WO2017191823A1 - 磁気センサ装置 - Google Patents

磁気センサ装置 Download PDF

Info

Publication number
WO2017191823A1
WO2017191823A1 PCT/JP2017/017117 JP2017017117W WO2017191823A1 WO 2017191823 A1 WO2017191823 A1 WO 2017191823A1 JP 2017017117 W JP2017017117 W JP 2017017117W WO 2017191823 A1 WO2017191823 A1 WO 2017191823A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnet
magnetic field
bias
magnetizing
Prior art date
Application number
PCT/JP2017/017117
Other languages
English (en)
French (fr)
Inventor
智和 尾込
賢司 下畑
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780027143.3A priority Critical patent/CN109073715B/zh
Priority to US16/071,331 priority patent/US20190377036A1/en
Priority to DE112017002340.8T priority patent/DE112017002340T5/de
Priority to JP2017554909A priority patent/JP6289775B1/ja
Publication of WO2017191823A1 publication Critical patent/WO2017191823A1/ja
Priority to US17/014,741 priority patent/US20200400759A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D2207/00Paper-money testing devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency

Definitions

  • the present invention relates to a magnetic sensor device for identifying two types of magnetic bodies having different coercive forces included in a sheet-like object to be detected.
  • Patent Literature 1 describes a magnetic quality discrimination device that discriminates a plurality of types of magnetic bodies having different coercive forces.
  • the magnetic quality discrimination device of Patent Document 1 generates a magnetizing magnetic field including a first magnetic field region and a second magnetic field region on a conveyance path having different magnetic field strengths and magnetic field directions, and applies the magnetic material according to the coercive force of the magnetic material.
  • a magnetizing unit that magnetizes in different magnetization directions, and a magnet that detects the amount of magnetic material by detecting a change in the bias magnetic field by generating a bias magnetic field on the transport path downstream of the magnetizing unit in the transport direction. Consists of detection units.
  • the magnetic quality discriminating apparatus of Patent Document 1 needs to be configured such that the magnetic field strength and the magnetic field direction of the magnetizing magnetic field which are different depending on the region are formed so that the direction of the residual magnetization varies depending on the difference in coercive force. Also, it is necessary to accurately set the strength and inclination of the magnetic field of the bias magnetic field and the position and inclination of the magnetic sensor with respect to the bias magnetic field with respect to the surface of the paper sheet that is magnetized and conveyed by the magnetizing magnetic field. Therefore, there has been a problem that the magnetic sensor device has a very complicated structure.
  • the present invention has been made in view of the circumstances as described above, and the strength and arrangement of a magnetization magnetic field and a bias magnetic field for identifying two types of magnetic bodies having different coercive forces, and a magnetic sensor. It aims at simplifying the structure to arrange.
  • the magnetic sensor device forms a magnetized magnetic field in which the magnetic direction of the center of the magnetic flux intersects the transport surface, and the magnitude of the magnetic field component parallel to the transport surface in the magnetized magnetic field on the transport surface is the first.
  • the sheet-like object to be transported on the transport surface is magnetized by the magnetizing magnet which is equal to or higher than the saturation magnetic field of the second magnetic body having the second coercive force larger than the coercive force, and this magnetized.
  • a magnetic sensor device for detecting an object to be detected, wherein a magnetic field direction at the center of a magnetic flux forms a bias magnetic field intersecting with a plane of the object to be detected that is magnetized by a magnetized magnet, and the plane of the object to be detected In the bias magnetic field, the magnitude of the magnetic field component parallel to the plane of the object to be detected is larger than the first coercive force and smaller than the second coercivity, and the bias magnet faces the plane of the object to be detected.
  • Magnetoresistive effect It includes a child, a.
  • the magnitude of the magnetic field component parallel to the transport surface at the center of the magnetization magnetic field on the transport surface is greater than or equal to the saturation magnetic field of the second magnetic body, and parallel to the transport surface at the center of the bias magnetic field on the transport surface. It is sufficient that the magnitude of the magnetic field component is larger than the first coercive force and smaller than the second coercive force, and the magnetoresistive effect element is disposed on the surface facing the conveying surface of the bias magnet.
  • the strength and arrangement of the magnetizing magnetic field and the bias magnetic field, and the structure for arranging the magnetic sensor can be simplified.
  • Embodiment 1 WHEREIN The figure which shows the magnetic force line vector of the bias magnetic field currently applied to the magnetoresistive effect element
  • the magnetic sensor apparatus which concerns on Embodiment 1 WHEREIN The figure which shows the magnetization state of the magnetic body contained in the to-be-detected object when passing a magnetizing magnetic field
  • the magnetic sensor apparatus which concerns on Embodiment 1 WHEREIN When the coercive force of the magnetic body contained in a to-be-detected object is smaller than the intensity
  • the coercive force of the magnetic body is smaller than the intensity of the bias magnetic field
  • the magnetization state of the magnetic body when the magnetic body is at the center of the bias magnetic field
  • the magnetic sensor apparatus which concerns on Embodiment 1 WHEREIN When the coercive force of the magnetic body is smaller than the intensity of the bias magnetic field, the magnetization state of the magnetic body
  • the magnetic sensor apparatus which concerns on Embodiment 1 WHEREIN When the coercive force of a magnetic body is smaller than the intensity
  • the magnetic sensor apparatus which concerns on Embodiment 1 WHEREIN: When the coercive force of the magnetic body contained in a to-be-detected object is larger than the intensity
  • Configuration diagram of a magnetic sensor device according to Embodiment 2 of the present invention Configuration diagram of a magnetic sensor device according to Embodiment 3 of the present invention
  • Configuration diagram of a magnetic sensor device according to Embodiment 7 of the present invention Configuration diagram of a magnetic sensor device according to Embodiment 8 of the present invention
  • the conveyance direction of the detected object that is, the coercive force identification magnetic sensor device
  • the short direction (sub-scanning direction) of the X direction is perpendicular to the conveyance direction of the detected object.
  • the longitudinal direction (main scanning direction) of the magnetic sensor device is the Y direction
  • the short direction (conveying direction / sub-scanning direction) and the longitudinal direction (main scanning direction) of the coercive force identification magnetic sensor device are perpendicular to the conveying direction.
  • Direction is defined as the Z direction.
  • FIG. 1 is a configuration diagram of a magnetic sensor device according to Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional view orthogonal to the main scanning direction.
  • the magnetic sensor device includes a magnetized magnet 1, a bias magnet 2, and a magnetoresistive effect element chip 9 inside a housing 100. Further, a shield cover 101 is provided on the transport surface side of the housing 100.
  • the magnetized magnet 1 and the bias magnet 2 are arranged so as to face the conveyance surface P on which the sheet-like object 4 including the magnetic body 6 is conveyed. The detected object 4 is transported on the transport surface P in the transport direction 5.
  • the magnetized magnet 1 has magnetic poles different from each other in a direction orthogonal to the transport surface P, and forms a magnetized magnetic field 11 in which the magnetic direction of the center of the magnetic flux intersects the transport surface P.
  • the bias magnet 2 has different magnetic poles in a direction orthogonal to the transport surface P, and forms a bias magnetic field 21 in which the magnetic direction of the center of the magnetic flux intersects the transport surface P.
  • the bias magnet 2 is disposed downstream of the magnetizing magnet 1 in the transport direction 5.
  • the magnetic direction of the center of the magnetic flux of the magnetizing magnetic field 11 and the bias magnetic field 21 is orthogonal to the transport surface P.
  • the magnetized magnet 1 magnetizes and magnetizes the magnetic body 6 included in the detected object 4 by the magnetizing magnetic field 11.
  • the bias magnet 2 applies a magnetic bias to the magnetoresistive element chip 9 at the same time as applying a magnetic bias to the magnetic body 6 of the detected object 4 by the bias magnetic field 21.
  • an amplifier IC for amplifying the output from the magnetoresistive element chip 9
  • a circuit board for applying a voltage to the magnetoresistive element chip 9 and taking out the output
  • a magnet Although a magnetic yoke or the like for stabilizing the magnetic force is provided, it is omitted in FIG.
  • the magnetoresistive element chip 9 is disposed on the detected object 4 side of the bias magnet 2.
  • the magnetic poles of the magnetized magnet 1 and the bias magnet 2 have an N pole on the transport surface P side and an S pole on the opposite side, and generate a magnetized magnetic field 11 and a bias magnetic field 12, respectively.
  • the component perpendicular to the transfer surface P of the magnetized magnetic field 11 formed by the magnetized magnet 1 is a magnetization Z-direction magnetic field Bz1, and the component parallel to the transfer surface P and opposite to the transfer direction is magnetized X negative.
  • the negative sign “ ⁇ ” is attached to the sign of the negative direction magnetic field, the magnetic field components are all absolute values.
  • the magnetized magnet 1 of the magnetic sensor device magnetizes the magnetic body 6 by applying a magnetizing magnetic field 11 to the magnetic body 6 provided on the object 4 to be detected.
  • the bias magnet 2 applies a bias magnetic field 21 to the magnetic body 6 provided on the detected object 4 and the magnetoresistive effect element chip 9.
  • FIG. 2 is a diagram showing the magnetic force vector of the bias magnetic field applied to the magnetoresistive effect element in the magnetic sensor device according to the first embodiment.
  • the magnetoresistive effect element 91 of the magnetoresistive effect element chip 9 is slightly away from the center in the transport direction of the bias magnet 2 in the X positive direction, and the magnetic bias vector 8 is orthogonal to the transport plane P as shown in FIG. It is slightly inclined from the Z direction to the X direction, which is the transport direction.
  • the conveyance direction component 8x of the magnetic bias vector 8 acts as a bias magnetic field of the magnetoresistive effect element 91, and the magnitude of the conveyance direction component 8x changes, whereby the magnetic body provided on the object 4 to be detected. 6 can be detected as a change in output.
  • the transport direction component 8 x of the magnetic bias vector 8 is equal to the transport direction component Bx of the bias magnetic field 21 formed by the bias magnet 2.
  • FIG. 3 is a diagram showing the magnetization state of the magnetic substance included in the object to be detected when it passes the magnetizing magnetic field in the magnetic sensor device according to the first embodiment.
  • the minimum magnetic field for saturation magnetization of the magnetic body 6 is defined as a saturation magnetic field Bs6.
  • the magnetized magnetic body 6 forms a magnetic field 6a.
  • the magnetization X positive direction magnetic field + Bx1 which is a component in the transfer direction parallel to the transfer surface P of the magnetization magnetic field 11 created by the magnetized magnet 1 is larger than the saturation magnetic field Bs6 of the magnetic body 6. It is configured.
  • the magnetic body 6 provided on the detection object 4 is remanently magnetized so that the upstream side in the transport direction becomes the south pole, and generates the magnetic field 6a shown in FIG.
  • the magnetization of the magnetic body 6 by the magnet 2 will be described.
  • the coercive force Bc6 of the magnetic body 6 is the same in positive and negative in the transport direction.
  • the magnetic body 61 having a coercive force Bc6 smaller than the bias X negative direction magnetic field ⁇ Bx2 of the bias magnetic field 21 on the transport surface P is defined as a magnetic body 61.
  • the coercive force Bc61 of the magnetic body 61 is smaller than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P. Since the coercive force Bc61 of the magnetic body 61 is smaller than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P, the magnetic body 61 is magnetized again by the bias magnetic field 21.
  • FIG. 4A shows the magnetization of the magnetic material when the magnetic material enters the bias magnetic field in the magnetic sensor device according to the first embodiment when the coercive force of the magnetic material included in the detected object is smaller than the strength of the bias magnetic field. It is a figure which shows a state.
  • the bias magnetic field 21 magnetizes the downstream side in the transport direction to the south pole, and the magnetic field of FIG. 4A. 61a is made.
  • FIG. 4B is a diagram illustrating the magnetization state of the magnetic body when the magnetic body is at the center of the bias magnetic field when the coercivity of the magnetic body is smaller than the intensity of the bias magnetic field in the magnetic sensor device according to the first embodiment. is there.
  • the magnetic body 61 comes to the center of the bias magnetic field 21
  • the magnetic field line at the center of the magnetic flux of the bias magnetic field 21 is orthogonal to the transport surface P. Therefore, as shown in FIG. 4B, the bias magnetic field 21 has an X-direction component. Therefore, the X direction component of the magnetization of the magnetic body 61 disappears.
  • FIG. 4C is a diagram showing a magnetization state of the magnetic body when the magnetic body leaves the bias magnetic field when the coercivity of the magnetic body is smaller than the intensity of the bias magnetic field in the magnetic sensor device according to the first embodiment. .
  • the bias magnetic field 21 is magnetized so that the upstream side in the transport direction becomes the south pole, thereby creating the magnetic field 61b of FIG. 4C.
  • the magnetoresistive element 91 detects the magnetic body 61 when the magnetic body 61 passes through the bias magnetic field 21 on the transport surface P will be described in detail with reference to FIGS. 5A to 5C.
  • the combined vector of the bias magnetic field and the magnetic field 61 a of the magnetic body 61 in the magnetoresistive effect element 91 is represented by a solid magnetic bias vector 8.
  • the dotted arrow that intersects the magnetic bias vector 8 indicates the magnetic bias vector 8 in the case where the magnetic body 61 is not shown, as shown in FIG.
  • the magnetization in the X direction of the magnetic body 61 is reversed as shown in FIG. 5A.
  • the magnetic bias carrying direction component 8x in the magnetoresistive effect element 91 is smaller than the magnetic bias carrying direction component Bx in the absence of the magnetic body 61 by the action of the magnetic field 61a produced by the magnetic body 61.
  • the magnetic bias carrying direction component 8x in the magnetoresistive element 91 is the same as the state shown in FIG. Further, when the magnetic body 61 leaves the bias magnetic field 21, the magnetic body 61 is magnetized in the X direction by the bias magnetic field 21, and residual magnetization is formed in the opposite direction to that when the magnetic body 61 enters the bias magnetic field 21 and is remagnetized.
  • the transport direction component 8x of the magnetic bias in the magnetoresistive element 91 is more than the transport direction component Bx of the magnetic bias when there is no magnetic body. growing.
  • the coercive force Bc61 of the magnetic body 61 is from a bias X negative direction magnetic field ⁇ Bx2 that is a component parallel to the transport surface P of the bias magnetic field 21 on the transport surface P and opposite to the transport direction. Is smaller, the magnetization direction of the magnetic body 61 is reversed in the X direction as the magnetic body 61 moves on the transport surface P in the transport direction 5. Accordingly, as shown in FIGS. 5A to 5C, the magnitude of the magnetic bias carrying direction component 8x in the magnetoresistive element 91 straddles the magnitude of the carrying direction component Bx when there is no magnetic substance. Change. FIG.
  • FIG. 6 is a diagram illustrating an example of an output waveform of the magnetic sensor when the coercive force of the magnetic material included in the detected object is smaller than the intensity of the bias magnetic field in the magnetic sensor device according to the first embodiment.
  • the resistance value of the magnetoresistive element 91 that senses the X-direction component changes, and an output as shown in FIG. 6 is obtained.
  • 4 can detect the magnetic body 61 provided on the surface 4.
  • FIG. 6 when the coercive force Bc61 of the magnetic body 61 is smaller than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P, a peak output with opposite positive and negative at the front and rear edges of the magnetic body 61 is generated. Edge detection output is obtained.
  • the bias X negative direction magnetic field ⁇ in which the coercive force Bc6 of the magnetic body 6 is a component parallel to the transport surface P of the bias magnetic field 21 on the transport surface P and opposite to the transport direction.
  • the magnetization of the magnetic body 6 by the bias magnet 2 when larger than Bx2 will be described.
  • the magnetic body 6 having a coercive force Bc6 larger than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P is defined as a magnetic body 62.
  • the coercive force Bc62 of the magnetic body 62 is larger than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P. Since the coercive force Bc62 of the magnetic body 62 is larger than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P, the magnetic body 62 is not magnetized again by the bias magnetic field 21.
  • the magnetic body 62 Even if the magnetic body 62 provided on the detected object 4 passes through the bias magnetic field 21, the magnetic body 62 is not remagnetized by the bias magnetic field 21, as shown in FIGS. 7A to 7C. The direction of the residual magnetization when 11 is released is maintained. As shown in FIGS. 7A to 7C, in the first embodiment, in the detection range of the magnetoresistive effect element 91, the magnetic body 62 holds the magnetic field 62a having the south pole on the upstream side in the transport direction 5.
  • the magnetoresistive element 91 detects the magnetic body 62 when the magnetic body 62 passes the bias magnetic field 21 on the transport surface P will be described in detail with reference to FIGS. 8A to 8C.
  • the combined vector of the bias magnetic field and the magnetic field 62a of the magnetic body 62 in the magnetoresistive effect element 91 is represented by a solid magnetic bias vector 8.
  • the dotted arrow that intersects the magnetic bias vector 8 indicates the position of the magnetic bias vector 8 in the absence of the magnetic body 62 shown in FIG.
  • the magnetization of the magnetic body 62 in the X direction is a magnetic field in the magnetoresistive element 91. This coincides with the direction of the component of the bias conveyance direction.
  • the magnetic field 62 a created by the magnetic body 62 acts in a direction that keeps the lines of magnetic force passing through the magnetoresistive effect element 91 in the transport direction 5.
  • the transport direction component 8x of the magnetic bias in the magnetoresistive effect element 91 is larger than the transport direction component Bx of the magnetic bias without the magnetic body 62.
  • the magnetic field 62a of the magnetic body 62 acts in a direction to cancel the transport direction component Bx of the magnetic bias when there is no magnetic body 62, as shown in FIG. 8B. .
  • the transport direction component 8x of the magnetic bias in the magnetoresistive effect element 91 is smaller than the transport direction component Bx of the magnetic bias without the magnetic body 62.
  • the magnetic field 62 a of the magnetic body 62 acts in a direction that attracts the magnetic lines of force of the bias magnetic field 21.
  • the transport direction component 8x of the magnetic bias in the magnetoresistive effect element 91 becomes larger than the transport direction component Bx of the bias magnetic field 21 when there is no magnetic body.
  • FIG. 9 is a diagram illustrating an example of an output waveform of the magnetic sensor when the coercive force of the magnetic material included in the detected object is larger than the intensity of the bias magnetic field in the magnetic sensor device according to the first embodiment.
  • the transport direction component 8x of the magnetic bias in the element 91 is larger than the transport direction component Bx of the magnetic bias in the absence of the magnetic body 62, and therefore changes in the order of small to large.
  • the resistance value of the magnetoresistive effect element 91 that senses the X-direction component changes, and an output as shown in FIG. 9 is obtained.
  • the magnetic body 62 provided on the detection object 4 can be detected.
  • the coercive force Bc62 of the magnetic body 62 is larger than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P, the magnetic body 62 passes over the magnetoresistive effect element 91, A pattern detection output in which a peak output having a polarity opposite to that when entering and leaving the bias magnetic field 21 appears is obtained.
  • the coercive force Bc6 of the magnetic body 6 is smaller or larger than the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P. Since detection outputs having different waveforms are obtained, two types of magnetic bodies having different coercive forces can be identified.
  • the output of the magnetic body 61 having the coercive force Bc61 is the edge detection output as shown in FIG. 6, and the output of the magnetic body 62 having the coercive force Bc62 is the pattern detection output as shown in FIG. can do. That is, the sheet-like detection object 4 includes a first magnetic body 61 having a first coercive force Bc61 and a second magnetic body 62 having a second coercive force Bc62 larger than the first coercive force Bc61.
  • the magnitude of the magnetized magnetic field 11 formed by the magnetized magnet 1 is equal to the magnitude of the magnetized X positive direction magnetic field + Bx1, which is a component in the transport direction parallel to the transport surface P, of the second magnetic body 62.
  • the bias magnetic field 21 formed by the bias magnet 2 which is set to the saturation magnetic field Bs62 or more and is arranged downstream of the magnetizing magnet 1 in the transport direction 5 is a bias X negative direction which is a component parallel to the transport surface P and opposite to the transport direction.
  • the magnitude of the magnetic field ⁇ Bx2 is set so as to be larger than the first coercive force Bc61 and smaller than the second coercive force Bc62.
  • the magnetizing magnetic field 11 formed by the magnetizing magnet 1 should be such that the magnetizing X positive direction magnetic field + Bx1 on the transport surface P is larger than the saturation magnetic field of the magnetic body 62 having the larger coercive force.
  • the bias magnetic field 21 formed by the bias magnet 2 is such that the bias X negative direction magnetic field ⁇ Bx2 on the transport surface P is larger than the coercive force Bc61 of the magnetic body 61 having a smaller coercive force and having a larger coercive force.
  • the coercive force Bc62 of the magnetic body 62 may be smaller.
  • the magnetoresistive element 91 may be disposed at a position slightly shifted in the transport direction from the center in the transport direction of the surface facing the transport surface P of the bias magnet 2 on the transport surface P side of the bias magnet 2. .
  • the magnetic quality discriminating apparatus of Patent Document 1 needs to be configured such that the magnetic field strength and the magnetic field direction of the magnetizing magnetic field which are different depending on the region are formed so that the direction of the residual magnetization varies depending on the difference in coercive force. Also, it is necessary to accurately set the strength and inclination of the magnetic field of the bias magnetic field and the position and inclination of the magnetic sensor with respect to the bias magnetic field with respect to the surface of the paper sheet that is magnetized and conveyed by the magnetizing magnetic field. In comparison, the magnetic sensor device of the first embodiment relaxes the accuracy required for the magnetic force and position of the magnetized magnet 1 and the bias magnet 2 and the position and inclination of the magnetoresistive effect element 91. Further, it is not necessary to incline the direction of the magnetic field lines of the bias magnetic field 21 with respect to the transport surface P, and the length of the entire magnetic sensor device in the transport direction can be reduced.
  • the magnetized magnet 1 and the bias magnet 2 can be arranged on the same side with respect to the transport surface P, and the coercive force identification magnetic sensor can be downsized.
  • both the magnetized magnet 1 and the bias magnet 2 do not require complicated magnet shapes, so that a magnetic sensor can be configured with a simple magnetic circuit.
  • the magnetic pole of the magnetized magnet 1 has been described as having the N pole on the transport surface P side, but the magnetic body 6 remains in the magnetized magnetic field 11 even if the transport surface P side is the S pole. Only the magnetized direction is reversed and the same effect can be obtained. With respect to the bias magnet 2, even if the magnetic poles are arranged with the conveying surface P side as the S pole, only the positive and negative directions of the detection output of the magnetic body 6 are reversed, and the same effect is obtained.
  • the directions of the magnetic poles of the magnetized magnet 1 and the bias magnet 2 may not be the same polarity on the side of the transport surface.
  • the transport surface P side of the magnetized magnet 1 is the S pole and the transport surface P side of the bias magnet 2 is the N pole, the positive / negative direction of the detection output is only reversed by the coercive force Bc6 of the magnetic body 6. The same effect can be obtained.
  • the configuration of the magnetoresistive effect element 91 is not specified, but a half bridge configuration in which two magnetoresistive effect elements 91 are arranged to output a midpoint potential, and four magnetoresistive effect elements 91 are arranged. Either a full bridge configuration or a single configuration can be used.
  • the case where the coercive force Bc61 of the magnetic body 61 is larger than the coercive force Bc62 of the magnetic body 62 has been generalized and considered.
  • the magnetic body 62 can be considered as a hard magnetic body having a very large coercive force Bc62. Even in that case, since the detection output of the magnetoresistive effect element 91 has a pattern as shown in FIG. 9, the magnetic sensor device according to the first embodiment is configured even when the detected object 4 includes only a hard magnetic material as a magnetic material. Can be detected.
  • FIG. FIG. 10 is a configuration diagram of a magnetic sensor device according to Embodiment 2 of the present invention.
  • FIG. 10 is a cross-sectional view orthogonal to the main scanning direction.
  • one central magnet 3 instead of the magnetized magnet 1 and the bias magnet 2 shown in the first embodiment, one central magnet 3, a magnetizing yoke 31 as a first yoke, and a bias as a second yoke.
  • a yoke 32 is used.
  • the central magnet 3 used in the second embodiment has different magnetic poles in a direction parallel to the conveyance direction 5 of the detected object 4.
  • the central magnet 3 has an N pole on the upstream side in the transport direction 5 and an S pole on the downstream side.
  • the lengths in the Y direction, which is the main scanning direction, of the central magnet 3, the magnetizing yoke 31, and the biasing yoke 32 are the same and are larger than the reading width of the magnetic sensor device.
  • the magnetizing yoke 31 is disposed on the upstream side of the central magnet 3 in the transport direction 5, and the biasing yoke 32 is disposed on the downstream side of the central magnet 3 in the transport direction 5.
  • the magnetoresistive element chip 9 is disposed on the surface of the biasing yoke 32 that faces the transport surface P.
  • Other configurations are the same as those in the first embodiment.
  • an amplifier IC for amplifying the output from the magnetoresistive element chip 9, a circuit board for applying power to the magnetoresistive element chip 9 and taking out the output, A magnetic yoke or the like for stabilizing the magnetic force of the magnet is provided, but it is omitted in this figure.
  • the bias yoke 32 is entered from the periphery when the yoke 32 is viewed in the transport direction 5 and reaches the south pole on the downstream side in the transport direction 5 of the central magnet 3 from the bias yoke 32.
  • the magnetic flux coming out of the central magnet 3 and returning to the central magnet 3 is concentrated mainly on the magnetizing yoke 31 and the biasing yoke 32.
  • the magnetizing yoke 31 and the biasing yoke 32 are temporary magnets magnetized by the central magnet 3.
  • the magnetic flux toward the transport surface P forms a magnetizing magnetic field 311.
  • the magnetic flux from the transport surface P toward the bias yoke 32 forms a bias magnetic field 321.
  • the magnetizing yoke 31 as a temporary magnet constitutes a magnetized magnet.
  • the bias yoke 32 as a temporary magnet constitutes a bias magnet.
  • the magnetizing yoke 31 magnetizes the magnetic body 6 by applying a magnetizing magnetic field 311 to the magnetic body 6 provided on the object 4 to be detected.
  • the bias yoke 32 applies a bias magnetic field 321 to the magnetic body 6 provided on the detected object 4 and the magnetoresistive element chip 9.
  • the magnetizing magnetic field 311 and the bias magnetic field 321 can be regarded as uniform over the length of the central magnet 3, the magnetizing yoke 31 and the biasing yoke 32 in the Y direction, which is the main scanning direction.
  • a component perpendicular to the transfer surface P of the magnetization magnetic field 311 formed by the magnetizing yoke 31 is a magnetization Z-direction magnetic field Bz31
  • a component parallel to the transfer surface P and opposite to the transfer direction is magnetized X Negative direction magnetic field -Bx31, magnetization X positive direction magnetic field + Bx31 parallel to the conveyance surface P, and component perpendicular to the conveyance surface P of the bias magnetic field 321 formed by the biasing yoke 32, bias Z direction magnetic field Bz32
  • a component in the transport direction parallel to the transport surface P is defined as a bias X positive magnetic field + Bx32
  • a component parallel to the transport surface P and opposite to the transport direction is defined as a bias X negative magnetic field ⁇ Bx32.
  • the coercivity Bc62 of the magnetic body 62 is greater than the coercivity Bc61 of the magnetic body 61.
  • the magnitude of the magnetization X positive direction magnetic field + Bx31 is equal to or greater than the saturation magnetic field Bs62 of the magnetic body 62 having the larger coercive force Bc6.
  • the magnitude of the bias X positive direction magnetic field + Bx32 is larger than the coercive force Bc61 of the magnetic body 61 and smaller than the coercive force Bc62 of the magnetic body 62.
  • the surface on the transport surface P side of the magnetizing yoke 31 is set to the transport surface P from the surface on the transport surface P side of the bias yoke 32. Install near.
  • the magnetic flux emitted from the magnetizing yoke 31 and the magnetic flux entering the biasing yoke 32 increase as the distance from the surface increases. Therefore, the magnetic flux density decreases with distance, and the magnetic field strength proportional to the magnetic flux density also decreases. .
  • the positive / negative direction of the detection output is reversed by the coercive force Bc6 of the magnetic body 6, but acts in the same manner as in the first embodiment to distinguish between the magnetic body 61 and the magnetic body 62. can do.
  • one magnet can be provided.
  • the arrangement of the N pole and the S pole of the center magnet 3 is not limited to the orientation shown in FIG.
  • FIG. 11 is a configuration diagram of a magnetic sensor device according to Embodiment 3 of the present invention.
  • FIG. 11 is a cross-sectional view orthogonal to the main scanning direction.
  • one central magnet 3 instead of the magnetized magnet 1 and the bias magnet 2 shown in the first embodiment, one central magnet 3, a magnetizing yoke 31 as a first yoke, and a bias as a second yoke.
  • a yoke 32 is used.
  • the difference from the second embodiment is that the size of the surface of the magnetizing yoke 31 facing the transport surface P is different from the size of the surface of the biasing yoke 32 facing the transport surface P.
  • Other configurations are the same as those of the second embodiment.
  • the magnetic flux density can be considered to be uniform on the surface of the magnetizing yoke 31 or the biasing yoke 32 facing the conveying surface P.
  • the magnetic flux emitted from the surface of the magnetizing yoke 31 facing the transport surface P can be regarded as the same as the magnetic flux entering the surface of the biasing yoke 32 facing the transport surface P. If the magnetic flux is the same and the magnetic flux density in the cross section is uniform, the magnetic flux density is inversely proportional to the cross-sectional area.
  • the length in the transport direction 5 of the surface facing the transport surface P of the bias yoke 32 that is the second yoke is set to the transport of the surface facing the transport surface P of the magnetizing yoke 31 that is the first yoke. If the length is larger than the length in the direction 5, the magnetization X positive magnetic field + Bx31 can be made larger than the bias X positive magnetic field + Bx32.
  • the distance from the surface facing the transport surface P of the magnetizing yoke 31 to the transport surface P is set to the distance from the surface facing the transport surface P of the bias yoke 32 to the transport surface P. It may be smaller than the distance.
  • Bx31> Bs62 and Bc62 are adjusted by adjusting the magnetic force of the central magnet 3 and the length in the transport direction 5 of the surface of the magnetizing yoke 31 and the biasing yoke 32 on the transport surface P side. > Bx32> Bc61 is satisfied.
  • the positive and negative directions of the detection output are reversed by the coercive force Bc6 of the magnetic body 6.
  • the magnetic sensor device operates in the same manner as in the first embodiment and distinguishes between the magnetic body 61 and the magnetic body 62. can do.
  • the arrangement of the N pole and the S pole of the center magnet 3 is not limited to the orientation shown in FIG.
  • FIG. 12 is a block diagram of a magnetic sensor device according to Embodiment 4 of the present invention.
  • FIG. 12 is a cross-sectional view orthogonal to the main scanning direction.
  • the magnetized magnet 1 shown in the first embodiment is composed of a magnetizing magnet 14 and a magnetism collecting yoke 33 arranged on the surface of the magnetizing magnet 14 on the transport surface P side. ing.
  • Other configurations are the same as those of the first embodiment.
  • the component perpendicular to the transport surface P of the magnetizing magnetic field 411 formed by the magnetizing magnet 14 and the magnetizing yoke 33 on the transport surface P is parallel to the magnetized Z-direction magnetic field Bz41 and the transport surface P.
  • the component in the direction opposite to the transport direction is magnetized X negative direction magnetic field -Bx41
  • the component in the transport direction parallel to the transport surface P is magnetized X positive direction magnetic field + Bx41
  • the transport surface P of the bias magnetic field 421 formed by the bias magnet 2 is applied.
  • the orthogonal component is the bias Z direction magnetic field Bz42, the component parallel to the transport surface P and opposite to the transport direction is the bias X negative direction magnetic field ⁇ Bx42, and the component parallel to the transport surface P and the transport direction is the bias X positive direction magnetic field + Bx42.
  • + Bx41> Bs62 and Bc62 are adjusted by adjusting the magnetic force of the bias magnet 2 and the length in the transport direction 5 of the magnetizing magnet 14 and the surface of the magnetism collecting yoke 33 on the transport surface P side. > ⁇ Bx42> Bc61 is satisfied.
  • the length of the magnetism collecting yoke 33 in the transport direction is smaller than the length of the magnetizing magnet 14 in the transport direction. With this configuration, the main magnetic flux of the magnetizing magnet 14 is collected in the range of the magnet collecting yoke 33. If the magnetizing magnet 1 and the magnetizing magnet 14 are the same, the magnetizing magnetic field 411 is larger than the magnetizing magnetic field 11 of the first embodiment. Therefore, when the same magnetizing magnetic field 411 as the magnetizing magnetic field 11 of the first embodiment is generated, the magnetizing magnet 14 can be made smaller than the magnetizing magnet 1.
  • the magnetic pole of the magnetizing magnet 14 has been described as having an N pole on the side of the transport surface P.
  • the side of the transport surface P may be an S pole. Good.
  • the bias magnet 2 even if the magnetic poles are arranged with the conveying surface P side as the S pole, only the positive and negative directions of the detection output of the magnetic body 6 are reversed, and the same effect is obtained.
  • the directions of the magnetic poles of the magnetizing magnet 14 and the bias magnet 2 may not be the same polarity on the transport surface side.
  • the conveying surface P side of the magnetizing magnet 14 is the S pole and the conveying surface P side of the bias magnet 2 is the N pole, the positive / negative direction of the detection output is reversed by the coercive force Bc6 of the magnetic body 6. The same effect can be obtained.
  • FIG. 13 is a configuration diagram of a magnetic sensor device according to Embodiment 5 of the present invention.
  • FIG. 13 is a cross-sectional view orthogonal to the main scanning direction.
  • a magnetizing magnet 51 in which the magnetized magnet 1 shown in the first embodiment is magnetized in a direction parallel to the conveying direction 5, an upstream yoke 34 disposed on both sides thereof, and a downstream side
  • the yoke 35 is the same as the other components.
  • a magnetizing magnetic field 511 in the direction parallel to the transport direction is formed between the upstream yoke 34 and the downstream yoke 35 on the transport surface P.
  • the magnetization direction component parallel to the conveying surface P of the magnetizing magnetic field 511 formed by the magnetizing magnet 51, the upstream yoke 34, and the downstream yoke 35 is magnetized in the X direction.
  • a directional magnetic field + Bx51, a component perpendicular to the transport surface P of the bias magnetic field 521 formed by the bias magnet 2 is a bias Z direction magnetic field Bz52, a component parallel to the transport surface P and opposite to the transport direction is a bias X negative direction magnetic field ⁇ Bx52,
  • a component in the transport direction parallel to the transport surface P is defined as a bias X positive direction magnetic field + Bx52.
  • the magnetizing magnet 51, the upstream yoke 34, and the downstream yoke 35 are adjusted so that + Bx51> Bs62 and Bc62> ⁇ Bx52> Bc61 are satisfied.
  • the magnetization X positive direction magnetic field + Bx51 is the main magnetic flux. Furthermore, since the magnetic flux of the magnetizing magnet 51 is collected in the upstream yoke 34 and the downstream yoke 35, a larger magnetized X positive magnetic field + Bx51 can be generated even with a small magnet.
  • the magnetic pole of the magnetizing magnet 51 is described as having the N pole on the upstream side in the transport direction, but the upstream side in the transport direction is the same as described in the first embodiment. It may be the S pole. With respect to the bias magnet 2, even if the magnetic poles are arranged with the conveying surface P side as the S pole, only the positive and negative directions of the detection output of the magnetic body 6 are reversed, and the same effect is obtained.
  • FIG. 14 is a configuration diagram of a magnetic sensor device according to Embodiment 6 of the present invention.
  • FIG. 14 is a cross-sectional view orthogonal to the main scanning direction.
  • the upstream yoke 36 and the downstream yoke 37 are changed to an L shape from the configuration of the fifth embodiment.
  • the other configuration is the same as that of the fifth embodiment.
  • the upstream side yoke 36 and the downstream side yoke 37 are respectively formed on the side of the transport surface P of the magnetizing magnet 51 so as to protrude in directions closer to each other than the length of the magnetizing magnet 51 in the transport direction. ing.
  • the magnetization field 611 formed by the magnetizing magnet 51, the upstream side yoke 36 and the downstream side yoke 37 is parallel to the transfer surface P and the component in the transfer direction is magnetized.
  • a directional magnetic field + Bx61, a component perpendicular to the transport surface P of the bias magnetic field 621 formed by the bias magnet 2 is a bias Z direction magnetic field Bz62, a component parallel to the transport surface P and opposite to the transport direction is a bias X negative direction magnetic field ⁇ Bx62,
  • a component in the transport direction parallel to the transport surface P is defined as bias X positive direction magnetic field + Bx62.
  • the magnetizing magnet 51, the upstream yoke 36, and the downstream yoke 37 are adjusted so that + Bx61> Bs62 and Bc62> ⁇ Bx62> Bc61 are satisfied.
  • a magnetizing magnetic field 611 in a direction parallel to the transport direction is formed between the upstream yoke 36 and the downstream yoke 37 on the transport surface P.
  • the main magnetic flux is the magnetization X positive direction magnetic field + Bx61 that is parallel to the transport surface P and is a component in the transport direction.
  • the magnetic poles are made closer by collecting the magnetic flux of the magnetizing magnet 51 in the upstream side yoke 36 and the downstream side yoke 37 and forming a proximity portion, even a small magnet has a larger magnetization X positive direction magnetic field. + Bx61 can be generated.
  • the direction of the magnetic poles of the magnetizing magnet 51 and the bias magnet 2 may be either as in the fifth embodiment.
  • FIG. FIG. 15 is a configuration diagram of a magnetic sensor device according to Embodiment 7 of the present invention.
  • FIG. 15 is a cross-sectional view orthogonal to the main scanning direction.
  • the reverse transport magnetized magnet 7 having the same function as the magnetized magnet 1 shown in the first embodiment is arranged on the downstream side in the transport direction of the bias magnet 2.
  • the reverse transport magnetized magnet 7 is desirably arranged symmetrically with the magnetized magnet 1 with respect to a plane passing through the center of the bias magnet 2 and perpendicular to the transport direction 5.
  • the component perpendicular to the transport surface P of the magnetizing magnetic field 711 formed by the magnetized magnet 1 on the transport surface P is magnetized in the Z direction magnetic field Bz71, parallel to the transport surface P and opposite to the transport direction.
  • the component is magnetized X negative direction magnetic field -Bx71
  • the component in the transport direction parallel to the transport surface P is magnetized X positive direction magnetic field + Bx71
  • the component orthogonal to the transport surface P of the bias magnetic field 721 formed by the bias magnet 2 is biased Z.
  • a directional magnetic field Bz72, a component parallel to the transport surface P and opposite to the transport direction is defined as a bias X negative direction magnetic field -Bx72, and a component parallel to the transport surface P and in the transport direction is defined as a bias X positive direction magnetic field + Bx72.
  • a component perpendicular to the transport surface P of the magnetizing magnetic field 771 formed by the reverse transport magnetizing magnet 7 is a magnetization Z-direction magnetic field Bz77, and a component parallel to the transport surface P and opposite to the transport direction is magnetized in the negative X direction.
  • a component in the conveyance direction parallel to the magnetic field ⁇ Bx77 and the conveyance surface P is defined as a magnetization X positive direction magnetic field + Bx77.
  • the magnetic force of the bias magnet 2 and the magnetic force of the magnetized magnet 1 are configured to satisfy + Bx71> Bs62 and Bc62> ⁇ Bx72> Bc61. Further, the magnetic force of the reverse transfer magnetized magnet 7 is configured to satisfy -Bx77> Bs62. If the magnetized magnet 1 and the reverse transfer magnetized magnet 7 have the same size and magnetic force, -Bx77> Bs62.
  • the coercive force is discriminated regardless of whether the detected object 4 is conveyed from either side in the magnetic sensor device that is required to carry the object 4 in the direction opposite to the conveyance direction 5. It becomes possible to do.
  • the magnetic bias vector 8 applied to the magnetoresistive effect element 91 is inclined in the transport direction 5, the direction of the magnetic bias vector 8 with respect to the reverse transport direction is opposite to the direction of the magnetic bias vector 8 with respect to the transport direction 5. If the bias magnetic field without the magnetic bodies 61 and 62 is used as a reference, the same output pattern in which the sign is reversed in FIGS. 6 and 9 is obtained in the reverse transport direction.
  • At least one of the magnetized magnet 1 and the reverse transfer magnetized magnet 7 can be configured by the magnetizing magnet 14 and the magnetizing yoke 33 of the fourth embodiment.
  • the case where the magnetic flux collecting yoke 33 is provided is indicated by a dotted line. In that case, the magnetized magnet 1 and the reverse transfer magnetized magnet 7 are each replaced by a magnetized magnet 14.
  • the directions of the magnetic poles of the magnetized magnet 1 and the bias magnet 2 may be opposite to those shown in FIG. Further, the direction of the magnetic pole of the reverse transport magnetized magnet 7 may be opposite to the direction of the magnetic pole of the magnetized magnet 1.
  • FIG. 16 is a configuration diagram of a magnetic sensor device according to Embodiment 8 of the present invention.
  • FIG. 16 is a cross-sectional view orthogonal to the main scanning direction.
  • the magnetizing magnet 51, the upstream yoke 34, and the downstream yoke 35 shown in the fifth embodiment are arranged on the downstream side in the transport direction of the bias magnet 2.
  • the magnetizing magnet 51, the upstream yoke 34 and the downstream yoke 35, the magnetizing magnet 53, the upstream yoke 38 and the downstream yoke 39 are arranged symmetrically with respect to a plane perpendicular to the transport direction 5.
  • the magnetizing magnet 51, the upstream yoke 34 and the downstream yoke 35, the magnetizing magnet 53, the upstream yoke 38 and the downstream yoke 39 pass through the center of the bias magnet 2 and are orthogonal to the transport direction 5. Symmetric with respect to the plane.
  • the magnetization direction component parallel to the conveying surface P of the magnetizing magnetic field 511 formed by the magnetizing magnet 51, the upstream yoke 34, and the downstream yoke 35 is magnetized to be positive X.
  • a directional magnetic field + Bx51, a component perpendicular to the transport surface P of the bias magnetic field 521 formed by the bias magnet 2 is a bias Z direction magnetic field Bz52, a component parallel to the transport surface P and opposite to the transport direction is a bias X negative direction magnetic field ⁇ Bx52,
  • a component in the transport direction parallel to the transport surface P is defined as a bias X positive direction magnetic field + Bx52.
  • a component of the magnetizing magnetic field 531 formed by the magnetizing magnet 53, the upstream yoke 38, and the downstream yoke 39 in parallel to the transport surface P and opposite to the transport direction is defined as a magnetized X negative magnetic field ⁇ Bx53. To do.
  • the magnetizing magnet 51, the upstream yoke 34, and the downstream yoke 35 are adjusted so as to satisfy + Bx51> Bs62 and Bc62> ⁇ Bx52> Bc61. Further, the magnetizing magnet 53, the upstream side yoke 38, and the downstream side yoke 39 are adjusted so as to satisfy -Bx53> Bs62. If the magnetizing magnet 51, the upstream yoke 34 and the downstream yoke 35 and the magnetizing magnet 53, the upstream yoke 38 and the downstream yoke 39 have the same size and magnetic force, -Bx53> Bs62.
  • the coercive force is discriminated regardless of whether the object to be detected is conveyed from the magnetic sensor device that is required to carry the object 4 in the direction opposite to the conveyance direction 5. It becomes possible to do.
  • the magnetic bias vector 8 applied to the magnetoresistive effect element 91 is inclined in the transport direction 5, the direction of the magnetic bias vector 8 with respect to the reverse transport direction is opposite to the direction of the magnetic bias vector 8 with respect to the transport direction 5. If the bias magnetic field without the magnetic bodies 61 and 62 is used as a reference, the same output pattern in which the sign is reversed in FIGS. 6 and 9 is obtained in the reverse transport direction.
  • the upstream yoke 34 and the downstream yoke 35, and the upstream yoke 38 and the downstream yoke 39 can be configured by the upstream yoke 36 and the downstream yoke 37 of the sixth embodiment, respectively.
  • the configuration is the same as that of the magnetizing magnet 51, the upstream yoke 36, and the downstream yoke 37 with respect to a plane passing through the center of the bias magnet 2 and orthogonal to the transport direction 5. They are arranged symmetrically. With this configuration, the same effect as the configuration of FIG. 16 can be obtained.
  • the magnetic pole of the magnetizing magnet 51 is described as having the N pole on the upstream side in the transport direction 5.
  • the magnetic pole of the magnetizing magnet 51 is located upstream in the transport direction 5.
  • the side may be the S pole.
  • the direction of the magnetic pole of the magnetizing magnet 53 is not symmetric with respect to the magnetizing magnet 51 with respect to the plane orthogonal to the transport direction 5 but may be the opposite direction, that is, the same direction in the transport direction 5.

Abstract

磁気センサ装置では、磁束の中心の磁力方向が搬送面(P)に交わる着磁磁界(11)を形成し、搬送面(P)における着磁磁界(11)において搬送面(P)に平行な磁界成分の大きさが第1の保磁力よりも大きい第2の保磁力を有する第2の磁性体の飽和磁界以上である着磁磁石(1)によって、搬送面(P)を搬送されるシート状の被検知物(4)が着磁される。磁気センサ装置は、磁束の中心の磁力方向が、着磁磁石(1)によって着磁されて搬送される被検知物(4)の平面に交わるバイアス磁界(21)を形成し、被検知物(4)の平面におけるバイアス磁界(21)において被検知物(4)の平面に平行な磁界成分の大きさが第1の保磁力より大きく、かつ、第2の保磁力より小さいバイアス磁石(2)と、バイアス磁石(2)の被検知物(4)の平面に対向して配置される磁気抵抗効果素子チップ(9)と、を備える。

Description

磁気センサ装置
 本発明は、シート状の被検知物に含まれる、異なる保磁力を有する2種類の磁性体を識別する磁気センサ装置に関する。
 近年、紙幣または有価証券の偽造を防止する対策として、異なる保磁力を有する2種類以上の磁気インクまたは磁性体を採用した紙幣または有価証券が発行されている。そのため、保磁力の異なる磁性体を識別する磁気センサ装置が求められている。例えば、特許文献1には、保磁力の異なる複数種類の磁性体を判別する磁気質判別装置が記載されている。特許文献1の磁気質判別装置は、磁界強度及び磁界方向が異なる搬送路上の第1磁界領域及び第2磁界領域を含む着磁磁界を発生させて、磁性体の保磁力に応じて磁性体を異なる磁化方向に着磁する着磁ユニットと、着磁ユニットより搬送方向下流の側で搬送路上にバイアス磁界を発生させて、バイアス磁界の変化を検出することにより磁性体の磁気量を検知する磁気検知ユニットで構成される。
特開2015-201083号公報
 特許文献1の磁気質判別装置では、保磁力の違いによって残留磁化の方向が異なるように、領域によって異なる着磁磁界の磁界強度と磁界方向が形成されるように構成する必要がある。また、着磁磁界で磁化されて搬送される紙葉類の面に対して、バイアス磁界の磁力方向の強度および傾きと、バイアス磁界に対する磁気センサの位置および傾きを正確に設定する必要がある。そのため、磁気センサ装置が非常に複雑な構造になるという課題があった。
 本発明は、上述のような事情に鑑みてなされたものであり、異なる保磁力を有する2種類の磁性体を識別するための、着磁磁界およびバイアス磁界の強度と配置、ならびに、磁気センサを配置する構造を単純にすることを目的とする。
 本発明の観点に係る磁気センサ装置は、磁束の中心の磁力方向が搬送面に交わる着磁磁界を形成し、搬送面における着磁磁界において搬送面に平行な磁界成分の大きさが第1の保磁力よりも大きい第2の保磁力を有する第2の磁性体の飽和磁界以上である着磁磁石によって、搬送面を搬送されるシート状の被検知物が着磁され、この着磁された被検知物を検知する磁気センサ装置であって、磁束の中心の磁力方向が、着磁磁石によって着磁されて搬送される被検知物の平面に交わるバイアス磁界を形成し、被検知物の平面におけるバイアス磁界において被検知物の平面に平行な磁界成分の大きさが第1の保磁力より大きく、かつ、第2の保磁力より小さいバイアス磁石と、バイアス磁石の被検知物の平面に対向して配置される磁気抵抗効果素子と、を備える。
 本発明によれば、搬送面における着磁磁界の中心において搬送面に平行な磁界成分の大きさが第2の磁性体の飽和磁界以上であり、搬送面におけるバイアス磁界の中心において搬送面に平行な磁界成分の大きさが第1の保磁力より大きく、かつ、第2の保磁力より小さければよく、また、磁気抵抗効果素子は、バイアス磁石の搬送面に対向する面に配置されるので、着磁磁界およびバイアス磁界の強度と配置、ならびに、磁気センサを配置する構造を単純にすることができる。
この発明の実施の形態1に係る磁気センサ装置の構成図 実施の形態1に係る磁気センサ装置において、磁気抵抗効果素子に印加されているバイアス磁界の磁力線ベクトルを示す図 実施の形態1に係る磁気センサ装置において、着磁磁界を通り過ぎたときの被検知物に含まれる磁性体の磁化状態を示す図 実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界に進入したときの磁性体の磁化状態を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界の中央にあるときの磁性体の磁化状態を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界から離脱するときの磁性体の磁化状態を示す図 実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界に進入したときの磁気抵抗効果素子に印加される磁界を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界の中央にあるときの磁気抵抗効果素子に印加される磁界を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界から離脱するときの磁気抵抗効果素子に印加される磁界を示す図 実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より小さい場合の、磁気センサの出力波形の例を示す図 実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より大きい場合に、磁性体がバイアス磁界に進入したときの磁性体の磁化状態を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より大きい場合に、磁性体がバイアス磁界の中央にあるときの磁性体の磁化状態を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より大きい場合に、磁性体がバイアス磁界から離脱するときの磁性体の磁化状態を示す図 実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より大きい場合に、磁性体がバイアス磁界に進入したときの磁気抵抗効果素子に印加されるバイアス磁界を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より大きい場合に、磁性体が磁気抵抗効果素子の直上を過ぎたときの磁気抵抗効果素子に印加される磁界を示す図 実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より大きい場合に、磁性体がバイアス磁界から離脱するときの磁気抵抗効果素子に印加される磁界を示す図 実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より大きい場合の、磁気センサの出力波形の例を示す図 この発明の実施の形態2に係る磁気センサ装置の構成図 この発明の実施の形態3に係る磁気センサ装置の構成図 この発明の実施の形態4に係る磁気センサ装置の構成図 この発明の実施の形態5に係る磁気センサ装置の構成図 この発明の実施の形態6に係る磁気センサ装置の構成図 この発明の実施の形態7に係る磁気センサ装置の構成図 この発明の実施の形態8に係る磁気センサ装置の構成図
 以下、本発明の実施の形態について、図面を参照して説明する。尚、図中、同等または相当する部分には、同じ符号を付す。また、この発明のすべての実施の形態において、被検知物の搬送方向即ち保磁力識別磁気センサ装置の短手方向(副走査方向)をX方向、被検知物の搬送方向に直交する保磁力識別磁気センサ装置の長手方向(主走査方向)をY方向、保磁力識別磁気センサ装置の短手方向(搬送方向/副走査方向)及び長手方向(主走査方向)に直交する方向(搬送方向に鉛直する方向)をZ方向と定義する。
 実施の形態1.
 図1は、この発明の実施の形態1に係る磁気センサ装置の構成図である。図1は、主走査方向に直交する断面図である。磁気センサ装置は、筐体100の内部に、着磁磁石1、バイアス磁石2および磁気抵抗効果素子チップ9を備える。また、筐体100の搬送面の側にシールドカバー101を備える。磁気センサ装置は、磁性体6を含むシート状の被検知物4が搬送される搬送面Pに対向して、着磁磁石1およびバイアス磁石2が配置される。被検知物4は、搬送面Pの上を搬送方向5の方向に搬送される。
 着磁磁石1は、搬送面Pに直交する方向に互いに異なる磁極を有し、磁束の中心の磁力方向が搬送面Pに交わる着磁磁界11を形成する。バイアス磁石2は、搬送面Pに直交する方向に互いに異なる磁極を有し、磁束の中心の磁力方向が搬送面Pに交わるバイアス磁界21を形成する。バイアス磁石2は、着磁磁石1より搬送方向5の下流に配置される。実施の形態1では、着磁磁界11およびバイアス磁界21の磁束の中心の磁力方向は、搬送面Pに直交する。
 着磁磁石1は、着磁磁界11によって、被検知物4に含まれる磁性体6を磁化して着磁する。バイアス磁石2は、バイアス磁界21によって、被検知物4の磁性体6へ磁気バイアスを印加すると同時に、磁気抵抗効果素子チップ9への磁気バイアスを印加する。
 なお、磁気センサを構成する要素として、磁気抵抗効果素子チップ9からの出力を増幅するための増幅IC、磁気抵抗効果素子チップ9に電圧を印加したり出力を取り出したりする回路基板、および、磁石の磁力の安定化を図る磁気ヨークなどが備えられているが、図1では省略されている。
 実施の形態1に係る磁気センサ装置では、磁気抵抗効果素子チップ9は、バイアス磁石2の被検知物4の側に配置される。着磁磁石1とバイアス磁石2の磁極は、搬送面Pの側をN極とし、反対側をS極としており、それぞれ着磁磁界11とバイアス磁界12を発生させている。搬送面Pにおいて、着磁磁石1が形成する着磁磁界11の搬送面Pに直交する成分を着磁Z方向磁界Bz1、搬送面Pと平行で搬送方向と逆向きの成分を着磁X負方向磁界-Bx1、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx1、バイアス磁石2が形成するバイアス磁界21の搬送面Pに直交する成分をバイアスZ方向磁界Bz2、搬送面Pと平行で搬送方向と逆向きの成分をバイアスX負方向磁界-Bx2、搬送面Pと平行で搬送方向の成分をバイアスX正方向磁界+Bx2と定義する。負方向磁界の符号に負の符号「-」を付しているが、磁界の成分はいずれも絶対値である。
 磁気センサ装置の着磁磁石1は、被検知物4の上に設けられた磁性体6に着磁磁界11を印加し磁性体6を磁化する。バイアス磁石2は被検知物4の上に設けられた磁性体6と、磁気抵抗効果素子チップ9にバイアス磁界21を印加する。
 図2は、実施の形態1に係る磁気センサ装置において、磁気抵抗効果素子に印加されているバイアス磁界の磁力線ベクトルを示す図である。磁気抵抗効果素子チップ9の磁気抵抗効果素子91はバイアス磁石2の搬送方向の中心より少しだけX正方向に離れており、図2に示すように、磁気バイアスベクトル8は、搬送面Pに直交するZ方向から少しだけ搬送方向であるX方向に傾いている。この磁気バイアスベクトル8の搬送方向成分8xが磁気抵抗効果素子91のバイアス磁界として作用しており、搬送方向成分8xの大きさが変化することにより、被検知物4の上に設けられた磁性体6を出力の変化として検出することができる。磁性体6がない場合は、磁気バイアスベクトル8の搬送方向成分8xは、バイアス磁石2が形成するバイアス磁界21の搬送方向成分Bxに等しい。
 図3は、実施の形態1に係る磁気センサ装置において、着磁磁界を通り過ぎたときの被検知物に含まれる磁性体の磁化状態を示す図である。磁性体6を飽和磁化させる最小の磁界を飽和磁界Bs6と定義する。磁化された磁性体6は磁界6aを形成する。搬送面Pにおいて、着磁磁石1が作る着磁磁界11の搬送面Pと平行で搬送方向の成分である着磁X正方向磁界+Bx1は、磁性体6の飽和磁界Bs6よりも大きくなるように構成されている。被検知物4上に設けられた磁性体6は、着磁磁界11を通り過ぎた後、搬送方向上流の側がS極となるように残留磁化され、図3に示される磁界6aをつくる。
 次に、図4A~図4Cを用いて、磁性体6の保磁力Bc6が、搬送面Pと平行で搬送方向と逆向きの成分であるバイアスX負方向磁界-Bx2よりも小さい場合の、バイアス磁石2による磁性体6の磁化について説明する。磁性体6の保磁力Bc6は、搬送方向の正負で同じである。保磁力Bc6が搬送面Pにおけるバイアス磁界21のバイアスX負方向磁界-Bx2より小さい条件の磁性体6を磁性体61とする。磁性体61の保磁力Bc61は、搬送面PにおけるバイアスX負方向磁界-Bx2より小さい。磁性体61の保磁力Bc61が、搬送面PにおけるバイアスX負方向磁界-Bx2よりも小さいため、磁性体61はバイアス磁界21により再度磁化される。
 図4Aは、実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界に進入したときの磁性体の磁化状態を示す図である。被検知物4上に設けられた磁性体61がバイアス磁界21に進入すると、図4Aに示すように、バイアス磁界21により、搬送方向下流の側がS極となるように磁化され、図4Aの磁界61aを作る。
 図4Bは、実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界の中央にあるときの磁性体の磁化状態を示す図である。磁性体61がバイアス磁界21の中央に来たとき、バイアス磁界21の磁束の中心の磁力線は搬送面Pに直交しているので、図4Bに示すように、バイアス磁界21はX方向成分を持たなくなるため、磁性体61の磁化のX方向成分は消滅する。
 図4Cは、実施の形態1に係る磁気センサ装置において、磁性体の保磁力がバイアス磁界の強度より小さい場合に、磁性体がバイアス磁界から離脱するときの磁性体の磁化状態を示す図である。更に磁性体61がバイアス磁界21から離脱していくと、図4Cに示すように、バイアス磁界21により、搬送方向上流の側がS極となるように磁化され、図4Cの磁界61bをつくる。
 磁性体61が搬送面Pでバイアス磁界21を通過するときに、磁気抵抗効果素子91が磁性体61を検出する動作について、図5A~図5Cを用いて詳しく説明する。図5A~図5Cでは、磁気抵抗効果素子91においてバイアス磁界と磁性体61の磁界61aとの合成ベクトルが実線の磁気バイアスベクトル8で表される。図5A~図5Cにおいて磁気バイアスベクトル8に交差している点線矢印は、図2に示される、磁性体61がない場合の磁気バイアスベクトル8を示す。
 磁性体61がバイアス磁界21に進入して、磁性体61を通るバイアス磁界の強度が保磁力Bc61より大きくなると、図5Aに示すように、磁性体61のX方向の磁化が反転する。その結果、磁性体61が作る磁界61aの作用で、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xは、磁性体61がない場合の磁気バイアスの搬送方向成分Bxより小さくなる。
 磁性体61がバイアス磁界21の中央に来たとき、磁性体61を通るバイアス磁界はX方向成分を持たないので、磁性体61の磁化のX方向成分は消滅する。その結果、図5Bに示すように、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xは、図2に示される状態と同じになる。さらに、磁性体61がバイアス磁界21から離脱するとき、磁性体61はバイアス磁界21でX方向に磁化されて、バイアス磁界21に進入して再磁化されたときと反対向きの残留磁化が形成される。その結果、図5Cに示すように、磁性体61が作る磁界61bの作用で、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xは、磁性体がない場合の磁気バイアスの搬送方向成分Bxより大きくなる。
 図4A~図4Cに示すように、磁性体61の保磁力Bc61が、搬送面Pにおけるバイアス磁界21の搬送面Pと平行で搬送方向と逆向きの成分であるバイアスX負方向磁界-Bx2よりも小さい場合、磁性体61が搬送面Pを搬送方向5に移動するにしたがって、磁性体61の磁化の向きがX方向で反転する。そして、それに伴って、図5A~図5Cに示すように、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xの大きさが、磁性体がない場合の搬送方向成分Bxの大きさをまたいで変化する。図6は、実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より小さい場合の、磁気センサの出力波形の例を示す図である。磁性体61が搬送面Pを搬送方向5に移動するにしたがって、X方向成分を感磁する磁気抵抗効果素子91の抵抗値が変化し、図6に示すような出力が得られ、被検知物4上に設けられた磁性体61を検知することができる。図6に示すように磁性体61の保磁力Bc61が、搬送面PにおけるバイアスX負方向磁界-Bx2よりも小さい場合は、磁性体61の前後のエッジで正負が逆のピーク出力が出るようなエッジ検出出力が得られる。
 次に、図7A~図7Cを用いて、磁性体6の保磁力Bc6が、搬送面Pにおけるバイアス磁界21の搬送面Pと平行で搬送方向と逆向きの成分であるバイアスX負方向磁界-Bx2より大きい場合の、バイアス磁石2による磁性体6の磁化について説明する。保磁力Bc6が搬送面PにおけるバイアスX負方向磁界-Bx2より大きい条件の磁性体6を磁性体62とする。磁性体62の保磁力Bc62は、搬送面PにおけるバイアスX負方向磁界-Bx2より大きい。磁性体62の保磁力Bc62が、搬送面PにおけるバイアスX負方向磁界-Bx2よりも大きいため、磁性体62はバイアス磁界21では再度磁化されることがない。
 被検知物4上に設けられた磁性体62がバイアス磁界21を通過しても、図7A~図7Cに示されるように、磁性体62はバイアス磁界21によっては再磁化されないので、着磁磁界11を離脱したときの残留磁化の方向が維持される。図7A~図7Cに示されるように、実施の形態1では、磁気抵抗効果素子91の検出範囲において、磁性体62は搬送方向5の上流の側がS極である磁界62aを保持する。
 磁性体62が搬送面Pでバイアス磁界21を通過するときに、磁気抵抗効果素子91が磁性体62を検出する動作について、図8A~図8Cを用いて詳しく説明する。図8A~図8Cでは、磁気抵抗効果素子91においてバイアス磁界と磁性体62の磁界62aとの合成ベクトルが実線の磁気バイアスベクトル8で表される。図8A~図8Cにおいて磁気バイアスベクトル8に交差している点線矢印は、図2に示される、磁性体62がない場合の磁気バイアスベクトル8の位置を示す。
 磁性体62がバイアス磁界21に進入しても、磁性体62は磁化の方向を保持しているので、図8Aに示すように、磁性体62のX方向の磁化は磁気抵抗効果素子91における磁気バイアスの搬送方向成分の向きと一致する。磁性体62が作る磁界62aは磁気抵抗効果素子91を通る磁力線を搬送方向5に遠ざける方向に作用する。その結果、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xは、磁性体62がない場合の磁気バイアスの搬送方向成分Bxより大きくなる。
 磁性体62が磁気抵抗効果素子91の直上を過ぎると、磁性体62の磁界62aは、図8Bに示すように、磁性体62がない場合の磁気バイアスの搬送方向成分Bxを打ち消す方向に作用する。その結果、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xは、磁性体62がない場合の磁気バイアスの搬送方向成分Bxより小さくなる。
 さらに、磁性体62がバイアス磁界21から離脱するとき、磁性体62の磁界62aは、バイアス磁界21の磁力線を引きつける方向に働く。その結果、図8Cに示すように、
磁性体62が作る磁界62aの作用で、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xは、磁性体がない場合のバイアス磁界21の搬送方向成分Bxより大きくなる。
 図9は、実施の形態1に係る磁気センサ装置において、被検知物に含まれる磁性体の保磁力がバイアス磁界の強度より大きい場合の、磁気センサの出力波形の例を示す図である。図7A~図7Cに示すように、磁性体62がバイアス磁界21を通過する間、磁性体62のX方向の磁化の向きは変化しないので、図8A~図8Cに示すように、磁気抵抗効果素子91における磁気バイアスの搬送方向成分8xは、磁性体62がない場合の磁気バイアスの搬送方向成分Bxより大きいから、小さい、大きいの順に変化する。その結果、磁性体62が搬送面Pを搬送方向5に移動するにしたがって、X方向成分を感磁する磁気抵抗効果素子91の抵抗値が変化し、図9に示すような出力が得られ、被検知物4上に設けられた磁性体62を検知することができる。図9に示すように、磁性体62の保磁力Bc62が、搬送面PにおけるバイアスX負方向磁界-Bx2よりも大きい場合は、磁性体62が磁気抵抗効果素子91の上を通過する途中で、バイアス磁界21に進入および離脱するときとは逆の極性のピーク出力が現れるパターン検出出力が得られる。
 図6と図9を比較してわかるように、実施の形態1の磁気センサ装置によれば、磁性体6の保磁力Bc6が搬送面PにおけるバイアスX負方向磁界-Bx2より小さい場合と大きい場合とで、異なる波形の検出出力が得られるので、保磁力が異なる2種類の磁性体を識別することができる。
 以上説明した原理を用いて、保磁力Bc61を有する磁性体61の出力は図6に示すようなエッジ検出出力、保磁力Bc62を有する磁性体62の出力は図9に示すようなパターン検出出力とすることができる。すなわち、シート状の被検知物4が第1の保磁力Bc61を有する第1の磁性体61、および、第1の保磁力Bc61より大きい第2の保磁力Bc62を有する第2の磁性体62の少なくとも一方を含む場合に、着磁磁石1が形成する着磁磁界11を、搬送面Pと平行で搬送方向の成分である着磁X正方向磁界+Bx1の大きさが第2の磁性体62の飽和磁界Bs62以上とし、着磁磁石1より搬送方向5の下流に配置されるバイアス磁石2が形成するバイアス磁界21を、搬送面Pと平行で搬送方向と逆向きの成分であるバイアスX負方向磁界-Bx2の大きさが第1の保磁力Bc61より大きく、かつ、第2の保磁力Bc62より小さくなるように設定する。このように設定することで、第1の保磁力Bc61を有する磁性体61と、第1の保磁力Bc61より大きい第2の保磁力Bc62を有する第2の磁性体62と、を識別することが可能である。
 実施の形態1では、着磁磁石1が形成する着磁磁界11は、搬送面Pにおいて、着磁X正方向磁界+Bx1が、保磁力が大きい方の磁性体62の飽和磁界より大きければよい。また、バイアス磁石2が形成するバイアス磁界21は、搬送面Pにおいて、バイアスX負方向磁界-Bx2が、保磁力が小さい方の磁性体61の保磁力Bc61より大きく、かつ、保磁力が大きい方の磁性体62の保磁力Bc62より小さければよい。そして、磁気抵抗効果素子91を、バイアス磁石2の搬送面Pの側で、バイアス磁石2の搬送面Pに対向する面の搬送方向の中心から、搬送方向に少しずらした位置に配置すればよい。
 特許文献1の磁気質判別装置では、保磁力の違いによって残留磁化の方向が異なるように、領域によって異なる着磁磁界の磁界強度と磁界方向が形成されるように構成する必要がある。また、着磁磁界で磁化されて搬送される紙葉類の面に対して、バイアス磁界の磁力方向の強度および傾きと、バイアス磁界に対する磁気センサの位置および傾きを正確に設定する必要がある。それに比べて、実施の形態1の磁気センサ装置は、着磁磁石1およびバイアス磁石2の磁力および位置、ならびに、磁気抵抗効果素子91の位置と傾きに要求される精度が緩和される。また、バイアス磁界21の磁力線の方向を搬送面Pに対して傾ける必要がなく、磁気センサ装置全体の搬送方向長さを小さくすることができる。
 実施の形態1の磁気センサ装置によれば、着磁磁石1とバイアス磁石2は搬送面Pに対して同じ側に配置することが可能となり、保磁力識別磁気センサの小型化が可能となる。実施の形態1の磁気センサ装置では、着磁磁石1、バイアス磁石2ともに複雑な磁石形状は必要でないため、単純な磁気回路で磁気センサを構成することが可能となる。
 なお、実施の形態1では、着磁磁石1の磁極が、搬送面Pの側をN極として説明したが、搬送面Pの側をS極としても、磁性体6が着磁磁界11で残留磁化される向きが反対になるだけであり同様の効果が得られる。バイアス磁石2についても、磁極の配置が、搬送面Pの側をS極としても磁性体6の検出出力の正負の向きが反対になるだけであり同様の効果が得られる。
 さらに、着磁磁石1とバイアス磁石2の磁極の向きは、搬送面の側に同じ極性でなくてもよい。例えば着磁磁石1の搬送面Pの側をS極として、バイアス磁石2の搬送面Pの側をN極としても、磁性体6の保磁力Bc6によって検出出力の正負の向きが反対になるだけであり同様の効果が得られる。
 実施の形態1では、磁気抵抗効果素子91の構成について明記していないが、磁気抵抗効果素子91を2つ並べて中点電位を出力とするハーフブリッジ構成、磁気抵抗効果素子91を4つ並べたフルブリッジ構成、または、単体構成のいずれの構成も用いることができる。
 実施の形態1では、磁性体61の保磁力Bc61が、磁性体62の保磁力Bc62より大きい場合を一般化して考察した。実施の形態1で、磁性体62を保磁力Bc62が極めて大きい硬磁性体と考えることができる。その場合でも、磁気抵抗効果素子91の検出出力は、図9のようなパターンになるから、実施の形態1の磁気センサ装置は、被検知物4が磁性体として硬磁性体のみを含む場合でも、検出することができる。
 実施の形態2.
 図10は、この発明の実施の形態2に係る磁気センサ装置の構成図である。図10は、主走査方向に直交する断面図である。実施の形態2では、実施の形態1で示した着磁磁石1とバイアス磁石2の代わりに、一つの中心磁石3、第1のヨークである着磁用ヨーク31および第2のヨークであるバイアス用ヨーク32を用いる。本実施の形態2で使用する中心磁石3は、被検知物4の搬送方向5に平行な方向に互いに異なる磁極を有する。図10では、中心磁石3は搬送方向5の上流の側がN極で、下流の側がS極である。中心磁石3、着磁用ヨーク31およびバイアス用ヨーク32の主走査方向であるY方向の長さは同じであり、磁気センサ装置の読み取り幅より大きい。
 着磁用ヨーク31は、中心磁石3の搬送方向5上流の側に配置され、バイアス用ヨーク32は、中心磁石3の搬送方向5下流の側に配置される。磁気抵抗効果素子チップ9は、バイアス用ヨーク32の搬送面Pに対向する面に配置される。その他の構成は、実施の形態1と同様である。なお、一般的に磁気センサを構成する要素として、磁気抵抗効果素子チップ9からの出力を増幅するための増幅IC、磁気抵抗効果素子チップ9に電源を印加したり出力を取り出したりする回路基板、磁石の磁力の安定化を図る磁気ヨークなどが備えられているが、本図では省略されている。
 中心磁石3の搬送方向5上流の側のN極から出た磁束は、着磁用ヨーク31に入って、着磁用ヨーク31を搬送方向5の方向に見た周囲から空間に出て、バイアス用ヨーク32を搬送方向5の方向に見た周囲からバイアス用ヨーク32に入り、バイアス用ヨーク32から中心磁石3の搬送方向5下流の側のS極に至る。中心磁石3から出て、中心磁石3に戻る磁束は、主に着磁用ヨーク31とバイアス用ヨーク32に集中する。着磁用ヨーク31およびバイアス用ヨーク32は、中心磁石3で磁化される一時磁石である。
 着磁用ヨーク31から空間に出た磁束のうち、搬送面Pに向かう磁束は、着磁磁界311を形成する。また、バイアス用ヨーク32に入る磁束のうち、搬送面Pからバイアス用ヨーク32に向かう磁束は、バイアス磁界321を形成する。一時磁石としての着磁用ヨーク31は、着磁磁石を構成する。また、一時磁石としてのバイアス用ヨーク32は、バイアス磁石を構成する。着磁用ヨーク31は、被検知物4の上に設けられた磁性体6に着磁磁界311を印加し磁性体6を磁化する。バイアス用ヨーク32は被検知物4の上に設けられた磁性体6と、磁気抵抗効果素子チップ9にバイアス磁界321を印加する。
 着磁磁界311とバイアス磁界321は、中心磁石3、着磁用ヨーク31およびバイアス用ヨーク32の主走査方向であるY方向の長さに亘って均一とみなせる。
 搬送面Pにおいて、着磁用ヨーク31が形成する着磁磁界311の搬送面Pに直交する成分を着磁Z方向磁界Bz31、搬送面Pと平行で搬送方向と逆向きの成分を着磁X負方向磁界-Bx31、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx31、バイアス用ヨーク32が形成するバイアス磁界321の搬送面Pに直交する成分をバイアスZ方向磁界Bz32、搬送面Pと平行で搬送方向の成分をバイアスX正方向磁界+Bx32、搬送面Pと平行で搬送方向と逆向きの成分をバイアスX負方向磁界-Bx32と定義する。実施の形態1と同様に、磁性体61の保磁力Bc61より、磁性体62の保磁力Bc62の方が大きいものとする。着磁X正方向磁界+Bx31の大きさは、保磁力Bc6が大きい方の磁性体62の飽和磁界Bs62以上である。また、バイアスX正方向磁界+Bx32の大きさは、磁性体61の保磁力Bc61より大きく、かつ、磁性体62の保磁力Bc62より小さい。
 Bx31>Bs62、および、Bc62>Bx32>Bc61とするには、例えば、着磁用ヨーク31の搬送面Pの側の面を、バイアス用ヨーク32の搬送面Pの側の面より、搬送面Pに近く設置する。着磁用ヨーク31から出る磁束、および、バイアス用ヨーク32に入る磁束は、それぞれ表面からの距離が大きいほど拡がるので、磁束密度は距離にしたがって減少し、磁束密度に比例する磁界強度も減少する。そこで、中心磁石3の磁力と、着磁用ヨーク31およびバイアス用ヨーク32の搬送面Pの側の面の搬送面Pからの距離を調整して、Bx31>Bs62、および、Bc62>Bx32>Bc61を満たすように構成する。保磁力Bc62は一般に飽和磁界Bs62より小さいから、着磁用ヨーク31の搬送面Pに対向する面から搬送面Pまでの距離を、バイアス用ヨーク32の搬送面Pに対向する面から搬送面Pまでの距離より小さくする。
 実施の形態2に係る磁気センサ装置は、磁性体6の保磁力Bc6によって検出出力の正負の向きが反対になるが、実施の形態1と同様に作用し、磁性体61と磁性体62を識別することができる。実施の形態2の構成によれば、磁石を1つにすることができる。なお、中心磁石3のN極とS極の配置は、図10の向きに限らず、逆向きでもよい。
 実施の形態3.
 図11は、この発明の実施の形態3に係る磁気センサ装置の構成図である。図11は、主走査方向に直交する断面図である。実施の形態3でも、実施の形態1で示した着磁磁石1とバイアス磁石2の代わりに、一つの中心磁石3、第1のヨークである着磁用ヨーク31および第2のヨークであるバイアス用ヨーク32を用いる。実施の形態2と異なるのは、着磁用ヨーク31の搬送面Pに対向する面の大きさと、バイアス用ヨーク32の搬送面Pに対向する面の大きさが相違する点である。その他の構成は実施の形態2と同様である。
 磁力線どうしは互いに反発するから、着磁用ヨーク31またはバイアス用ヨーク32の搬送面Pに対向する面では、それぞれ磁束密度は均一とみなすことができる。着磁用ヨーク31の搬送面Pに対向する面から出る磁束は、バイアス用ヨーク32の搬送面Pに対向する面に入る磁束と同じとみなすことができる。磁束が同じで、断面での磁束密度が均一なら、磁束密度は断面積に反比例する。そこで、第2のヨークであるバイアス用ヨーク32の搬送面Pに対向する面の搬送方向5の長さを、第1のヨークである着磁用ヨーク31の搬送面Pに対向する面の搬送方向5の長さより大きくすれば、着磁X正方向磁界+Bx31をバイアスX正方向磁界+Bx32より大きくすることができる。
 さらに、実施の形態2と同様に、着磁用ヨーク31の搬送面Pに対向する面から搬送面Pまでの距離を、バイアス用ヨーク32の搬送面Pに対向する面から搬送面Pまでの距離より小さくしてもよい。
 実施の形態3では、中心磁石3の磁力と、着磁用ヨーク31およびバイアス用ヨーク32の搬送面Pの側の面の搬送方向5の長さを調整して、Bx31>Bs62、および、Bc62>Bx32>Bc61を満たすように構成する。実施の形態3に係る磁気センサ装置は、磁性体6の保磁力Bc6によって検出出力の正負の向きが反対になるが、実施の形態1と同様に作用し、磁性体61と磁性体62を識別することができる。なお、中心磁石3のN極とS極の配置は、図11の向きに限らず、逆向きでもよい。
 実施の形態4.
 図12は、この発明の実施の形態4に係る磁気センサ装置の構成図である。図12は、主走査方向に直交する断面図である。実施の形態4では、実施の形態1で示した着磁磁石1が、着磁用磁石14と、着磁用磁石14の搬送面Pの側の面に配置される集磁ヨーク33から構成されている。それ以外の構成は、実施の形態1と同じである。
 実施の形態4では、搬送面Pにおいて、着磁用磁石14および集磁ヨーク33が形成する着磁磁界411の搬送面Pに直交する成分を着磁Z方向磁界Bz41、搬送面Pと平行で搬送方向と逆向きの成分を着磁X負方向磁界-Bx41、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx41、バイアス磁石2が形成するバイアス磁界421の搬送面Pに直交する成分をバイアスZ方向磁界Bz42、搬送面Pと平行で搬送方向と逆向きの成分をバイアスX負方向磁界-Bx42、搬送面Pと平行で搬送方向の成分をバイアスX正方向磁界+Bx42と定義する。
 実施の形態4では、バイアス磁石2の磁力と、着磁用磁石14および集磁ヨーク33の搬送面Pの側の面の搬送方向5の長さを調整して、+Bx41>Bs62、および、Bc62>-Bx42>Bc61を満たすように構成する。
 集磁ヨーク33の搬送方向の長さは、着磁用磁石14の搬送方向の長さより小さい。この構成にすることにより、着磁用磁石14の主磁束は集磁ヨーク33の範囲に集められる。着磁磁石1と着磁用磁石14が同じであれば、実施の形態1の着磁磁界11よりも着磁磁界411が大きくなる。したがって、実施の形態1の着磁磁界11と同じ着磁磁界411を発生させる場合、着磁用磁石14を着磁磁石1よりも小さくできる。
 なお、実施の形態4では、着磁用磁石14の磁極が、搬送面Pの側をN極として説明したが、実施の形態1で説明したように、搬送面Pの側をS極としてもよい。バイアス磁石2についても、磁極の配置が、搬送面Pの側をS極としても磁性体6の検出出力の正負の向きが反対になるだけであり同様の効果が得られる。
 さらに、着磁用磁石14とバイアス磁石2の磁極の向きは、搬送面の側に同じ極性でなくてもよい。例えば着磁用磁石14の搬送面Pの側をS極として、バイアス磁石2の搬送面Pの側をN極としても、磁性体6の保磁力Bc6によって検出出力の正負の向きが反対になるだけであり同様の効果が得られる。
 実施の形態5.
 図13は、この発明の実施の形態5に係る磁気センサ装置の構成図である。図13は、主走査方向に直交する断面図である。実施の形態5では、実施の形態1で示した着磁磁石1を、搬送方向5と平行な方向に磁化させた着磁用磁石51と、その両側に配置された上流側ヨーク34、下流側ヨーク35で構成し、それ以外の構成は同じである。この構成では、搬送面Pにおいて、上流側ヨーク34と下流側ヨーク35の間に搬送方向と平行な方向の着磁磁界511が形成される。
 実施の形態5では、搬送面Pにおいて、着磁用磁石51、上流側ヨーク34および下流側ヨーク35が形成する着磁磁界511の、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx51、バイアス磁石2が形成するバイアス磁界521の搬送面Pに直交する成分をバイアスZ方向磁界Bz52、搬送面Pと平行で搬送方向と逆向きの成分をバイアスX負方向磁界-Bx52、搬送面Pと平行で搬送方向の成分をバイアスX正方向磁界+Bx52と定義する。
 実施の形態5では、着磁用磁石51、上流側ヨーク34、下流側ヨーク35を調整し、+Bx51>Bs62、および、Bc62>-Bx52>Bc61を満たすように構成する。
 実施の形態5の構成の場合、着磁X正方向磁界+Bx51が主磁束となる。さらに、着磁用磁石51の磁束を上流側ヨーク34、下流側ヨーク35に磁束を集めているため、小さな磁石でもより大きな着磁X正方向磁界+Bx51を発生させることが可能である。
 なお、実施の形態5では、着磁用磁石51の磁極が、搬送方向の上流の側をN極として説明したが、実施の形態1で説明したのと同様に、搬送方向の上流の側をS極としてもよい。バイアス磁石2についても、磁極の配置が、搬送面Pの側をS極としても磁性体6の検出出力の正負の向きが反対になるだけであり同様の効果が得られる。
 実施の形態6.
 図14は、この発明の実施の形態6に係る磁気センサ装置の構成図である。図14は、主走査方向に直交する断面図である。実施の形態6では、実施の形態5の構成から上流側ヨーク36、下流側ヨーク37をL字型に変更している。それ以外の構成は実施の形態5と同じである。上流側ヨーク36および下流側ヨーク37は、着磁用磁石51の搬送面Pの側で、それぞれ、着磁用磁石51の搬送方向の長さよりも互いに近接する方向に突出する近接部が形成されている。
 実施の形態6では、搬送面Pにおいて、着磁用磁石51、上流側ヨーク36および下流側ヨーク37が形成する着磁磁界611の、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx61、バイアス磁石2が形成するバイアス磁界621の搬送面Pに直交する成分をバイアスZ方向磁界Bz62、搬送面Pと平行で搬送方向と逆向きの成分をバイアスX負方向磁界-Bx62、搬送面Pと平行で搬送方向の成分をバイアスX正方向磁界+Bx62と定義する。
 実施の形態6では、着磁用磁石51、上流側ヨーク36、下流側ヨーク37を調整し、+Bx61>Bs62、および、Bc62>-Bx62>Bc61を満たすように構成する。
 実施の形態6の構成では、搬送面Pにおいて、上流側ヨーク36と下流側ヨーク37の間に搬送方向と平行な方向の着磁磁界611が形成される。この構成の場合、搬送面Pと平行で搬送方向の成分である着磁X正方向磁界+Bx61が主磁束となる。さらに、着磁用磁石51の磁束を上流側ヨーク36および下流側ヨーク37に集めた上で、近接部を形成することによって磁極を近づけているため、小さな磁石でも更に大きな着磁X正方向磁界+Bx61を発生させることが可能である。着磁用磁石51およびバイアス磁石2の磁極の向きがどちらでもよいことは、実施の形態5と同様である。
 実施の形態7.
 図15は、この発明の実施の形態7に係る磁気センサ装置の構成図である。図15は、主走査方向に直交する断面図である。実施の形態7では、実施の形態1で示した着磁磁石1と同じ働きをする逆搬送着磁磁石7を、バイアス磁石2の搬送方向下流側に配置した構成である。逆搬送着磁磁石7は、バイアス磁石2の中心を通り搬送方向5に直交する平面に関して、着磁磁石1と対称に配置することが望ましい。
 実施の形態7では、搬送面Pにおいて、着磁磁石1が形成する着磁磁界711の搬送面Pに直交する成分を着磁Z方向磁界Bz71、搬送面Pと平行で搬送方向と逆向きの成分を着磁X負方向磁界-Bx71、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx71、バイアス磁石2が形成するバイアス磁界721の搬送面Pに直交する成分をバイアスZ方向磁界Bz72、搬送面Pと平行で搬送方向と逆向きの成分をバイアスX負方向磁界-Bx72、搬送面Pと平行で搬送方向の成分をバイアスX正方向磁界+Bx72と定義する。さらに、逆搬送着磁磁石7が形成する着磁磁界771の搬送面Pに直交する成分を着磁Z方向磁界Bz77、搬送面Pと平行で搬送方向と逆向きの成分を着磁X負方向磁界-Bx77、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx77と定義する。
 実施の形態7では、バイアス磁石2の磁力と、着磁磁石1の磁力を、+Bx71>Bs62、および、Bc62>-Bx72>Bc61を満たすように構成する。また、逆搬送着磁磁石7の磁力を、-Bx77>Bs62を満たすように構成する。着磁磁石1と逆搬送着磁磁石7が同じ大きさと磁力を有するなら、-Bx77>Bs62である。
 実施の形態7の構成とすることにより、被検知物4を搬送方向5とは逆の方向にも搬送できる双方向搬送が要求される磁気センサ装置において、どちらから搬送されても保磁力を識別することが可能となる。この場合、磁気抵抗効果素子91に加わる磁気バイアスベクトル8が搬送方向5に傾いているから、逆の搬送方向に対する磁気バイアスベクトル8の向きが、搬送方向5に対する磁気バイアスベクトル8の向きとは逆になり、磁性体61,62がないときのバイアス磁界を基準にすれば、逆の搬送方向では図6および図9と正負が反転した同じ出力パターンが得られる。
 実施の形態7において、着磁磁石1および逆搬送着磁磁石7の少なくともいずれかを、実施の形態4の着磁用磁石14および集磁ヨーク33で構成することができる。図15では、集磁ヨーク33を備える場合が点線で示されている。その場合、着磁磁石1および逆搬送着磁磁石7は、それぞれ、着磁用磁石14に置き換えられる。
 なお、着磁磁石1およびバイアス磁石2の磁極の向きが、図15と逆向き、あるいは、互いに逆でもよいことは、実施の形態1で説明したとおりである。また、逆搬送着磁磁石7の磁極の向きが、着磁磁石1の磁極の向きと逆であってもよい。
 実施の形態8.
 図16は、この発明の実施の形態8に係る磁気センサ装置の構成図である。図16は、主走査方向に直交する断面図である。実施の形態8では、実施の形態5で示した着磁用磁石51、上流側ヨーク34および下流側ヨーク35を、バイアス磁石2の搬送方向下流側にも配置した構成である。着磁用磁石51、上流側ヨーク34および下流側ヨーク35と、着磁用磁石53、上流側ヨーク38および下流側ヨーク39は、搬送方向5に直交する平面に関して互いに対称に配置される。好ましくは、着磁用磁石51、上流側ヨーク34および下流側ヨーク35と、着磁用磁石53、上流側ヨーク38および下流側ヨーク39は、バイアス磁石2の中心を通り搬送方向5に直交する平面に関して互いに対称である。
 実施の形態8では、搬送面Pにおいて、着磁用磁石51、上流側ヨーク34および下流側ヨーク35が形成する着磁磁界511の、搬送面Pと平行で搬送方向の成分を着磁X正方向磁界+Bx51、バイアス磁石2が形成するバイアス磁界521の搬送面Pに直交する成分をバイアスZ方向磁界Bz52、搬送面Pと平行で搬送方向と逆向きの成分をバイアスX負方向磁界-Bx52、搬送面Pと平行で搬送方向の成分をバイアスX正方向磁界+Bx52と定義する。さらに、着磁用磁石53、上流側ヨーク38および下流側ヨーク39が形成する着磁磁界531の、搬送面Pと平行で搬送方向と逆向きの成分を着磁X負方向磁界-Bx53と定義する。
 実施の形態8では、着磁用磁石51、上流側ヨーク34、下流側ヨーク35を調整し、+Bx51>Bs62、および、Bc62>-Bx52>Bc61を満たすように構成する。また、着磁用磁石53、上流側ヨーク38および下流側ヨーク39を調整し、-Bx53>Bs62を満たすように構成する。着磁用磁石51、上流側ヨーク34および下流側ヨーク35と、着磁用磁石53、上流側ヨーク38および下流側ヨーク39が同じ大きさと磁力を有するなら、-Bx53>Bs62である。
 実施の形態8の構成とすることにより、被検知物4を搬送方向5とは逆の方向にも搬送できる双方向搬送が要求される磁気センサ装置において、どちらから搬送されても保磁力を識別することが可能となる。この場合、磁気抵抗効果素子91に加わる磁気バイアスベクトル8が搬送方向5に傾いているから、逆の搬送方向に対する磁気バイアスベクトル8の向きが、搬送方向5に対する磁気バイアスベクトル8の向きとは逆になり、磁性体61,62がないときのバイアス磁界を基準にすれば、逆の搬送方向では図6および図9と正負が反転した同じ出力パターンが得られる。
 実施の形態8において、上流側ヨーク34および下流側ヨーク35と、上流側ヨーク38および下流側ヨーク39を、それぞれ、実施の形態6の上流側ヨーク36および下流側ヨーク37で構成することができる。その構成は、実施の形態6の構成に追加して、着磁用磁石51、上流側ヨーク36および下流側ヨーク37と同じものを、バイアス磁石2の中心を通り搬送方向5に直交する平面に関して対称に配置したものである。この構成でも、図16の構成と同じ効果が得られる。
 なお、実施の形態8では、着磁用磁石51の磁極が、搬送方向5の上流の側をN極として説明したが、実施の形態1で説明したのと同様に、搬送方向5の上流の側をS極としてもよい。バイアス磁石2についても、磁極の配置が、搬送面Pの側をS極としても磁性体6の検出出力の正負の向きが反対になるだけであり同様の効果が得られる。したがってまた、着磁用磁石53の磁極の向きは、搬送方向5に直交する平面に関して着磁用磁石51と対称でなく、逆向き、すなわち搬送方向5の方向に同じ向きでもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 本出願は、2016年5月6日に出願された、日本国特許出願特願2016-093021号に基づく。本明細書中に日本国特許出願特願2016-093021号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 1 着磁磁石、2 バイアス磁石、3 中心磁石、4 被検知物、5 搬送方向、6 磁性体、7 逆搬送着磁磁石、8 磁気バイアスベクトル、9 磁気抵抗効果素子チップ、11 着磁磁界、14 着磁用磁石、21 バイアス磁界、31 着磁用ヨーク、32 バイアス用ヨーク、33 集磁ヨーク、34,36,38 上流側ヨーク、35,37,39 下流側ヨーク、51,53 着磁用磁石、61,62 磁性体、91 磁気抵抗効果素子、100 筐体、101 シールドカバー、311,411,511,611,711 着磁磁界、321,421,521,621,711 バイアス磁界、531,771 着磁磁界、P 搬送面。

Claims (10)

  1.  搬送面に着磁磁界を形成し、前記搬送面において前記着磁磁界の前記搬送面に平行な磁界成分の大きさが、第1の保磁力よりも大きい第2の保磁力を有する第2の磁性体の飽和磁界以上である着磁磁石によって、前記搬送面を搬送されるシート状の被検知物が着磁され、この着磁された前記被検知物を検知する磁気センサ装置であって、
     磁束の中心の磁力方向が、前記着磁磁石によって着磁され前記搬送面に沿って搬送される前記被検知物の平面に交わるバイアス磁界を形成し、前記被検知物の平面における前記バイアス磁界において前記被検知物の平面に平行な磁界成分の大きさが前記第1の保磁力より大きく、かつ、前記第2の保磁力より小さいバイアス磁石と、
     前記バイアス磁石の前記被検知物の平面に対向して配置される磁気抵抗効果素子と、
     を備える磁気センサ装置。
  2.  前記搬送面の一方の側に配置され、前記被検知物が搬送される搬送方向に互いに異なる磁極を有する中心磁石と、
     前記中心磁石の、前記搬送方向の上流の側に配置され、前記着磁磁石を構成する第1のヨークと、
     前記中心磁石の、前記搬送方向の下流の側に配置され、前記バイアス磁石を構成する第2のヨークと、
     を備える、請求項1に記載の磁気センサ装置。
  3.  前記第1のヨークの前記搬送面に対向する面から前記搬送面までの距離は、前記第2のヨークの前記搬送面に対向する面から前記搬送面までの距離より小さい、請求項2に記載の磁気センサ装置。
  4.  前記第2のヨークの前記搬送面に対向する面の前記搬送方向の長さは、前記第1のヨークの前記搬送面に対向する面の前記搬送方向の長さより大きい、請求項2または3に記載の磁気センサ装置。
  5.  前記着磁磁石は、
     前記搬送面に直交する方向に互いに異なる磁極を有する着磁用磁石と、
     前記着磁用磁石の前記搬送面の側の面に、前記被検知物が搬送される搬送方向の長さが前記着磁用磁石の前記搬送方向の長さより小さい集磁ヨークと、
     を含む、請求項1に記載の磁気センサ装置。
  6.  前記着磁磁石は、
     前記被検知物が搬送される搬送方向に互いに異なる磁極を有する着磁用磁石と、
     前記着磁用磁石の前記搬送方向の上流の側に配置される上流側ヨークと、
     前記着磁用磁石の前記搬送方向の下流の側に配置される下流側ヨークと、
     を含む、請求項1に記載の磁気センサ装置。
  7.  前記上流側ヨークおよび前記下流側ヨークは、前記着磁用磁石の前記搬送面の側で、それぞれ、前記着磁用磁石の前記搬送方向の長さよりも互いに近接する方向に突出する近接部が形成されている、請求項6に記載の磁気センサ装置。
  8.  前記バイアス磁石の前記被検知物が搬送される搬送方向の下流側で、前記搬送面に第2の着磁磁界を形成し、前記搬送面において前記第2の着磁磁界の前記搬送面に平行な磁界成分の大きさが、前記第2の磁性体の飽和磁界以上である、逆搬送着磁磁石を備える、請求項1に記載の磁気センサ装置。
  9.  前記着磁磁石および前記逆搬送着磁磁石の少なくともいずれかは、
     前記搬送面に直交する方向に互いに異なる磁極を有する着磁用磁石と、
     前記着磁用磁石の前記搬送面の側の面に、前記搬送方向の長さが前記着磁用磁石の前記搬送方向の長さより小さい集磁ヨークと、
     を含む、請求項8に記載の磁気センサ装置。
  10.  前記着磁磁石および前記逆搬送着磁磁石は、それぞれ、
     前記搬送方向に互いに異なる磁極を有する着磁用磁石と、
     前記着磁用磁石の前記搬送方向の上流の側に配置される上流側ヨークと、
     前記着磁用磁石の前記搬送方向の下流の側に配置される下流側ヨークと、
     を含む、請求項8に記載の磁気センサ装置。
PCT/JP2017/017117 2016-05-06 2017-05-01 磁気センサ装置 WO2017191823A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780027143.3A CN109073715B (zh) 2016-05-06 2017-05-01 磁传感器装置
US16/071,331 US20190377036A1 (en) 2016-05-06 2017-05-01 Magnetic sensor device
DE112017002340.8T DE112017002340T5 (de) 2016-05-06 2017-05-01 Magnetsensoreinrichtung
JP2017554909A JP6289775B1 (ja) 2016-05-06 2017-05-01 磁気センサ装置
US17/014,741 US20200400759A1 (en) 2016-05-06 2020-09-08 Magnetic sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093021 2016-05-06
JP2016-093021 2016-05-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/071,331 A-371-Of-International US20190377036A1 (en) 2016-05-06 2017-05-01 Magnetic sensor device
US17/014,741 Continuation US20200400759A1 (en) 2016-05-06 2020-09-08 Magnetic sensor device

Publications (1)

Publication Number Publication Date
WO2017191823A1 true WO2017191823A1 (ja) 2017-11-09

Family

ID=60203531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017117 WO2017191823A1 (ja) 2016-05-06 2017-05-01 磁気センサ装置

Country Status (5)

Country Link
US (2) US20190377036A1 (ja)
JP (1) JP6289775B1 (ja)
CN (1) CN109073715B (ja)
DE (1) DE112017002340T5 (ja)
WO (1) WO2017191823A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016555A (ja) * 2018-07-26 2020-01-30 浜松光電株式会社 磁性体検出装置
JP2020051917A (ja) * 2018-09-27 2020-04-02 アイシン精機株式会社 円筒状超電導体の検査装置及び検査方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964830B2 (ja) * 2019-08-06 2021-11-10 三菱電機株式会社 磁気センサ装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364498A (ja) * 1991-06-12 1992-12-16 Glory Ltd 磁気質検出方法およびこれを用いた磁気質検出装置
JPH06180305A (ja) * 1992-12-11 1994-06-28 Glory Ltd 磁気質検出装置
WO2010052797A1 (ja) * 2008-11-10 2010-05-14 グローリー株式会社 磁気質検出装置
JP2013206439A (ja) * 2012-03-29 2013-10-07 Glory Ltd 紙葉類磁性評価装置及び紙葉類磁性評価方法
WO2014147824A1 (ja) * 2013-03-22 2014-09-25 グローリー株式会社 磁気質検出装置
JP2014203396A (ja) * 2013-04-09 2014-10-27 グローリー株式会社 磁気質判別装置及び磁気質判別方法
US20140367469A1 (en) * 2011-12-13 2014-12-18 Giesecke & Devrient Gmbh Method and Apparatus for Checking Value Documents
WO2015190468A1 (ja) * 2014-06-11 2015-12-17 三菱電機株式会社 磁気センサ装置
JP2016206069A (ja) * 2015-04-24 2016-12-08 日本電産サンキョー株式会社 磁気センサ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061507A1 (de) * 2008-12-10 2010-06-17 Giesecke & Devrient Gmbh Magnetsensor zur Prüfung von Wertdokumenten
EP2955535B1 (en) * 2013-02-07 2018-08-08 Mitsubishi Electric Corporation Magnetic sensor device
JP6049864B2 (ja) * 2013-04-09 2016-12-21 グローリー株式会社 磁気質判別装置及び磁気質判別方法
JP6301709B2 (ja) 2014-04-09 2018-03-28 グローリー株式会社 磁気質判別装置及び磁気質判別方法
US10001532B2 (en) * 2014-05-13 2018-06-19 Mitsubishi Electric Corporation Magnetic sensor device
JP6137121B2 (ja) 2014-11-07 2017-05-31 トヨタ自動車株式会社 ロータ構造及びロータ製造方法
JP6619992B2 (ja) * 2015-11-13 2019-12-11 グローリー株式会社 磁気検出装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364498A (ja) * 1991-06-12 1992-12-16 Glory Ltd 磁気質検出方法およびこれを用いた磁気質検出装置
JPH06180305A (ja) * 1992-12-11 1994-06-28 Glory Ltd 磁気質検出装置
WO2010052797A1 (ja) * 2008-11-10 2010-05-14 グローリー株式会社 磁気質検出装置
US20140367469A1 (en) * 2011-12-13 2014-12-18 Giesecke & Devrient Gmbh Method and Apparatus for Checking Value Documents
JP2013206439A (ja) * 2012-03-29 2013-10-07 Glory Ltd 紙葉類磁性評価装置及び紙葉類磁性評価方法
WO2014147824A1 (ja) * 2013-03-22 2014-09-25 グローリー株式会社 磁気質検出装置
JP2014203396A (ja) * 2013-04-09 2014-10-27 グローリー株式会社 磁気質判別装置及び磁気質判別方法
WO2015190468A1 (ja) * 2014-06-11 2015-12-17 三菱電機株式会社 磁気センサ装置
JP2016206069A (ja) * 2015-04-24 2016-12-08 日本電産サンキョー株式会社 磁気センサ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016555A (ja) * 2018-07-26 2020-01-30 浜松光電株式会社 磁性体検出装置
JP7186419B2 (ja) 2018-07-26 2022-12-09 浜松光電株式会社 磁性体検出装置
JP2020051917A (ja) * 2018-09-27 2020-04-02 アイシン精機株式会社 円筒状超電導体の検査装置及び検査方法
JP7128470B2 (ja) 2018-09-27 2022-08-31 株式会社アイシン 円筒状超電導体の検査装置及び検査方法

Also Published As

Publication number Publication date
JP6289775B1 (ja) 2018-03-07
US20190377036A1 (en) 2019-12-12
DE112017002340T5 (de) 2019-01-17
CN109073715A (zh) 2018-12-21
CN109073715B (zh) 2020-10-16
JPWO2017191823A1 (ja) 2018-05-17
US20200400759A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
KR101487145B1 (ko) 자기 패턴 검출 장치
RU2610341C1 (ru) Устройство детектирования магнитного свойства
JP6300908B2 (ja) 磁気センサ装置
JP4867391B2 (ja) 紙葉類識別センサ
US20200400759A1 (en) Magnetic sensor device
WO2013146755A1 (ja) 紙葉類磁性評価装置及び紙葉類磁性評価方法
JP2008145379A (ja) 磁気センサ
JP2015200523A (ja) 磁界検出装置および磁気識別装置
WO2016170885A1 (ja) 磁気センサ装置
WO2016170886A1 (ja) 磁気センサ装置
JP5858248B2 (ja) 磁気センサ
EP0709696A2 (en) Permanent magnet assembly with MR element for detection/authentication of magnetic documents
WO2016170887A1 (ja) 磁気センサ装置
WO2017126373A1 (ja) 磁気媒体検出装置
JP3283930B2 (ja) 磁気質検知方法
JP6315802B2 (ja) 磁気センサ装置
JP2008145302A (ja) 磁気センサ
JP6964830B2 (ja) 磁気センサ装置
JP2014203396A (ja) 磁気質判別装置及び磁気質判別方法
US20230118954A1 (en) Magnetic sensor device
US11955278B2 (en) Magnetizing device with reduced stray field
JP2009251690A (ja) 磁気センサ装置
JPH02115990A (ja) 磁気パターンの着磁方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017554909

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792755

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792755

Country of ref document: EP

Kind code of ref document: A1