリオレフィン粒子の中には、有機溶媒及び水の両方に溶解し難いものがあり、このようなポリオレフィン粒子を用いる場合は、分散媒の種類を選択する必要はない。
 また、本開示のリチウムイオン二次電池において、上記のような正極活物質と導電性粒子とポリオレフィン粒子と結着剤とを含む正極活物質層を形成するにあたり、この正極活物質層の充填密度が高くなりすぎると、正極活物質層内に非水電解質が浸透されにくくなり、大電流での充放電時におけるリチウムイオンの拡散が遅くなってサイクル特性が低下する可能性がある。一方、正極活物質層の充填密度が低いと、上記の正極活物質と導電性粒子との接触が十分に確保されなくなって電気抵抗が高くなり、放電レートが低下する可能性がある。このため、上記の正極活物質層の充填密度は、2.2g/cm~2.8g/cmの範囲にすることが好ましく、2.3g/cm~2.7g/cmの範囲にすることがより好ましく、2.4g/cm~2.6g/cmの範囲にすることが更に好ましい。
 正極活物質層の充填密度が2.8g/cm以下であれば、正極活物質層内に非水電解質が浸透しやすくなり、大電流での充放電時におけるリチウムイオンの拡散が速くなってサイクル特性が向上する傾向にある。一方、正極活物質層の充填密度が2.2g/cm以上であれば、正極活物質と導電性粒子との接触が十分に確保されることで電気抵抗が低くなり、放電レート特性が向上する傾向にある。
 また、本開示のリチウムイオン二次電池において、正極合剤ペーストを正極集電体に塗布して正極活物質層を形成するにあたり、正極合剤ペーストの塗布量が多くなり、正極活物質層が厚くなりすぎると、大電流で充放電させた場合に、厚さ方向に反応の不均一が生じてサイクル特性が低下する傾向にある。一方、正極合剤ペーストの塗布量が少ないために正極活物質層が薄くなりすぎると、十分な電池容量が得られなくなる傾向にある。そのため、正極集電体に対する正極合剤ペーストの塗布量(片面塗布量)は、正極合剤ペーストの固形分として50g/m~300g/mの範囲にすることが好ましく、80g/m~250g/mの範囲にすることがより好ましく、100g/m~220g/mの範囲にすることが更に好ましい。なお、正極合剤ペーストの固形分とは、正極合剤ペーストから分散媒等の揮発分を除いた成分をいう。
 また、放電容量と放電レートの観点から、正極活物質層の厚さは、30μm~200μmであることが好ましく、50μm~180μmであることがより好ましく、70μm~150μmであることが更に好ましい。
(負極)
 負極は、負極集電体及び負極活物質層を含む。負極集電体としては、リチウムイオン二次電池の分野で常用されるものを使用できる。具体的には、ステンレス鋼、ニッケル、銅等を含むシート、箔などが挙げられる。シート及び箔の厚さは、特に限定されないが、例えば、1μm~500μmであることが好ましく、1.5μm~200μmであることがより好ましく、2μm~100μmであることが更に好ましく、5μm~50μmであることが特に好ましい。負極活物質層は、負極集電体の厚さ方向における一方又は両方の面に形成され、負極活物質を含有し、さらに必要に応じて、結着剤、導電性粒子、増粘剤等を含有していてもよい。
 負極活物質としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウムイオン二次電池の分野で常用されるものを使用できる。例えば、金属リチウム、リチウム合金、金属間化合物、炭素材料、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で又は2種以上を組み合わせて使用できる。これらの中でも、炭素材料が好ましい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、炭素繊維などが挙げられる。炭素材料の体積平均粒子径は、0.1μm~60μmであることが好ましく、0.5μm~30μmであることがより好ましい。また、炭素材料のBET比表面積は、1m/g~10m/gであることが好ましい。炭素材料の中でも特に、電池特性(例えば、放電容量)をより向上できる観点から、X線広角回折法における炭素六角平面の間隔(d002)が3.35Å~3.40Å(0.335nm~0.340nm)であり、c軸方向の結晶子(Lc)が100Å(10nm)以上である黒鉛が好ましい。
 また、炭素材料の中でも特に、サイクル特性及び安全性をより向上できる観点からは、X線広角回折法における炭素六角平面の間隔(d002)が3.5Å~3.95Å(0.350nm~0.395nm)である非晶質炭素が好ましい。非晶質炭素としては、易黒鉛化炭素、難黒鉛化炭素等が挙げられる。
 本明細書において負極活物質の平均粒子径は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。
 BET比表面積は、例えば、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、例えば、QUANTACHROME社製:AUTOSORB-1(商品名)を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
 負極活物質層に用いてもよい導電性粒子としては、正極活物質層で例示したものと同様の導電性粒子が挙げられる。また、負極活物質層に用いてもよい結着剤としては、リチウムイオン二次電池の分野で常用されるものを使用でき、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、アクリルゴム等が挙げられる。
 負極活物質層には、負極合剤ペーストの安定性及び塗布性の観点から、増粘剤を用いてもよい。用いてもよい増粘剤としては、リチウムイオン二次電池の分野で常用されるものを使用できる。
 負極活物質層に用いてもよい増粘剤としては、例えば、カルボキシメチルセルロース(CMC)等が挙げられる。負極活物質層は、例えば、負極合剤ペーストを負極集電体表面に塗布し、乾燥し、必要に応じて圧延することにより形成できる。負極合剤ペーストは、負極活物質を、必要に応じて、結着剤、導電性粒子、増粘剤等とともに分散媒に添加して混合することにより調製できる。分散媒には、N-メチル-2-ピロリドン(NMP)、水等を使用できる。
 また、負極活物質層には、ポリオレフィン粒子を含んでもよく、正極活物質層で例示したものと同様のポリオレフィン粒子が挙げられる。
(電解質)
 電解質としては、液状非水電解質(電解液)、ゲル状非水電解質、固体状電解質(例えば高分子固体電解質)等が挙げられる。液状非水電解質は、溶質(支持塩)と非水溶媒とを含み、さらに必要に応じて各種添加剤を含む。溶質は通常非水溶媒中に溶解する。液状非水電解質は、例えば、セパレータに含浸される。
 溶質としては、この分野で常用されるものを使用でき、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CFSONLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム((CFSO)(CSO)NLi)、ビスペンタフルオロエタンスルホン酸イミドリチウム((CSONLi)等が挙げられる。溶質は1種を単独で用いてもよく、必要に応じて2種以上を組み合わせて用いてもよい。溶質の非水溶媒に対する溶解量は、0.5モル/L~2モル/Lとすることが好ましい。
 非水溶媒としては、この分野で常用されるものを使用でき、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。非水溶媒は1種を単独で用いてもよく、必要に応じて2種以上を組み合わせて用いてもよい。
 また、電池特性をより向上できる観点から、非水溶媒にビニレンカーボネート(VC)を含有することが好ましい。
 ビニレンカーボネート(VC)を含有する場合の含有率は、非水溶媒全量に対して、0.1質量%~2質量%であることが好ましく、0.2質量%~1.5質量%であることがより好ましい。
(セパレータ)
 セパレータは、正極と負極との間に配置される。
 本開示で用いられる第一のセパレータは、160℃における熱収縮率が30%以下とされる。
 本開示で用いられる第二のセパレータは、多孔質基材と無機物粒子とを含み、前記多孔質基材はポリプロピレン樹脂及びポリエチレン樹脂が交互に積層された積層体とされる。
 本開示で用いられる第三のセパレータは、ポリエチレンテレフタレート樹脂の織布又は不織布及び無機物粒子を含む。
 以下、第一のセパレータ、第二のセパレータ及び第三のセパレータを併せて本開示のセパレータと称することがある。
 第一のセパレータは、160℃における熱収縮率が30%以下であればよく、25%以下であることが好ましく、23%以下であることがより好ましく、20%以下であることが更に好ましい。第一のセパレータの160℃における熱収縮率が30%以下であると、過充電状態において電池温度が上昇し、セパレータが熱収縮した場合にも、形状が維持されるので正極と負極との間の短絡を抑制できる。
 なお、第二のセパレータ及び第三のセパレータについての熱収縮率に限定はなく、例えば、30%以下であってもよく、25%以下であることが好ましく、23%以下であることがより好ましく、20%以下であることが更に好ましい。
 また、160℃における熱収縮率の下限値は0%であることが好ましいが、実用的な観点からは1%以上である。
 本明細書において160℃における熱収縮率は、面積収縮率とも称し、セパレータを50mm(MD:Machine Direction)×50mm(TD:Transverse Direction)に切り出し、ガラス基板上に置いて160℃に調整した恒温槽中で1時間加熱を行い、加熱後のセパレータの面積を算出し、以下のようにして求める。
 熱収縮率(面積収縮率)(%)=(加熱前の面積-加熱後の面積)/加熱前の面積×100
 本開示のセパレータのガーレー値[秒/100cc]は、1000秒/100cc以下であることが好ましく、800秒/100cc以下であることがより好ましく、600秒/100cc以下であることが更に好ましく、300秒/100cc以下であることが更により好ましく、200秒/100cc以下であることが特に好ましく、100秒/100cc以下であることが極めて好ましい。
 また、本開示のセパレータのガーレー値[秒/100cc]は、1秒/100cc~1000秒/100ccであることが好ましく、1秒/100cc~800秒/100ccであることがより好ましく、1秒/100cc~600秒/100ccであることが更に好ましく、1秒/100cc~300秒/100ccであることが更により好ましく、1秒/100cc~200秒/100ccであることが特に好ましく、1秒/100cc~100秒/100ccであることが極めて好ましい。
 本開示のセパレータのガーレー値が、1秒/100cc~1000秒/100ccの範囲内であると、イオン透過性がよく、放電レート特性に優れる傾向にある。また、本開示のセパレータのガーレー値が、1秒/100cc~300秒/100ccの範囲内であると、イオン透過性がよりよく、放電レート特性にさらに優れる傾向にある。
 ガーレー値は、ガーレー試験法により算出される透気抵抗度であり、セパレータの厚さ方向のイオンの通り抜け難さを表す。ガーレー値の数値が小さければ、イオンが通り抜け易く、数値が大きければ、イオンが通り抜け難いことを意味する。
 本明細書においてガーレー値は、ガーレー試験法(JIS P8117:2009)に準じて測定される値である。
 なお、本開示の第四のリチウムイオン二次電池は、正極、負極、セパレータ及び電解質を備えるリチウムイオン二次電池であって、前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤を含み、前記セパレータはガーレ値が300秒/100cc以下であり、前記セパレータは多孔質基材と無機物粒子とを含み、前記多孔質基材はポリエステル樹脂を含む。
 第四のリチウムイオン二次電池に係るセパレータについての熱収縮率に限定はなく、例えば、30%以下であってもよく、25%以下であることが好ましく、23%以下であることがより好ましく、20%以下であることが更に好ましい。
 本開示のセパレータは、多孔質基材と無機物粒子とを含んでいてもよい。
 多孔質基材に含まれる樹脂としては、ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン系樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレンテレフタレート樹脂(PET)等のポリエステル樹脂、アラミド樹脂、ポリアクリロニトリル樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂などが挙げられる。多孔質基材に含まれる樹脂は、1種を単独で用いてもよく、必要に応じて2種以上を組み合わせて用いてもよい。
 ある態様では、セパレータは多孔質基材と無機物粒子とを含み、多孔質基材は異なる2種以上の樹脂を含み、樹脂は、ポリプロピレン樹脂、ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリエチレンテレフタレート樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択されるものであってもよく、ポリエチレン樹脂とポリプロピレン樹脂とを含むことが好ましい。
 また、ある態様では、セパレータは多孔質基材と無機物粒子とを含み、多孔質基材はポリエステル樹脂を含むものであってもよい。多孔質基材に含まれるポリエステル樹脂のうち、ポリエチレンテレフタレート樹脂(PET)は、耐熱性及び電気絶縁性に優れていることから多孔質基材として適している。多孔質基材がポリエチレンテレフタレート樹脂を含む場合、多孔質基材としてポリエチレンテレフタレート樹脂の織布又は不織布を用いることが好ましい。本明細書において「不織布」とは、繊維を織らずに絡み合わせて形成されたシート状の物体を意味する。
 また、多孔質基材が2種以上の樹脂を含む場合、2種以上の樹脂を交互に積層した積層体としてもよい。本開示において多孔質基材が2種以上の樹脂を積層した積層体である場合、多孔質基材は二層構造又は三層構造であることが好ましい。
 多孔質基材の製造方法は、特に制限されず、公知の方法から選択することができる。本開示では、多孔質基材は織布であっても不織布であってもよく、不織布であることが好ましい。
 多孔質基材の融点は、120℃以上であることが好ましく、140℃以上であることがより好ましく、160℃以上であることが更に好ましい。融点が120℃以上であると、セパレータがシャットダウン機能を有し、電池内部での短絡も防止することができる。多孔質基材の融点の上限に特に制限はなく、実用的な観点からは、多孔質基材の融点は300℃以下であることが好ましい。
 ここで融点とは、JISK7121の規定に準じて示差走査熱量計(DSC)を用いて測定される融解温度を意味している。具体的には、融点は、示差走査熱量測定装置(パーキンエルマ製DSC7)を用い、昇温速度10℃/分、測定温度範囲25℃~350℃、流量20±5ml/minの窒素雰囲気下の条件で、アルミパンに密閉した3mg~5mgの試料の示差走査熱量測定を行うことで測定される。示差走査熱量測定から得られた結果より、相転移に伴うエネルギー変化が起こる温度(吸熱反応ピーク)を融点とする。
 無機物粒子としては、酸化アルミニウム(Al)、酸化ケイ素(SiO)、酸化チタン(TiO)、チタン酸バリウム(BaTiO)、ZrO(ジルコニア)、ベーマイト等が挙げられる。無機物粒子は、1種を単独で用いてもよく、又は必要に応じて2種以上を組み合わせて用いてもよい。
 電気絶縁性又は電気的安定性の観点から無機物粒子は酸化アルミニウム(以下、アルミナともいう)及び酸化ケイ素(以下、シリカともいう)の少なくとも一方であることが好ましい。
 無機物粒子は、電池の異常高温によって溶融する多孔質基材のシャットダウン機能を維持しつつ、多孔質基材が熱変形又は熱収縮しないように多孔質基材を保護する機能を有する。無機物粒子は、多孔質基材表面上に塗布されていてもよく、多孔質基材の空孔に含浸されていてもよい。
 セパレータは多孔質基材の一方の面に無機物粒子を含む層を備え、無機物粒子を含む層が正極と対向するようにセパレータを配置してもよい。無機物粒子を含む層は、多孔質基材を熱変形又は熱収縮から保護する耐熱層として機能することができる。
 多孔質基材に2種以上の樹脂を用いる場合、種類の異なる2種類の樹脂を交互に積層した態様であってもよく、ポリプロピレン樹脂及びポリエチレン樹脂が交互に積層された積層体であってもよい。
 また、セパレータに三層構造の多孔質基材を用いる場合、三層構造の多孔質基材において好ましい組み合わせは、溶融温度の異なる樹脂を含む多孔質膜を積層したものであり、より好ましくはオレフィン系樹脂を含む多孔質基材の組み合わせであり、更に好ましくは、ポリプロピレン樹脂/ポリエチレン樹脂/ポリプロピレン樹脂(以下、「PP/PE/PP」と称することがある。)の順で積層されたものである。多孔質基材を上記組み合わせにすることで、セパレータがシャットダウン機能を有し、かつ電気化学的安定性にも優れているため好ましい。
 本開示では、PP/PE/PPの順で積層されたものを多孔質基材とし、PP/PE/PPの多孔質基材に酸化アルミニウム又は酸化ケイ素を付着させる製造方法によって得られたセパレータを用いてもよい。
 この3層の構成により、ポリエチレン樹脂を含む層はポリプロピレン樹脂を含む層間に挟持されている為、ポリエチレン樹脂を含む層が溶融した場合でも、多孔質基材表面に存在するか又は空孔に含浸されている無機物粒子が耐熱層としての機能を発揮し、正極と負極の隔離機能を保持する。加えて、ポリエチレン樹脂が溶融しても流れ出さないため、効率よくシャットダウン機能が発揮される。さらに高温にさらされた場合、160℃~170℃の温度範囲においてポリプロピレン樹脂が溶融して、ポリエチレン樹脂とポリプロピレン樹脂が多孔質基材の空隙を閉塞させる為、より安全なシャットダウン機能が発揮される。
 無機物粒子の平均粒子径(D50)は、0.1μm~10μmであることが好ましく、0.2μm~9μmであることがより好ましく、0.3μm~8μmであることが更に好ましい。
無機物粒子の平均粒子径が上記範囲内であれば、無機物粒子と多孔質基材との密着性がよく、電池温度が上昇した場合でも、セパレータの熱収縮率が低くなる。
 本明細書における無機物粒子の平均粒子径は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。
 また、本開示のセパレータにおける無機物粒子の含有量(α1)とポリエチレンテレフタレート樹脂等の樹脂の含有量(β1)の質量基準の比率(α1:β1)は、セパレータの熱収縮率、柔軟性等の観点から、1:50~20:1の範囲であることが好ましく、1:25~10:1の範囲であることがより好ましく、1:5~4:1の範囲であることが更に好ましい。
 また、無機物粒子が多孔質基材に塗布されている場合、無機物粒子の層(以下、無機物粒子層という)の厚さ(α2)と多孔質基材の厚さ(β2)の比率(α2:β2)は、セパレータの熱収縮率、柔軟性等の観点から、1:100~10:1の範囲であることが好ましく、1:50~5:1の範囲であることがより好ましく、1:10~2:1の範囲であることが更に好ましい。
 セパレータの厚さは、ある態様では、5μm~100μmの範囲であることが好ましく、7μm~50μmであることがより好ましく、15μm~30μmであることが更に好ましい。また、セパレータの厚さは、その他の態様では、5μm~100μmの範囲であることが好ましく、13μm~70μmの範囲であることがより好ましく、15μm~50μmの範囲であることが更に好ましい。
 セパレータの厚さが、5μm~100μmの範囲であると、イオン透過性を保ちつつ、優れた体積エネルギー密度及び安全性を得ることができる。
(リチウムイオン二次電池)
 以下に、本開示をラミネート電池に適用した実施の形態について説明する。
 ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接し正負極端子を作製する。正極と負極との間にセパレータを配置させ積層した電極積層体を作製し、その状態でアルミニウム製のラミネートパック内に収容し、正負極端子をアルミラミネートパックの外に出し密封する。次いで、電解液をアルミラミネートパック内に注液し、アルミラミネートパックの開口部を密封する。これにより、リチウムイオン二次電池が得られる。
 次に、図面を参照して、本発明を18650タイプの円柱状リチウムイオン二次電池に適用した実施の形態について説明する。
 図1は、本開示を適用したリチウムイオン二次電池の断面図を示す。
 図1に示すように、本開示のリチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2及び負極板3がセパレータ4を介して断面渦巻状に捲回された電極群5が収容されている。セパレータ4は、例えば、幅が58mm、厚さが30μmに設定される。電極群5の上端面には、一端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群5の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群5の下端面には、一端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子及び負極タブ端子は、それぞれ電極群5の両端面の互いに反対側に導出されている。なお、電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない電解液が注液されている。
 以下、本発明を実施例に基づいて説明する。なお、本発明は、下記実施例に限定されるものではない。
[ニトリル基含有単量体由来の構造単位を含む樹脂の合成]
 撹拌機、温度計及び冷却管を装着した0.5リットルのセパラブルフラスコ内に、精製水(和光純薬工業株式会社製)397.2gを加えた後、系内を窒素置換し、72.0℃まで昇温した。系内の水温が72.0℃になっていることを確認後、精製水2.5gに重合開始剤の過硫酸アンモニウム(和光純薬工業株式会社製)347.0mgを溶かし、系内に加えた後、250rpm(回転/分)で撹拌した。次いで、系内にアクリロニトリル(和光純薬工業株式会社製)39.3g(0.74モル)、メトキシトリエチレングリコールアクリレート(新中村化学工業株式会社製、NKエステルAM-30G)1.4g(0.006モル)、アクリル酸(和光純薬工業株式会社製)2.1g(0.029モル)を2時間かけて滴下し、1時間かけて反応させた。
 次いで、精製水7.8gに重合開始剤の過硫酸アンモニウム(和光純薬工業株式会社製)420mgを溶かし、系内に加えた後、1時間反応させた。次いで、系内の温度を92.0℃まで昇温し、1時間かけて反応させた。次いで、精製水1.5gに重合開始剤の過硫酸アンモニウム(和光純薬工業株式会社製)210mgを溶かし、系内に加えた後、1時間反応させた。上記工程中は、系内を窒素雰囲気で保ち、250rpm(回転/分)で撹拌を続けた。室温(25℃)に冷却後、反応液を吸引ろ過し、析出した樹脂をろ別した。ろ別した樹脂を精製水(和光純薬工業株式会社製)1000gで洗浄した。洗浄した樹脂を60℃、150Paに設定した真空乾燥機で24時間乾燥し、ニトリル基含有単量体由来の構造単位を含む樹脂を得た。撹拌機、温度計及び冷却管を装着した0.5リットルのセパラブルフラスコ内に、NMP423gを加え、100±5℃に昇温した後、ニトリル基含有単量体由来の構造単位を含む樹脂27gを加え、300rpm(回転/分)で5時間撹拌し、NMP溶液とした。
(実験例1A)
[正極板の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質、BET比表面積が0.4m/g、平均粒径(d50)が6.5μm)と、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、ポリオレフィン粒子(ポリエチレン粒子、商品名:ケミパール(登録商標)W410、平均粒径9.5μm(三井化学株式会社カタログ値)、融点110℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)と、合成したニトリル基含有単量体由来の構造単位を含む樹脂(結着剤)とを、固形分の質量比(正極活物質:導電性粒子:ポリオレフィン粒子:結着剤)で88.0:4.5:6.5:1.0となるよう混合し、N-メチル-2-ピロリドン(溶媒、和光純薬工業株式会社製)中に十分に分散させ、正極合剤ペーストを作製した。この正極合剤ペーストを正極用の集電体である厚さ20μmのアルミニウム箔の両面に、実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスした。正極合剤密度(正極活物質層の充填密度)は2.60g/cmとし、正極合剤ペーストの片面塗布量は、正極合剤ペーストの固形分として140g/mとした。
[負極板の作製]
 易黒鉛化炭素(負極活物質、d002が0.35nm、平均粒径(d50)が18μm)に結着剤としてポリフッ化ビニリデン(PVDF)を添加した。これらの固形分の質量比が、負極活物質:結着剤=92:8となるように混合し、これに分散溶媒であるN-メチル-2-ピロリドン(NMP)(和光純薬工業株式会社製)を添加し、混練することにより負極合剤ペーストを形成した。この負極合剤ペーストを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に塗布した。
 尚、負極合材密度(負極活物質層の充填密度)は1.15g/cmとし、負極合剤ペーストの片面塗布量は、負極合剤ペーストの固形分として90g/mとした。
[電池の作製]18650型リチウムイオン二次電池の作製
 作製した正極板と負極板の間に、厚さ25μm、幅58.5mm、長さ875mmのポリプロピレン/ポリエチレン/ポリプロピレン三層の多孔質基材にシリカを塗布したセパレータ(以下、コーティング型PP/PE/PPセパレータ又はPP/PE/PPセパともいう)を挟んで捲回し、捲回型電極群を作製した。その際、電池の容量は900mAhとなるよう捲回型電極群を設計した。この捲回型電極群を電池容器に挿入し、予め負極集電体に溶着した負極タブ端子を缶底に溶着した。次に、予め正極集電体に溶着した正極タブ端子を正極外部端子に電気的に接続するように溶着し、正極キャップを缶上部に配置させ、絶縁性のガスケットを挿入した。その後、1.2MのLiPFを含む混合溶液(エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=2:2:3(体積比))に、混合溶液全量に対してビニレンカーボネートを0.8質量%添加した電解液(宇部興産株式会社製)を使用し、この電解液を電池容器内に6ml注入した。その後、電池容器上部をかしめて電池を密閉し、18650型リチウムイオン二次電池を作製した。
(実験例2A)
 正極板に使用するポリオレフィン粒子を、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)W410、平均粒径9.5μm(三井化学株式会社カタログ値)、融点110℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)から、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)W308、平均粒径:6.0μm(三井化学株式会社カタログ値)、融点132℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)に変更した以外は、実験例1Aと同様にして18650型リチウムイオン二次電池を作製した。
(実験例3A)
 正極板に使用するポリオレフィン粒子を、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)W410、平均粒径9.5μm(三井化学株式会社カタログ値)、融点110℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)から、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)WP100、平均粒径:1.0μm(三井化学株式会社カタログ値)、融点148℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)に変更した以外は、実験例1Aと同様にして18650型リチウムイオン二次電池を作製した。
(実験例4A)
[正極板の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質、BET比表面積が0.4m/g、平均粒径(d50)が6.5μm)と、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、結着剤としてポリフッ化ビニリデン(PVDF)とを、固形分の質量比(正極活物質:導電性粒子:結着剤)で88.0:4.5:7.5となるよう混合したのち、更に粘度調整のためにNMPを加えて正極合剤ペーストを作製した。この正極合剤ペーストを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスした。正極合剤密度(正極活物質層の充填密度)は2.60g/cmとし、正極合剤ペーストの片面塗布量は正極合剤ペーストの固形分として140g/mとした。
[負極板の作製]
 易黒鉛化炭素(負極活物質、d002が0.35nm、平均粒径(d50)が18μm)に結着剤としてポリフッ化ビニリデン(PVDF)を、固形分の質量比(負極活物質:結着剤)が92:8になるように混合した。これに分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することにより負極合剤ペーストを形成した。この負極合剤ペーストを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に塗布した。尚、負極合材密度(負極活物質層の充填密度)は1.15g/cmとし、負極合剤ペーストの片面塗布量は、負極合剤ペーストの固形分として90g/mとした。
[電池の作製]18650型リチウムイオン二次電池の作製
 作製した正極板と負極板の間に、厚さ25μm、幅58.5mm、長さ875mmのコーティング型PP/PE/PPセパレータを挟んで捲回し、捲回型電極群を作製した。その際、電池の容量は900mAhとなるよう捲回型電極群を設計した。この捲回型電極群を電池容器に挿入し、予め負極集電体に溶着した負極タブ端子を缶底に溶着した。次に、予め正極集電体に溶着した正極タブ端子を正極外部端子に電気的に接続するように溶着し、正極キャップを缶上部に配置させ、絶縁性のガスケットを挿入した。その後、1.2M(モル/L)のLiPFを含む混合溶液(エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=2:2:3(体積比))に、混合溶液全量に対してビニレンカーボネートを0.8質量%添加した電解液(宇部興産株式会社製)を使用し、この電解液を電池容器内に6ml注入した。その後、電池容器上部をかしめて密閉し、18650型リチウムイオン二次電池を作製した。
(実験例5A)
 厚さ25μm、幅58.5mmのコーティング型PP/PE/PPセパレータを、厚さ30μm、幅58.5mmのポリエチレン製セパレータ(以下、PEセパともいう)に変更した以外は、実験例1Aと同様にして18650型リチウムイオン二次電池を作製した。
(実験例6A)
 厚さ25μm、幅58.5mmのコーティング型PP/PE/PPセパレータを、厚さ30μm、幅58.5mmのポリエチレン製セパレータ(以下、PEセパともいう)に変更した以外は、実験例4Aと同様にして18650型リチウムイオン二次電池を作製した。
(セパレータの耐熱性)
 実験例1A~6Aで使用したセパレータを50mm×50mmに切り出し、ガラス基板上に置き、160℃に調整した恒温槽中で1時間加熱した。加熱後の試験片サイズを測定し、以下の式を用いて熱収縮率(面積収縮率)を算出した。
 熱収縮率(面積収縮率)(%)=(加熱前の面積-加熱後の面積)/加熱前の面積×100
[電池特性(放電容量)]
 実験例1A~6Aで得られた18650型電池の25℃での放電容量を、充放電装置(東洋システム株式会社製、商品名:TOSCAT-3200)を用いて以下の充放電条件で測定し、電池特性とした。電流450mAで4.2Vまで充電した後、4.2Vで電流が9mAになるまで充電(定電流定電圧(CCCV))した。次いで、450mAで2.7Vまで放電(CC放電)した。放電容量を測定し、以下の評価基準で電池特性を評価した。なお、電池特性はAが最も高く、Cが最も低いと判断した。
A:890mAh以上
B:880mAh以上、890mAh未満
C:880mAh未満
[安全性(過充電特性)]
 実験例1A~6Aで得られた18650型電池の表面に熱電対及びリボンヒータを巻きつけ、その上から断熱材を巻きつけた。18650型電池の表面温度を25℃に調整した後、3CA(2.7A)の充電レートにおいて過充電試験を実施した。過充電試験は電圧が18Vになるまで継続した際の18650型電池の挙動を観察し、以下の評価基準で安全性を評価した。なお、安全性はAが最も高く、Cが最も低いと判断した。
A:18650型リチウムイオン二次電池の破裂及び発火なし
B:18650型リチウムイオン二次電池の破裂又は発火あり
C:18650型リチウムイオン二次電池の破裂及び発火あり
Figure JPOXMLDOC01-appb-T000003
 実験例1A~6Aの電池特性はいずれも同等であった。しかしながら、正極活物質層にポリオレフィン粒子を含み、かつコーティング型PP/PE/PPセパレータを有する実験例1A~3Aは、高い安全性を有するのに対し、正極活物質層にポリオレフィン粒子を含まない実験例4A、実験例6A及びコーティング型PP/PE/PPセパレータを有さない実験例5A、実験例6Aは安全性が低下する結果となった。この結果から、正極、負極、セパレータ及び電解質を備え、前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、前記セパレータは、160℃における熱収縮率が30%以下であるリチウムイオン二次電池は、電池特性と安全性に優れる電池として有用であることが示唆された。また、本開示によれば別途PTC層を設けることなくリチウムイオン二次電池にPTC機能を付与できるため、製造工程も簡便である。
(実験例1B)
 [正極板の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質、BET比表面積が0.4m/g、平均粒径(d50)が6.5μm)と、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、ポリオレフィン粒子(ポリエチレン粒子、商品名:ケミパール(登録商標)W410、平均粒径9.5μm(三井化学株式会社カタログ値)、融点110℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)と、合成したニトリル基含有単量体由来の構造単位を含む樹脂(結着剤)とを、固形分の質量比(正極活物質:導電性粒子:ポリオレフィン粒子:結着剤)で88.0:4.5:6.5:1.0となるよう混合し、N-メチル-2-ピロリドン(溶媒、和光純薬工業株式会社製)中に十分に分散させ、正極合剤ペーストを作製した。この正極合剤ペーストを正極用の集電体である厚さ20μmのアルミニウム箔の両面に、実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスした。正極合剤密度(正極活物質層の充填密度)は2.60g/cmとし、正極合剤ペーストの片面塗布量は、正極合剤ペーストの固形分として140g/mとした。
[負極板の作製]
 易黒鉛化炭素(負極活物質、d002が0.35nm、平均粒径(d50)が18μm)に結着剤としてポリフッ化ビニリデン(PVDF)を添加した。これらの固形分の質量比が、負極活物質:結着剤=92:8となるように混合し、これに分散溶媒であるN-メチル-2-ピロリドン(NMP)(和光純薬工業株式会社製)を添加し、混練することにより負極合剤ペーストを形成した。この負極合剤ペーストを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に塗布した。尚、負極合材密度(負極活物質層の充填密度)は1.15g/cmとし、負極合剤ペーストの片面塗布量は、負極合剤ペーストの固形分として90g/mとした。
[電池の作製]18650型リチウムイオン二次電池の作製
 作製した正極板と負極板の間に、厚さ28μm、幅58.5mm、長さ875mmのポリエチレンテレフタレート不織布にアルミナ及びシリカが混合されているセパレータ(以下、ポリエチレンテレフタレート不織布、PET不織布又はPETセパという場合もある)を挟んで捲回し、捲回型電極群を作製した。その際、電池の容量は900mAhとなるよう捲回型電極群を設計した。この捲回型電極群を電池容器に挿入し、予め負極集電体に溶着した負極タブ端子を缶底に溶着した。次に、予め正極集電体に溶着した正極タブ端子を正極外部端子に電気的に接続するように溶着し、正極キャップを缶上部に配置させ、絶縁性のガスケットを挿入した。その後、1.2MのLiPFを含む混合溶液(エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=2:2:3(体積比))に、混合溶液全量に対してビニレンカーボネートを0.8質量%添加した電解液(宇部興産株式会社製)を使用し、この電解液を電池容器内に6ml注入した。その後、電池容器上部をかしめて電池を密閉した。以上のようにして、18650型リチウムイオン二次電池を作製した
(実験例2B)
 正極板に使用するポリオレフィン粒子を、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)W410、平均粒径9.5μm(三井化学株式会社カタログ値)、融点110℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)から、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)W308、平均粒径:6.0μm(三井化学株式会社カタログ値)、融点132℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)に変更した以外は、実験例1Bと同様にして18650型リチウムイオン二次電池を作製した。
(実験例3B)
 正極板に使用するポリオレフィン粒子を、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)W410、平均粒径9.5μm(三井化学株式会社カタログ値)、融点110℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)から、ポリエチレン粒子のNMP分散液(商品名:ケミパール(登録商標)WP100、平均粒径:1.0μm(三井化学株式会社カタログ値)、融点148℃(三井化学株式会社カタログ値)、三井化学株式会社製をNMPで分散媒置換したもの)に変更した以外は、実験例1Bと同様にして18650型リチウムイオン二次電池を作製した。
(実験例4B)
[正極板の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質、BET比表面積が0.4m/g、平均粒径(d50)が6.5μm)と、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、結着剤としてポリフッ化ビニリデン(PVDF)とを、固形分の質量比(正極活物質:導電性粒子:結着剤)で88.0:4.5:7.5となるよう混合したのち、更に粘度調整のためにNMPを加えて正極合剤ペーストを作製した。この正極合剤ペーストを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスした。正極合剤密度(正極活物質層の充填密度)は2.60g/cmとし、正極合剤ペーストの片面塗布量は、正極合剤ペーストの固形分として140g/mとした。
[負極板の作製]
 易黒鉛化炭素(負極活物質、d002が0.35nm、平均粒径(d50)が18μm)に結着剤としてポリフッ化ビニリデン(PVDF)を、固形分の質量比(負極活物質:結着剤)が92:8になるように混合した。これに分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することにより負極合剤ペーストを形成した。この負極合剤ペーストを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に塗布した。尚、負極合材密度(負極活物質層の充填密度)は1.15g/cmとし、負極合剤ペーストの片面塗布量は、負極合剤ペーストの固形分として90g/mとした。
[電池の作製]18650型リチウムイオン二次電池の作製
 作製した正極板と負極板との間にPET不織布を挟んで捲回し、捲回型電極群を作製した。その際、電池の容量は900mAhとなるよう捲回型電極群を設計した。この捲回型電極群を電池容器に挿入し、予め負極集電体に溶着した負極タブ端子を缶底に溶着した。次に、予め正極集電体に溶着した正極タブ端子を正極外部端子に電気的に接続するように溶着し、正極キャップを缶上部に配置させ、絶縁性のガスケットを挿入した。その後、1.2MのLiPFを含む混合溶液(エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=2:2:3(体積比))に、混合溶液全量に対してビニレンカーボネートを0.8質量%添加した電解液(宇部興産株式会社製)を使用し、この電解液を電池容器内に6ml注入した。その後、電池容器上部をかしめて密閉し、18650型リチウムイオン二次電池を作製した。
(実験例5B)
 セパレータとして厚さが30μm、ガーレー値が600秒/100ccのポリエチレン製セパレータ(以下、PEセパレータ、PEセパと記載する場合もある)を用いた以外は、実験例1Bと同様にして、18650型リチウムイオン二次電池を作製した。
(実験例6B)
 セパレータとして厚さが30μm、ガーレー値が600秒/100ccのポリエチレン製セパレータを用いた以外は、実験例4Bと同様にして、18650型リチウムイオン二次電池を作製した。
(セパレータの耐熱性)
 実験例1B~6Bで使用したセパレータを50mm(MD)×50mm(TD)に切り出し、ガラス基板上に置き、160℃に調整した恒温槽中で1時間加熱した。加熱後の試験片サイズを測定し、以下の式を用いて熱収縮率(面積収縮率)を算出した。
  熱収縮率(面積収縮率)(%)=(加熱前の面積-加熱後の面積)/加熱前の面積×100
 [電池特性(放電容量)]
 実験例1B~6Bで得られた18650型電池の25℃での放電容量を、充放電装置(東洋システム株式会社製、商品名:TOSCAT-3200)を用いて以下の充放電条件で測定し、放電容量とした。電流450mAで4.2Vまで充電した後、4.2Vで電流が9mAになるまで充電(定電流定電圧(CCCV))した。次いで、450mAで2.7Vまで放電(CC放電)した。放電容量を測定し、以下の評価基準で放電容量を評価した。なお、放電容量はAが最も高く、Cが最も低いと判断した。
A:890mAh以上
B:880mAh以上、890mAh未満
C:880mAh未満
[電池特性(放電レート特性)]
 実験例1B~6Bで得られた18650型電池の25℃での放電容量を、充放電装置(東洋システム株式会社製、商品名:TOSCAT-3200)を用いて以下の充放電条件で測定し、放電レート特性とした。電流450mAで4.2Vまで充電した後、4.2Vで電流が9mAになるまで充電(定電流定電圧(CCCV))した。次いで、4.5Aで2.7Vまで放電(CC放電)した。放電容量を測定し、以下の式を用いて得られる値を放電レート特性とし、以下の評価基準で評価した。
 放電レート特性(%)=(450mAでの放電容量)×100/(4.5Aでの放電容量)
A:90%以上
B:80%以上90%未満
C:80%未満
[安全性(過充電特性)]
 実験例1B~6Bで得られた18650型電池の表面に熱電対及びリボンヒータを巻きつけ、その上から断熱材を巻きつけた。18650型電池の表面温度を25℃に調整した後、3CA(2.7A)の充電レートにおいて過充電試験を実施した。過充電試験は電圧が18Vになるまで継続した際の18650型電池の挙動を観察し、以下の評価基準で安全性を評価した。なお、安全性はAが最も高く、Cが最も低いと判断した。
A:18650型リチウムイオン二次電池の破裂及び発火なし
B:18650型リチウムイオン二次電池の破裂又は発火あり
C:18650型リチウムイオン二次電池の破裂及び発火あり
Figure JPOXMLDOC01-appb-T000004
 実験例1B~6Bの放電容量はいずれも同等であった。
 セパレータにPET不織布を用いた実験例1B~4Bは、セパレータにPEセパを用いた実験例5B及び6Bと比較して、放電レート特性に優れる。この結果は、セパレータのガーレ値の違いに起因する。
 正極活物質層にポリオレフィン粒子を含み、セパレータにPET不織布を用いた実験例1B~3Bは正極活物質層にポリオレフィン粒子を含まない実験例4B及び実験例6B、正極活物質層にポリオレフィン粒子を含むがPEセパを用いている実験例5Bと比較して、電池安全性に優れる。この結果は、リチウムイオン二次電池の発熱に対して正極活物質層が高抵抗化する効果と、電池が発熱した際にセパレータの形状が保たれる効果に起因する。
 この結果から、正極、負極、セパレータ及び電解質を備え、前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、前記セパレータは、160℃における熱収縮率が30%以下であるリチウムイオン二次電池は、電池特性と安全性に優れる電池として有用であることが示唆された。また、本開示によれば別途PTC層を設けることなくリチウムイオン二次電池にPTC機能を付与できるため、製造工程も簡便である。
 本発明のリチウムイオン二次電池は、高い安全性を有する。特に、携帯電話、ノート型パーソナルコンピュータ、携帯用情報端末、電子辞書、ゲーム機器等の各種携帯用電子機器類の電源として好適に使用できる。このような用途に利用する場合、充電時に万が一過充電状態になっても、発熱が抑制されるので、電池の高温化、膨れ等が防止される。さらに、リチウムイオン二次電池の破裂、発火等が抑制される。また、本発明のリチウムイオン二次電池は、たとえば、電力貯蔵用、電気自動車、ハイブリット自動車等の輸送機器用等の用途にも応用可能である。
 2016年1月20日に出願された日本国特許出願2016-008470号及び2016-008471号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  正極、負極、セパレータ及び電解質を備え、
     前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、
     前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、
     前記セパレータは、160℃における熱収縮率が30%以下であるリチウムイオン二次電池。
  2.  前記セパレータは多孔質基材と無機物粒子とを含み、前記多孔質基材は異なる2種以上の樹脂を含み、前記樹脂は、ポリプロピレン樹脂、ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリエチレンテレフタレート樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される請求項1に記載のリチウムイオン二次電池。
  3.  前記多孔質基材は、ポリエチレン樹脂とポリプロピレン樹脂とを含む請求項2に記載のリチウムイオン二次電池。
  4.  前記セパレータの160℃における熱収縮率が20%以下である請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池。
  5.  前記セパレータのガーレ値が1000秒/100cc以下である請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池。
  6.  前記セパレータは多孔質基材と無機物粒子を含み、前記多孔質基材はポリエステル樹脂を含む請求項1に記載のリチウムイオン二次電池。
  7.  前記ポリエステル樹脂はポリエチレンテレフタレート樹脂を含む請求項6に記載のリチウムイオン二次電池。
  8.  正極、負極、セパレータ及び電解質を備え、
     前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、
     前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、
     前記セパレータは多孔質基材と無機物粒子とを含み、前記多孔質基材はポリプロピレン樹脂及びポリエチレン樹脂が交互に積層された積層体であるリチウムイオン二次電池。
  9.  正極、負極、セパレータ及び電解質を備え、
     前記正極は、集電体と前記集電体上に形成された正極活物質層とを有し、
     前記正極活物質層は、正極活物質とポリオレフィン粒子と導電性粒子と結着剤とを含み、
     前記セパレータはポリエチレンテレフタレート樹脂の織布又は不織布及び無機物粒子を含むリチウムイオン二次電池。
  10.  前記無機物粒子が酸化アルミニウム(Al)及び酸化ケイ素(SiO)の少なくとも一方を含む請求項2、請求項6、請求項8及び請求項9のいずれか1項に記載のリチウムイオン二次電池。
  11.  前記セパレータの厚さが5μm~100μmである請求項1~請求項10のいずれか1項に記載のリチウムイオン二次電池。
  12.  前記結着剤が、ニトリル基含有単量体由来の構造単位を含む樹脂を含有する請求項1~請求項11のいずれか1項に記載のリチウムイオン二次電池。
PCT/JP2017/001439 2016-01-20 2017-01-17 リチウムイオン二次電池 WO2017126510A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780007346.6A CN108475809A (zh) 2016-01-20 2017-01-17 锂离子二次电池
US16/071,129 US20210167393A1 (en) 2016-01-20 2017-01-17 Lithium ion secondary battery
JP2017562824A JPWO2017126510A1 (ja) 2016-01-20 2017-01-17 リチウムイオン二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-008471 2016-01-20
JP2016-008470 2016-01-20
JP2016008470 2016-01-20
JP2016008471 2016-01-20

Publications (1)

Publication Number Publication Date
WO2017126510A1 true WO2017126510A1 (ja) 2017-07-27

Family

ID=59362395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001439 WO2017126510A1 (ja) 2016-01-20 2017-01-17 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20210167393A1 (ja)
JP (1) JPWO2017126510A1 (ja)
CN (1) CN108475809A (ja)
WO (1) WO2017126510A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029299A (ja) * 2017-08-03 2019-02-21 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
JP2019102453A (ja) * 2017-11-29 2019-06-24 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 二次電池用複合セパレータおよびそれを含むリチウム二次電池
CN110603664A (zh) * 2017-10-26 2019-12-20 株式会社Lg化学 具有熔化截止部分的隔膜和包括该隔膜的电化学装置
JP2020507900A (ja) * 2017-07-28 2020-03-12 エルジー・ケム・リミテッド 二次電池用正極及びこれを含むリチウム二次電池
CN111200104A (zh) * 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种电池
EP4160634A4 (en) * 2020-05-28 2023-11-22 Asahi Kasei Kabushiki Kaisha SEPARATOR FOR ENERGY STORAGE DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660955B (zh) 2018-06-29 2021-11-23 宁德时代新能源科技股份有限公司 负极极片、其制备方法及电化学装置
US11575180B2 (en) * 2020-03-19 2023-02-07 Benq Materials Corporation Separator and method for manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064549A (ja) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004327183A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 電池及びその製造方法
JP2014112553A (ja) * 2014-02-07 2014-06-19 Sony Corp セパレータおよび電池
JP2015115168A (ja) * 2013-12-11 2015-06-22 日立化成株式会社 リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048738A (ja) * 2005-07-14 2007-02-22 Tomoegawa Paper Co Ltd 電子部品用セパレータおよびその製造方法
JP5247657B2 (ja) * 2009-11-05 2013-07-24 株式会社日立製作所 非水電解液電池
CN104347835B (zh) * 2013-07-26 2017-07-07 天津东皋膜技术有限公司 一种双面耐热陶瓷涂层复合隔膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064549A (ja) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004327183A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 電池及びその製造方法
JP2015115168A (ja) * 2013-12-11 2015-06-22 日立化成株式会社 リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池
JP2014112553A (ja) * 2014-02-07 2014-06-19 Sony Corp セパレータおよび電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507900A (ja) * 2017-07-28 2020-03-12 エルジー・ケム・リミテッド 二次電池用正極及びこれを含むリチウム二次電池
US11728480B2 (en) 2017-07-28 2023-08-15 Lg Energy Solution, Ltd. Positive electrode for secondary battery and lithium secondary battery including the same
JP7048850B2 (ja) 2017-07-28 2022-04-06 エルジー エナジー ソリューション リミテッド 二次電池用正極及びこれを含むリチウム二次電池
JP2019029299A (ja) * 2017-08-03 2019-02-21 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
US11527787B2 (en) 2017-10-26 2022-12-13 Lg Energy Solution, Ltd. Separator having melting-cutoff portion and electrochemical device including the same
CN110603664A (zh) * 2017-10-26 2019-12-20 株式会社Lg化学 具有熔化截止部分的隔膜和包括该隔膜的电化学装置
EP3624233A4 (en) * 2017-10-26 2020-08-19 LG Chem, Ltd. SEPARATOR INCLUDING A CUT-FUSION PART AND ELECTROCHEMICAL DEVICE TO WHICH IT IS APPLIED
CN110603664B (zh) * 2017-10-26 2022-05-24 株式会社Lg化学 具有熔化截止部分的隔膜和包括该隔膜的电化学装置
JP2019102453A (ja) * 2017-11-29 2019-06-24 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 二次電池用複合セパレータおよびそれを含むリチウム二次電池
JP7285634B2 (ja) 2017-11-29 2023-06-02 エスケー イノベーション カンパニー リミテッド 二次電池用複合セパレータおよびそれを含むリチウム二次電池
CN111200104B (zh) * 2018-11-16 2021-03-19 宁德时代新能源科技股份有限公司 一种电池
US11658330B2 (en) 2018-11-16 2023-05-23 Contemporary Amperex Technology Co., Limited Battery
US11362364B2 (en) 2018-11-16 2022-06-14 Contemporary Amperex Technology Co., Limited Battery
CN111200104A (zh) * 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种电池
EP4160634A4 (en) * 2020-05-28 2023-11-22 Asahi Kasei Kabushiki Kaisha SEPARATOR FOR ENERGY STORAGE DEVICE

Also Published As

Publication number Publication date
CN108475809A (zh) 2018-08-31
JPWO2017126510A1 (ja) 2018-08-09
US20210167393A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2017126510A1 (ja) リチウムイオン二次電池
KR102110054B1 (ko) 리튬 이온 이차 전지
KR101828729B1 (ko) 리튬 이온 이차 전지용 정극 및 그것을 사용한 리튬 이온 이차 전지
US10763509B2 (en) Positive electrode for lithium ion secondary battery, electrode for lithium ion secondary battery, electrode active material layer including polyolefin particles, and lithium ion secondary battery
JP5328034B2 (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
JP6508216B2 (ja) リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池
JP6362125B2 (ja) 二種のバインダーを含む正極活物質スラリー及びこれから製造された正極
CN105742573A (zh) 非水电解质二次电池用正极和非水电解质二次电池
JP2007299612A (ja) 非水電解質二次電池用セパレータおよび非水電解質二次電池
KR20150036659A (ko) 집전체, 전극, 이차전지 및 커패시터
JP6658733B2 (ja) バインダ樹脂組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015115168A (ja) リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池
KR20190049191A (ko) 전극 조립체 및 이차 전지 안정화 방법
CN106531938A (zh) 非水电解液二次电池
US20080199764A1 (en) Safer high energy battery
WO2018155712A1 (ja) エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
JP2017016950A (ja) リチウムイオン二次電池
JPWO2019022063A1 (ja) 電極、蓄電素子、及び電極の製造方法
JP6536701B2 (ja) バインダ樹脂組成物、バインダ樹脂組成物の製造方法、リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池電極形成用組成物の製造方法、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2018067400A (ja) 組成物、下地層付き集電体、リチウムイオン二次電池用電極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741388

Country of ref document: EP

Kind code of ref document: A1