WO2017126373A1 - 磁気媒体検出装置 - Google Patents

磁気媒体検出装置 Download PDF

Info

Publication number
WO2017126373A1
WO2017126373A1 PCT/JP2017/000556 JP2017000556W WO2017126373A1 WO 2017126373 A1 WO2017126373 A1 WO 2017126373A1 JP 2017000556 W JP2017000556 W JP 2017000556W WO 2017126373 A1 WO2017126373 A1 WO 2017126373A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
bias magnet
bias
detection device
magnet unit
Prior art date
Application number
PCT/JP2017/000556
Other languages
English (en)
French (fr)
Inventor
拓也 杉本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017126373A1 publication Critical patent/WO2017126373A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic medium detection device.
  • Patent Document 1 JP-A-2013-167562 (Patent Document 1) is a prior document disclosing the configuration of a magnetic medium detection device that detects a magnetic medium.
  • the magnetic medium detection device described in Patent Document 1 includes a magnet unit that generates a bias magnetic field and a plurality of magnetic sensors.
  • Each of the plurality of magnetic sensors includes an anisotropic magnetoresistive element. In a position where the magnetic medium moves in the bias magnetic field above the magnet unit and the direction in which the magnetic sensor magnetic field detection direction coincides, the magnetic flux density of the bias magnetic field in the magnetic field detection direction of the magnetic sensor is near zero.
  • An anisotropic magnetoresistive element of each of the plurality of magnetic sensors is disposed.
  • the anisotropic magnetoresistive element of each of the plurality of magnetic sensors has a magnetic flux density of 0, a minimum value, and a maximum value in a bias magnetic field in the direction in which the plurality of magnetic sensors are arranged. It is placed at a position that does not have a value. At this time, the plurality of bias magnets need to be arranged at a predetermined interval in the direction in which the plurality of magnetic sensors are arranged.
  • the resolution of the magnetic medium detection device described in Patent Document 1 depends on the size of the bias magnet and the distance between the bias magnets. Therefore, when the resolution of the magnetic medium detection device is to be increased, both the size of the bias magnet and the interval between the bias magnets must be reduced. However, since there is a limit to downsizing the bias magnet, there is a limit to increasing the resolution of the magnetic medium detection device.
  • the anisotropic magnetoresistive element is saturated at a magnetic flux density of about 10 mT. Therefore, in order to increase the sensitivity of the magnetic medium detection device, the anisotropic magnetoresistive element of each of the plurality of magnetic sensors is arranged in a magnetic field strength region where the anisotropic magnetoresistive element is not saturated and the sensitivity is increased. There is a need to.
  • the present invention has been made in view of the above problems, and can be stably arranged in a magnetic field strength region where the sensitivity of each of the plurality of magnetic sensors is increased without saturation, It is an object of the present invention to provide a magnetic medium detection device with improved resolution and higher sensitivity.
  • a magnetic medium detection device is a magnetic medium detection device that detects a magnetic medium being conveyed in a first direction along a conveyance path.
  • the magnetic medium detection device includes a bias magnet unit that generates a bias magnetic field and extends in a second direction that is perpendicular to the first direction, and includes a magnetic resistance element and a magnetic field detection direction that is directed in the first direction.
  • a plurality of magnetic sensors are arranged side by side in the second direction between the conveyance path and the bias magnet unit, and in the third direction that is perpendicular to each of the first direction and the second direction, And a magnetic sensor array facing each other with an interval.
  • the bias magnet unit extends in the second direction while being spaced apart from each other in the first direction, and the magnetic poles having the same polarity are arranged in the same direction in the third direction.
  • Each magnetoresistive element of the plurality of magnetic sensors is located between the first bias magnet portion and the second bias magnet portion when viewed from the third direction.
  • Each magnetoresistive element of the plurality of magnetic sensors is located in a region where the magnetic flux densities in the first direction and the second direction of the bias magnetic field are ⁇ 2 mT or less.
  • the bias magnet unit further includes a pair of third bias magnet portions connecting the ends of the first bias magnet portion and the second bias magnet portion in the second direction.
  • the first and second bias magnet portions and magnetic poles having the same polarity are arranged in the same direction in the third direction.
  • each magnetoresistive element of the plurality of magnetic sensors is located in a region surrounded by the first bias magnet portion, the second bias magnet portion, and the pair of third bias magnet portions.
  • the distance between each of the pair of third bias magnet units and the magnetic sensor array is such that each of the first bias magnet unit and each of the second bias magnet units and the magnetic sensor is separated. Less than the distance to the array.
  • the magnetic medium detection device further includes a flat magnetic body portion extending in the second direction and facing the magnetic sensor array with a gap in the third direction. As viewed from the first direction, the conveyance path is located between the magnetic body portion and the magnetic sensor array.
  • the bias magnet unit is composed of a plurality of bias magnets.
  • the bias magnet unit is composed of one bias magnet.
  • the bias magnet unit further includes a fourth bias magnet unit that connects the first bias magnet unit and the second bias magnet unit.
  • the fourth bias magnet unit each of the first bias magnet unit and the second bias magnet unit and the same polarity magnetic pole are arranged in the same direction in the third direction. In the third direction, the distance between the fourth bias magnet part and the magnetic sensor array is larger than the distance between each of the first bias magnet part and the second bias magnet part and the magnetic sensor array.
  • each of the plurality of magnetic sensors is an anisotropic magnetoresistive element.
  • each of the plurality of magnetic sensors includes a barber pole electrode.
  • the magnetic medium is a bill.
  • each magnetic resistance element of a plurality of magnetic sensors can be stably disposed in a magnetic field strength region where sensitivity is increased without being saturated, and high resolution and high sensitivity of the magnetic medium detection device can be achieved. Can be achieved.
  • FIG. 3 is a cross-sectional view of the magnetic medium detection device of FIG. 1 as viewed from the direction of arrows III-III. It is a graph which shows a time-dependent change of the output of the magnetic sensor which detected the magnetic medium in the magnetic-medium detection apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the magnetic flux in the position of a magnetic sensor at the time of a magnetic medium being carried in to the conveyance path of the magnetic-medium detection apparatus which concerns on Embodiment 1 of this invention.
  • FIG. It is a graph which shows the output value of the magnetic sensor of the state shown in FIG. Section showing magnetic flux at the position of the magnetic sensor when the magnetic medium is transported along the transport path of the magnetic medium detection device according to the first embodiment of the present invention and approaches the other end in the X-axis direction of the first bias magnet unit.
  • FIG. It is a graph which shows the output value of the magnetic sensor of the state shown in FIG.
  • Sectional drawing which shows the magnetic flux in the position of a magnetic sensor at the time of a magnetic medium being conveyed in the conveyance path of the magnetic-medium detection apparatus which concerns on Embodiment 1 of this invention, and approaching the end of the X-axis direction of a 2nd bias magnet part. It is. It is a graph which shows the output value of the magnetic sensor of the state shown in FIG. It is sectional drawing which shows the magnetic flux in the position of a magnetic sensor at the time of a magnetic medium being carried out from the conveyance path of the magnetic-medium detection apparatus which concerns on Embodiment 1 of this invention. It is a graph which shows the output value of the magnetic sensor of the state shown in FIG. FIG.
  • FIG. 3 is a contour map of a magnetic flux density distribution in the X-axis direction of a bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to Embodiment 1 of the present invention, and a distance from one end surface of the bias magnet unit in the Z-axis direction.
  • FIG. 6 is a diagram analyzing a magnetic flux density distribution in the X-axis direction of a bias magnetic field at a position where is 3.0 mm.
  • FIG. 3 is a contour map of a magnetic flux density distribution in the X-axis direction of a bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to Embodiment 1 of the present invention, and a distance from one end surface of the bias magnet unit in the Z-axis direction.
  • FIG. 6 is a diagram in which the magnetic flux density distribution in the X-axis direction of the bias magnetic field at a position where is 3.4 mm is analyzed.
  • FIG. 3 is a contour map of a magnetic flux density distribution in the X-axis direction of a bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to Embodiment 1 of the present invention, and a distance from one end surface of the bias magnet unit in the Z-axis direction.
  • FIG. 6 is a diagram analyzing a magnetic flux density distribution in the X-axis direction of a bias magnetic field at a position where is 3.6 mm.
  • FIG. 3 is a contour map of a magnetic flux density distribution in the X-axis direction of a bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to Embodiment 1 of the present invention, and a distance from one end surface of the bias magnet unit in the Z-axis direction.
  • FIG. 6 is a diagram analyzing a magnetic flux density distribution in the
  • FIG. 3 is a contour map of a magnetic flux density distribution in the X-axis direction of a bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to Embodiment 1 of the present invention, and a distance from one end surface of the bias magnet unit in the Z-axis direction. It is the figure which analyzed the magnetic flux density distribution of the X-axis direction of the bias magnetic field in the position which is 5.0 mm. It is a graph which shows magnetic flux density distribution of the X-axis direction of the bias magnetic field from the start point shown in FIG. 15 to an end point. It is a graph which shows magnetic flux density distribution of the X-axis direction of the bias magnetic field from the start point shown in FIG. 16 to an end point.
  • FIG. 31 is a graph showing a magnetic flux density distribution in the Y-axis direction of a bias magnetic field from the start point to the end point shown in FIG. 30.
  • FIG. 31 is a graph showing a magnetic flux density distribution in the Y-axis direction of a bias magnetic field from the start point to the end point shown in FIG. 30.
  • FIG. It is a perspective view which shows the structure of the magnetic-medium detection apparatus which concerns on the 1st modification of Embodiment 3 of this invention.
  • FIG. 1 is a plan view showing a configuration of a magnetic medium detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view of the magnetic medium detection device of FIG. 1 as viewed from the direction of arrow II.
  • FIG. 3 is a cross-sectional view of the magnetic medium detection device of FIG. 1 as viewed from the direction of arrows III-III.
  • the first direction which is the conveyance direction of the magnetic medium
  • the second direction which is perpendicular to the first direction
  • the third direction which is a simple direction, is shown as the Z-axis direction.
  • the magnetic medium detection apparatus 100 is a magnetic medium detection apparatus that detects a magnetic medium that is being transported in the transport path 2 in the X-axis direction.
  • a magnetic medium is a banknote
  • a magnetic medium is not restricted to a banknote, What is necessary is just paper sheets provided with magnetic patterns, such as a check or a ticket.
  • the magnetic medium detection apparatus 100 includes a bias magnet unit and a magnetic sensor array.
  • the bias magnet unit extends in the Y-axis direction and generates a bias magnetic field.
  • the bias magnet unit is composed of a plurality of bias magnets.
  • the bias magnet unit includes a first bias magnet part and a second bias magnet part.
  • the first bias magnet portion and the second bias magnet portion extend in the Y-axis direction while being spaced apart from each other in the X-axis direction.
  • the first bias magnet part and the second bias magnet part are located in parallel to each other.
  • a gap 150 is formed between the first bias magnet portion and the second bias magnet portion. In the present embodiment, the gap 150 penetrates the bias magnet unit in the Z-axis direction.
  • first bias magnet section a plurality of first bias magnets 120 are arranged in a line in the Y-axis direction without a gap.
  • second bias magnet portion a plurality of second bias magnets 130 are arranged in a line in the Y-axis direction with no gap.
  • Each of the first bias magnet 120 and the second bias magnet 130 has a rectangular parallelepiped outer shape.
  • each of the first bias magnet part and the second bias magnet part magnetic poles having the same polarity are arranged in the same direction in the Z-axis direction. Specifically, in each of the first bias magnet 120 and the second bias magnet 130, the N pole is located on the magnetic sensor array side, and the S pole is located on the opposite side to the magnetic sensor array side.
  • the bias magnet unit further includes a pair of third bias magnet units that connect the ends of the first bias magnet unit and the second bias magnet unit in the Y-axis direction.
  • the pair of third bias magnet units includes a third magnet 140 that connects one end of the first bias magnet unit and one end of the second bias magnet unit, the other end of the first bias magnet unit, and the second bias magnet unit. It is comprised from the 3rd magnet 141 which connects an end.
  • Each of the third magnet 140 and the third magnet 141 has a rectangular parallelepiped outer shape.
  • the third magnet 140 includes the entire side surface of the first bias magnet 120 located at one end of the first bias magnet portion and the side surface of the second bias magnet 130 located at one end of the second bias magnet portion. Although it has the length of the X-axis direction which touches each of the whole surface, it is not restricted to this, The length of the X-axis direction of the 3rd magnet 140 should just be more than the length of the X-axis direction of the clearance gap 150.
  • the third magnet 141 includes the entire side surface of the first bias magnet 120 located at the other end of the first bias magnet portion and the entire side surface of the second bias magnet 130 located at the other end of the second bias magnet portion.
  • the present invention is not limited to this, and the length of the third magnet 141 in the X-axis direction may be equal to or greater than the length of the gap 150 in the X-axis direction.
  • the first and second bias magnet portions and magnetic poles having the same polarity are arranged in the same direction in the Z-axis direction.
  • the N pole is located on the magnetic sensor array side
  • the S pole is located on the side opposite to the magnetic sensor array side.
  • each of the first bias magnet 120, the second bias magnet 130, the third magnet 140, and the third magnet 141 is composed of a neodymium magnet, but is not limited thereto, and is composed of a ferrite magnet or the like. May be.
  • the magnetic sensor array includes a plurality of magnetic sensors 110 including a magnetoresistive element and having a magnetic field detection direction oriented in the X-axis direction, arranged in a line in the Y-axis direction between the transport path 2 and the bias magnet unit. Has been.
  • the magnetic sensor array faces the bias magnet unit with an interval D in the Z-axis direction.
  • the interval E between each of the pair of third bias magnet portions and the magnetic sensor array is equal to each of the first bias magnet portion and the second bias magnet portion, and the magnetic sensor array.
  • the distance D between the first bias magnet part and the second bias magnet part may be equal to or less than the distance D between the magnetic sensor array and the magnetic sensor array.
  • Each magnetoresistive element of the plurality of magnetic sensors 110 is located between the first bias magnet portion and the second bias magnet portion as viewed from the Z-axis direction.
  • each magnetoresistive element of the plurality of magnetic sensors 110 when viewed from the Z-axis direction, is surrounded by a first bias magnet portion, a second bias magnet portion, and a pair of third bias magnet portions. Located in the area. That is, each magnetoresistive element of the plurality of magnetic sensors 110 is located in the gap 150 when viewed from the Z-axis direction.
  • each magnetoresistive element of the plurality of magnetic sensors 110 is located in a region where the magnetic flux densities in the X-axis direction and the Y-axis direction of the bias magnetic field are ⁇ 2 mT or less.
  • each magnetoresistive element of the plurality of magnetic sensors 110 is an anisotropic magnetoresistive element (AMR (Anisotropic MagnetoResistance) element).
  • AMR anisotropic magnetoresistive element
  • Each of the plurality of magnetic sensors 110 has a Wheatstone bridge type bridge circuit composed of four AMR elements.
  • each of the plurality of magnetic sensors 110 is replaced with an AMR element and a magnetoresistance such as GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), or CMR (Colossal Magneto Resistance). You may have an element.
  • each of the plurality of magnetic sensors 110 may have a half-bridge circuit composed of two magnetoresistive elements.
  • each of the plurality of magnetic sensors 110 may have a bridge circuit including a magnetoresistive element and a fixed resistor.
  • Each of the plurality of magnetic sensors 110 includes a barber pole electrode.
  • Each of the plurality of magnetic sensors 110 has an odd function input / output characteristic by including a barber pole electrode. Thereby, in each of the plurality of magnetic sensors 110, the relationship between the input magnetic field strength and the output voltage has linearity.
  • FIG. 4 is a graph showing the change over time of the output of the magnetic sensor that detects the magnetic medium in the magnetic medium detection apparatus according to the first embodiment of the present invention.
  • the vertical axis represents the output voltage of the magnetic sensor
  • the horizontal axis represents the elapsed time.
  • FIG. 5 is a cross-sectional view showing the magnetic flux at the position of the magnetic sensor when the magnetic medium is carried into the conveyance path of the magnetic medium detection device according to the first embodiment of the present invention.
  • FIG. 6 is a graph showing the output value of the magnetic sensor in the state shown in FIG. FIG. 5 shows the same cross-sectional view as FIG.
  • the vertical axis represents the output voltage of the magnetic sensor 110
  • the horizontal axis represents the input magnetic field intensity to the magnetic sensor 110.
  • a linear line indicating the relationship between the input magnetic field strength and the output voltage in the magnetic sensor 110 is indicated by a two-dot chain line L.
  • the magnetic flux 1 at the position of the magnetic sensor 110 is a magnetic flux due to a bias magnetic field.
  • the output of the magnetic sensor 110 is 0.
  • FIG. 7 shows the position of the magnetic sensor when the magnetic medium is transported through the transport path of the magnetic medium detection device according to the first embodiment of the present invention and approaches the other end in the X-axis direction of the first bias magnet unit. It is sectional drawing which shows magnetic flux.
  • FIG. 8 is a graph showing the output value of the magnetic sensor in the state shown in FIG.
  • the magnetic sensor 10 when the magnetic medium 10 is transported through the transport path 2 of the magnetic medium detection device 100 and approaches the other end in the X-axis direction of the first bias magnet unit, the magnetic sensor 10 is positioned at the position of the magnetic sensor 110.
  • the magnetic flux 1a is attracted to the magnetic medium 10, and the magnetic flux density component in the X-axis direction, which is the magnetic field detection direction, increases.
  • the output of the magnetic sensor 110 is the maximum value.
  • FIG. 9 is a cross-sectional view showing the magnetic flux at the position of the magnetic sensor when the magnetic medium is transported through the transport path of the magnetic medium detection device according to the first embodiment of the present invention and is closest to the magnetic sensor.
  • FIG. 10 is a graph showing the output value of the magnetic sensor in the state shown in FIG.
  • the magnetic flux 1 b at the position of the magnetic sensor 110 is applied to the magnetic medium 10. Although the magnetic flux density is increased, the magnetic flux 1b is directed in the same Z-axis direction as the bias magnetic field. As shown in FIGS. 4 and 8, since the midpoint voltage of the bridge circuit of the magnetic sensor 110 is 0 at this time, the output of the magnetic sensor 110 is 0.
  • FIG. 11 shows the magnetic flux at the position of the magnetic sensor when the magnetic medium is transported through the transport path of the magnetic medium detection device according to the first embodiment of the present invention and approaches one end in the X-axis direction of the second bias magnet unit.
  • FIG. 12 is a graph showing the output value of the magnetic sensor in the state shown in FIG.
  • the magnetic flux at the position of the magnetic sensor 110. 1c is attracted to the magnetic medium 10, and the magnetic flux density component in the X-axis direction, which is the magnetic field detection direction, increases.
  • the midpoint voltage of the bridge circuit included in the magnetic sensor 110 has the minimum value, and thus the output of the magnetic sensor 110 has the minimum value.
  • FIG. 13 is a cross-sectional view showing the magnetic flux at the position of the magnetic sensor when the magnetic medium is unloaded from the conveyance path of the magnetic medium detection device according to the first embodiment of the present invention.
  • FIG. 14 is a graph showing the output value of the magnetic sensor in the state shown in FIG. As shown in FIG. 13, when the magnetic medium 10 is unloaded from the conveyance path 2 of the magnetic medium detection device 100, the magnetic flux 1 at the position of the magnetic sensor 110 is a magnetic flux due to a bias magnetic field. As shown in FIGS. 4 and 14, at this time, the midpoint voltage of the bridge circuit included in the magnetic sensor 110 is 0, and thus the output of the magnetic sensor 110 is 0.
  • the magnetic medium detection apparatus 100 can detect the magnetic medium 10 by detecting the change with time of the output of the series of magnetic sensors 110 described above.
  • the plurality of magnetic sensors 110 are arranged so that the magnetoresistive elements of the plurality of magnetic sensors 110 are located in a magnetic field intensity region where the sensitivity is increased without being saturated. Each must be placed.
  • FIG. 15 is a contour map of the magnetic flux density distribution in the X-axis direction of the bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to the first embodiment of the present invention. It is the figure which analyzed the magnetic flux density distribution of the X-axis direction of the bias magnetic field in the position where the distance from an end surface is 3.0 mm.
  • FIG. 16 is a contour map of the magnetic flux density distribution in the X-axis direction of the bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to the first embodiment of the present invention. It is the figure which analyzed the magnetic flux density distribution of the X-axis direction of the bias magnetic field in the position whose distance from an end surface is 3.4 mm.
  • FIG. 17 is a contour map of the magnetic flux density distribution in the X-axis direction of the bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to the first embodiment of the present invention. It is the figure which analyzed the magnetic flux density distribution of the X-axis direction of the bias magnetic field in the position whose distance from an end surface is 3.6 mm.
  • FIG. 18 is a contour map of the magnetic flux density distribution in the X-axis direction of the bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to the first embodiment of the present invention. It is the figure which analyzed the magnetic flux density distribution of the X-axis direction of the bias magnetic field in the position where the distance from an end surface is 5.0 mm.
  • FIG. 19 is a graph showing the magnetic flux density distribution in the X-axis direction of the bias magnetic field from the start point to the end point shown in FIG.
  • FIG. 20 is a graph showing the magnetic flux density distribution in the X-axis direction of the bias magnetic field from the start point to the end point shown in FIG.
  • FIG. 21 is a graph showing the magnetic flux density distribution in the X-axis direction of the bias magnetic field from the start point to the end point shown in FIG.
  • FIG. 22 is a graph showing the magnetic flux density distribution in the X-axis direction of the bias magnetic field from the start point to the end point shown in FIG. 19 to 22, the vertical axis represents the magnetic flux density (mT) in the X-axis direction of the bias magnetic field, and the horizontal axis represents the distance (mm) from the starting point.
  • the bias magnetic field at the position of each of the plurality of magnetic sensors 110 is changed.
  • the magnetic flux density in the X-axis direction can be reduced.
  • FIG. 23 is a front view showing the magnetic flux distribution of the bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to the first embodiment of the present invention.
  • FIG. 24 is a graph showing the magnetic flux density distribution in the Y-axis direction of the bias magnetic field from the start point to the end point shown in FIG.
  • FIG. 25 is a front view showing the magnetic flux distribution of the bias magnetic field generated by the bias magnet unit according to the comparative example.
  • FIG. 26 is a graph showing the magnetic flux density distribution in the Y-axis direction of the bias magnetic field from the start point to the end point shown in FIG. 24 and 26, the vertical axis represents the magnetic flux density (mT) in the Y-axis direction of the bias magnetic field, and the horizontal axis represents the distance (mm) from the starting point.
  • each of the first bias magnet part and the second bias magnet part were 4 mm in the X-axis direction, 40 mm in the Y-axis direction, and 3 mm in the Z-axis direction.
  • the external dimensions of each of the pair of third bias magnet portions were a width in the X-axis direction of 10 mm, a length in the Y-axis direction of 4 mm, and a thickness in the Z-axis direction of 3 mm.
  • the length of the gap 150 in the Y-axis direction was 2 mm.
  • the region Ty in which the magnetic flux density in the Y-axis direction of the bias magnetic field is ⁇ 2 mT or less is In the Y-axis direction, it is formed continuously in both directions in the Y-axis direction around the middle position of each of the first bias magnet part and the second bias magnet part in the range of about 8.0 mm in this embodiment. In the comparative example, it was formed in a range of about 3.0 mm.
  • each magnetoresistive element of the plurality of magnetic sensors 110 included in the magnetic sensor array cannot be positioned in the region Ty.
  • the formation range of the region Ty is wide, each magnetoresistive element of the plurality of magnetic sensors 110 included in the magnetic sensor array can be positioned in the region Ty.
  • each magnetoresistive element of the plurality of magnetic sensors 110 is located in the region Ty, the Y axis of the bias magnetic field at the position of each magnetoresistive element of the plurality of magnetic sensors 110.
  • the magnetic flux density in the direction can be reduced.
  • the simulation analysis of the magnetic flux density distribution in the Y-axis direction of the bias magnetic field shown in FIGS. 24 and 26 was performed at a position where the distance D from the one end surface in the Z-axis direction of the bias magnet unit is 3.0 mm. The same tendency is observed at a position where the distance from the one end surface in the Z-axis direction of the magnet unit is 3.6 mm.
  • the plurality of magnetic sensors 110 are arranged so that each magnetoresistive element of the plurality of magnetic sensors 110 is located in a region where the region Tx and the region Ty overlap.
  • the magnetic flux densities in the X-axis direction and the Y-axis direction of the bias magnetic field at the position of each magnetoresistive element of the plurality of magnetic sensors 110 can be reduced.
  • each magnetoresistive element of the plurality of magnetic sensors 110 can be prevented from being magnetically saturated.
  • the bias magnetic field intensity by the bias magnet unit it is possible to increase the sensitivity of each of the plurality of magnetic sensors 110 and to increase the sensitivity of the magnetic medium detection device 100.
  • the region Tx and the region Ty overlap each other in the magnetoresistive elements of the plurality of magnetic sensors 110. It can be stably arranged in the area. Further, the resolution of the magnetic medium detection device 100 can be increased without reducing the bias magnet. Further, in the magnetic medium detection device 100, since the resolution does not depend on the size of the bias magnet, the resolution can be increased by reducing the size of the magnetoresistive element.
  • Embodiment 2 a magnetic medium detection apparatus according to Embodiment 2 of the present invention will be described.
  • the magnetic medium detection apparatus according to the second embodiment of the present invention differs from the magnetic medium detection apparatus 100 according to the first embodiment of the present invention only in the configuration of the bias magnet unit, and therefore the magnetic medium detection according to the first embodiment of the present invention. The description of the same configuration as that of apparatus 100 will not be repeated.
  • FIG. 27 is a perspective view showing the configuration of the bias magnet unit of the magnetic medium detection device according to the second embodiment of the present invention.
  • the bias magnet unit is composed of one bias magnet.
  • the bias magnet unit according to the present embodiment includes a first bias magnet unit 220 and a second bias magnet unit 230.
  • the first bias magnet unit 220 and the second bias magnet unit 230 extend in the Y-axis direction while being spaced apart from each other in the X-axis direction.
  • the first bias magnet unit 220 and the second bias magnet unit 230 are positioned in parallel to each other.
  • a gap 250 is formed between the first bias magnet unit 220 and the second bias magnet unit 230.
  • the gap 250 is provided in a rectangular parallelepiped shape.
  • each of the first bias magnet unit 220 and the second bias magnet unit 230 magnetic poles having the same polarity are arranged in the same direction in the Z-axis direction. Specifically, in each of the first bias magnet unit 220 and the second bias magnet unit 230, the N pole is located on the magnetic sensor array side, and the S pole is located on the opposite side to the magnetic sensor array side.
  • the bias magnet unit further includes a pair of third bias magnet portions 240 and 241 connecting the ends of the first bias magnet portion 220 and the second bias magnet portion 230 in the Y-axis direction.
  • the pair of third bias magnet portions 240 and 241 magnetic poles having the same polarity as each of the first bias magnet portion 220 and the second bias magnet portion 230 are arranged in the same direction in the Z-axis direction. Specifically, in each of the pair of third bias magnet portions 240 and 241, the N pole is located on the magnetic sensor array side, and the S pole is located on the opposite side to the magnetic sensor array side.
  • the bias magnet unit further includes a fourth bias magnet unit 251 that connects the first bias magnet unit 220 and the second bias magnet unit 230.
  • each of the first bias magnet unit 220 and the second bias magnet unit 230 has the same polarity magnetic poles arranged in the same direction in the third direction.
  • the N pole is located on the magnetic sensor array side
  • the S pole is located on the opposite side to the magnetic sensor array side.
  • the interval between the fourth bias magnet unit 251 and the magnetic sensor array is larger than the interval between each of the first bias magnet unit 220 and the second bias magnet unit 230 and the magnetic sensor array.
  • the surface located at one end in the Z-axis direction of the fourth bias magnet portion 251 is a flat surface.
  • the bias magnet unit since the bias magnet unit includes the fourth bias magnet unit 251, the bias magnetic field strength by the bias magnet unit can be increased. As a result, each of the plurality of magnetic sensors can be increased in sensitivity, and as a result, the sensitivity of the magnetic medium detection device can be increased.
  • FIG. 28 is a perspective view showing a configuration of a bias magnet unit of a magnetic medium detection device according to a modification of Embodiment 2 of the present invention.
  • the surface located at one end of the fourth bias magnet portion 251 in the Z-axis direction is the Z-axis direction. It is a convex curved surface on the other end side. Therefore, the gap 250a between the first bias magnet part 220 and the second bias magnet part 230 is provided in a semi-cylindrical shape having a central axis in the Y-axis direction.
  • the bias magnet unit includes the fourth bias magnet portion 251a, so that the bias magnetic field strength by the bias magnet unit can be increased.
  • each of the plurality of magnetic sensors can be increased in sensitivity, and as a result, the sensitivity of the magnetic medium detection device can be increased.
  • Embodiment 3 a magnetic medium detection apparatus according to Embodiment 3 of the present invention will be described.
  • the magnetic medium detection device according to the third embodiment of the present invention differs from the magnetic medium detection device 100 according to the first embodiment of the present invention only in that the configuration of the bias magnet unit and the magnetic body portion are further provided. The description of the same configuration as that of the magnetic medium detection device 100 according to Embodiment 1 will not be repeated.
  • FIG. 29 is a perspective view showing a configuration of a magnetic medium detection device according to Embodiment 3 of the present invention.
  • a magnetic medium detection device 300 according to Embodiment 3 of the present invention includes a bias magnet unit, a magnetic sensor array, and a magnetic body 340.
  • the bias magnet unit includes a first bias magnet unit 320 and a second bias magnet unit 330.
  • the first bias magnet unit 320 and the second bias magnet unit 330 extend in the Y-axis direction while being spaced apart from each other in the X-axis direction.
  • the first bias magnet unit 320 and the second bias magnet unit 330 are positioned in parallel to each other.
  • a gap 350 is formed between the first bias magnet unit 320 and the second bias magnet unit 330. In the present embodiment, the gap 350 penetrates the bias magnet unit in the Z-axis direction.
  • Each of the 1st bias magnet part 320 and the 2nd bias magnet part 330 is comprised from one magnet.
  • magnetic poles having the same polarity are arranged in the same direction in the Z-axis direction.
  • the N pole is located on the magnetic sensor array side
  • the S pole is located on the opposite side to the magnetic sensor array side.
  • the magnetic body portion 340 extends in the Y-axis direction and faces the magnetic sensor array with a gap in the Z-axis direction.
  • the magnetic part 340 has a flat outer shape.
  • the length of the magnetic body portion 340 in the Y-axis direction is shorter than the length of each of the first bias magnet portion 320 and the second bias magnet portion 330 in the Y-axis direction.
  • the conveyance path is located between the magnetic body 340 and the magnetic sensor array.
  • the magnetic body portion 340 is made of an iron alloy, but the material of the magnetic body portion 340 is not limited to the above, and soft iron steel, silicon steel, electromagnetic steel, PB permalloy, PC permalloy, nickel A magnetic material having high magnetic permeability and high saturation magnetic flux density, such as an alloy or ferrite, is preferable.
  • the distance from the one end surface in the Z-axis direction of the bias magnet unit is 3.6 mm.
  • the region Tx is continuously formed over a wide range.
  • FIG. 30 is a front view showing the magnetic flux distribution of the bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to the third embodiment of the present invention.
  • FIG. 31 is a graph showing the magnetic flux density distribution in the Y-axis direction of the bias magnetic field from the start point to the end point shown in FIG.
  • the vertical axis represents the magnetic flux density (mT) in the Y-axis direction of the bias magnetic field
  • the horizontal axis represents the distance (mm) from the starting point.
  • each of the first bias magnet part 320 and the second bias magnet part 330 were 4 mm in the X-axis direction, 40 mm in the Y-axis direction, and 3 mm in the Z-axis direction.
  • the width in the X-axis direction was 4 mm
  • the length in the Y-axis direction was 36 mm
  • the thickness in the Z-axis direction was 1 mm.
  • the length of the gap 350 in the Y-axis direction was 2 mm.
  • the region Ty is the first bias magnet portion in the Y-axis direction.
  • 320 and the second bias magnet portion 330 were formed continuously in a range of about 11.0 mm in both directions in the Y-axis direction with the middle position therebetween.
  • the simulation analysis of the magnetic flux density distribution in the Y-axis direction of the bias magnetic field was performed at a position where the distance from one end surface in the Z-axis direction of the bias magnet unit was 3.0 mm. The same tendency is observed at a position where the distance from the end face is 3.6 mm.
  • the plurality of magnetic sensors 110 are arranged so that each magnetoresistive element of the plurality of magnetic sensors 110 is located in a region where the region Tx and the region Ty overlap.
  • the magnetic flux densities in the X-axis direction and the Y-axis direction of the bias magnetic field at the position of each magnetoresistive element of the plurality of magnetic sensors 110 can be reduced.
  • each magnetoresistive element of the plurality of magnetic sensors 110 can be prevented from being magnetically saturated.
  • each of the plurality of magnetic sensors 110 can be highly sensitive, and as a result, the magnetic medium detecting device 300 can be highly sensitive.
  • the region Tx and the region Ty overlap each other in the magnetoresistive elements of the plurality of magnetic sensors 110. It can be stably arranged in the area.
  • the resolution since the resolution does not depend on the size of the bias magnet, the resolution can be increased by reducing the size of the magnetoresistive element.
  • the magnetic medium detection device according to the first modification of Embodiment 3 of the present invention differs from the magnetic medium detection device according to Embodiment 3 of the present invention only in the length of the magnetic body portion in the Y-axis direction.
  • FIG. 32 is a perspective view showing a configuration of a magnetic medium detection device according to a first modification of Embodiment 3 of the present invention.
  • the magnetic medium detection device 300a according to the first modification of the third embodiment of the present invention includes a bias magnet unit, a magnetic sensor array, and a magnetic body 340a.
  • the magnetic body portion 340a extends in the Y-axis direction and faces the magnetic sensor array with a gap in the Z-axis direction.
  • the magnetic part 340a has a flat outer shape.
  • the length of the magnetic body portion 340a in the Y-axis direction is equal to the length of each of the first bias magnet portion 320 and the second bias magnet portion 330 in the Y-axis direction. It is.
  • the conveyance path is located between the magnetic body portion 340a and the magnetic sensor array.
  • FIG. 33 is a front view showing a magnetic flux distribution of a bias magnetic field generated by a bias magnet unit of a magnetic medium detection device according to a first modification of Embodiment 3 of the present invention.
  • FIG. 34 is a graph showing the magnetic flux density distribution in the Y-axis direction of the bias magnetic field from the start point to the end point shown in FIG.
  • the vertical axis represents the magnetic flux density (mT) in the Y-axis direction of the bias magnetic field
  • the horizontal axis represents the distance (mm) from the starting point.
  • the outer dimensions of the magnetic body portion 340a were 4 mm in the X-axis direction, 40 mm in the Y-axis direction, and 1 mm in the Z-axis direction.
  • the region Ty is Y at the position where the distance from the one end surface in the Z-axis direction of the bias magnet unit is 3.0 mm.
  • the first bias magnet part 320 and the second bias magnet part 330 were continuously formed in a range of about 12.0 mm in both directions in the Y-axis direction, with the middle position as the center.
  • the formation range of the region Ty can be increased by increasing the length of the magnetic body portion in the Y-axis direction.
  • the magnetic medium detection device according to the second modification of Embodiment 3 of the present invention differs from the magnetic medium detection device according to Embodiment 3 of the present invention only in the length of the magnetic body portion in the Y-axis direction.
  • FIG. 35 is a perspective view showing a configuration of a magnetic medium detection device according to a second modification of Embodiment 3 of the present invention.
  • a magnetic medium detection device 300b according to a second modification of the third embodiment of the present invention includes a bias magnet unit, a magnetic sensor array, and a magnetic body portion 340b.
  • the magnetic body portion 340b extends in the Y-axis direction and faces the magnetic sensor array with a gap in the Z-axis direction.
  • the magnetic part 340b has a flat outer shape.
  • the length of the magnetic body portion 340b in the Y-axis direction is longer than the length of each of the first bias magnet portion 320 and the second bias magnet portion 330 in the Y-axis direction.
  • the conveyance path is located between the magnetic body portion 340b and the magnetic sensor array.
  • FIG. 36 is a front view showing the magnetic flux distribution of the bias magnetic field generated by the bias magnet unit of the magnetic medium detection device according to the second modification of Embodiment 3 of the present invention.
  • FIG. 37 is a graph showing the magnetic flux density distribution in the Y-axis direction of the bias magnetic field from the start point to the end point shown in FIG.
  • the vertical axis represents the magnetic flux density (mT) in the Y-axis direction of the bias magnetic field
  • the horizontal axis represents the distance (mm) from the starting point.
  • the outer dimensions of the magnetic body part 340b were 4 mm in the X-axis direction, 60 mm in the Y-axis direction, and 1 mm in the Z-axis direction.
  • the region Ty is Y at the position where the distance from the one end surface in the Z-axis direction of the bias magnet unit is 3.0 mm.
  • the first bias magnet part 320 and the second bias magnet part 330 were continuously formed in the range of about 13.0 mm in both directions in the Y-axis direction, with the intermediate position as the center.
  • the formation range of the region Ty can be increased by increasing the length of the magnetic body portion in the Y-axis direction.

Abstract

磁気媒体検出装置は、バイアス磁石ユニットと磁気センサアレイとを備える。バイアス磁石ユニットは、第1方向において互いに間隔をあけてそれぞれ第2方向に延在し、同極性の磁極が第3方向において同じ向きに配置されている、第1バイアス磁石部および第2バイアス磁石部を含む。複数の磁気センサ(110)の各々の磁気抵抗素子は、第3方向から見て、第1バイアス磁石部と第2バイアス磁石部との間に位置している。複数の磁気センサ(110)の各々の磁気抵抗素子は、バイアス磁界の第1方向および第2方向の各々の磁束密度が±2mT以下である領域に位置している。

Description

磁気媒体検出装置
 本発明は、磁気媒体検出装置に関する。
 磁気媒体を検出する磁気媒体検出装置の構成を開示した先行文献として、特開2013-167562号公報(特許文献1)がある。特許文献1に記載された磁気媒体検出装置は、バイアス磁界を発生させる磁石ユニットと、複数の磁気センサとを備えている。複数の磁気センサの各々は、異方性磁気抵抗素子を含んでいる。磁石ユニットの上方において磁気媒体がバイアス磁界中を移動する方向と磁気センサの磁界検出方向とが一致する向きにて、磁気センサの磁界検出方向におけるバイアス磁界の磁束密度が0近傍となる位置に、複数の磁気センサの各々の異方性磁気抵抗素子が配置されている。
特開2013-167562号公報
 特許文献1に記載された磁気媒体検出装置においては、複数の磁気センサの各々の異方性磁気抵抗素子は、複数の磁気センサが並ぶ方向におけるバイアス磁界の磁束密度が、0、最小値および最大値とならない位置に配置されている。この時、複数のバイアス磁石は、複数の磁気センサが並ぶ方向にそれぞれ一定の間隔をあけて配置される必要がある。特許文献1に記載された磁気媒体検出装置の分解能は、バイアス磁石のサイズとバイアス磁石同士の間隔に依存している。そのため、磁気媒体検出装置を高分解能化しようとした場合、バイアス磁石のサイズおよびバイアス磁石同士の間隔の両方を小さくしなければならない。しかし、バイアス磁石の小型化には限度があるため、磁気媒体検出装置を高分解能化にも限界が生じる。
 磁気媒体検出装置を高感度にするためには、バイアス磁石によるバイアス磁界強度を高くする必要がある。しかし、異方性磁気抵抗素子は、10mT程度の磁束密度で飽和する。そのため、磁気媒体検出装置を高感度にするためには、複数の磁気センサの各々の異方性磁気抵抗素子を、異方性磁気抵抗素子が飽和せずに感度が高くなる磁界強度領域に配置する必要がある。
 本発明は上記の問題点に鑑みてなされたものであって、複数の磁気センサの各々の磁気抵抗素子が飽和せずに感度が高くなる磁界強度領域に安定して配置することができ、高分解能化および高感度化が図られた、磁気媒体検出装置を提供することを目的とする。
 本発明に基づく磁気媒体検出装置は、搬送路を第1方向に搬送されている磁気媒体を検出する磁気媒体検出装置である。磁気媒体検出装置は、第1方向と垂直な方向である第2方向に延在し、バイアス磁界を発生させるバイアス磁石ユニットと、磁気抵抗素子を含んで第1方向に向いた磁界検出方向を有する複数の磁気センサが搬送路とバイアス磁石ユニットとの間において第2方向に並んで構成されており、第1方向および第2方向の各々と垂直な方向である第3方向において、バイアス磁石ユニットと間隔をあけて対向する磁気センサアレイとを備える。バイアス磁石ユニットは、第1方向において互いに間隔をあけつつそれぞれ第2方向に延在し、同極性の磁極が第3方向において同じ向きに配置されている、第1バイアス磁石部および第2バイアス磁石部を含む。複数の磁気センサの各々の磁気抵抗素子は、第3方向から見て、第1バイアス磁石部と第2バイアス磁石部との間に位置している。複数の磁気センサの各々の磁気抵抗素子は、バイアス磁界の第1方向および第2方向の各々の磁束密度が±2mT以下である領域に位置している。
 本発明の一形態においては、バイアス磁石ユニットは、第2方向における第1バイアス磁石部および第2バイアス磁石部の各々の端部同士を繋ぐ1対の第3バイアス磁石部をさらに含む。1対の第3バイアス磁石部においては、第1バイアス磁石部および第2バイアス磁石部の各々と、同極性の磁極が第3方向において同じ向きに配置されている。第3方向から見て、複数の磁気センサの各々の磁気抵抗素子は、第1バイアス磁石部と第2バイアス磁石部と1対の第3バイアス磁石部とによって囲まれた領域に位置している。
 本発明の一形態においては、第3方向において、1対の第3バイアス磁石部の各々と磁気センサアレイとの間の間隔は、第1バイアス磁石部および第2バイアス磁石部の各々と磁気センサアレイとの間の間隔以下である。
 本発明の一形態においては、磁気媒体検出装置は、第2方向に延在し、第3方向において磁気センサアレイと間隔をあけて対向している平板状の磁性体部をさらに備える。第1方向から見て、搬送路は、磁性体部と磁気センサアレイとの間に位置している。
 本発明の一形態においては、バイアス磁石ユニットが、複数のバイアス磁石から構成されている。
 本発明の一形態においては、バイアス磁石ユニットが、1つのバイアス磁石から構成されている。
 本発明の一形態においては、バイアス磁石ユニットは、第1バイアス磁石部と第2バイアス磁石部とを繋ぐ第4バイアス磁石部をさらに含む。第4バイアス磁石部においては、第1バイアス磁石部および第2バイアス磁石部の各々と、同極性の磁極が第3方向において同じ向きに配置されている。第3方向において、第4バイアス磁石部と磁気センサアレイとの間の間隔は、第1バイアス磁石部および第2バイアス磁石部の各々と磁気センサアレイとの間の間隔より大きい。
 本発明の一形態においては、複数の磁気センサの各々が、異方性磁気抵抗素子である。
 本発明の一形態においては、複数の磁気センサの各々は、バーバーポール電極を含む。
 本発明の一形態においては、磁気媒体が紙幣である。
 本発明によれば、複数の磁気センサの各々の磁気抵抗素子が飽和せずに感度が高くなる磁界強度領域に安定して配置することができ、磁気媒体検出装置の高分解能化および高感度化を図ることができる。
本発明の実施形態1に係る磁気媒体検出装置の構成を示す平面図である。 図1の磁気媒体検出装置を矢印II方向から見た正面図である。 図1の磁気媒体検出装置をIII-III線矢印方向から見た断面図である。 本発明の実施形態1に係る磁気媒体検出装置において磁気媒体を検出した磁気センサの出力の経時変化を示すグラフである。 磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路に搬入された時点における、磁気センサの位置での磁束を示す断面図である。 図5に示す状態の磁気センサの出力値を示すグラフである。 磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路を搬送されて第1バイアス磁石部のX軸方向の他端に接近した時点における、磁気センサの位置での磁束を示す断面図である。 図7に示す状態の磁気センサの出力値を示すグラフである。 磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路を搬送されて磁気センサに最接近した時点における、磁気センサの位置での磁束を示す断面図である。 図9に示す状態の磁気センサの出力値を示すグラフである。 磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路を搬送されて第2バイアス磁石部のX軸方向の一端に接近した時点における、磁気センサの位置での磁束を示す断面図である。 図11に示す状態の磁気センサの出力値を示すグラフである。 磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路から搬出された時点における、磁気センサの位置での磁束を示す断面図である。 図13に示す状態の磁気センサの出力値を示すグラフである。 本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。 本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.4mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。 本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.6mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。 本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が5.0mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。 図15に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。 図16に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。 図17に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。 図18に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。 本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。 図23に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。 比較例に係るバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。 図25に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。 本発明の実施形態2に係る磁気媒体検出装置のバイアス磁石ユニットの構成を示す斜視図である。 本発明の実施形態2の変形例に係る磁気媒体検出装置のバイアス磁石ユニットの構成を示す斜視図である。 本発明の実施形態3に係る磁気媒体検出装置の構成を示す斜視図である。 本発明の実施形態3に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。 図30に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。 本発明の実施形態3の第1変形例に係る磁気媒体検出装置の構成を示す斜視図である。 本発明の実施形態3の第1変形例に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。 図33に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。 本発明の実施形態3の第2変形例に係る磁気媒体検出装置の構成を示す斜視図である。 本発明の実施形態3の第2変形例に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。 図36に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。
 以下、本発明の各実施形態に係る、磁気媒体検出装置について図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る磁気媒体検出装置の構成を示す平面図である。図2は、図1の磁気媒体検出装置を矢印II方向から見た正面図である。図3は、図1の磁気媒体検出装置をIII-III線矢印方向から見た断面図である。図1~3においては、磁気媒体の搬送方向である第1方向をX軸方向、第1方向と垂直な方向である第2方向をY軸方向、第1方向および第2方向の各々と垂直な方向である第3方向をZ軸方向として示している。
 本発明の実施形態1に係る磁気媒体検出装置100は、搬送路2をX軸方向に搬送されている磁気媒体を検出する磁気媒体検出装置である。本実施形態においては、磁気媒体は紙幣であるが、磁気媒体は、紙幣に限られず、小切手または切符など、磁性パターンが設けられた紙葉類であればよい。
 図1~3に示すように、磁気媒体検出装置100は、バイアス磁石ユニットと磁気センサアレイとを備える。バイアス磁石ユニットは、Y軸方向に延在し、バイアス磁界を発生させる。本実施形態においては、バイアス磁石ユニットは、複数のバイアス磁石から構成されている。
 バイアス磁石ユニットは、第1バイアス磁石部および第2バイアス磁石部を含んでいる。第1バイアス磁石部および第2バイアス磁石部は、X軸方向において互いに間隔をあけつつそれぞれY軸方向に延在している。第1バイアス磁石部と第2バイアス磁石部とは、互いに平行に位置している。第1バイアス磁石部と第2バイアス磁石部との間には、隙間150が形成されている。本実施形態においては、隙間150は、バイアス磁石ユニットをZ軸方向に貫通している。
 第1バイアス磁石部においては、複数の第1バイアス磁石120がY軸方向に1列に隙間なく並んでいる。第2バイアス磁石部においては、複数の第2バイアス磁石130がY軸方向に1列に隙間なく並んでいる。第1バイアス磁石120および第2バイアス磁石130の各々は、直方体状の外形を有している。
 第1バイアス磁石部および第2バイアス磁石部の各々においては、同極性の磁極がZ軸方向において同じ向きに配置されている。具体的には、第1バイアス磁石120および第2バイアス磁石130の各々において、N極が磁気センサアレイ側に位置し、S極が磁気センサアレイ側とは反対側に位置している。
 本実施形態においては、バイアス磁石ユニットは、Y軸方向における第1バイアス磁石部および第2バイアス磁石部の各々の端部同士を繋ぐ1対の第3バイアス磁石部をさらに含む。1対の第3バイアス磁石部は、第1バイアス磁石部の一端と第2バイアス磁石部の一端とを繋ぐ第3磁石140と、第1バイアス磁石部の他端と第2バイアス磁石部の他端とを繋ぐ第3磁石141とから構成されている。第3磁石140および第3磁石141の各々は、直方体状の外形を有している。
 本実施形態においては、第3磁石140は、第1バイアス磁石部の一端に位置する第1バイアス磁石120の側面全面、および、第2バイアス磁石部の一端に位置する第2バイアス磁石130の側面全面の各々と接するX軸方向の長さを有しているが、これに限られず、第3磁石140のX軸方向の長さが隙間150のX軸方向の長さ以上であればよい。
 同様に、第3磁石141は、第1バイアス磁石部の他端に位置する第1バイアス磁石120の側面全面、および、第2バイアス磁石部の他端に位置する第2バイアス磁石130の側面全面の各々と接するX軸方向の長さを有しているが、これに限られず、第3磁石141のX軸方向の長さが隙間150のX軸方向の長さ以上であればよい。
 1対の第3バイアス磁石部においては、第1バイアス磁石部および第2バイアス磁石部の各々と、同極性の磁極がZ軸方向において同じ向きに配置されている。具体的には、第3磁石140および第3磁石141の各々において、N極が磁気センサアレイ側に位置し、S極が磁気センサアレイ側とは反対側に位置している。
 本実施形態においては、第1バイアス磁石120、第2バイアス磁石130、第3磁石140および第3磁石141の各々は、ネオジム磁石で構成されているが、これに限られず、フェライト磁石などで構成されていてもよい。
 磁気センサアレイは、磁気抵抗素子を含んでX軸方向に向いた磁界検出方向を有する複数の磁気センサ110が、搬送路2とバイアス磁石ユニットとの間においてY軸方向に1列に並んで構成されている。磁気センサアレイは、Z軸方向においてバイアス磁石ユニットと間隔Dをあけて対向している。
 本実施形態においては、Z軸方向において、1対の第3バイアス磁石部の各々と磁気センサアレイとの間の間隔Eは、第1バイアス磁石部および第2バイアス磁石部の各々と磁気センサアレイとの間の間隔Dと略同一であるが、これに限られず、第1バイアス磁石部および第2バイアス磁石部の各々と磁気センサアレイとの間の間隔D以下であればよい。
 複数の磁気センサ110の各々の磁気抵抗素子は、Z軸方向から見て、第1バイアス磁石部と第2バイアス磁石部との間に位置している。本実施形態においては、Z軸方向から見て、複数の磁気センサ110の各々の磁気抵抗素子は、第1バイアス磁石部と第2バイアス磁石部と1対の第3バイアス磁石部とによって囲まれた領域に位置している。すなわち、複数の磁気センサ110の各々の磁気抵抗素子は、Z軸方向から見て、隙間150内に位置している。
 複数の磁気センサ110の各々の磁気抵抗素子は、後述するように、バイアス磁界のX軸方向およびY軸方向の各々の磁束密度が±2mT以下である領域に位置している。
 本実施形態においては、複数の磁気センサ110の各々の磁気抵抗素子は、異方性磁気抵抗素子(AMR(Anisotropic Magneto Resistance)素子)である。複数の磁気センサ110の各々は、4つのAMR素子からなるホイートストンブリッジ型のブリッジ回路を有する。なお、複数の磁気センサ110の各々が、AMR素子に代えて、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Ballistic Magneto Resistance)、または、CMR(Colossal Magneto Resistance)などの磁気抵抗素子を有していてもよい。または、複数の磁気センサ110の各々が、2つの磁気抵抗素子からなるハーフ・ブリッジ回路を有していてもよい。若しくは、複数の磁気センサ110の各々が、磁気抵抗素子と固定抵抗とを含むブリッジ回路を有していてもよい。
 複数の磁気センサ110の各々は、バーバーポール電極を含む。複数の磁気センサ110の各々は、バーバーポール電極を含むことによって、奇関数入出力特性を有している。これにより、複数の磁気センサ110の各々において、入力磁界強度と出力電圧との関係が線形性を有する。
 ここで、複数の磁気センサ110の各々が磁気媒体を検出する原理について説明する。図4は、本発明の実施形態1に係る磁気媒体検出装置において磁気媒体を検出した磁気センサの出力の経時変化を示すグラフである。図4においては、縦軸に磁気センサの出力電圧、横軸に経過時間を示している。
 図5は、磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路に搬入された時点における、磁気センサの位置での磁束を示す断面図である。図6は、図5に示す状態の磁気センサの出力値を示すグラフである。図5においては、図3と同じ断面視にて示している。図6においては、縦軸に磁気センサ110の出力電圧、横軸に磁気センサ110への入力磁界強度を示している。図6においては、磁気センサ110における入力磁界強度と出力電圧との関係を示す1次直線を2点鎖線Lで示している。
 図5に示すように、磁気媒体10が磁気媒体検出装置100の搬送路2に搬入された時点においては、磁気センサ110の位置での磁束1は、バイアス磁界による磁束である。図4,6に示すように、この時点においては、磁気センサ110が有するブリッジ回路の中点電圧が0であるため、磁気センサ110の出力は0となる。
 図7は、磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路を搬送されて第1バイアス磁石部のX軸方向の他端に接近した時点における、磁気センサの位置での磁束を示す断面図である。図8は、図7に示す状態の磁気センサの出力値を示すグラフである。
 図7に示すように、磁気媒体10が磁気媒体検出装置100の搬送路2を搬送されて第1バイアス磁石部のX軸方向の他端に接近した時点においては、磁気センサ110の位置での磁束1aは、磁気媒体10に引き寄せられ、磁界検出方向であるX軸方向の磁束密度成分が増加する。図4,8に示すように、この時点においては、磁気センサ110が有するブリッジ回路の中点電圧が最大値となるため、磁気センサ110の出力が最大値となる。
 図9は、磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路を搬送されて磁気センサに最接近した時点における、磁気センサの位置での磁束を示す断面図である。図10は、図9に示す状態の磁気センサの出力値を示すグラフである。
 図9に示すように、磁気媒体10が磁気媒体検出装置100の搬送路2を搬送されて磁気センサ110に最接近した時点においては、磁気センサ110の位置での磁束1bは、磁気媒体10に引き寄せられており、磁束密度が増加しているが、磁束1bの向きはバイアス磁界の向きと同じZ軸方向に向いている。図4,8に示すように、この時点においては、磁気センサ110が有するブリッジ回路の中点電圧が0であるため、磁気センサ110の出力は0となる。
 図11は、磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路を搬送されて第2バイアス磁石部のX軸方向の一端に接近した時点における、磁気センサの位置での磁束を示す断面図である。図12は、図11に示す状態の磁気センサの出力値を示すグラフである。
 図11に示すように、磁気媒体10が磁気媒体検出装置100の搬送路2を搬送されて第2バイアス磁石部のX軸方向の一端に接近した時点においては、磁気センサ110の位置での磁束1cは、磁気媒体10に引き寄せられ、磁界検出方向であるX軸方向の磁束密度成分が増加する。図4,12に示すように、この時点においては、磁気センサ110が有するブリッジ回路の中点電圧が最小値となるため、磁気センサ110の出力が最小値となる。
 図13は、磁気媒体が本発明の実施形態1に係る磁気媒体検出装置の搬送路から搬出された時点における、磁気センサの位置での磁束を示す断面図である。図14は、図13に示す状態の磁気センサの出力値を示すグラフである。図13に示すように、磁気媒体10が磁気媒体検出装置100の搬送路2から搬出された時点においては、磁気センサ110の位置での磁束1は、バイアス磁界による磁束である。図4,14に示すように、この時点においては、磁気センサ110が有するブリッジ回路の中点電圧が0であるため、磁気センサ110の出力は0となる。
 本発明の実施形態1に係る磁気媒体検出装置100は、上記の一連の磁気センサ110の出力の経時変化を検出することにより、磁気媒体10を検出することができる。
 磁気媒体検出装置100の高感度化を図るためには、複数の磁気センサ110の各々の磁気抵抗素子が飽和せずに感度が高くなる磁界強度領域に位置するように、複数の磁気センサ110の各々を配置する必要がある。
 ここで、本実施形態に係るバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布についてシミュレーション解析した結果について説明する。
 図15は、本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。図16は、本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.4mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。
 図17は、本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.6mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。図18は、本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界のX軸方向の磁束密度分布の等高線図であり、バイアス磁石ユニットのZ軸方向の一端面からの距離が5.0mmである位置におけるバイアス磁界のX軸方向の磁束密度分布を解析した図である。
 図19は、図15に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。図20は、図16に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。図21は、図17に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。図22は、図18に示す始点から終点までの間のバイアス磁界のX軸方向の磁束密度分布を示すグラフである。図19~22においては、縦軸にバイアス磁界のX軸方向の磁束密度(mT)、横軸に始点からの距離(mm)を示している。
 図15~22に示すように、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.6mmである位置においては、バイアス磁界のX軸方向の磁束密度が±2mT以下である領域Txが、X軸方向において第1バイアス磁石部と第2バイアス磁石部との中間の位置を中心にしてX軸方向の両方向に約0.6mmの範囲で連続して形成されていた。バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mm、3.4mmまたは5.0mmである位置においては、領域Txがほとんど形成されていなかった。これにより、磁気センサとバイアス磁石との距離と、バイアス磁界のX軸方向の磁束密度の大きさとは、互いに一定の関係性を有することが確認できた。
 したがって、複数の磁気センサ110の各々の磁気抵抗素子が領域Txに位置するように複数の磁気センサ110を配置することにより、複数の磁気センサ110の各々の磁気抵抗素子の位置でのバイアス磁界のX軸方向の磁束密度を小さくすることができる。
 次に、本実施形態に係るバイアス磁石ユニットが発生しているバイアス磁界のY軸方向の磁束密度分布についてシミュレーション解析した結果について説明する。なお、1対の第3バイアス磁石部を含まない比較例に係るバイアス磁石ユニットが発生しているバイアス磁界のY軸方向の磁束密度分布についても同様にシミュレーション解析した。
 図23は、本発明の実施形態1に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。図24は、図23に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。図25は、比較例に係るバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。図26は、図25に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。図24,26においては、縦軸にバイアス磁界のY軸方向の磁束密度(mT)、横軸に始点からの距離(mm)を示している。
 第1バイアス磁石部および第2バイアス磁石部の各々の外形寸法は、X軸方向の幅を4mm、Y軸方向の長さを40mm、Z軸方向の厚さを3mmとした。1対の第3バイアス磁石部の各々の外形寸法は、X軸方向の幅を10mm、Y軸方向の長さを4mm、Z軸方向の厚さを3mmとした。隙間150のY軸方向の長さを2mmとした。
 図23~26に示すように、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mmである位置において、バイアス磁界のY軸方向の磁束密度が±2mT以下である領域Tyは、Y軸方向において第1バイアス磁石部および第2バイアス磁石部の各々の中間の位置を中心にしてY軸方向の両方向に、本実施形態では約8.0mmの範囲で連続して形成されており、比較例では約3.0mmの範囲で形成されていた。
 比較例に係るバイアス磁石ユニットにおいては、領域Tyの形成範囲が狭いため、磁気センサアレイに含まれる複数の磁気センサ110の各々の磁気抵抗素子を領域Tyに位置させることができない。一方、本実施形態に係るバイアス磁石ユニットにおいては、領域Tyの形成範囲が広いため、磁気センサアレイに含まれる複数の磁気センサ110の各々の磁気抵抗素子を領域Tyに位置させることができる。
 複数の磁気センサ110の各々の磁気抵抗素子が領域Tyに位置するように複数の磁気センサ110を配置することにより、複数の磁気センサ110の各々の磁気抵抗素子の位置でのバイアス磁界のY軸方向の磁束密度を小さくすることができる。
 図24,26に示したバイアス磁界のY軸方向の磁束密度分布についてのシミュレーション解析は、バイアス磁石ユニットのZ軸方向の一端面からの距離Dが3.0mmである位置において行なったが、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.6mmである位置においても同様の傾向である。
 本実施形態においては、複数の磁気センサ110の各々の磁気抵抗素子が、領域Txと領域Tyとが重なっている領域に位置するように、複数の磁気センサ110を配置している。その結果、複数の磁気センサ110の各々の磁気抵抗素子の位置でのバイアス磁界のX軸方向およびY軸方向の各々の磁束密度を小さくすることができる。
 これにより、バイアス磁石ユニットによるバイアス磁界強度を高くしても、複数の磁気センサ110の各々の磁気抵抗素子が磁気飽和しないようにすることができる。バイアス磁石ユニットによるバイアス磁界強度を高くすることにより、複数の磁気センサ110の各々を高感度化することができ、ひいては磁気媒体検出装置100の高感度化を図ることができる。
 本実施形態に係る磁気媒体検出装置100においては、領域Txおよび領域Tyの各々の形成範囲が広いため、複数の磁気センサ110の各々の磁気抵抗素子を、領域Txと領域Tyとが重なっている領域に安定して配置することができる。また、バイアス磁石を小さくすることなく、磁気媒体検出装置100を高分解能化できる。また、磁気媒体検出装置100においては、分解能がバイアス磁石のサイズに依存しないため、磁気抵抗素子のサイズを小さくすることにより高分解能化を図ることができる。
 (実施形態2)
 以下、本発明の実施形態2に係る磁気媒体検出装置について説明する。本発明の実施形態2に係る磁気媒体検出装置は、本発明の実施形態1に係る磁気媒体検出装置100とは、バイアス磁石ユニットの構成のみ異なるため、本発明の実施形態1に係る磁気媒体検出装置100と同様である構成については説明を繰り返さない。
 図27は、本発明の実施形態2に係る磁気媒体検出装置のバイアス磁石ユニットの構成を示す斜視図である。図27に示すように、バイアス磁石ユニットは、1つのバイアス磁石から構成されている。本実施形態に係るバイアス磁石ユニットは、第1バイアス磁石部220および第2バイアス磁石部230を含んでいる。第1バイアス磁石部220および第2バイアス磁石部230は、X軸方向において互いに間隔をあけつつそれぞれY軸方向に延在している。第1バイアス磁石部220と第2バイアス磁石部230とは、互いに平行に位置している。第1バイアス磁石部220と第2バイアス磁石部230との間には、隙間250が形成されている。隙間250は、直方体状に設けられている。
 第1バイアス磁石部220および第2バイアス磁石部230の各々においては、同極性の磁極がZ軸方向において同じ向きに配置されている。具体的には、第1バイアス磁石部220および第2バイアス磁石部230の各々において、N極が磁気センサアレイ側に位置し、S極が磁気センサアレイ側とは反対側に位置している。
 バイアス磁石ユニットは、Y軸方向における第1バイアス磁石部220および第2バイアス磁石部230の各々の端部同士を繋ぐ1対の第3バイアス磁石部240,241をさらに含む。
 1対の第3バイアス磁石部240,241においては、第1バイアス磁石部220および第2バイアス磁石部230の各々と、同極性の磁極がZ軸方向において同じ向きに配置されている。具体的には、1対の第3バイアス磁石部240,241の各々において、N極が磁気センサアレイ側に位置し、S極が磁気センサアレイ側とは反対側に位置している。
 バイアス磁石ユニットは、第1バイアス磁石部220と第2バイアス磁石部230とを繋ぐ第4バイアス磁石部251をさらに含む。第4バイアス磁石部251においては、第1バイアス磁石部220および第2バイアス磁石部230の各々と、同極性の磁極が第3方向において同じ向きに配置されている。具体的には、第4バイアス磁石部251において、N極が磁気センサアレイ側に位置し、S極が磁気センサアレイ側とは反対側に位置している。
 第3方向において、第4バイアス磁石部251と磁気センサアレイとの間の間隔は、第1バイアス磁石部220および第2バイアス磁石部230の各々と磁気センサアレイとの間の間隔より大きい。本実施形態においては、第4バイアス磁石部251のZ軸方向の一端に位置する面は、平坦面である。
 本実施形態においては、バイアス磁石ユニットが第4バイアス磁石部251を含むことにより、バイアス磁石ユニットによるバイアス磁界強度を高くすることができる。その結果、複数の磁気センサの各々を高感度化することができ、ひいては磁気媒体検出装置の高感度化を図ることができる。
 以下、本発明の実施形態2の変形例に係る磁気媒体検出装置について説明する。図28は、本発明の実施形態2の変形例に係る磁気媒体検出装置のバイアス磁石ユニットの構成を示す斜視図である。図28に示すように、本発明の実施形態2の変形例に係る磁気媒体検出装置のバイアス磁石ユニットにおいては、第4バイアス磁石部251のZ軸方向の一端に位置する面は、Z軸方向の他端側に凸状の湾曲面である。よって、第1バイアス磁石部220と第2バイアス磁石部230との間の隙間250aは、Y軸方向に中心軸を有する半円柱状に設けられている。
 本発明の実施形態2の変形例においては、バイアス磁石ユニットが第4バイアス磁石部251aを含むことにより、バイアス磁石ユニットによるバイアス磁界強度を高くすることができる。その結果、複数の磁気センサの各々を高感度化することができ、ひいては磁気媒体検出装置の高感度化を図ることができる。
 (実施形態3)
 以下、本発明の実施形態3に係る磁気媒体検出装置について説明する。本発明の実施形態3に係る磁気媒体検出装置は、本発明の実施形態1に係る磁気媒体検出装置100とは、バイアス磁石ユニットの構成および磁性体部をさらに備える点のみ異なるため、本発明の実施形態1に係る磁気媒体検出装置100と同様である構成については説明を繰り返さない。
 図29は、本発明の実施形態3に係る磁気媒体検出装置の構成を示す斜視図である。図29に示すように、本発明の実施形態3に係る磁気媒体検出装置300は、バイアス磁石ユニットと磁気センサアレイと磁性体部340とを備える。
 バイアス磁石ユニットは、第1バイアス磁石部320および第2バイアス磁石部330を含んでいる。第1バイアス磁石部320および第2バイアス磁石部330は、X軸方向において互いに間隔をあけつつそれぞれY軸方向に延在している。第1バイアス磁石部320と第2バイアス磁石部330とは、互いに平行に位置している。第1バイアス磁石部320と第2バイアス磁石部330との間には、隙間350が形成されている。本実施形態においては、隙間350は、バイアス磁石ユニットをZ軸方向に貫通している。
 第1バイアス磁石部320および第2バイアス磁石部330の各々は、1つの磁石から構成されている。第1バイアス磁石部320および第2バイアス磁石部330の各々においては、同極性の磁極がZ軸方向において同じ向きに配置されている。具体的には、第1バイアス磁石部320および第2バイアス磁石部330の各々において、N極が磁気センサアレイ側に位置し、S極が磁気センサアレイ側とは反対側に位置している。
 磁性体部340は、Y軸方向に延在し、Z軸方向において磁気センサアレイと間隔をあけて対向している。磁性体部340は、平板状の外形を有する。本実施形態においては、磁性体部340のY軸方向の長さは、第1バイアス磁石部320および第2バイアス磁石部330の各々のY軸方向の長さより短い。X軸方向から見て、搬送路は、磁性体部340と磁気センサアレイとの間に位置している。
 本実施形態においては磁性体部340は、鉄合金で構成されているが、磁性体部340の材料としては、上記に限られず、軟鉄鋼、ケイ素鋼、電磁鋼、PBパーマロイ、PCパーマロイ、ニッケル合金またはフェライトなどの、透磁率および飽和磁束密度の高い磁性体材料が好ましい。
 本発明の実施形態3に係るバイアス磁石ユニットにおいても、本発明の実施形態1に係るバイアス磁石ユニットと同様に、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.6mmである位置においては、領域Txが広範囲に連続して形成されている。
 ここで、本実施形態に係るバイアス磁石ユニットが発生しているバイアス磁界のY軸方向の磁束密度分布についてシミュレーション解析した結果について説明する。図30は、本発明の実施形態3に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。図31は、図30に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。図31においては、縦軸にバイアス磁界のY軸方向の磁束密度(mT)、横軸に始点からの距離(mm)を示している。
 第1バイアス磁石部320および第2バイアス磁石部330の各々の外形寸法は、X軸方向の幅を4mm、Y軸方向の長さを40mm、Z軸方向の厚さを3mmとした。磁性体部340の外形寸法は、X軸方向の幅を4mm、Y軸方向の長さを36mm、Z軸方向の厚さを1mmとした。隙間350のY軸方向の長さを2mmとした。
 図30,31に示すように、本実施形態においては、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mmである位置において、領域Tyは、Y軸方向において第1バイアス磁石部320および第2バイアス磁石部330の各々の中間の位置を中心にしてY軸方向の両方向に約11.0mmの範囲で連続して形成されていた。
 バイアス磁界のY軸方向の磁束密度分布についてのシミュレーション解析は、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mmである位置において行なったが、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.6mmである位置においても同様の傾向である。
 本実施形態においては、複数の磁気センサ110の各々の磁気抵抗素子が、領域Txと領域Tyとが重なっている領域に位置するように、複数の磁気センサ110を配置している。その結果、複数の磁気センサ110の各々の磁気抵抗素子の位置でのバイアス磁界のX軸方向およびY軸方向の各々の磁束密度を小さくすることができる。
 これにより、バイアス磁石ユニットによるバイアス磁界強度を高くしても、複数の磁気センサ110の各々の磁気抵抗素子が磁気飽和しないようにすることができる。バイアス磁石ユニットによるバイアス磁界強度を高くすることにより、複数の磁気センサ110の各々を高感度化することができ、ひいては磁気媒体検出装置300の高感度化を図ることができる。
 本実施形態に係る磁気媒体検出装置300においては、領域Txおよび領域Tyの各々の形成範囲が広いため、複数の磁気センサ110の各々の磁気抵抗素子を、領域Txと領域Tyとが重なっている領域に安定して配置することができる。また、磁気媒体検出装置300においては、分解能がバイアス磁石のサイズに依存しないため、磁気抵抗素子のサイズを小さくすることにより高分解能化を図ることができる。
 以下、本発明の実施形態3の第1変形例に係る磁気媒体検出装置について説明する。本発明の実施形態3の第1変形例に係る磁気媒体検出装置は、本発明の実施形態3に係る磁気媒体検出装置とは、磁性体部のY軸方向の長さのみ異なる。
 図32は、本発明の実施形態3の第1変形例に係る磁気媒体検出装置の構成を示す斜視図である。図32に示すように、本発明の実施形態3の第1変形例に係る磁気媒体検出装置300aは、バイアス磁石ユニットと磁気センサアレイと磁性体部340aとを備える。
 磁性体部340aは、Y軸方向に延在し、Z軸方向において磁気センサアレイと間隔をあけて対向している。磁性体部340aは、平板状の外形を有する。本発明の実施形態3の第1変形例においては、磁性体部340aのY軸方向の長さは、第1バイアス磁石部320および第2バイアス磁石部330の各々のY軸方向の長さと同等である。X軸方向から見て、搬送路は、磁性体部340aと磁気センサアレイとの間に位置している。
 ここで、本発明の実施形態3の第1変形例に係るバイアス磁石ユニットが発生しているバイアス磁界のY軸方向の磁束密度分布についてシミュレーション解析した結果について説明する。図33は、本発明の実施形態3の第1変形例に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。図34は、図33に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。図34においては、縦軸にバイアス磁界のY軸方向の磁束密度(mT)、横軸に始点からの距離(mm)を示している。
 磁性体部340aの外形寸法は、X軸方向の幅を4mm、Y軸方向の長さを40mm、Z軸方向の厚さを1mmとした。
 図33,34に示すように、本発明の実施形態3の第1変形例においては、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mmである位置において、領域Tyは、Y軸方向において第1バイアス磁石部320および第2バイアス磁石部330の各々の中間の位置を中心にしてY軸方向の両方向に約12.0mmの範囲で連続して形成されていた。このように、磁性体部のY軸方向の長さを長くすることによって、領域Tyの形成範囲を大きくできることが確認できた。
 以下、本発明の実施形態3の第2変形例に係る磁気媒体検出装置について説明する。本発明の実施形態3の第2変形例に係る磁気媒体検出装置は、本発明の実施形態3に係る磁気媒体検出装置とは、磁性体部のY軸方向の長さのみ異なる。
 図35は、本発明の実施形態3の第2変形例に係る磁気媒体検出装置の構成を示す斜視図である。図35に示すように、本発明の実施形態3の第2変形例に係る磁気媒体検出装置300bは、バイアス磁石ユニットと磁気センサアレイと磁性体部340bとを備える。
 磁性体部340bは、Y軸方向に延在し、Z軸方向において磁気センサアレイと間隔をあけて対向している。磁性体部340bは、平板状の外形を有する。本発明の実施形態3の第2変形例においては、磁性体部340bのY軸方向の長さは、第1バイアス磁石部320および第2バイアス磁石部330の各々のY軸方向の長さより長い。X軸方向から見て、搬送路は、磁性体部340bと磁気センサアレイとの間に位置している。
 ここで、本発明の実施形態3の第2変形例に係るバイアス磁石ユニットが発生しているバイアス磁界のY軸方向の磁束密度分布についてシミュレーション解析した結果について説明する。図36は、本発明の実施形態3の第2変形例に係る磁気媒体検出装置のバイアス磁石ユニットが発生しているバイアス磁界の磁束分布を示す正面図である。図37は、図36に示す始点から終点までの間のバイアス磁界のY軸方向の磁束密度分布を示すグラフである。図37においては、縦軸にバイアス磁界のY軸方向の磁束密度(mT)、横軸に始点からの距離(mm)を示している。
 磁性体部340bの外形寸法は、X軸方向の幅を4mm、Y軸方向の長さを60mm、Z軸方向の厚さを1mmとした。
 図36,37に示すように、本発明の実施形態3の第2変形例においては、バイアス磁石ユニットのZ軸方向の一端面からの距離が3.0mmである位置において、領域Tyは、Y軸方向において第1バイアス磁石部320および第2バイアス磁石部330の各々の中間の位置を中心にしてY軸方向の両方向に約13.0mmの範囲で連続して形成されていた。このように、磁性体部のY軸方向の長さを長くすることによって、領域Tyの形成範囲を大きくできることが確認できた。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1a,1b,1c 磁束、2 搬送路、10 磁気媒体、100,300,300a,300b 磁気媒体検出装置、110 磁気センサ、120 第1バイアス磁石、130 第2バイアス磁石、140,141 第3磁石、150,250,250a,350 隙間、220,320 第1バイアス磁石部、230,330 第2バイアス磁石部、240,241 第3バイアス磁石部、251,251a 第4バイアス磁石部、340,340a,340b 磁性体部、Tx,Ty 領域。

Claims (10)

  1.  搬送路を第1方向に搬送されている磁気媒体を検出する磁気媒体検出装置であって、
     前記第1方向と垂直な方向である第2方向に延在し、バイアス磁界を発生させるバイアス磁石ユニットと、
     磁気抵抗素子を含んで前記第1方向に向いた磁界検出方向を有する複数の磁気センサが前記搬送路と前記バイアス磁石ユニットとの間において前記第2方向に並んで構成されており、前記第1方向および前記第2方向の各々と垂直な方向である第3方向において、前記バイアス磁石ユニットと間隔をあけて対向する磁気センサアレイとを備え、
     前記バイアス磁石ユニットは、前記第1方向において互いに間隔をあけつつそれぞれ前記第2方向に延在し、同極性の磁極が前記第3方向において同じ向きに配置されている、第1バイアス磁石部および第2バイアス磁石部を含み、
     前記複数の磁気センサの各々の前記磁気抵抗素子は、前記第3方向から見て、前記第1バイアス磁石部と前記第2バイアス磁石部との間に位置し、
     前記複数の磁気センサの各々の前記磁気抵抗素子は、前記バイアス磁界の前記第1方向および前記第2方向の各々の磁束密度が±2mT以下である領域に位置している、磁気媒体検出装置。
  2.  前記バイアス磁石ユニットは、前記第2方向における前記第1バイアス磁石部および前記第2バイアス磁石部の各々の端部同士を繋ぐ1対の第3バイアス磁石部をさらに含み、
     前記1対の第3バイアス磁石部においては、前記第1バイアス磁石部および前記第2バイアス磁石部の各々と、同極性の磁極が前記第3方向において同じ向きに配置されており、
     前記第3方向から見て、前記複数の磁気センサの各々の前記磁気抵抗素子は、前記第1バイアス磁石部と前記第2バイアス磁石部と前記1対の第3バイアス磁石部とによって囲まれた領域に位置している、請求項1に記載の磁気媒体検出装置。
  3.  前記第3方向において、前記1対の第3バイアス磁石部の各々と前記磁気センサアレイとの間の間隔は、前記第1バイアス磁石部および前記第2バイアス磁石部の各々と前記磁気センサアレイとの間の間隔以下である、請求項2に記載の磁気媒体検出装置。
  4.  前記第2方向に延在し、前記第3方向において前記磁気センサアレイと間隔をあけて対向している平板状の磁性体部をさらに備え、
     前記第1方向から見て、前記搬送路は、前記磁性体部と前記磁気センサアレイとの間に位置している、請求項1に記載の磁気媒体検出装置。
  5.  前記バイアス磁石ユニットが、複数のバイアス磁石から構成されている、請求項1から請求項4のいずれか1項に記載の磁気媒体検出装置。
  6.  前記バイアス磁石ユニットが、1つのバイアス磁石から構成されている、請求項1から請求項4のいずれか1項に記載の磁気媒体検出装置。
  7.  前記バイアス磁石ユニットは、前記第1バイアス磁石部と前記第2バイアス磁石部とを繋ぐ第4バイアス磁石部をさらに含み、
     前記第4バイアス磁石部においては、前記第1バイアス磁石部および前記第2バイアス磁石部の各々と、同極性の磁極が前記第3方向において同じ向きに配置されており、
     前記第3方向において、前記第4バイアス磁石部と前記磁気センサアレイとの間の間隔は、前記第1バイアス磁石部および前記第2バイアス磁石部の各々と前記磁気センサアレイとの間の間隔より大きい、請求項6に記載の磁気媒体検出装置。
  8.  前記複数の磁気センサの各々が、異方性磁気抵抗素子である、請求項1から請求項7のいずれか1項に記載の磁気媒体検出装置。
  9.  前記複数の磁気センサの各々は、バーバーポール電極を含む、請求項8に記載の磁気媒体検出装置。
  10.  前記磁気媒体が紙幣である、請求項1から請求項9のいずれか1項に記載の磁気媒体検出装置。
PCT/JP2017/000556 2016-01-19 2017-01-11 磁気媒体検出装置 WO2017126373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-007841 2016-01-19
JP2016007841 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126373A1 true WO2017126373A1 (ja) 2017-07-27

Family

ID=59361615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000556 WO2017126373A1 (ja) 2016-01-19 2017-01-11 磁気媒体検出装置

Country Status (1)

Country Link
WO (1) WO2017126373A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133845A (ja) * 2016-01-25 2017-08-03 株式会社ヴィーネックス 磁気センサ装置
WO2022185655A1 (ja) * 2021-03-04 2022-09-09 株式会社日立製作所 センシング装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111251A (ja) * 1992-09-28 1994-04-22 Murata Mfg Co Ltd 磁気センサ装置
JPH08320327A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd 磁気センサ
JP2007515629A (ja) * 2003-12-04 2007-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁界感知センサ装置
WO2013121870A1 (ja) * 2012-02-13 2013-08-22 株式会社村田製作所 磁気センサ装置
JP2013167562A (ja) * 2012-02-16 2013-08-29 Glory Ltd 磁気検出装置
WO2015022864A1 (ja) * 2013-08-12 2015-02-19 株式会社村田製作所 磁気センサ
JP2015535339A (ja) * 2012-10-31 2015-12-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 磁気通貨検証ヘッド

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111251A (ja) * 1992-09-28 1994-04-22 Murata Mfg Co Ltd 磁気センサ装置
JPH08320327A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd 磁気センサ
JP2007515629A (ja) * 2003-12-04 2007-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁界感知センサ装置
WO2013121870A1 (ja) * 2012-02-13 2013-08-22 株式会社村田製作所 磁気センサ装置
JP2013167562A (ja) * 2012-02-16 2013-08-29 Glory Ltd 磁気検出装置
JP2015535339A (ja) * 2012-10-31 2015-12-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 磁気通貨検証ヘッド
WO2015022864A1 (ja) * 2013-08-12 2015-02-19 株式会社村田製作所 磁気センサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133845A (ja) * 2016-01-25 2017-08-03 株式会社ヴィーネックス 磁気センサ装置
WO2022185655A1 (ja) * 2021-03-04 2022-09-09 株式会社日立製作所 センシング装置

Similar Documents

Publication Publication Date Title
JP6308784B2 (ja) 磁気センサ
JP5867235B2 (ja) 磁気センサ装置
US7112957B2 (en) GMR sensor with flux concentrators
JP6265282B2 (ja) 電流センサ
JP5297539B2 (ja) 磁気センサ
EP2837947A1 (en) Magnetic sensor
JP6300908B2 (ja) 磁気センサ装置
JP4867391B2 (ja) 紙葉類識別センサ
KR20140051385A (ko) 측정 장치의 주위 환경들의 자기 특성들을 측정하기 위한 측정 장치
JP6503802B2 (ja) 磁気センサ
JPWO2008072610A1 (ja) 磁気センサ及びそれを用いた磁気エンコーダ
CN109085404A (zh) 电流传感器
WO2017126373A1 (ja) 磁気媒体検出装置
US10222431B2 (en) Measuring device with pre-magnetizing magnet
JP5799882B2 (ja) 磁気センサ装置
JP2016206069A (ja) 磁気センサ装置
WO2016170886A1 (ja) 磁気センサ装置
JP6328139B2 (ja) 自身の周辺の磁気的な特性を測定するための測定装置
WO2017191823A1 (ja) 磁気センサ装置
WO2016170887A1 (ja) 磁気センサ装置
WO2016035606A1 (ja) 電流センサ
JP2012215405A (ja) 磁気センサ装置
US10168395B2 (en) Magnetic sensor
WO2021199757A1 (ja) 磁気センサ装置
JP6964830B2 (ja) 磁気センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP