WO2015022864A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2015022864A1
WO2015022864A1 PCT/JP2014/070171 JP2014070171W WO2015022864A1 WO 2015022864 A1 WO2015022864 A1 WO 2015022864A1 JP 2014070171 W JP2014070171 W JP 2014070171W WO 2015022864 A1 WO2015022864 A1 WO 2015022864A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetoresistive element
magnetic sensor
magnetic
magnet part
Prior art date
Application number
PCT/JP2014/070171
Other languages
English (en)
French (fr)
Inventor
保 南谷
耕二 新村
大輔 濱口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015022864A1 publication Critical patent/WO2015022864A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids

Definitions

  • the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor for detecting magnetic information such as a magnetic pattern provided on a detection target.
  • Patent Document 1 discloses a long magnetic sensor including a magnetoresistive element.
  • the long magnetic sensor disclosed in Patent Document 1 includes a case (holder), a magnetoresistive element, a substantially rectangular parallelepiped magnet, a terminal, and a cover.
  • the case has a plurality of recesses on the top and bottom surfaces, a magnetoresistive element is disposed in each of the plurality of recesses on the top surface of the case, and a magnet is disposed in each of the plurality of recesses on the bottom surface of the case. For this reason, the case has a function of holding the magnetoresistive element and the magnet.
  • the magnetoresistive element is disposed so as to be positioned above the magnet, and the magnetoresistive element is connected to the terminal via the lead frame.
  • the cover is slidably fixed to the case so as to cover the upper surface of the case.
  • the magnetoresistive element is protected by a cover.
  • a detected object such as a bill passes over the cover along a moving direction that is substantially perpendicular to the longitudinal direction of the magnetic sensor.
  • the magnetic flux density applied to the magnetoresistive element changes depending on the magnetic pattern of the detected object, and the resistance value of the magnetoresistive element changes, so that the magnetic pattern of the detected object can be detected.
  • the magnetoresistive element detects a change in magnetic flux density applied along the normal direction (for example, the vertical direction) of its functional surface, but the magnetoresistive element is changed depending on the distance between the magnetoresistive element and the detected object.
  • the magnetic flux density of the applied magnetic field changes. Specifically, when the distance between the magnetoresistive element and the object to be detected increases, the magnetic pattern along the normal direction applied to the magnetoresistive element by the magnetic pattern when the magnetic pattern of the object to be detected passes. Magnetic flux density is reduced.
  • the change in the magnetic flux density is smaller than when the distance between the magnetoresistive element and the detected object is small.
  • the output of the magnetic sensor is reduced. Considering only the output of the magnetic sensor, it is preferable that the distance between the magnetoresistive element and the object to be detected is small.
  • the positions of the plurality of magnetoresistive elements are arranged in a straight line, so that the detected object and the cover are covered by a conveying roller that conveys the detected object along the moving direction. And the gap can be adjusted.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic sensor capable of suppressing variations in the output of the magnetic sensor.
  • a magnetic sensor includes a magnetoresistive element having a functional surface substantially parallel to the moving direction of the detected object, and at least a part of the magnetoresistive element on the opposite side of the region where the detected object moves. And a magnet part for applying a magnetic field to the magnetoresistive element.
  • the magnetic flux density of the magnetic field applied to the magnetoresistive element by the magnet unit is the normal direction of the functional surface and the functional surface. It is smaller than the magnetic flux density of the magnetic field applied from a direction not parallel to any of the parallel directions.
  • the magnet unit preferably includes a first magnet unit and a second magnet unit, and the first magnet unit, the magnetoresistive element, and the second magnet unit include: It is preferable to arrange in this order along the moving direction of the detected object.
  • each of the first magnet unit and the second magnet unit has a first magnetic pole having the same polarity on the region side where the detection target moves, and the region side where the detection target moves It is preferable to have a second magnetic pole opposite in polarity to the first magnetic pole.
  • the magnet portion faces the magnetoresistive element along the normal direction of the functional surface between the first magnet portion and the second magnet portion. It is preferable to further include a third magnet portion disposed in the.
  • the first surface located on the side of the third magnet portion where the detected body moves is the region side where the detected body of the first magnet portion and the second magnet portion moves. It is preferable that the detection object is located farther away from the region in which the detected object moves along the normal direction of the functional surface than the first surface located at the position.
  • the first magnet part, the second magnet part, and the third magnet part are preferably separated and independent from each other.
  • the first magnet part, the second magnet part, and the third magnet part are connected to each other by the third magnet part. By doing so, it is preferable that they are integrally formed.
  • the magnetic sensor according to the present invention further includes a case that has a recess that opens toward a region in which the detected object moves, and that accommodates the magnetoresistive element in the recess.
  • the case is preferably constituted by a plastic magnet including the first magnet part, the second magnet part, and the third magnet part.
  • the third magnet portion defines a bottom surface portion of the concave portion, and the first magnet portion and the second magnet portion stand from both ends of the bottom surface portion aligned in the moving direction of the detected object. It is preferable to prescribe
  • FIG. 10 is a schematic cross-sectional view of a magnetic sensor according to Modification 4.
  • FIG. 10 is a schematic cross-sectional view of a magnetic sensor according to Modification 4.
  • FIG. 10 is a schematic diagram of a magnetic sensor according to Modification 5.
  • FIG. FIG. 8 is a cross-sectional view taken along line VIII-VIII shown in FIG. It is sectional drawing along the longitudinal direction of the magnetic sensor shown in FIG. It is a figure which shows the output characteristic of the magnetic sensor shown in FIG. It is sectional drawing along the longitudinal direction of the magnetic sensor in the form 1 of a comparison. It is a figure which shows the output characteristic of the magnetic sensor in the form 1 of a comparison. It is sectional drawing along the longitudinal direction of the magnetic sensor in the form 2 of a comparison. It is a figure which shows the output characteristic of the magnetic sensor in the comparative form 2. It is the schematic of the magnetic sensor which concerns on the modification 6.
  • FIG. It is a figure which shows the external shape of the magnet used for the verification experiment 1.
  • FIG. It is a figure which shows the positional relationship of the magnetoresistive element with which the magnetic sensor based on Example 1 using the magnet shown in FIG. 13 is equipped, and a magnet.
  • FIG. 13 It is a figure which shows the positional relationship of the magnetoresistive element with which the magnetic sensor based on Example 2 using the magnet shown in FIG. 13 is equipped, and a magnet.
  • FIG. It is a figure which shows the external shape of the magnet used for the verification experiment 2.
  • FIG. It is a figure explaining the parameter which influences the result of the verification experiment.
  • An experiment when the length d along the height direction between the surface of the third magnet portion shown in FIG. 20 and the first surface of the first magnet portion and the first surface of the second magnet portion is changed.
  • FIG. 20 It is a figure which shows the experimental result at the time of changing the length G along the height direction between the 1st surface of the 1st magnet part shown in FIG. 20, and the 2nd magnet part, and the lower surface of a magnetoresistive element. . It is a figure which shows transition of the magnetic flux density change rate based on the result shown in FIG. It is a figure which shows the external shape of the magnet used for the verification experiment 3. FIG. It is a figure which shows the 1st example of the magnet used for the verification experiment 3. FIG. It is a top view of the magnetoresistive element shown in FIG. It is a figure which shows the equivalent circuit of the magnetoresistive element shown in FIG.
  • FIG. It is a figure which shows the waveform of the output voltage signal of a magnetic sensor provided with the magnetoresistive element shown in FIG. It is a figure which shows the result of the verification experiment 3 at the time of using the magnetic sensor which concerns on Example 3o comprised by the magnet shown in FIG. 28, and the magnetic sensor in the comparative example 2.
  • FIG. It is a figure which shows transition of the output voltage attenuation factor based on the result shown in FIG.
  • FIG. It is a figure which shows the waveform of the output voltage signal of the magnetic sensor in the comparative example 2 at the time of changing the length along the height direction between a to-be-detected body and a cover.
  • FIG. 28 It is a figure which shows the waveform of the output voltage signal of the magnetic sensor which concerns on Example 3o comprised by the magnet shown in FIG. 28 at the time of changing the length along the height direction between a to-be-detected body and a cover. . It is a figure which shows the 2nd example of the magnet used for the verification experiment 3. FIG. It is a figure which shows the result of the verification experiment 3 at the time of using the magnetic sensor which concerns on Example 3o comprised by the magnet shown in FIG. 28, and the magnetic sensor which concerns on Example 3p comprised by the magnet shown in FIG. It is a figure which shows transition of the output voltage attenuation factor based on the result shown in FIG.
  • FIG. 43 is a plan view of the magnetoresistive element shown in FIGS. 41 and 42.
  • FIG. 43 It is a figure which shows the equivalent circuit of the magnetoresistive element shown to FIG. 41 and FIG.
  • FIG. 41 It is a figure which shows the waveform of the output voltage signal of a magnetic sensor provided with the magnetoresistive element shown in FIG. 41 and FIG. It is a figure which shows the result of the verification experiment 4 at the time of using the magnetic sensor which concerns on Example 4, 5 comprised by the magnet shown to FIG. 41 and FIG. 42, and the magnetic sensor in the comparative example 3.
  • FIG. It is a figure which shows transition of the output voltage attenuation factor based on the result shown in FIG.
  • FIG. 41 shows the waveform of the output voltage signal of the magnetic sensor which concerns on Example 5 comprised by the magnet shown in FIG. 41 at the time of changing the length along the height direction between a to-be-detected body and a cover. .
  • FIG. 1 is a schematic sectional view of a magnetic sensor according to the present embodiment.
  • FIG. 2 is a diagram showing the arrangement of the magnetoresistive elements and magnets included in the magnetic sensor shown in FIG. With reference to FIG. 1 and FIG. 2, the magnetic sensor 1 which concerns on this Embodiment is demonstrated.
  • the magnetic sensor 1 includes a cover 10, a case (holder) 20, a sealing resin 30, a first magnet unit 40a, a second magnet unit 40b, a terminal 50, and a lead frame 60. , And a magnetoresistive element 70.
  • the case 20 has recesses 21 and 22 provided on the lower surface side (the side opposite to the region side on which the detected object moves) and a recess 23 provided on the upper surface side (the region side on which the detected object moves).
  • the concave portion 21 and the concave portion 22 are provided side by side along a moving direction (X-axis direction) of a detection target to be described later in a state of being separated from each other.
  • a partition wall 24 is provided between the recess 21 and the recess 22.
  • the concave portions 21 and 22 have flat portions 21a and 22a parallel to the moving direction of the detection target, and the flat portion 21a and the flat portion 22a are substantially located on the same plane.
  • the recess 23 is provided so as to face at least the partition wall 24. Moreover, the recessed part 23 has the plane part 23a substantially parallel to the moving direction of a to-be-detected body.
  • a first magnet part 40 a and a second magnet part 40 b having a substantially rectangular solid shape are arranged.
  • the 1st magnet part 40a has the 1st surface 41a which is a surface located in the movement field side (Z-axis positive direction side) of a detected object.
  • the 2nd magnet part 40b has the 1st surface 41b which is a surface located in the movement field side (Z-axis positive direction side) of a detected object.
  • the first surface 41a of the first magnet unit 40a and the first surface 41b of the second magnet unit 40b are located on substantially the same plane.
  • the first magnet part 40 a and the second magnet part 40 b are sealed in the recesses 21 and 22 by the sealing resin 30.
  • the magnetoresistive element 70 is disposed on the flat surface portion 23a of the recess 23 so as to be positioned above the partition wall portion 24 (Z-axis positive direction). Thereby, the magnetoresistive element 70 has the functional surface 70a parallel to the moving direction of the detected object.
  • the functional surface 70a is a surface where a magnetoresistive effect occurs.
  • the magnetoresistive element 70 is connected to a terminal 50 inserted into a terminal hole provided in the case 20 via a lead frame 60.
  • the magnetoresistive element 70 is a semiconductor magnetoresistive element manufactured by forming an InSb film on a silicon substrate, for example.
  • the cover 10 has claw portions that engage with engagement grooves (not shown) provided along the longitudinal direction (Y-axis direction) on both sides of the case 20, and is slidably fixed to the case 20.
  • the cover 10 covers the surface of the case 20 and the recess 23.
  • the magnetoresistive element 70 is protected by the cover 10.
  • the area where the detection target moves refers to an area above the cover 10. Accordingly, the region in which the detection target moves is located above the magnetoresistive element 70, the first surface 41a of the first magnet unit 40a, and the first surface 41b of the second magnet unit 40b.
  • the first magnet part 40a and the second magnet part 40b and the magnetoresistive element 70 when attention is paid to the arrangement of the first magnet part 40a and the second magnet part 40b and the magnetoresistive element 70, the first magnet part 40a and the second magnet part 40b are The first magnet part 40a, the magnetoresistive element 70, and the second magnet part 40b are arranged in this order along the moving direction of the detected object, while being arranged on the opposite side of the region where the detected object moves. Yes.
  • the first magnet portion 40a and the second magnet portion 40b have first magnetic poles having the same polarity on the region side where the detection body moves, and the first magnetic portion 40a and the second magnet portion 40b have the first magnetic pole on the opposite side to the region side where the detection body moves.
  • Each has a second magnetic pole opposite to the polarity.
  • the first magnetic pole in the first magnet part 40a and the second magnet part 40b may be an N pole, and the second magnetic pole may be an S pole, or vice versa.
  • the first magnet unit 40 a and the second magnet unit 40 b apply a magnetic field to the magnetoresistive element 70.
  • Part of the lines of magnetic force emerging from the N pole which is the first magnetic pole of the first magnet part 40a and the second magnet part 40b, penetrates from above to below the magnetoresistive element 70, and the first magnet part 40a and the second magnet part 40b. And enters the S pole, which is the second magnetic pole of the first magnet portion 40a and the second magnet portion 40b. Accordingly, the magnetic flux penetrates from the upper side to the lower side of the magnetoresistive element 70.
  • a part of the magnetic field lines is formed in a loop shape between the N pole and the S pole.
  • the magnetic flux density of the loop-shaped magnetic flux penetrating the magnetoresistive element 70 is increased.
  • the loop-shaped magnetic flux is curved so as to approach the detection target, so that the magnetic flux of the normal direction component of the functional surface 70a of the magnetoresistive element 70 increases.
  • the magnetic sensor 1 can detect the magnetic pattern of the detected object by changing the resistance value of the magnetoresistive element 70. .
  • the magnet part since the magnet part is not arranged so as to face the magnetoresistive element 70 along the normal direction of the magnetoresistive element 70, the first magnet part The magnetic flux density applied to the magnetoresistive element 70 along the normal direction by the 40a and the second magnet part 40b is not in either the normal direction or the direction parallel to the functional surface 70a of the magnetoresistive element 70. It becomes smaller than the magnetic flux density of the magnetic field applied to the magnetoresistive element 70 from the parallel direction. Thereby, even when the distance between the magnetoresistive element 70 and the detected object is increased, the attenuation of the magnetic flux density along the normal direction applied to the magnetoresistive element 70 is reduced.
  • the change of the magnetic flux density in the normal direction applied to the magnetoresistive element 70 based on the distance between the magnetoresistive element 70 and the detected object can be suppressed, and the output of the magnetic sensor 1 itself can be reduced. It can suppress becoming small.
  • the magnetic flux density applied along the normal direction of the functional surface 70a of the magnetoresistive element 70 is configured to be smaller than the magnetic flux density applied from a direction non-parallel to both the normal direction of the functional surface 70a and the direction parallel to the functional surface 70a.
  • the distance between the detected object and the magnetoresistive element varies, variations in the output of the magnetic sensor can be suppressed.
  • it since it can convey, without pressing a to-be-detected body against the cover 10, abrasion of a cover can be prevented.
  • FIG. 3 is a diagram illustrating an arrangement of magnetoresistive elements and magnets included in the magnetic sensor according to the first modification. A magnetic sensor according to Modification 1 will be described with reference to FIG.
  • the magnetic sensor according to the present modification is different in that it further includes a third magnet portion 40c when compared with the magnetic sensor according to the embodiment.
  • the third magnet part 40c faces the magnetoresistive element 70 along the normal direction of the functional surface 70a of the magnetoresistive element 70 between the first magnet part 40a and the second magnet part 40b.
  • the 3rd magnet part 40c has the 1st surface 41c which is a surface located in the movement field side (Z-axis positive direction side) of a detected object.
  • the first surface 41c of the third magnet part 40c is a moving region of the detected object relative to the first surfaces 41a and 41b located on the moving region side of the detected object in the first magnet unit 40a and the second magnet unit 40b. Away from.
  • the first surface 41c of the third magnet part 40c is on the lower side (Z-axis negative direction side) than the first surface 41a of the first magnet part 40a and the first surface 41b of the second magnet part 40b.
  • the third magnet part 40c is disposed so as to be in contact with the first magnet part 40a and the second magnet part 40b.
  • the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c each have a first magnetic pole having the same polarity on the moving region side of the detected object, and are opposite to the moving region side of the detected object. Each has a second magnetic pole opposite to the polarity of the first magnetic pole. For example, let the 1st magnetic pole in the 1st magnet part 40a, the 2nd magnet part 40b, and the 3rd magnet part 40c be a north pole, and let the 2nd magnetic pole be a south pole.
  • the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c apply a magnetic field to the magnetoresistive element 70.
  • the first magnet unit 40a and the second magnet Part of the lines of magnetic force emitted from the N pole which is the first magnetic pole of the part 40b and the third magnet part 40c, penetrates from below to the top of the magnetoresistive element 70 and is located in the first magnet part 40a side or second It passes through a region located on the magnet part 40b side and enters the S pole, which is the second magnetic pole of the first magnet part 40a, the second magnet part 40b, and the third magnet part 40c.
  • a part of the magnetic field lines is formed in a loop shape between the N pole and the S pole.
  • the other part of the lines of magnetic force emitted from the N pole which is the first magnetic pole of the first magnet part 40a, the second magnet part 40b, and the third magnet part 40c, is the functional surface 70a of the magnetoresistive element 70.
  • the magnetoresistive element 70 is penetrated along the normal direction.
  • the first surface 41c of the third magnet part 40c is a moving region of the detection object more than the first surface 41a of the first magnet part 40a and the first surface 41b of the second magnet part 40b. Since the first detection unit 40a, the second magnet unit 40b, and the third magnet unit 40c move the detected object in the normal direction of the functional surface 70a when the detected object moves along the moving direction.
  • the magnetic flux density applied to the magnetoresistive element along the first magnet part 40a, the second magnet part 40b, and the third magnet part from a direction not parallel to either the normal direction or the direction parallel to the functional surface 70a. It becomes smaller than the magnetic flux density applied to the magnetoresistive element 70 by 40c. As a result, even when the distance between the magnetoresistive element 70 and the object to be detected is increased, the attenuation of the magnetic flux density along the normal direction applied to the magnetoresistive element 70 is reduced.
  • the magnetic sensor according to this modification example is in the normal direction of the functional surface 70a applied to the magnetoresistive element 70 based on the distance between the magnetoresistive element 70 and the detection target.
  • the change of the magnetic flux density along can be suppressed.
  • the magnetic sensor according to the present modification has substantially the same effect as the magnetic sensor 1 according to the embodiment.
  • FIG. 4 is a diagram illustrating an arrangement of magnetoresistive elements and magnets included in the magnetic sensor according to the second modification. A magnetic sensor according to this modification will be described with reference to FIG.
  • the magnetic sensor according to this modification is different in the shape of the magnet portion 40d.
  • the magnet unit 40d included in the magnetic sensor according to the present modification includes a third magnet unit 40c that connects the first magnet unit 40a and the second magnet unit 40b, and is configured integrally with these. Has been.
  • the 3rd magnet part 40c is arrange
  • the first surface 41c located on the region side where the detection body of the third magnet portion 40c moves is the first surface 41a located on the region side where the detection body of the first magnet portion 40a and the second magnet portion 40b moves. , 41b is farther from the region where the detection body moves. That is, the first surface 41c of the third magnet part 40c is on the lower side (Z-axis negative direction side) than the first surface 41a of the first magnet part 40a and the first surface 41b of the second magnet part 40b. To position.
  • the magnet part 40d has a substantially rectangular parallelepiped shape in which a groove part along the longitudinal direction (Y-axis direction) is formed on the upper surface on the region side where the detection body moves.
  • the groove is defined by the first surface 41c of the third magnet portion 40c and the side surfaces 42a and 42b inside the first magnet portion 40a and the second magnet portion 40b.
  • the magnet part 40d integrally formed by the first magnet part 40a, the second magnet part 40b, and the third magnet part 40c has, for example, an N pole as a first magnetic pole on the region side where the detection body moves, and has a magnetoresistance
  • An S pole as a second magnetic pole is provided on the side opposite to the element 70.
  • the distribution of the lines of magnetic force in the magnetic sensor according to the present modification is substantially the same as the distribution of the lines of magnetic force in the magnetic sensor according to Modification 1 described above.
  • the applied magnetic flux density is the magnetic flux applied by the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c from a direction that is not parallel to either the normal direction or the direction parallel to the functional surface 70a. It becomes smaller than the density.
  • the attenuation of the magnetic flux density along the normal direction of the functional surface 70a applied to the magnetoresistive element 70 is small. Become.
  • the magnetic sensor according to this modification example is in the normal direction of the functional surface 70a applied to the magnetoresistive element 70 based on the distance between the magnetoresistive element 70 and the detection target.
  • the change of the magnetic flux density along can be suppressed.
  • the magnetic sensor according to the present modification has substantially the same effect as the magnetic sensor 1 according to the embodiment.
  • FIG. 5 is a diagram showing the arrangement of magnetoresistive elements and magnets provided in the magnetic sensor according to the third modification. With reference to FIG. 5, the magnetic sensor according to the present modification will be described.
  • the magnetic sensor according to this modification is different in the shape of the magnet portion 40e.
  • the magnet portion 40e included in the magnetic sensor according to the present modification has a substantially semi-cylindrical shape in which a semi-cylindrical groove portion is formed along the longitudinal direction (Y-axis direction).
  • the magnet part 40e has the 3rd magnet part 40c arrange
  • the groove part is defined by the inner peripheral surfaces of the first magnet part 40a, the second magnet part 40b, and the third magnet part 40c.
  • the groove portion is curved so that the length along the normal direction of the functional surface 70a from the groove portion to the magnetoresistive element 70 becomes closer to both ends from the center of the groove portion.
  • the magnetic flux density applied to the magnetoresistive element along the normal direction of the functional surface 70a by the magnet unit 40e is the normal line.
  • the magnetic flux density is smaller than the magnetic flux density applied by the magnet portion 40e from a direction not parallel to either the direction or the direction parallel to the functional surface 70a.
  • FIG. 6 is a schematic cross-sectional view of a magnetic sensor according to Modification 4. With reference to FIG. 6, a magnetic sensor 1A according to this modification will be described.
  • the magnetic sensor 1A according to the present modified example is provided in the case 20A side by side along the moving direction of the detected object.
  • the difference is that the first magnet part 40a and the second magnet part 40b are accommodated in the first magnet part accommodating part 25 and the second magnet part accommodating part 26 without being sealed by the sealing resin.
  • the magnetoresistive element 70 is connected to the terminal 50A located on the second magnet part 40b side via the lead frame 60A.
  • the magnetic sensor according to this modification is The magnetic sensor 1 according to the embodiment has substantially the same effect.
  • FIG. 7 is a schematic view of a magnetic sensor according to Modification 5.
  • FIG. 8 is a sectional view taken along line VIII-VIII shown in FIG. 9A and 9B are cross-sectional views and output characteristics along the longitudinal direction of the magnetic sensor shown in FIG. A magnetic sensor 1B according to this modification will be described with reference to FIGS. 7 to 9B.
  • the magnetic sensor 1B according to the present modification is different from the magnetic sensor 1 according to the embodiment in that the case 80 itself is made of a plastic magnet.
  • the magnetic sensor 1B includes a cover 10, a case 80, a terminal 50, a lead frame (not shown), and a magnetoresistive element 70.
  • the case 80 has a recess 83 that opens toward a region where the detection target moves.
  • the recess 83 is provided along the longitudinal direction (Y-axis direction).
  • the magnetoresistive element 70 is disposed in the recess 83.
  • the magnetoresistive element 70 is connected to terminals 50 inserted in terminal holes provided at both ends in the longitudinal direction of the case 80 via lead frames (not shown).
  • the cover 10 has claw portions that engage with engagement grooves (not shown) provided along the longitudinal direction (Y-axis direction) on both sides of the case 80, and is slidably fixed to the case 80. Cover 10 covers the surface of case 80 and recess 83. The magnetoresistive element 70 is protected by the cover 10.
  • the case 80 Since the case 80 is composed of a plastic magnet, as shown in FIG. 8, the case 80 has a first magnet portion 40a, a second magnet portion 40b, and a third magnet portion 40c around the recess 83.
  • the concave portion 83 includes a first side surface portion 83a and a second side surface portion 83b that are erected from both ends of the bottom surface portion 83c aligned in the moving direction of the detection target, and a bottom surface portion 83c.
  • the magnetoresistive element 70 is placed on the bottom surface portion 83c. In such a state, the case 80 is arranged such that at least a part of the case 80 is located on the opposite side to the region where the detection target moves with respect to the magnetoresistive element 70.
  • the third magnet portion 40c defines the bottom surface portion 83c of the recess 83, and the first magnet portion 40a and the second magnet portion 40b define the first side surface portion 83a and the second side surface portion 83b.
  • FIG. 9A is a cross-sectional view along the longitudinal direction of the magnetic sensor shown in FIG.
  • FIG. 9B is a diagram illustrating output characteristics of the magnetic sensor illustrated in FIG. 7.
  • a plurality of magnetoresistive elements 70 are separated from each other on the bottom surface portion 83c of the concave portion 83 extending continuously along the longitudinal direction. Arranged.
  • the first surface 41c located on the moving region side of the detection object of the third magnet unit 40c is the first magnet unit 40a and The first surface 41a, 41b located on the moving region side of the detection object of the second magnet unit 40b is separated from the movement region of the detection object along the normal direction. For this reason, when the detected object moves along the moving direction, the magnetoresistive element 70 is moved along the normal direction of the functional surface 70a by the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c.
  • the magnetic sensor 1B according to the present modification has substantially the same effect as the magnetic sensor 1 according to the embodiment. Further, in the magnetic sensor 1B according to the present modification, since there is no gap between the magnets, fluctuations in output due to the gap between the magnets can be suppressed.
  • FIGS. 10A and 10B are cross-sectional views and output characteristics along the longitudinal direction of the magnetic sensor according to Comparative Embodiment 1.
  • FIG. 10A is a cross-sectional view along the longitudinal direction of the magnetic sensor in Comparative Embodiment 1
  • FIG. 10B is a diagram showing the output characteristics of the magnetic sensor in Comparative Embodiment 1.
  • the case 20 is not formed of a plastic magnet when compared with the magnetic sensor 1B according to the modification 5.
  • the difference is that the magnetoresistive element 70 and the magnet 40 are arranged.
  • a plurality of magnets are arranged apart from each other along the longitudinal direction (Y-axis direction), and above the magnet 40 (Z-axis positive).
  • the plurality of magnetoresistive elements 70 are arranged apart from each other along the longitudinal direction (Y-axis direction). Further, at least one of the plurality of magnetoresistive elements 70 is disposed so as to straddle the gap between the adjacent magnets 40 above (in the positive Z-axis direction).
  • the output sensitivity is partially reduced in the gap between the adjacent magnetoresistive elements 70, and the gap between the adjacent magnets 40 is arranged so as to straddle the gap.
  • the output of the magnetoresistive element 70 is reduced.
  • FIGS. 11A and 11B are cross-sectional views and output characteristics along the longitudinal direction of the magnetic sensor according to Comparative Example 2.
  • FIG. 11A is a cross-sectional view along the longitudinal direction of the magnetic sensor in the comparative form 2
  • FIG. 11B is a diagram showing the output characteristics of the magnetic sensor in the comparative form 2.
  • the case 20 is not formed of a plastic magnet when compared with the magnetic sensor 1B according to the modified example 5.
  • the difference is that the magnetoresistive element 70 and the magnet 40 are arranged.
  • the plurality of magnets 40 are arranged apart from each other along the longitudinal direction (Y-axis direction), and above the magnet 40 (Z-axis).
  • a plurality of magnetoresistive elements are arranged apart from each other along the longitudinal direction (Y-axis direction).
  • the gap between at least one adjacent magnetoresistive element 70 is located above the gap between adjacent magnets 40 (Z-axis positive direction).
  • the output in the gap between the adjacent magnetoresistive elements 70 located above the gap between the adjacent magnets 40 is the same as that of the gap between the adjacent magnets 40.
  • the output is further lower than the output in the gap between the adjacent magnetoresistive elements 70 not located above.
  • the modified example 5 in which the case 80 is made of a plastic magnet will be described.
  • the magnetic sensor 1 ⁇ / b> B output fluctuation due to the gap between the magnets can be suppressed in the output characteristics as described above.
  • FIG. 12 is a schematic diagram of a magnetic sensor according to Modification 6. With reference to FIG. 12, a magnetic sensor 1C according to the present modification will be described.
  • the magnetic sensor 1C according to the present modification is different from the magnetic sensor 1B according to the modification 5 in the arrangement of the terminals 50, and the other configurations are substantially the same.
  • the terminals 50 are arranged side by side along the moving direction of the detected object so as to sandwich the magnetoresistive element 70 therebetween.
  • the magnetoresistive element 70 is connected to the terminal 50 via the lead frame 60.
  • the case 80 is made of a plastic magnet, and the magnetoresistive element 70 is disposed in the concave portion 83 provided on the upper surface side along the longitudinal direction.
  • the surface of the three magnet part located on the moving region side of the detected object is in the normal direction of the functional surface of the magnetoresistive element than the surface of the first magnet part and the second magnet part located on the moving region side of the detected object. The distance from the moving region of the detected object along the line is as follows. For this reason, the magnetic sensor 1C according to the present modification can obtain substantially the same effect as the magnetic sensor 1B according to the modification 5.
  • FIG. 13 is a diagram showing the outer shape of the magnet used in the verification experiment 1.
  • FIG. 14 and 15 are diagrams showing the positional relationship between the magnetoresistive element and the magnet provided in the magnetic sensor according to the first embodiment and the magnetic sensor according to the second embodiment when the magnet shown in FIG. 13 is used.
  • FIG. 16 is a diagram illustrating an arrangement of magnetoresistive elements and magnets included in the magnetic sensor in Comparative Example 1. With reference to FIG. 13 to FIG. 16, the conditions of the magnetoresistive element and the magnet that were simulated as the verification experiment 1 will be described.
  • a magnet having a substantially rectangular parallelepiped shape was used as the magnet 40 used in the verification experiment 1.
  • length A along the transversal direction (X-axis direction) of a magnetic sensor shall be 2.9 mm
  • length B along the longitudinal direction (Y-axis direction) of a magnetic sensor is set to 12.2.
  • the length C along the height direction (Z-axis direction) of the magnetic sensor was 6.5 mm.
  • Example 1 the magnetic sensor according to the embodiment is prepared. Specifically, two magnets are arranged along the moving direction of the detection target, and two magnets are arranged.
  • positioning the magnetoresistive element 70 above the clearance gap between 40 was prepared.
  • Each of the two magnets 40 arranged side by side was designated as a first magnet part 40a and a second magnet part 40b, and the distance t between them was 1.6 mm.
  • Example 2 a magnetic sensor according to Modification 1 is prepared. Specifically, three magnets 40 are arranged along the moving direction (X-axis direction) of the detection target. A magnetic sensor configured by arranging the magnetoresistive elements 70 above the magnet 40 positioned at the center (in the positive direction of the Z axis) was prepared.
  • Each of the three magnets 40 arranged as a first magnet portion 40a, a second magnet portion 40b, and a third magnet portion 40c.
  • the length E along the height direction between the first surface 41c of the third magnet part 40c and the lower surface 70b of the magnetoresistive element 70 was set to 0.5 mm.
  • a magnetic sensor configured by disposing a magnetoresistive element 70 above the first surface 41 of the magnet 40 was prepared.
  • FIG. 17 is a diagram showing the results of the verification experiment 1. The result of the verification experiment 1 will be described with reference to FIG.
  • FIG. 18 is a diagram showing the transition of the magnetic flux density change rate based on the result shown in FIG. With reference to FIG. 18, the transition of the magnetic flux density change rate based on the result shown in FIG. 17 will be described.
  • the rate of change in magnetic flux density refers to the ratio of magnetic flux density when GAP occupies a predetermined value when GAP is 0 mm, and the magnetic flux density when GAP is 0 mm is 100%. .
  • Example 1 the magnetic flux density along the normal direction of the functional surface 70a applied to the magnetic element resistance when the GAP is approximately 1.2 mm is approximately compared with the case where the GAP is 0 mm. 10% smaller.
  • Example 2 the magnetic flux density along the normal direction applied to the magnetic element resistance when GAP is approximately 1.2 mm is approximately 5% smaller than that when GAP is 0 mm. became.
  • the magnetic flux density applied to the magnetoresistive element along the normal direction of the functional surface 70a by the first magnet unit 40a and the second magnet unit 40b is the normal direction and function of the functional surface 70a.
  • the magnetic flux density applied to the magnetoresistive element along the normal direction by the 40b and the third magnet portion 40c is from a direction that is not parallel to both the normal direction of the functional surface 70a and the direction parallel to the functional surface 70a. It can be said that it has been confirmed that the magnetic resistance is smaller than the magnetic flux density applied to the magnetoresistive element 70 by the first magnet part 40a, the second magnet part 40b, and the third magnet part 40c.
  • FIG. 19 is a diagram showing the outer shape of the magnet used in the verification experiment 2.
  • FIG. 20 is a diagram for explaining parameters affecting the result of the verification experiment 2.
  • FIG. 19 and FIG. 20 With reference to FIG. 19 and FIG. 20, the conditions of the magnetoresistive element and the magnet which performed simulation as this verification experiment are demonstrated.
  • a substantially rectangular parallelepiped magnet portion 40d having a groove portion formed in the longitudinal direction (Y-axis direction) on the upper surface was used as a magnet used in the verification experiment 2.
  • the magnet part 40d has the 3rd magnet part 40c which connects the 1st magnet part 40a and the 2nd magnet part 40b, and is comprised integrally by these.
  • length B along the longitudinal direction of a magnetic sensor shall be 12.9 mm, and the bottom face part of the groove part from the bottom face 43d of the magnet part 40d (1st surface 41c of the 3rd magnet part 40c)
  • the length C along the height direction (Z-axis direction) of the magnetic sensor was 5 mm.
  • the length (first axis) of the first surface 41a of the first magnet unit 40a and the first surface 41b of the second magnet unit 40b along the short direction (X-axis direction) of the magnetic sensor Width of magnet part and second magnet part) W and length (width of third magnet part) P along the short direction (X-axis direction) of the magnetic sensor of first surface 41c of third magnet part 40c
  • the height direction (Z-axis direction) of the magnetic sensor between the first surface 41a of the first magnet part 40a, the first surface 41b of the second magnet part 40b, and the first surface 41c of the third magnet part 40c.
  • FIG. 21 is a diagram showing experimental results when the width P of the third magnet portion and the width W of the first magnet portion and the second magnet portion shown in FIG. 20 are changed. With reference to FIG. 21, the experimental results when the width P of the third magnet portion and the width W of the first magnet portion and the second magnet portion are changed will be described.
  • the width P of the third magnet portion was changed from 1 to 3 mm, and the width W of the first magnet portion and the second magnet portion was changed from 2 to 3 mm.
  • the magnetic sensor according to Example 3f was used. At this time, the length G was set to 0 mm, and the length d was set to 1 mm.
  • FIG. 22 is a diagram showing the transition of the magnetic flux density change rate based on the result shown in FIG. With reference to FIG. 22, the transition of the magnetic flux density change rate based on the result shown in FIG. 17 will be described.
  • the magnetic flux density along the normal direction of the functional surface of the functional surface 70a applied to the magnetic element resistance when GAP is approximately 1.2 mm is the magnetic flux density when GAP is 0 mm. In comparison, it varied by approximately 5%.
  • the object to be detected is reduced. It is considered that the change in magnetic flux density along the normal direction of the functional surface 70a applied to the magnetoresistive element 70 can be reduced by approaching the magnetic pattern it has.
  • FIG. 23 is a diagram showing an experimental result when the length d along the height direction between the surface of the third magnet portion and the surfaces of the first magnet portion and the second magnet portion shown in FIG. 20 is changed. It is. Referring to FIG. 23, the experimental results when the length d along the height direction between the surface of the third magnet portion and the surfaces of the first magnet portion and the second magnet portion shown in FIG. 20 is changed. Will be described.
  • FIG. 24 is a diagram showing the transition of the magnetic flux density change rate based on the result shown in FIG. With reference to FIG. 24, the transition of the magnetic flux density change rate based on the result shown in FIG. 23 will be described.
  • Example 3h the rate of change in magnetic flux density slightly changed as GAP increased.
  • Comparative Example 1 the degree of change in magnetic flux density was suppressed.
  • Comparative Example 1 the magnetic flux density along the normal direction of the functional surface 70a applied to the magnetoresistive element when the GAP is approximately 1.5 mm is the magnetic flux density when the GAP is 0 mm.
  • the magnetic flux density fluctuated about 37% in Example 3h, which changed the most.
  • the magnetic flux density in the normal direction of the functional surface 70a applied to the magnetoresistive element when the GAP is approximately 1.2 mm is approximately 5 as compared with the magnetic flux density when the GAP is 0 mm. % Fluctuated.
  • Example 3c Comparing Example 3c with Examples 3g and 3h, between the first surface 41c of the third magnet part 40c and the first surfaces 41a and 41b of the first magnet part 40a and the second magnet part 40b
  • the magnetic flux density changes along the normal direction of the functional surface 70a applied to the magnetoresistive element 70 when the magnetic pattern of the detected object approaches. It is considered that it can be made smaller.
  • FIG. 25 is a diagram showing experimental results when the length G along the height direction between the surfaces of the first magnet part and the second magnet part shown in FIG. 20 and the lower surface of the magnetoresistive element is changed. is there. Referring to FIG. 25, the length G along the height direction between the first surfaces 41a and 41b of the first magnet portion 40a and the second magnet portion 40b and the lower surface 70b of the magnetoresistive element 70 is changed. The experimental results will be explained.
  • the magnetic sensor according to Example 3i to Example 3m in which the length G was changed in the range of ⁇ 0.5 mm to 1.0 mm was used.
  • the length d was set to 0.5 mm.
  • the case where the length G is ⁇ 0.5 mm indicates a state in which the lower surface 70b of the magnetoresistive element 70 is at a position lower by 0.5 mm than the first surfaces 41a and 41b.
  • An example is shown in which at least a part of the magnet portion 40d is positioned on the opposite side to the region where the detection target moves with respect to the magnetoresistive element 70.
  • FIG. 26 is a diagram showing the transition of the magnetic flux density change rate based on the result shown in FIG. With reference to FIG. 26, the transition of the magnetic flux density change rate based on the result shown in FIG. 25 will be described.
  • Example 3i, 3l, and 3m the rate of change in magnetic flux density slightly changed as GAP increased.
  • the comparative example shown in FIG. When compared with 1, the degree of change in magnetic flux density was suppressed.
  • the magnetic flux density along the normal direction of the functional surface 70a applied to the magnetoresistive element when the GAP is approximately 1.2 mm is the magnetic flux density when the GAP is 0 mm.
  • Example 3i which changed the largest, the magnetic flux density fluctuated by approximately 20%, while it varied by approximately 30%.
  • the magnetic flux density along the normal direction of the functional surface 70a applied to the magnetoresistive element when the GAP is approximately 1.2 mm is compared with the magnetic flux density when the GAP is 0 mm. Almost did not fluctuate.
  • the magnetic flux density applied to the magnetoresistive element along the normal direction of the functional surface 70a by the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c is the above method.
  • the magnetic flux density is smaller than the magnetic flux density applied by the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c from a direction that is not parallel to either the linear direction or the direction parallel to the functional surface 70a.
  • FIG. 27 is a diagram showing the outer shape of the magnet used in the verification experiment 3.
  • FIG. 28 is a diagram illustrating a first example of a magnet used in the verification experiment 3. With reference to FIG. 27 and FIG. 28, the conditions of the magnetoresistive element and the magnet used in this verification experiment will be described.
  • a magnet 40o having a substantially rectangular parallelepiped shape having a groove formed along the longitudinal direction (Y-axis direction) on the upper surface was used as a magnet used for the magnetic sensor according to Example 3o.
  • the magnet 40o has the 3rd magnet part 40c arrange
  • length B along the longitudinal direction of a magnetic sensor shall be 15 mm, and the 1st surface 41a of the 1st magnet part 40a and the 1st of the 2nd magnet part 40b from the bottom face 43d of the magnet 40o are used.
  • the length C along the height direction (Z-axis direction) of the magnetic sensor up to the surface 41b was 5 mm.
  • the width P of the third magnet portion 40c is 2 mm
  • the width W of the first magnet portion 40a and the second magnet portion 40b is 2 mm
  • the first magnet portion 40a The length along the height direction (Z-axis direction) of the magnetic sensor between the first surface 41a and the first surface 41b of the second magnet portion 40b and the first surface 41c of the third magnet portion 40c. d is 0.3 mm, along the height direction of the magnetic sensor between the first surface 41a of the first magnet portion 40a and the first surface 41b of the second magnet portion 40b and the lower surface 70b of the magnetoresistive element 70A.
  • the length G was set to 0 mm.
  • FIG. 29 is a plan view of the magnetoresistive element shown in FIG. 30 is a diagram showing an equivalent circuit of the magnetoresistive element shown in FIG.
  • FIG. 31 is a diagram showing a waveform of an output voltage signal of the magnetic sensor including the magnetoresistive element shown in FIG.
  • the magnetoresistive element 70A used in this verification experiment will be described with reference to FIGS.
  • the magnetoresistive element 70 ⁇ / b> A includes a first magnetic sensing part MR ⁇ b> 1, a second magnetic sensing part MR ⁇ b> 2, a voltage input electrode 791 corresponding to the voltage input terminal Vin, and a ground terminal on the silicon substrate 71.
  • a ground connection electrode 792 corresponding to GND and a voltage output electrode 793 corresponding to the voltage output terminal Vout are formed.
  • the voltage input electrode 791 and the ground connection electrode 792 are arranged on one end side in the longitudinal direction (Y-axis direction) of the silicon substrate 71 so as to be aligned along the moving direction (X-axis direction) of the detection target. .
  • the voltage output electrode 793 is disposed on the other end side in the longitudinal direction (Y-axis direction) of the silicon substrate 71 so as to face the voltage input electrode 791 and the ground connection electrode 792.
  • the voltage input electrode 791 is connected to one end of the voltage output electrode 793 via the second magnetic sensing part MR2, and the ground connection electrode 792 is connected to the voltage output electrode via the first magnetic sensing part MR1. 793 is connected to the other end side.
  • the second magnetosensitive part MR2 is composed of a magnetoresistive layer 730 made of InSb formed in a meander shape and short-circuit electrodes 751, 752, 753, 754, and 755 made of a conductor formed on the magnetoresistive layer 730. It is configured.
  • the magnetoresistive layers 731, 732, 733, and 734 are exposed at portions where the short-circuit electrodes 751, 752, 753, 754, and 755 are not formed in the second magnetosensitive portion MR 2.
  • the first magnetosensitive part MR1 is formed in a meander shape so as to enter the gap between the magnetoresistive layer 732 and the magnetoresistive layer 733 and the gap between the magnetoresistive layer 734 and the voltage output electrode 793.
  • a plurality of short-circuit electrodes 746, 747, 748, 749 are formed apart from each other along the moving direction (X-axis direction) of the detection target.
  • the magnetoresistive layers 721, 722, 723, and 724 are exposed at portions where the short-circuit electrodes 741, 742, 743, 744, 745, 746, 747, 748, and 749 are not formed in the first magnetosensitive portion MR1. .
  • the sensitivity of the magnetosensitive part to the magnetic field is determined by the pattern of the short-circuit electrode formed on the magnetoresistive layer.
  • Sensitivity to a magnetic field means a resistance value that changes in accordance with the magnetic flux density that passes through the magnetic sensing part.
  • the sensitivity value increases as the resistance value changes greatly when the magnetic flux density changes by a predetermined amount.
  • the second magnetosensitive part MR2 is configured with more exposed portions of the magnetoresistive layer than the first magnetosensitive part MR1, the second magnetosensitive part MR2 is more than the first magnetosensitive part MR1. Low sensitivity.
  • the output voltage signal of the magnetic sensor according to Example 3o including the magnetoresistive element 70A has a waveform having only one peak generated by the passage of the detected object, and the detected object is accurately displayed. Can be detected.
  • a magnetic sensor having a magnetoresistive element and a magnet having the arrangement relationship shown in FIG. 16 and having the same configuration as the magnetoresistive element 70A was prepared as a magnetic sensor in Comparative Example 2.
  • the output voltage of the magnetic sensor according to Example 3o and the magnetic sensor in Comparative Example 2 when the detected object passed was measured.
  • the length along the height direction (Z-axis direction) between the object to be detected and the upper surface of the cover of the magnetic sensor is defined as a detection gap, and the detection gap is 0 mm, 0.085 mm, 0.17 mm, 0.255 mm. , 0.425 mm, 0.595 mm, and 0.85 mm.
  • the length along the height direction (Z-axis direction) from the functional surface of the magnetoresistive element 70A to the upper surface of the cover was set to 0.3 mm.
  • FIG. 32 is a diagram showing the results of a verification experiment 3 when the magnetic sensor according to Example 3o configured by the magnet shown in FIG. 28 and the magnetic sensor in Comparative Example 2 are used.
  • FIG. 33 is a diagram showing the transition of the output voltage attenuation rate based on the result shown in FIG.
  • the output voltage attenuation rate refers to the ratio of the output voltage when the detection gap occupies a predetermined value when the detection gap is 0 mm, and the output voltage when the detection gap is 0 mm. 100%.
  • the output voltage of the magnetic sensor according to Example 3o and the magnetic sensor in Comparative Example 2 will be described.
  • Example 3o when compared with Comparative Example 2, the attenuation of the output voltage was suppressed even when the detection gap was increased.
  • FIG. 34 is a diagram showing a waveform of the output voltage signal of the magnetic sensor in Comparative Example 2 when the length along the height direction between the detection target and the cover is changed.
  • FIG. 35 shows the waveform of the output voltage signal of the magnetic sensor according to Example 3o constituted by the magnet shown in FIG. 28 when the length along the height direction between the detected object and the cover is changed.
  • FIG. 36 is a diagram showing a second example of the magnet used in the verification experiment 3.
  • FIG. 36 With reference to FIG. 36, the other conditions of the magnetoresistive element and the magnet used in this verification experiment will be described.
  • the magnet 40p used in the magnetic sensor according to Example 3p has the first surface 41a and the second surface of the first magnet part 40a when compared with the magnet 40o of Example 3o shown in FIG.
  • the length d along the height direction (Z-axis direction) of the magnetic sensor between the first surface 41b of the magnet part 40b and the first surface 41c of the third magnet part 40c is 1.0 mm.
  • the difference is that the functional surface 70a of the magnetoresistive element 70 is located on the same plane as the first surface 41a and the first surface 41b.
  • FIG. 37 is a diagram illustrating a result of the verification experiment 3 in which the magnetic sensor according to Example 3o configured by the magnet illustrated in FIG. 28 and the magnetic sensor according to Example 3p configured by the magnet illustrated in FIG. 36 are used. It is.
  • FIG. 38 is a diagram showing the relationship of the output voltage attenuation rate based on the result shown in FIG.
  • Example 3p when compared with Example 3o, the attenuation of the output voltage was suppressed even when the detection gap was increased.
  • FIG. 39 shows the waveform of the output voltage signal of the magnetic sensor according to Example 3p configured by the magnet shown in FIG. 36 when the length along the height direction between the detected object and the cover is changed.
  • the magnetic flux density applied to the magnetoresistive element along the normal direction of the functional surface 70a by the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c is From the magnetic flux density applied to the magnetoresistive element by the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c from a direction not parallel to either the normal direction or the direction parallel to the functional surface 70a. It can be said that it was confirmed that the variation in the output of the magnetic sensor can be suppressed even in the case where the distance between the magnetoresistive element and the object to be detected varies in the magnetic sensor having a configuration of reducing the magnetic sensor.
  • FIG. 40 is a diagram showing the outer shape of the magnet used in verification experiment 4.
  • FIG. 41 is a diagram illustrating a first example of a magnet used in the verification experiment 4.
  • FIG. 42 is a diagram illustrating a second example of the magnet used in the verification experiment 4. The conditions of the magnetoresistive element and the magnet used in this verification experiment will be described with reference to FIGS.
  • a magnet having a substantially rectangular parallelepiped shape was used as a magnet used in this verification experiment.
  • the length A along the short direction (X-axis direction in FIG. 1) of the magnetic sensor is 2.9 mm
  • the length B along the longitudinal direction of the magnetic sensor is 12.9 mm
  • the length C along the height direction of the magnetic sensor was set to 6.5 mm.
  • Example 4 the magnetic sensor according to the embodiment is prepared. Specifically, two magnets are arranged along the moving direction of the detection target and two magnets are arranged.
  • the two magnets arranged side by side were designated as a first magnet part 40a and a second magnet part 40b, and the distance t between them was 1.6 mm.
  • Example 5 a magnetic sensor according to Modification 1 is prepared. Specifically, three magnets described above are arranged along the moving direction of the detection target, and the magnetic sensor is positioned at the center. The magnetic sensor comprised by arrange
  • Each of the three magnets arranged as a first magnet part 40a, a second magnet part 40b, and a third magnet part 40c.
  • the thickness d was 1 mm.
  • the length E along the height direction between the first surface 41c of the third magnet part 40c and the lower surface 70b of the magnetoresistive element 70 was set to 0.5 mm.
  • FIG. 43 is a plan view of the magnetoresistive element shown in FIGS. 41 and 42.
  • FIG. 44 is a diagram showing an equivalent circuit of the magnetoresistive element shown in FIGS. 41 and 42.
  • FIG. 45 is a diagram showing a waveform of an output voltage signal of the magnetic sensor including the magnetoresistive element shown in FIGS. 41 and 42.
  • FIG. The magnetoresistive element 70B used in this verification experiment will be described with reference to FIGS.
  • the magnetoresistive element 70B has a voltage input electrode 791 corresponding to the third magnetic sensing part MR3, the fourth magnetic sensing part MR4, and the voltage input terminal Vin on the functional surface of the silicon substrate 71.
  • the ground connection electrode 792 corresponding to the ground terminal GND and the voltage output electrode 793 corresponding to the voltage output terminal Vout are formed.
  • the configurations of the third magnetic sensing part MR3 and the fourth magnetic sensing part MR4 are different.
  • the fourth magnetosensitive portion MR4 includes a magnetoresistive layer 730A formed linearly along the longitudinal direction, and a plurality of short-circuit electrodes 751A formed on the magnetoresistive layer 730A so as to be separated from each other. It is constituted by.
  • the magnetoresistive layer 731A is exposed in a portion where the short-circuit electrode 751A is not formed in the fourth magnetosensitive portion MR4.
  • the third magnetosensitive part MR3 is configured by a magnetoresistive layer 720A formed linearly along the longitudinal direction and a plurality of short-circuit electrodes 741A formed on the magnetoresistive layer 720A so as to be separated from each other. .
  • the magnetoresistive layer 721A is exposed in a portion where the short-circuit electrode 741A is not formed in the third magnetosensitive portion MR3.
  • the sensitivity to the magnetic field is substantially the same.
  • the resistance value changes according to the magnitude of the magnetic flux density.
  • the third magnetic sensing part MR3 is moved. Since it passes, the output voltage signal of the magnetic sensor has two peaks. When such a peak appears clearly, the magnetic pattern of the detection target can be detected.
  • a magnetic sensor provided with a magnetoresistive element having the same configuration as the magnetoresistive element 70B having the positional relationship between the magnetoresistive element and the magnet shown in FIG.
  • the output voltage of the magnetic sensor according to Examples 4 and 5 and the magnetic sensor according to Comparative Example 2 when the detected object passed was measured.
  • Magnetic ink was used as the object to be detected.
  • the distance between the object to be detected and the upper surface of the cover of the magnetic sensor is defined as a detection gap, and the detection gap is 0 mm, 0.085 mm, 0.17 mm, 0.255 mm, 0.425 mm, 0.595 mm, 0.85 mm. And changed. Note that the length along the height direction (Z-axis direction) from the upper surface of the magnetoresistive element 70B to the upper surface of the cover was set to 0.3 mm.
  • FIG. 46 is a diagram showing the results of a verification experiment 4 in the case where the magnetic sensors according to Examples 4 and 5 configured by the magnets shown in FIGS. 41 and 42 and the magnetic sensor in Comparative Example 3 are used.
  • FIG. 47 is a diagram showing the transition of the output voltage attenuation rate based on the result shown in FIG. With reference to FIGS. 46 and 47, output voltages of the magnetic sensors according to Examples 4 and 5 and the magnetic sensor according to Comparative Example 3 will be described.
  • FIG. 48 shows a waveform of an output voltage signal of the magnetic sensor according to the fifth embodiment configured by the magnet shown in FIG. 41 when the length along the height direction between the detection body and the cover is changed.
  • the magnetic flux density applied to the magnetoresistive element 70 along the normal direction of the functional surface 70a by the first magnet portion 40a and the second magnet portion 40b is the normal direction and the functional surface 70a.
  • the magnetic flux density applied to the magnetoresistive element along the normal direction of the functional surface 70a by the two magnet portions 40b and the third magnet portion 40c is not parallel to either the normal direction or the direction parallel to the functional surface 70a.
  • the magnetic sensor has a configuration in which the magnetic flux density applied to the magnetoresistive element 70 by the first magnet unit 40a, the second magnet unit 40b, and the third magnet unit 40c is smaller than the direction of the magnetic flux. In, it can be said that it was confirmed that can suppress variations in the output of the magnetic sensor even if the distance varies between the magnetic resistance element and the object to be detected.
  • the case where the magnet portion is arranged below the magnetoresistive element and the detected object moves above the magnetoresistive element has been described as an example.
  • An inverted configuration may be used.
  • the magnetoresistive element may be disposed below the magnet part, and the detection target may move below the magnetoresistive element.
  • the moving direction of the detected object is the horizontal direction
  • the moving direction of the detected object may be the vertical direction.
  • the magnetoresistive element and the magnet part are arranged along the horizontal direction.
  • the moving direction of the detected object can be appropriately changed without departing from the gist of the present invention, and accordingly, a magnetoresistive element, a magnet portion, and the like can be appropriately arranged.
  • 1 magnetic sensor, 10 cover 20 case, 21, 22, 23 recess, 21a, 22a, 23a flat part, 23 partition part, 30 sealing resin, 40a first magnet part, 40b second magnet part, 40c third magnet Part, 40d magnet part, 41a, 41b, 41c surface, 42a, 42b side surface, 43d bottom surface, 50, 50A terminal, 60, 60A lead frame, 70 magnetoresistive element, 70a functional surface, 70b bottom surface, 71 silicon substrate, 80 case , 83 concave portion, 83a first side surface portion, 83b second side surface portion, 83c bottom surface portion, 720, 721, 722, 723, 724, 730, 731, 732, 733, 734 magnetoresistive layer, 741, 742, 743, 744 , 745, 746, 747, 748, 749, 751, 752, 753, 7 4,755 short-circuit electrode, 791 the voltage input electrode, 792 ground connection electrode, 793 the voltage output electrode.

Abstract

 磁気センサ(1)は、被検出体の移動方向に略平行な機能面(70a)を有する磁気抵抗素子(70)と、磁気抵抗素子(70)に対して被検出体が移動する領域と反対側に配置され、磁気抵抗素子(70)に磁界を印加する磁石部(40a,40b)とを備える。磁石部(40a,40b)によって磁気抵抗素子(70)に印加される磁界の磁束密度のうち、機能面(70a)の法線方向に沿って印加される磁界の磁束密度が、機能面(70a)の法線方向および機能面(70a)に平行な方向のいずれにも非平行な方向から印加される磁界の磁束密度よりも小さい。

Description

磁気センサ
 本発明は、磁気センサに関し、特に、被検出体に設けられた磁気パターン等の磁気情報を検出する磁気センサに関する。
 近年、紙幣等の被検出体に設けられた磁気パターン等の磁気情報を検出する磁気センサが各種開発されている。
 たとえば、国際公開第2005/083457号パンフレット(特許文献1)には、磁気抵抗素子を備える長尺型磁気センサが開示されている。特許文献1に開示の長尺型磁気センサは、ケース(ホルダー)と、磁気抵抗素子と、略直方体形状の磁石と、端子と、カバーとを備える。
 ケースは、上面および下面に複数の凹部を有し、当該ケースの上面の複数の凹部のそれぞれに磁気抵抗素子が配置され、当該ケースの下面の複数の凹部のそれぞれに磁石が配置される。このため、ケースは、磁気抵抗素子と磁石とを保持する機能を有する。
 磁気抵抗素子は、磁石の上方に位置するように配置され、磁気抵抗素子は、リードフレームを介して端子に接続されている。カバーは、ケースの上面を覆うように、ケースにスライド可能に固定されている。磁気抵抗素子は、カバーにより保護される。
 この長尺型磁気センサにあっては、紙幣などの被検出体が、当該磁気センサの長手方向と略垂直方向となる移動方向に沿って、カバー上を通過する。この際、被検出体の磁気パターンによって、磁気抵抗素子に印加される磁束密度が変化し、磁気抵抗素子の抵抗値が変化することから、被検出体の磁気パターンを検出することができる。
国際公開第2005/083457号パンフレット
 磁気抵抗素子は、その機能面の法線方向(たとえば鉛直方向)に沿って印加される磁束密度の変化を検出するが、磁気抵抗素子と被検出体との間の距離により、磁気抵抗素子に印加される磁界の磁束密度が変化する。具体的には、磁気抵抗素子と被検出体との間の距離が大きくなると、被検出体の磁気パターンが通過した際に当該磁気パターンによって磁気抵抗素子に印加される上記法線方向に沿った磁束密度が小さくなる。
 磁気抵抗素子に印加される上記法線方向に沿った磁束密度が小さくなる場合には、磁気抵抗素子と被検出体との間の距離が小さい場合と比べて磁束密度の変化が小さくなるため、磁気センサの出力が小さくなる。磁気センサの出力のみを考えると磁気抵抗素子と被検出体との間の距離は小さい方が好ましい。
 特許文献1に開示の長尺型磁気センサにおいては、複数の磁気抵抗素子の位置が直線状に配置されることにより、被検出体を移動方向に沿って搬送する搬送ローラによって被検出体とカバーとのギャップを調整することができる。
 磁気抵抗素子と被検出体との間の距離を小さくするために、被検出体をカバーに押し付けて搬送することが考えられるが、この場合には、被検出体とカバーとの間の摩擦力が大きくなり、カバーが摩耗しやすくなる。このため、カバーに穴が開くなどの破損を防止するためにカバーを定期的に交換する必要が生じる。
 一方、カバーの摩耗を防止するために被検出体をカバーに押し付けないで搬送する場合には、磁気抵抗素子と被検出体との間の距離が大きくなって磁気センサの出力が小さくなることが懸念される。また、ローラ搬送のみでは、磁気抵抗素子と被検出体との間の距離を一定に保つことが困難であり、被検出体を搬送する度に当該距離にバラツキが生じて磁気センサの出力がばらつく場合がある。
 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、磁気センサの出力のバラツキを抑制することができる磁気センサを提供することにある。
 本発明に基づく磁気センサは、被検出体の移動方向に略平行な機能面を有する磁気抵抗素子と、上記磁気抵抗素子に対して上記被検出体が移動する領域と反対側に少なくともその一部が位置するように配置され、上記磁気抵抗素子に磁界を印加する磁石部とを備える。上記磁石部によって上記磁気抵抗素子に印加される磁界の磁束密度のうち、上記機能面の法線方向に沿って印加される磁界の磁束密度が、上記機能面の法線方向および上記機能面に平行な方向のいずれにも非平行な方向から印加される磁界の磁束密度よりも小さい。
 上記本発明に基づく磁気センサにあっては、上記磁石部は、第1磁石部および第2磁石部を含むことが好ましく、上記第1磁石部、上記磁気抵抗素子および上記第2磁石部は、上記被検出体の移動方向に沿ってこの順で配置されることが好ましい。この場合には、上記第1磁石部および上記第2磁石部は、上記被検出体が移動する領域側に同一の極性となる第1磁極をそれぞれ有し、上記被検出体が移動する領域側とは反対側に上記第1磁極と反対の極性となる第2磁極をそれぞれ有することが好ましい。
 上記本発明に基づく磁気センサにあっては、上記磁石部は、上記第1磁石部と上記第2磁石部との間において上記機能面の法線方向に沿って上記磁気抵抗素子と対向するように配置された第3磁石部をさらに含むことが好ましい。この場合には、上記第3磁石部の上記被検出体が移動する領域側に位置する第1の面は、上記第1磁石部および上記第2磁石部の上記被検出体が移動する領域側に位置する第1の面よりも上記機能面の法線方向に沿って上記被検出体が移動する領域から離れて位置することが好ましい。
 上記本発明に基づく磁気センサにあっては、上記第1磁石部、上記第2磁石部および上記第3磁石部は互いに分離独立していることが好ましい。
 上記本発明に基づく磁気センサにあっては、上記第1磁石部、上記第2磁石部および上記第3磁石部は、上記第1磁石部および上記第2磁石部が上記第3磁石部によって接続されることで一体に構成されていることが好ましい。
 上記本発明に基づく磁気センサは、上記被検出体が移動する領域に向けて開口する凹部を有し、上記凹部に上記磁気抵抗素子を収容するケースをさらに備えることが好ましい。この場合には、上記ケースは、上記第1磁石部、上記第2磁石部および上記第3磁石部を含むプラスチックマグネットによって構成されることが好ましい。さらに、上記第3磁石部は、上記凹部の底面部を規定することが好ましく、上記第1磁石部および上記第2磁石部は、上記被検出体の移動方向に並ぶ上記底面部の両端から立設する第1側面部および第2側面部を規定することが好ましい。
 本発明によれば、磁気センサの出力のバラツキを抑制することができる磁気センサを提供することができる。
本実施の形態に係る磁気センサの概略断面図である。 図1に示す磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。 変形例1に係る磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。 変形例2に係る磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。 変形例3に係る磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。 変形例4に係る磁気センサの概略断面図である。 変形例5に係る磁気センサの概略図である。 図7に示すVIII-VIII線に沿った断面図である。 図7に示す磁気センサの長手方向に沿った断面図である。 図7に示す磁気センサの出力特性を示す図である。 比較の形態1における磁気センサの長手方向に沿った断面図である。 比較の形態1における磁気センサの出力特性を示す図である。 比較の形態2における磁気センサの長手方向に沿った断面図である。 比較の形態2における磁気センサの出力特性を示す図である。 変形例6に係る磁気センサの概略図である。 検証実験1に用いる磁石の外形を示す図である。 図13に示す磁石を用いた実施例1に係る磁気センサに具備される磁気抵抗素子と磁石との位置関係を示す図である。 図13に示す磁石を用いた実施例2に係る磁気センサに具備される磁気抵抗素子と磁石との位置関係を示す図である。 比較例1における磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。 検証実験1の結果を示す図である。 図17に示す結果に基づく磁束密度変化率の推移を示す図である。 検証実験2に用いる磁石の外形を示す図である。 検証実験2の結果に影響するパラメータを説明する図である。 図20に示す第3磁石部の幅Pと第1磁石部および第2磁石部の幅Wとを変化させた際の実験結果を示す図である。 図21に示す結果に基づく磁束密度変化率の推移を示す図である。 図20に示す第3磁石部の表面と第1磁石部の第1の面および第2磁石部の第1の面との間の高さ方向に沿った長さdを変化させた際の実験結果を示す図である。 図23に示す結果に基づく磁束密度変化率の推移を示す図である。 図20に示す第1磁石部および第2磁石部の第1の面と磁気抵抗素子の下面との間の高さ方向に沿った長さGを変化させた際の実験結果を示す図である。 図25に示す結果に基づく磁束密度変化率の推移を示す図である。 検証実験3に用いる磁石の外形を示す図である。 検証実験3に用いる磁石の第1例を示す図である。 図28に示す磁気抵抗素子の平面図である。 図28に示す磁気抵抗素子の等価回路を示す図である。 図28に示す磁気抵抗素子を備えた磁気センサの出力電圧信号の波形を示す図である。 図28に示す磁石によって構成される実施例3oに係る磁気センサおよび比較例2における磁気センサを用いた場合の検証実験3の結果を示す図である。 図32に示す結果に基づく出力電圧減衰率の推移を示す図である。 被検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の比較例2における磁気センサの出力電圧信号の波形を示す図である。 被検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の図28に示す磁石によって構成される実施例3oに係る磁気センサの出力電圧信号の波形を示す図である。 検証実験3に用いる磁石の第2例を示す図である。 図28に示す磁石によって構成される実施例3oに係る磁気センサと図36に示す磁石によって構成される実施例3pに係る磁気センサを用いた場合の検証実験3の結果を示す図である。 図37に示す結果に基づく出力電圧減衰率の推移を示す図である。 被検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の図36に示す磁石によって構成される実施例3pに係る磁気センサの出力電圧信号の波形を示す図である。 検証実験4に用いる磁石の外形を示す図である。 検証実験4に用いる磁石の第1例を示す図である。 検証実験4に用いる磁石の第2例を示す図である。 図41および図42に示す磁気抵抗素子の平面図である。 図41および図42に示す磁気抵抗素子の等価回路を示す図である。 図41および図42に示す磁気抵抗素子を備えた磁気センサの出力電圧信号の波形を示す図である。 図41および図42に示す磁石によって構成される実施例4,5に係る磁気センサおよび比較例3における磁気センサを用いた場合の検証実験4の結果を示す図である。 図46に示す結果に基づく出力電圧減衰率の推移を示す図である。 被検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の図41に示す磁石によって構成される実施例5に係る磁気センサの出力電圧信号の波形を示す図である。
 以下、本発明の実施の形態および変形例について、図を参照して詳細に説明する。なお、以下に示す実施の形態および変形例においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 (実施の形態)
 図1は、本実施の形態に係る磁気センサの概略断面図である。図2は、図1に示す磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。図1および図2を参照して、本実施の形態に係る磁気センサ1について説明する。
 図1に示すように、本実施の形態に係る磁気センサ1は、カバー10、ケース(ホルダー)20、封止樹脂30、第1磁石部40a、第2磁石部40b、端子50、リードフレーム60、および磁気抵抗素子70を備える。
 ケース20は、下面側(被検出体が移動する領域側と反対側)に設けられた凹部21,22および上面側(被検出体が移動する領域側)に設けられた凹部23を有する。凹部21と凹部22は、互いに離間した状態で後述する被検出体の移動方向(X軸方向)に沿って並んで設けられている。凹部21と凹部22との間には、隔壁部24が設けられている。
 凹部21,22は、被検出体の移動方向に平行な平面部21a,22aを有し、平面部21aと平面部22aは、実質的に同一平面上に位置する。凹部23は、少なくとも隔壁部24に対向するように設けられている。また、凹部23は、被検出体の移動方向に略平行な平面部23aを有する。
 凹部21および凹部22には、略直方体形状の第1磁石部40aおよび第2磁石部40bが配置される。第1磁石部40aは、被検出体の移動領域側(Z軸正方向側)に位置する面である第1の面41aを有する。第2磁石部40bは、被検出体の移動領域側(Z軸正方向側)に位置する面である第1の面41bを有する。第1磁石部40aの第1の面41aと第2磁石部40bの第1の面41bとは、実質的に同一平面上に位置する。また、第1磁石部40aおよび第2磁石部40bは、封止樹脂30によって、凹部21,22内に封止されている。
 磁気抵抗素子70は、隔壁部24の上方(Z軸正方向)に位置するように凹部23の平面部23a上に配置されている。これにより、磁気抵抗素子70は、被検出体の移動方向に平行な機能面70aを有する。機能面70aは、磁気抵抗効果が生じる面である。
 また、磁気抵抗素子70は、ケース20に設けられた端子用孔に挿入された端子50にリードフレーム60を介して接続されている。磁気抵抗素子70は、例えば、シリコン基板にInSb膜を形成して作製される半導体磁気抵抗素子である。
 カバー10は、ケース20の両側部に長手方向(Y軸方向)に沿って設けられた係合溝(不図示)に係合する爪部を有し、スライド可能にケース20に固定される。カバー10は、ケース20の表面および凹部23を覆う。カバー10によって磁気抵抗素子70が保護される。
 被検出体は、カバー10より上方を移動方向に沿って移動する。このため、被検出体の移動する領域とは、カバー10より上方の領域を指す。したがって、被検出体の移動する領域は、磁気抵抗素子70、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bよりも上方に位置することとなる。
 図2に示すように、第1磁石部40aおよび第2磁石部40bと磁気抵抗素子70との配置に着目すると、第1磁石部40aおよび第2磁石部40bは、磁気抵抗素子70に対して被検出体が移動する領域とは反対側に配置されるとともに、第1磁石部40a、磁気抵抗素子70および第2磁石部40bは、被検出体の移動方向に沿ってこの順で配置されている。
 第1磁石部40aおよび第2磁石部40bは、検出体が移動する領域側に同一の極性である第1磁極をそれぞれ有し、検出体が移動する領域側と反対側には第1磁極の極性と反対の第2磁極をそれぞれ有する。たとえば、第1磁石部40aおよび第2磁石部40bにおける第1磁極をN極とし、第2磁極をS極としてもよいし、その逆であってもよい。第1磁石部40aおよび第2磁石部40bは、磁気抵抗素子70に磁界を印加する。
 第1磁石部40aおよび第2磁石部40bの第1磁極であるN極から出る磁力線の一部が、磁気抵抗素子70の上方から下方へ貫通し、第1磁石部40aと第2磁石部40bとの間を通過し、第1磁石部40aおよび第2磁石部40bの第2磁極であるS極に入る。これに伴い、磁気抵抗素子70の上方から下方に貫通して磁束が入る。また、上記の磁力線の一部は、N極とS極の間でループ状に形成される。
 紙幣などの磁性パターンを有する被検出体が、移動方向(X軸方向)に沿って磁気抵抗素子70近傍に移動してきた場合には、磁気抵抗素子70を貫通するループ状の磁束の磁束密度が増加するとともに、当該ループ状の磁束が被検出体に近づくよう湾曲するため、磁気抵抗素子70の機能面70aの法線方向成分の磁束が増加する。このような磁気抵抗素子70に印加される磁界の磁束密度の変化に伴い、磁気抵抗素子70の抵抗値が変化することにより、磁気センサ1は、被検出体の磁気パターンを検出することができる。
 この際、本実施の形態に係る磁気センサ1にあっては、磁気抵抗素子70の法線方向に沿って磁気抵抗素子70と対向するように磁石部が配置されていないため、第1磁石部40aと第2磁石部40bとによって当該法線方向に沿って磁気抵抗素子70に印加される磁束密度が、当該法線方向および磁気抵抗素子70の機能面70aに平行な方向のいずれにも非平行な方向から磁気抵抗素子70に印加される磁界の磁束密度よりも小さくなる。これにより、磁気抵抗素子70と被検出体との間の距離が大きくなった場合であっても、磁気抵抗素子70に印加される当該法線方向に沿った磁束密度の減衰が小さくなる。このため、磁気抵抗素子70と被検出体との間の距離に基づく、磁気抵抗素子70に印加される上記法線方向の磁束密度の変化を抑制することができ、磁気センサ1自体の出力が小さくなることを抑制できる。
 以上のように、第1磁石部40aおよび第2磁石部40bによって磁気抵抗素子70に印加される磁束密度のうち、磁気抵抗素子70の機能面70aの法線方向に沿って印加される磁束密度が、機能面70aの法線方向および機能面70aに平行な方向のいずれにも非平行な方向から印加される磁束密度よりも小さくなる構成とすることにより、本実施の形態に係る磁気センサ1にあっては、被検出体と磁気抵抗素子との間の距離がばらついた場合であっても、磁気センサの出力のバラツキを抑制することができる。この結果、カバー10に被検出体を押さえつけずに搬送することができるため、カバーの摩耗を防止することができる。
 (変形例1)
 図3は、変形例1に係る磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。図3を参照して変形例1に係る磁気センサについて説明する。
 図3に示すように、本変形例に係る磁気センサは、実施の形態に係る磁気センサと比較した場合に第3磁石部40cをさらに備えている点で相違する。
 具体的には、第3磁石部40cは、第1磁石部40aと第2磁石部40bとの間において、磁気抵抗素子70の機能面70aの法線方向に沿って磁気抵抗素子70と対向するように配置されている。第3磁石部40cは、被検出体の移動領域側(Z軸正方向側)に位置する面である第1の面41cを有する。第3磁石部40cの第1の面41cは、第1磁石部40aおよび第2磁石部40bにおける被検出体の移動領域側に位置する第1の面41a,41bよりも被検出体の移動領域から離れている。すなわち、第3磁石部40cの第1の面41cは、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bよりも下方側(Z軸負方向側)に位置する。また、第3磁石部40cは、第1磁石部40aおよび第2磁石部40bに接するように配置される。
 第1磁石部40a、第2磁石部40bおよび第3磁石部40cは、被検出体の移動領域側に同一の極性である第1磁極をそれぞれ有し、被検出体の移動領域側と反対側には第1磁極の極性と反対の第2磁極をそれぞれ有する。たとえば、第1磁石部40a、第2磁石部40bおよび第3磁石部40cにおける第1磁極をN極とし、第2磁極をS極とする。第1磁石部40a、第2磁石部40bおよび第3磁石部40cは、磁気抵抗素子70に磁界を印加する。
 第1磁石部40aによって生成される磁界と第2磁石部40bによって生成される磁界と第3磁石部40cによって生成される磁界とが合成された合成磁界において、第1磁石部40a、第2磁石部40bおよび第3磁石部40cの第1磁極であるN極から出る磁力線の一部は、磁気抵抗素子70の下方から上方へ貫通して、第1磁石部40a側に位置する領域または第2磁石部40b側に位置する領域を通過し、第1磁石部40a、第2磁石部40bおよび第3磁石部40cの第2磁極であるS極に入る。この際、上記の磁力線の一部は、N極とS極の間でループ状に形成される。
 また、上記合成磁界において、第1磁石部40a、第2磁石部40bおよび第3磁石部40cの第1磁極であるN極から出る磁力線のその他の一部は、磁気抵抗素子70の機能面70aの法線方向に沿って磁気抵抗素子70を貫通する。
 本変形例においては、第3磁石部40cの第1の面41cが、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bよりも被検出体の移動領域から離れて配置されているため、被検出体が移動方向に沿って移動してきた場合に、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって機能面70aの法線方向に沿って磁気抵抗素子に印加される磁束密度は、上記法線方向および機能面70aに平行な方向のいずれにも非平行な方向から第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって磁気抵抗素子70に印加される磁束密度よりも小さくなる。これより、磁気抵抗素子70と被検出体との間の距離が大きくなった場合であっても、磁気抵抗素子70に印加される上記法線方向に沿った磁束密度の減衰が小さくなる。
 このような構成とすることにより、本変形例に係る磁気センサは、磁気抵抗素子70と被検出体との間の距離に基づく、磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の変化を抑制することができる。これにより、本変形例に係る磁気センサは、実施の形態に係る磁気センサ1とほぼ同様の効果を有する。
 (変形例2)
 図4は、変形例2に係る磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。図4を参照して、本変形例に係る磁気センサについて説明する。
 図4に示すように、本変形例に係る磁気センサは、実施の形態に係る磁気センサ1と比較した場合に、磁石部40dの形状が相違する。
 具体的には、本変形例に係る磁気センサに具備される磁石部40dは、第1磁石部40aと第2磁石部40bとを接続する第3磁石部40cを有し、これらによって一体に構成されている。
 第3磁石部40cは、第1磁石部40aと第2磁石部40bとの間において、磁気抵抗素子70の機能面70aの法線方向に沿って磁気抵抗素子70と対向するように配置されている。第3磁石部40cの検出体が移動する領域側に位置する第1の面41cは、第1磁石部40aおよび第2磁石部40bの検出体が移動する領域側に位置する第1の面41a,41bよりも検出体が移動する領域から離れている。すなわち、第3磁石部40cの第1の面41cは、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bよりも下方側(Z軸負方向側)に位置する。これにより、磁石部40dは、検出体が移動する領域側の上面に長手方向(Y軸方向)に沿った溝部が形成された略直方体形状を有する。溝部は、第3磁石部40cの第1の面41cと、第1磁石部40aおよび第2磁石部40bの内側の側面42a,42bによって規定される。
 第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって一体に構成された磁石部40dは、たとえば検出体が移動する領域側に第1磁極としてのN極を有し、磁気抵抗素子70と反対側に第2磁極としてのS極を有する。
 本変形例に係る磁気センサにおける磁力線の分布は、上述の変形例1に係る磁気センサにおける磁力線の分布とほぼ同様になる。これにより、被検出体が移動方向に沿って移動してきた場合に、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって機能面70aの法線方向に沿って磁気抵抗素子に印加される磁束密度は、当該法線方向および機能面70aに平行な方向のいずれにも非平行な方向から第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって印加される磁束密度よりも小さくなる。この結果、磁気抵抗素子70と被検出体との間の距離が大きくなった場合であっても、磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の減衰が小さくなる。
 このような構成とすることにより、本変形例に係る磁気センサは、磁気抵抗素子70と被検出体との間の距離に基づく、磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の変化を抑制することができる。これにより、本変形例に係る磁気センサは、実施の形態に係る磁気センサ1とほぼ同様の効果を有する。
 (変形例3)
 図5は、変形例3に係る磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。図5を参照して、本変形例に係る磁気センサについて説明する。
 図5に示すように、本変形例に係る磁気センサは、変形例2に係る磁気センサと比較した場合に、磁石部40eの形状が相違する。
 具体的には、本変形例に係る磁気センサに具備される磁石部40eは、長手方向(Y軸方向)に沿って半円柱形状の溝部が形成された略半円筒形状を有する。磁石部40eは、第1磁石部40aと第2磁石部40bとを接続するように配置された第3磁石部40cを有し、これらによって一体に構成されている。
 溝部は、第1磁石部40a、第2磁石部40bおよび第3磁石部40cの内周面によって規定される。溝部は、溝部の中央から両端側に向かうにつれて溝部から磁気抵抗素子70までの機能面70aの法線方向に沿った長さが近づくように湾曲する。
 このような構成においても、被検出体が移動方向に沿って移動してきた場合に、磁石部40eによって機能面70aの法線方向に沿って磁気抵抗素子に印加される磁束密度は、当該法線方向および機能面70aに平行な方向のいずれにも非平行な方向から磁石部40eによって印加される磁束密度よりも小さくなる。この結果、磁気抵抗素子70と被検出体との間の距離が大きくなった場合であっても、磁気抵抗素子70に印加される上記法線方向に沿った磁束密度の減衰が小さくなる。このため、本変形例に係る磁気センサにおいても変形例2に係る磁気センサとほぼ同様の効果を有する。
 (変形例4)
 図6は、変形例4に係る磁気センサの概略断面図である。図6を参照して、本変形例に係る磁気センサ1Aについて説明する。
 図6に示すように、本変形例に係る磁気センサ1Aは、実施の形態に係る磁気センサ1と比較した場合に、被検出体の移動方向に沿って並んでケース20A内に設けられた第1磁石部収容部25内および第2磁石部収容部26内に第1磁石部40aおよび第2磁石部40bが、封止樹脂によって封止されることなく収容されている点において相違する。
 また、磁気抵抗素子70は、リードフレーム60Aを介して第2磁石部40b側に位置する端子50Aに接続されている。
 このような構成であっても、磁気抵抗素子70の法線方向に沿って磁気抵抗素子70と対向するように磁石部が配置されない構成となるため、本変形例に係る磁気センサは、実施の形態に係る磁気センサ1とほぼ同様の効果を有する。
 (変形例5)
 図7は、変形例5に係る磁気センサの概略図である。図8は、図7に示すVIII-VIII線に沿った断面図である。図9Aおよび図9Bは、図7に示す磁気センサの長手方向に沿った断面図および出力特性を示す図である。図7から図9Bを参照して、本変形例に係る磁気センサ1Bについて説明する。
 図7に示すように、本変形例に係る磁気センサ1Bは、実施の形態に係る磁気センサ1と比較した場合に、ケース80自体がプラスチックマグネットにて構成されている点において相違する。
 具体的には、本変形例に係る磁気センサ1Bは、カバー10、ケース80、端子50、リードフレーム(不図示)および磁気抵抗素子70を備える。ケース80は、被検出体が移動する領域に向けて開口する凹部83を有する。凹部83は、長手方向(Y軸方向)に沿って設けられている。
 磁気抵抗素子70は、凹部83内に配置されている。磁気抵抗素子70は、ケース80の長手方向における両端に設けられた端子用孔に挿入された端子50にリードフレーム(不図示)を介して接続されている。
 カバー10は、ケース80の両側部に長手方向(Y軸方向)に沿って設けられた係合溝(不図示)に係合する爪部を有し、スライド可能にケース80に固定される。カバー10は、ケース80の表面および凹部83を覆う。カバー10によって磁気抵抗素子70が保護される。
 ケース80は、プラスチックマグネットで構成されていることより、図8に示すように、凹部83の周辺に第1磁石部40a、第2磁石部40bおよび第3磁石部40cを有する。凹部83は、被検出体の移動方向に並ぶ底面部83cの両端から立設する第1側面部83aおよび第2側面部83bと、底面部83cとを含む。底面部83c上に磁気抵抗素子70が載置される。このような状態においては、ケース80は、磁気抵抗素子70に対して被検出体が移動する領域と反対側に少なくともケース80の一部が位置するように配置される。
 第3磁石部40cは、凹部83の底面部83cを規定し、第1磁石部40aおよび第2磁石部40bは、第1側面部83aおよび第2側面部83bを規定する。
 図9Aは、図7に示す磁気センサの長手方向に沿った断面図である。図9Bは、図7に示す磁気センサの出力特性を示す図である。図9Aに示すように、本変形例に係る磁気センサ1Bにあっては、長手方向に沿って連続して延在する凹部83の底面部83c上に、複数の磁気抵抗素子70が互いに離間して配置される。
 このような状態においては、図9Bに示すように、隣接する磁気抵抗素子70の間の隙間において出力感度が一部低下するが、磁石と磁石との間の隙間が存在しないため、磁石と磁石との間の隙間に起因する出力の変動を抑制することができる。
 以上のような構成とすることにより、本変形例に係る磁気センサ1Bにおいても、第3磁石部40cの被検出体の移動領域側に位置する第1の面41cは、第1磁石部40aおよび第2磁石部40bの被検出体の移動領域側に位置する第1の面41a,41bよりも上記法線方向に沿って被検出体の移動領域から離れる。このため、被検出体が移動方向に沿って移動してきた場合に、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって機能面70aの法線方向に沿って磁気抵抗素子70に印加される磁束密度が、当該法線方向および機能面70aに平行な方向のいずれにも非平行な方向から第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって磁気抵抗素子70に印加される磁束密度よりも小さくなる。この結果、磁気抵抗素子70と被検出体との間の距離が大きくなった場合であっても、磁気抵抗素子70に印加される上記法線方向に沿った磁束密度の減衰が小さくなる。
 これにより、本変形例に係る磁気センサ1Bは、実施の形態に係る磁気センサ1とほぼ同様の効果を有する。また、本変形例に係る磁気センサ1Bにあっては、磁石と磁石との間の隙間が存在しないため、磁石と磁石との間の隙間に起因する出力の変動を抑制することができる。
 (比較の形態1)
 図10Aおよび図10Bは、比較の形態1における磁気センサの長手方向に沿った断面図および出力特性を示す図である。具体的には、図10Aが、比較の形態1における磁気センサの長手方向に沿った断面図であり、図10Bが、比較の形態1における磁気センサの出力特性を示す図である。
 図10Aに示すように、比較の形態1における磁気センサ1Xにあっては、変形例5に係る磁気センサ1Bと比較した場合に、ケース20がプラスチックマグネットで形成されておらず、ケース20内に磁気抵抗素子70と磁石40とが配置されている点において相違する。
 具体的には、比較の形態1における磁気センサ1Xにあっては、複数の磁石が長手方向(Y軸方向)に沿って互いに離間して配置されるとともに、当該磁石40の上方(Z軸正方向)において、複数の磁気抵抗素子70が長手方向(Y軸方向)に沿って互いに離間して配置されている。また、複数の磁気抵抗素子70の少なくとも1つが、隣接する磁石40の間の隙間をその上方(Z軸正方向)において跨ぐように配置されている。
 このような状態においては、図10Bに示すように、隣接する磁気抵抗素子70の間の隙間において出力感度が一部低下するとともに、隣接する磁石40の間の隙間において当該隙間を跨ぐように配置される磁気抵抗素子70の出力が低下する。
 (比較の形態2)
 図11Aおよび図11Bは、比較の形態2における磁気センサの長手方向に沿った断面図および出力特性を示す図である。具体的には、図11Aが、比較の形態2における磁気センサの長手方向に沿った断面図であり、図11Bが、比較の形態2における磁気センサの出力特性を示す図である。
 図11Aに示すように、比較の形態2における磁気センサ1Yにあっては、変形例5に係る磁気センサ1Bと比較した場合に、ケース20がプラスチックマグネットで形成されておらず、ケース20内に磁気抵抗素子70と磁石40とが配置されている点において相違する。
 具体的には、比較の形態2における磁気センサ1Yにあっては、複数の磁石40が長手方向(Y軸方向)に沿って互いに離間して配置されるとともに、当該磁石40の上(Z軸正方向)方において、複数の磁気抵抗素子が長手方向(Y軸方向)に沿って互いに離間して配置されている。また、少なくとも1つの隣接する磁気抵抗素子70の間の隙間が、隣接する磁石40の間の隙間の上方(Z軸正方向)に位置する。
 このような状態においては、図11Bに示すように、隣接する磁石40の間の隙間の上方に位置する隣接する磁気抵抗素子70の間の隙間における出力が、隣接する磁石40の間の隙間の上方に位置していない隣接する磁気抵抗素子70の間の隙間における出力よりもさらに低下する。
 比較の形態1、比較の形態2における磁気センサ1X,1Yの出力特性と、変形例5に係る磁気センサ1Bの出力特性とを比較して、ケース80がプラスチックマグネットで構成される変形例5に係る磁気センサ1Bにあっては、その出力特性において上述の如く磁石と磁石との間の隙間に起因する出力の変動を抑制することができる。
 (変形例6)
 図12は、変形例6に係る磁気センサの概略図である。図12を参照して、本変形例に係る磁気センサ1Cについて説明する。
 図12に示すように、本変形例に係る磁気センサ1Cは、変形例5に係る磁気センサ1Bと比較した場合に、端子50の配置が相違し、その他構成についてはほぼ同様である。
 本変形例に係る磁気センサ1Cにあっては、端子50は、磁気抵抗素子70を挟み込むように被検出体の移動方向に沿って並んで配置されている。磁気抵抗素子70は、リードフレーム60を介して端子50に接続されている。
 本変形例に係る磁気センサ1Cおいても、ケース80をプラスチックマグネットによって構成するとともに、その上面側に長手方向に沿って設けられた凹部83内に磁気抵抗素子70が配置されることにより、第3磁石部の被検出体の移動領域側に位置する表面は、第1磁石部および第2磁石部の被検出体の移動領域側に位置する表面よりも磁気抵抗素子の機能面の法線方向に沿って被検出体の移動領域から離れた構成となる。このため、本変形例に係る磁気センサ1Cは、変形例5に係る磁気センサ1Bとほぼ同様の効果が得られる。
 (検証実験1)
 実施の形態に係る磁気センサ1、変形例1に係る磁気センサおよび後述する比較例1における磁気センサを用いて、被検出体と磁気抵抗素子との間の距離がばらついた場合に、磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の減衰を抑制することができるか否かを検証するために行なった検証実験1について説明する。
 図13は、検証実験1に用いる磁石の外形を示す図である。図14および図15は、図13に示す磁石を用いた場合における実施例1に係る磁気センサおよび実施例2に係る磁気センサに具備される磁気抵抗素子と磁石との位置関係を示す図である。図16は、比較例1における磁気センサに具備される磁気抵抗素子および磁石の配置を示す図である。図13から図16を参照して、検証実験1としてシミュレーションを行なった磁気抵抗素子および磁石の条件について説明する。
 図13に示すように、検証実験1に用いる磁石40として、略直方体形状の磁石を使用した。当該磁石40の外形については、磁気センサの短手方向(X軸方向)に沿った長さAを2.9mmとし、磁気センサの長手方向(Y軸方向)に沿った長さBを12.9mmとし、磁気センサの高さ方向(Z軸方向)に沿った長さCを6.5mmとした。
 図14に示すように、実施例1としては、実施の形態に係る磁気センサを準備し、具体的には、上述の磁石を被検出体の移動方向に沿って2つ並べるとともに、2つの磁石40の間の隙間の上方に磁気抵抗素子70を配置されることによって構成される磁気センサを準備した。2つ並べた磁石40のそれぞれを第1磁石部40a、第2磁石部40bとし、その間の距離tを1.6mmとした。
 図15に示すように、実施例2としては、変形例1に係る磁気センサを準備し、具体的には、上述の磁石40を被検出体の移動方向(X軸方向)に沿って3つ並べるとともに、中央に位置する磁石40の上方(Z軸正方向)に磁気抵抗素子70を配置することによって構成される磁気センサを準備した。
 3つ並べた磁石40のそれぞれを第1磁石部40a、第2磁石部40b、第3磁石部40cとした。第3磁石部40cの第1の面41cと、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bとの間における磁気センサの高さ方向(Z軸方向)に沿った長さdを0.8mmとした。また、第3磁石部40cの第1の面41cと磁気抵抗素子70の下面70bとの間における当該高さ方向に沿った長さEを0.5mmとした。
 図16に示すように、比較例1としては、上述の磁石40の第1の面41の上方に磁気抵抗素子70を配置することによって構成される磁気センサを準備した。
 実施例1,2および比較例1について、磁気抵抗素子の機能面70aから被検出体までの磁気センサの高さ方向(Z軸方向)に沿った長さ(GAP)を変化させた場合に、磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の値をシミュレーションした。なお、磁気抵抗素子70に被検出体が接触する場合のGAPを0mmとした。
 図17は、検証実験1の結果を示す図である。図17を参照して、検証実験1の結果について説明する。
 図17に示すように、実施例1,2については、GAPが変化した場合でも磁束密度に大きな変化は見られなかった。一方、比較例1においては、GAPが大きくなるにつれて磁束密度が大きく低下した。
 図18は、図17に示す結果に基づく磁束密度変化率の推移を示す図である。図18を参照して、図17に示す結果に基づく磁束密度変化率の推移について説明する。なお、磁束密度変化率とは、GAPが0mmとなる場合の磁束密度に占めるGAPが所定の値となる場合の磁束密度の割合を指し、GAPが0mmとなる場合の磁束密度を100%としている。
 図18に示すように、比較例1においては、GAPが略1.2mmとなる場合に磁気抵抗素子に印加される機能面70aの法線方向に沿った磁束密度は、GAPが0mmとなる場合と比較して約30%小さくなった。
 一方、実施例1においては、GAPが略1.2mmとなる場合に磁気素子抵抗に印加される機能面70aの法線方向に沿った磁束密度は、GAPが0mmとなる場合と比較して約10%小さくなった。また、実施例2においては、GAPが略1.2mmとなる場合に磁気素子抵抗に印加される上記法線方向に沿った磁束密度は、GAPが0mmとなる場合と比較して約5%小さくなった。
 以上より、本検証実験によって、第1磁石部40aおよび第2磁石部40bによって機能面70aの法線方向に沿って磁気抵抗素子に印加される磁束密度が、機能面70aの法線方向および機能面70aに平行な方向のいずれにも非平行な方向から第1磁石部40aおよび第2磁石部40bによって印加される磁束密度よりも小さくなる構成、または、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって上記法線方向に沿って磁気抵抗素子に印加される磁束密度が、機能面70aの法線方向および機能面70aに平行な方向のいずれにも非平行な方向から磁気抵抗素子70に第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって印加される磁束密度よりも小さくなることが確認されたと言える。
 (検証実験2)
 変形例2に係る磁気センサを用いて、被検出体と磁気抵抗素子との間の距離がばらついた場合に、磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の減衰を抑制することができるか否かを検証するために行なった検証実験2について説明する。また、本検証実験においては、磁束密度の減衰をより確実に抑制することができる条件についても検討した。
 図19は、検証実験2に用いる磁石の外形を示す図である。図20は、検証実験2の結果に影響するパラメータを説明する図である。図19および図20を参照して、本検証実験としてシミュレーションを行なった磁気抵抗素子および磁石の条件について説明する。
 図19に示すように、検証実験2に用いる磁石として、上面に長手方向(Y軸方向)に沿って溝部が形成された略直方体形状の磁石部40dを用いた。磁石部40dは、第1磁石部40aと第2磁石部40bとを接続する第3磁石部40cを有し、これらによって一体に構成されている。
 当該磁石部40dの外形については、磁気センサの長手方向に沿った長さBを12.9mmとし、磁石部40dの底面43dから溝部の底面部(第3磁石部40cの第1の面41c)までの磁気センサの高さ方向(Z軸方向)に沿った長さCを5mmとした。
 図20に示すように、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bの磁気センサの短手方向(X軸方向)に沿った長さ(第1磁石部および第2磁石部の幅)Wと、第3磁石部40cの第1の面41cの磁気センサの短手方向(X軸方向)に沿った長さ(第3磁石部の幅)P、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bと第3磁石部40cの第1の面41cとの間における磁気センサの高さ方向(Z軸方向)に沿った長さd、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bと磁気抵抗素子70の下面70bとの間における磁気センサの高さ方向に沿った長さGを変更した各種の磁気センサについてシミュレーションを行なった。
 図21は、図20に示す第3磁石部の幅Pと第1磁石部および第2磁石部の幅Wとを変化させた際の実験結果を示す図である。図21を参照して、第3磁石部の幅Pと第1磁石部および第2磁石部の幅Wとを変化させた際の実験結果について説明する。
 なお、本実験においては、図21に示すように第3磁石部の幅Pを1~3mm、第1磁石部および第2磁石部の幅Wを2~3mmの範囲で変更した実施例3aから実施例3fに係る磁気センサを用いた。この際、上記の長さGを0mm、長さdを1mmとした。
 図21に示すように、実施例3a、3fに係る磁気センサにあっては、GAPが変化した場合に磁束密度がやや大きく変化したが、図17に示す比較例1と比較した場合には、実施例3aから3fに係るすべての磁気センサにおいて、磁束密度の変化は抑制されていた。
 図22は、図21に示す結果に基づく磁束密度変化率の推移を示す図である。図22を参照して、図17に示す結果に基づく磁束密度変化率の推移について説明する。
 図22に示すように、実施例3aから実施例3fの全てにおいて、図18に示す比較例1と比較して、磁束密度の変化の度合いが抑制されていた。上記の比較例1においては、GAPが略1.2mmとなる場合に磁気素子抵抗に印加される機能面70aの法線方向に沿った磁束密度は、GAPが0mmとなる場合の当該磁束密度と比較して略30%変動したのに対して、最も大きく変化した実施例3fにおいては、当該磁束密度が略22%変動した。
 P=2mm、W=2mmとする実施例3cに係る磁気センサにおいて、最も磁束密度が安定する結果が得られた。実施例3cにおいては、GAPが略1.2mmとなる場合に磁気素子抵抗に印加される機能面70aの機能面の法線方向に沿った磁束密度は、GAPが0mmとなる場合の磁束密度と比較して略5%変動した。
 実施例3cと、実施例3dから実施例3fとを比較して、第3磁石部の幅Pと、第1磁石部および第2磁石部の幅Wとを小さくすることにより、被検出体が有する磁気パターンが近づくことによって磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の変化を小さくできることが考察される。
 図23は、図20に示す第3磁石部の表面と第1磁石部および第2磁石部の表面との間の高さ方向に沿った長さdを変化させた際の実験結果を示す図である。図23を参照して、図20に示す第3磁石部の表面と第1磁石部および第2磁石部の表面との間の高さ方向に沿った長さdを変化させた際の実験結果について説明する。
 なお、本実験においては、図23に示すように、上記の長さdを1mm,2mm,4mmと変更した実施例3c,3g,3hに係る磁気センサを用いた。この際、第3磁石部の幅Pの値および第1磁石部および第2磁石部の幅Wの値としては、上記の実験で良好な結果が得られた値を採用し、P=2mm、W=2mmとした。また、上記の長さGを0mmとした。
 図23に示すように、実施例3hに係る磁気センサにあっては、GAPが変化した場合に磁束密度がやや大きく変化したが、図17に示す比較例1と比較した場合には、実施例3c,3g,3hに係るすべての磁気センサにおいて、磁束密度の変化は抑制されていた。
 図24は、図23に示す結果に基づく磁束密度変化率の推移を示す図である。図24を参照して、図23に示す結果に基づく磁束密度変化率の推移について説明する。
 図24に示すように、実施例3hにおいて、GAPが大きくなるにつれて、磁束密度変化率はやや大きく変化したが、実施例3c,3g,3hの全てにおいて、図18に示す比較例1と比較した場合に、磁束密度の変化の度合いが抑制されていた。上記の比較例1においては、GAPが略1.5mmとなる場合に磁気抵抗素子に印加される機能面70aの法線方向に沿った磁束密度は、GAPが0mmとなる場合の当該磁束密度と比較して略44%変動したのに対して、最も大きく変化した実施例3hにおいては、当該磁束密度が略37%変動した。
 d=1mmとする実施例3cにおいて、最も磁束密度が安定する結果が得られた。実施例3cにおいては、GAPが略1.2mmとなる場合に磁気抵抗素子に印加される機能面70aの法線方向の磁束密度は、GAPが0mmとなる場合の磁束密度と比較して略5%変動した。
 実施例3cと、実施例3g、3hとを比較して、第3磁石部40cの第1の面41cと第1磁石部40aおよび第2磁石部40bの第1の面41a,41bとの間の高さ方向に沿った長さdを小さくすることにより、被検出体が有する磁気パターンが近づくことによって磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度の変化を小さくできることが考察される。
 図25は、図20に示す第1磁石部および第2磁石部の表面と磁気抵抗素子の下面との間の高さ方向に沿った長さGを変化させた際に実験結果を示す図である。図25を参照して、第1磁石部40aおよび第2磁石部40bの第1の面41a,41bと磁気抵抗素子70の下面70bとの間の高さ方向に沿った長さGを変化させた際に実験結果について説明する。
 なお、本実験においては、図25に示すように、上記の長さGを-0.5mmから1.0mmの範囲で変更した実施例3iから実施例3mに係る磁気センサを用いた。この際、第3磁石部の幅Pの値および第1磁石部および第2磁石部の幅Wの値としては、上記の実験で良好な結果が得られた値を採用し、P=2mm、W=2mmとした。また、上記の長さdを0.5mmとした。上記の長さGが-0.5mmとなる場合とは、磁気抵抗素子70の下面70bが、第1の面41a,41bよりよりも0.5mm低い位置にある状態を示し、磁石部40dが、磁気抵抗素子70に対して被検出体が移動する領域と反対側に少なくとも磁石部40dの一部が位置するように配置された一例を示す。
 図25に示すように、実施例3i,3l,3mにおいて、GAPが変化した場合に磁束密度がやや大きく変化したが、図17に示す比較例1と比較した場合には、実施例3iから実施例3mの全てにおいて、磁束密度の変化の度合いが抑制されていた。
 図26は、図25に示す結果に基づく磁束密度変化率の推移を示す図である。図26を参照して、図25に示す結果に基づく磁束密度変化率の推移について説明する。
 図26に示すように、実施例3i,3l,3mにおいて、GAPが大きくなるにつれて、磁束密度変化率はやや大きく変化したが、実施例3iから実施例3mの全てにおいて、図18に示す比較例1と比較した場合に、磁束密度の変化の度合いが抑制されていた。上記の比較例1においては、GAPが略1.2mmとなる場合に磁気抵抗素子に印加される機能面70aの法線方向に沿った磁束密度は、GAPが0mmとなる場合の当該磁束密度と比較して略30%変動したのに対して、最も大きく変化した実施例3iにおいては、当該磁束密度が略20%変動した。
 G=-0.3mmとする実施例3jにおいて、最も磁束密度が安定する結果が得られた。実施例3jにおいては、GAPが略1.2mmとなる場合に磁気抵抗素子に印加される機能面70aの法線方向に沿った磁束密度は、GAPが0mmとなる場合の当該磁束密度と比較してほとんど変動しなかった。
 実施例3jと実施例3i,3k,3l,3mとを比較して、磁気抵抗素子70の下面70bが、G=-0.3mmとする位置から離れるにつれて、被検出体が有する磁気パターンが近づくことによって磁気抵抗素子70に印加される機能面70aの法線方向に沿った磁束密度が、大きく変化することが考察される。
 以上より、本検証実験によっても、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって機能面70aの法線方向に沿って磁気抵抗素子に印加される磁束密度が、上記法線方向および機能面70aに平行な方向のいずれにも非平行な方向からから第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって印加される磁束密度よりも小さくなる構成を有する磁気センサにおいて、磁気抵抗素子と被検出体との間の距離が大きくなった場合でも磁気抵抗素子に印加される上記法線方向に沿った磁束密度の変化が小さくなることが確認されたと言える。
 (検証実験3)
 変形例3に係る磁気センサにおける磁気抵抗素子の感磁部およびその周辺部を具体的にしたものを用いて、被検出体と磁気抵抗素子との間の距離がばらついた場合に、磁気センサの出力のバラツキを抑制することができるか否かを検証するために行なった検証実験3ついて説明する。
 図27は、検証実験3に用いる磁石の外形を示す図である。図28は、検証実験3に用いる磁石の第1例を示す図である。図27および図28を参照して、本検証実験に用いた磁気抵抗素子および磁石の条件について説明する。
 図27に示すように、実施例3oに係る磁気センサに用いる磁石として、上面に長手方向(Y軸方向)に沿って溝部が形成された略直方体形状の磁石40oを用いた。磁石40oは、第1磁石部40aと第2磁石部40bとを接続するように配置された第3磁石部40cを有し、これらによって一体に構成されている。
 当該磁石40oの外形については、磁気センサの長手方向に沿った長さBを15mmとし、磁石40oの底面43dから第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bまでの磁気センサの高さ方向(Z軸方向)に沿った長さCを5mmとした。
 図28に示すように、当該磁石40oにあっては、第3磁石部40cの幅Pを2mmとし、第1磁石部40aおよび第2磁石部40bの幅Wを2mmとし、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bと第3磁石部40cの第1の面41cとの間における磁気センサの高さ方向(Z軸方向)に沿った長さdを0.3mmとし、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bと磁気抵抗素子70Aの下面70bとの間における磁気センサの高さ方向に沿った長さGを0mmとした。
 図29は、図28に示す磁気抵抗素子の平面図である。図30は、図28に示す磁気抵抗素子の等価回路を示す図である。図31は、図28に示す磁気抵抗素子を備えた磁気センサの出力電圧信号の波形を示す図である。図29から図31を参照して、本検証実験に用いた磁気抵抗素子70Aについて説明する。
 図29および図30に示すように、磁気抵抗素子70Aは、シリコン基板71上に第1感磁部MR1、第2感磁部MR2、電圧入力端子Vinに対応する電圧入力用電極791、グランド端子GNDに対応するグランド接続用電極792および電圧出力端子Voutに対応する電圧出力用電極793が形成されることにより構成される。
 電圧入力用電極791およびグランド接続用電極792は、シリコン基板71における長手方向(Y軸方向)の一端側において、被検出体の移動方向(X軸方向)に沿って並ぶように配置されている。電圧出力用電極793は、電圧入力用電極791およびグランド接続用電極792に対向するようにシリコン基板71における長手方向(Y軸方向)の他端側に配置されている。
 電圧入力用電極791は、第2感磁部MR2を介して電圧出力用電極793の一端側に接続されており、グランド接続用電極792は、第1感磁部MR1を介して電圧出力用電極793の他端側に接続されている。
 第2感磁部MR2は、メアンダ形状に形成されたInSbからなる磁気抵抗層730と、当該磁気抵抗層730上に形成された導電体からなる短絡電極751,752,753,754,755とによって構成されている。第2感磁部MR2のうち短絡電極751,752,753,754,755が形成されていない部分において、磁気抵抗層731,732,733,734が露出している。
 第1感磁部MR1は、磁気抵抗層732と磁気抵抗層733の間の隙間および磁気抵抗層734と電圧出力用電極793との間の隙間に入り込むようにメアンダ形状に形成された磁気抵抗層720と、当該磁気抵抗層720上に形成された導電体からなる短絡電極741,742,743,744,745,746,747,748,749とによって構成されている。短絡電極746,747,748,749は、被検出体の移動方向(X軸方向)に沿って離間して複数形成されている。第1感磁部MR1のうち短絡電極741,742,743,744,745,746,747,748,749が形成されていない部分において、磁気抵抗層721,722,723,724が露出している。
 感磁部の磁界に対する感度は、磁気抵抗層上に形成される短絡電極のパターンによって決定される。磁界に対する感度とは、感磁部を通過する磁束密度に応じて変化する抵抗値を意味し、磁束密度が所定量変化する場合に抵抗値が大きく変化するほど、感度が高いとされる。
 第2感磁部MR2は、第1感磁部MR1と比較して、磁気抵抗層の露出する部分が多く構成されているため、第2感磁部MR2は、第1感磁部MR1よりも低感度になる。
 図31に示すように、磁気抵抗素子70Aを備えた実施例3oに係る磁気センサの出力電圧信号は、被検出体の通過に伴い発生するピークが1つのみの波形となり、被検出体を正確に検知することができる。
 一方、図16に示す磁気抵抗素子と磁石との配置関係を有し、磁気抵抗素子70Aと同一の構成である磁気抵抗素子を備えた磁気センサを比較例2における磁気センサとして準備した。
 被検出体が通過した際の実施例3oに係る磁気センサおよび比較例2における磁気センサの出力電圧を計測した。被検出体と磁気センサのカバー上面との間における高さ方向(Z軸方向)に沿った長さを検出ギャップと規定し、当該検出ギャップを0mm,0.085mm,0.17mm,0.255mm,0.425mm,0.595mm,0.85mmと変化させた。なお、磁気抵抗素子70Aの機能面からカバー上面までの高さ方向(Z軸方向)に沿った長さは、0.3mmとした。
 図32は、図28に示す磁石によって構成される実施例3oに係る磁気センサおよび比較例2における磁気センサを用いた場合の検証実験3の結果を示す図である。図33は、図32に示す結果に基づく出力電圧減衰率の推移を示す図である。ここで、出力電圧減衰率とは、検出ギャップが0mmとなる場合の出力電圧に占める検出ギャップが所定の値となる場合の出力電圧の割合を指し、検出ギャップが0mmとなる場合の出力電圧を100%としている。図32および図33を参照して、実施例3oに係る磁気センサおよび比較例2における磁気センサの出力電圧について説明する。
 図32および図33に示すように、実施例3oは、比較例2と比較した場合に、検出ギャップが大きくなった場合であっても出力電圧の減衰が抑制されていた。
 図34は、被検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の比較例2における磁気センサの出力電圧信号の波形を示す図である。図35は、被検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の図28に示す磁石によって構成される実施例3oに係る磁気センサの出力電圧信号の波形を示す図である。
 図34に示すように、比較例2における磁気センサにあっては、検出ギャップを図中に示す1~7に対応する値で変化させた場合に、出力電圧信号1~7が大きくばらついた。
 図35に示すように、実施例3oに係る磁気センサにあっては、検出ギャップを図中に示す1~7に対応する値で変化させた場合に、出力電圧信号1~7のばらつきが抑制された。
 図36は、検証実験3に用いる磁石の第2例を示す図である。図36を参照して、本検証実験に用いた磁気抵抗素子および磁石のその他の条件について説明する。
 図36に示すように、実施例3pに係る磁気センサに用いる磁石40pは、図28に示す実施例3oの磁石40oと比較した場合に、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bと第3磁石部40cの第1の面41cとの間における磁気センサの高さ方向(Z軸方向)に沿った長さdが1.0mmとなっている点、および、磁気抵抗素子70の機能面70aが第1の面41aおよび第1の面41bと実質的に同一平面上に位置する点において相違する。
 実施例3pに係る磁気センサにおいても上述同様に被検出体が通過した際の出力電圧を計測した。
 図37は、図28に示す磁石によって構成される実施例3oに係る磁気センサと図36に示す磁石によって構成される実施例3pに係る磁気センサを用いた場合の検証実験3の結果を示す図である。図38は、図37に示す結果に基づく出力電圧減衰率の関係を示す図である。
 図37および図38に示すように、実施例3pは、実施例3oと比較した場合に、検出ギャップが大きくなった場合であっても出力電圧の減衰が抑制されていた。
 図39は、被検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の図36に示す磁石によって構成される実施例3pに係る磁気センサの出力電圧信号の波形を示す図である。
 図39に示すように、実施例3pに係る磁気センサにあっては、図34に示す比較例2と比較して、検出ギャップを図中に示す1~7に対応する値で変化させた場合であっても出力電圧信号1~7のばらつきが抑制された。
 以上より、本検証実験にあっては、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって機能面70aの法線方向に沿って磁気抵抗素子に印加される磁束密度が、当該法線方向および機能面70aに平行な方向のいずれにも非平行な方向から、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって磁気抵抗素子に印加される磁束密度よりも小さくする構成を有する磁気センサにおいて、磁気抵抗素子と被検出体との間の距離がばらついた場合でも磁気センサの出力のバラツキを抑制できることが確認されたと言える。
 (検証実験4)
 実施の形態および変形例2に係る磁気センサにおける磁気抵抗素子70の感磁部およびその周辺部を具体的にしたものを用いて、被検出体を磁気抵抗素子との間の距離がばらついた場合に、磁気センサの出力のバラツキを抑制することができるか否かを検証するために行なった検証実験4について説明する。
 図40は、検証実験4に用いる磁石の外形を示す図である。図41は、検証実験4に用いる磁石の第1例を示す図である。図42は、検証実験4に用いる磁石の第2例を示す図である。図40から図42を参照して、本検証実験に用いた磁気抵抗素子および磁石の条件について説明する。
 図40に示すように、本検証実験に用いる磁石として、略直方体形状の磁石を使用した。当該磁石の外形については、磁気センサの短手方向(図1中X軸方向)に沿った長さAを2.9mmとし、磁気センサの長手方向に沿った長さBを12.9mmとし、磁気センサの高さ方向に沿った長さCを6.5mmとした。
 図41に示すように、実施例4としては、実施の形態に係る磁気センサを準備し、具体的には、上述の磁石を被検出体の移動方向に沿って2つ並べるとともに、2つの磁石の間の隙間の上方に磁気抵抗素子70Bを配置されることによって構成される磁気センサを準備した。2つ並べた磁石のそれぞれを第1磁石部40a、第2磁石部40bとし、その間の距離tを1.6mmとした。
 図42に示すように、実施例5としては、変形例1に係る磁気センサを準備し、具体的には、上述の磁石を被検出体の移動方向に沿って3つ並べるとともに、中央に位置する磁石の上方に磁気抵抗素子を配置することによって構成される磁気センサを準備した。
 3つ並べた磁石のそれぞれを第1磁石部40a、第2磁石部40b、第3磁石部40cとした。第3磁石部40cの第1の面41cと、第1磁石部40aの第1の面41aおよび第2磁石部40bの第1の面41bとの間における磁気センサの高さ方向に沿った長さdを1mmとした。また、第3磁石部40cの第1の面41cと磁気抵抗素子70の下面70bとの間における当該高さ方向に沿った長さEを0.5mmとした。
 図43は、図41および図42に示す磁気抵抗素子の平面図である。図44は、図41および図42に示す磁気抵抗素子の等価回路を示す図である。図45は、図41および図42に示す磁気抵抗素子を備えた磁気センサの出力電圧信号の波形を示す図である。図43から図45を参照して、本検証実験に用いた磁気抵抗素子70Bについて説明する。
 図43および図44に示すように、磁気抵抗素子70Bは、シリコン基板71の機能面上に第3感磁部MR3、第4感磁部MR4、電圧入力端子Vinに対応する電圧入力用電極791、グランド端子GNDに対応するグランド接続用電極792および電圧出力端子Voutに対応する電圧出力用電極793が形成されることにより構成される。
 本検証実験に用いた磁気抵抗素子70Bは、検証実験3に用いた磁気抵抗素子70Aと比較した場合に、第3感磁部MR3および第4感磁部MR4の構成が相違する。
 具体的には、第4感磁部MR4は、長手方向に沿って直線状に形成された磁気抵抗層730Aと、当該磁気抵抗層730A上に互いに離間して形成された複数の短絡電極751Aとによって構成されている。第4感磁部MR4のうち短絡電極751Aが形成されていない部分において、磁気抵抗層731Aが露出している。
 第3感磁部MR3は、長手方向に沿って直線状に形成された磁気抵抗層720Aと、当該磁気抵抗層720A上に互いに離間して形成された複数の短絡電極741Aとによって構成されている。第3感磁部MR3のうち短絡電極741Aが形成されていない部分において、磁気抵抗層721Aが露出している。
 第3感磁部MR3および第4感磁部MR4は、同一の構成を有するため、磁界に対する感度は、ほぼ同一となる。第3感磁部MR3および第4感磁部MR4は、被検出体が通過することにより磁束密度が変化すると磁束密度の大きさに応じてそれぞれ抵抗値が変化する。
 図45に示すように、磁気抵抗素子70Bを備えた実施例4,5に係る磁気センサにあっては、被検出体が第4感磁部MR4を通過した後に、第3感磁部MR3を通過することとなるため、当該磁気センサの出力電圧信号は、ピークが2つ現れる。このようなピークが明確に現れることにより被検出体が有する磁気パターンを検出することができる。
 一方、図16に示す磁気抵抗素子と磁石との配置関係を有し、磁気抵抗素子70Bと同一の構成である磁気抵抗素子を備えた磁気センサを比較例3における磁気センサとして準備した。
 被検出体が通過した際の実施例4,5に係る磁気センサおよび比較例2における磁気センサの出力電圧を計測した。被検出体としては、磁性インクを用いた。被検出体と磁気センサのカバー上面との間の距離を検出ギャップと規定し、当該検出ギャップを0mm,0.085mm,0.17mm,0.255mm,0.425mm,0.595mm,0.85mmと変化させた。なお、磁気抵抗素子70Bの上面からカバー上面までの高さ方向(Z軸方向)に沿った長さは、0.3mmとした。
 図46は、図41および図42に示す磁石によって構成される実施例4,5に係る磁気センサおよび比較例3における磁気センサを用いた場合の検証実験4の結果を示す図である。図47は、図46に示す結果に基づく出力電圧減衰率の推移を示す図である。図46および図47を参照して、実施例4,5に係る磁気センサおよび比較例3における磁気センサの出力電圧について説明する。
 図46および図47に示すように、実施例4,5は、比較例3と比較した場合に、検出ギャップが大きくなった場合であっても出力電圧の減衰が抑制されていた。
 図48は、検出体とカバーとの間の高さ方向に沿った長さを変化させた場合の図41に示す磁石によって構成される実施例5に係る磁気センサの出力電圧信号の波形を示す図である。
 図48に示すように、実施例5に係る磁気センサにあっては、図35,図39と比較した場合に、磁気抵抗素子の相違および被検出体の相違により、出力電圧信号の波形にばらつきがうかがえるが、その出力電圧の減衰は、図46および図48に示すように、比較例3と比較して抑制されるものとなった。
 以上より、本検証実験によって、第1磁石部40aおよび第2磁石部40bによって機能面70aの法線方向に沿って磁気抵抗素子70に印加される磁束密度が、当該法線方向および機能面70aに平行な方向のいずれにも非平行な方向から第1磁石部40aおよび第2磁石部40bによって磁気抵抗素子70に印加される磁束密度よりも小さくなる構成、または、第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって機能面70aの法線方向に沿って磁気抵抗素子に印加される磁束密度が、当該法線方向および機能面70aに平行な方向のいずれにも非平行な方向から第1磁石部40a、第2磁石部40bおよび第3磁石部40cによって磁気抵抗素子70に印加される磁束密度よりも小さくする構成を有する磁気センサにおいて、磁気抵抗素子と被検出体との間の距離がばらついた場合でも磁気センサの出力のバラツキを抑制できることが確認されたと言える。
 なお、本実施の形態においては、磁気抵抗素子の下方に磁石部が配置され、磁気抵抗素子の上方を被検出体が移動する場合を例示して説明したが、これに限定されず、上下が反転した構成であってもよい。すなわち、磁石部の下方に磁気抵抗素子が配置され、磁気抵抗素子の下方を被検出体が移動してもよい。
 また、本実施の形態においては、被検出体の移動方向が水平方向となる場合を例示して説明したが、これに限定されず、被検出体の移動方向が鉛直方向となってもよい。この場合には、水平方向に沿って磁気抵抗素子および磁石部が配置される。このように、被検出体の移動方向は、本発明の趣旨を逸脱しない範囲において、適宜変更できるものとし、これに対応して、磁気抵抗素子、磁石部等を適宜配置することができる。
 以上、本発明の実施の形態および変形例について説明したが、今回開示された実施の形態および変形例はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 1 磁気センサ、10 カバー、20 ケース、21,22,23 凹部、21a,22a,23a 平面部、23 隔壁部、30 封止樹脂、40a 第1磁石部、40b 第2磁石部、40c 第3磁石部、40d 磁石部、41a,41b,41c 表面、42a,42b 側面、43d 底面、50,50A 端子、60,60A リードフレーム、70 磁気抵抗素子、70a 機能面、70b 下面、71 シリコン基板、80 ケース、83 凹部、83a 第1側面部、83b 第2側面部、83c 底面部、720,721,722,723,724,730,731,732,733,734 磁気抵抗層、741,742,743,744,745,746,747,748,749,751,752,753,754,755 短絡電極、791 電圧入力用電極、792 グランド接続用電極、793 電圧出力用電極。

Claims (6)

  1.  被検出体の移動方向に略平行な機能面を有する磁気抵抗素子と、
     前記磁気抵抗素子に対して前記被検出体が移動する領域と反対側に少なくともその一部が位置するように配置され、前記磁気抵抗素子に磁界を印加する磁石部とを備え、
     前記磁石部によって前記磁気抵抗素子に印加される磁界の磁束密度のうち、前記機能面の法線方向に沿って印加される磁界の磁束密度が、前記機能面の法線方向および前記機能面に平行な方向のいずれにも非平行な方向から印加される磁界の磁束密度よりも小さい、磁気センサ。
  2.  前記磁石部は、第1磁石部および第2磁石部を含み、
     前記第1磁石部、前記磁気抵抗素子および前記第2磁石部は、前記被検出体の移動方向に沿ってこの順で配置され、
     前記第1磁石部および前記第2磁石部は、前記被検出体が移動する領域側に同一の極性となる第1磁極をそれぞれ有し、前記被検出体が移動する領域側とは反対側に前記第1磁極と反対の極性となる第2磁極をそれぞれ有する、請求項1に記載の磁気センサ。
  3.  前記磁石部は、前記第1磁石部と前記第2磁石部との間において前記機能面の法線方向に沿って前記磁気抵抗素子と対向するように配置された第3磁石部をさらに含み、
     前記第3磁石部の前記被検出体が移動する領域側に位置する第1の面は、前記第1磁石部および前記第2磁石部の前記被検出体が移動する領域側に位置する第1の面よりも前記機能面の法線方向に沿って前記被検出体が移動する領域から離れて位置する、請求項2に記載の磁気センサ。
  4.  前記第1磁石部、前記第2磁石部および前記第3磁石部は互いに分離独立している、請求項3に記載の磁気センサ。
  5.  前記第1磁石部、前記第2磁石部および前記第3磁石部は、前記第1磁石部および前記第2磁石部が前記第3磁石部によって接続されることで一体に構成されている、請求項3に記載の磁気センサ。
  6.  前記被検出体が移動する領域に向けて開口する凹部を有し、前記凹部に前記磁気抵抗素子を収容するケースをさらに備え、
     前記ケースは、前記第1磁石部、前記第2磁石部および前記第3磁石部を含むプラスチックマグネットによって構成され、
     前記第3磁石部は、前記凹部の底面部を規定し、
     前記第1磁石部および前記第2磁石部は、前記被検出体の移動方向に並ぶ前記底面部の両端から立設する第1側面部および第2側面部を規定する、請求項5に記載の磁気センサ。
PCT/JP2014/070171 2013-08-12 2014-07-31 磁気センサ WO2015022864A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-167693 2013-08-12
JP2013167693 2013-08-12

Publications (1)

Publication Number Publication Date
WO2015022864A1 true WO2015022864A1 (ja) 2015-02-19

Family

ID=52468251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070171 WO2015022864A1 (ja) 2013-08-12 2014-07-31 磁気センサ

Country Status (1)

Country Link
WO (1) WO2015022864A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126373A1 (ja) * 2016-01-19 2017-07-27 株式会社村田製作所 磁気媒体検出装置
WO2018096862A1 (ja) * 2016-11-25 2018-05-31 三菱電機株式会社 磁気センサ装置
TWI675186B (zh) * 2015-04-24 2019-10-21 日商堀場Stec股份有限公司 微定位間隙感測器組件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258006A (ja) * 1993-03-02 1994-09-16 Seiko Epson Corp 変位センサ
JPH08320327A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd 磁気センサ
JPH09505670A (ja) * 1994-09-16 1997-06-03 ムーヴィング マグネット テクノロジィーズ エス.エイ. 速度及び/又は位置の増分(インクレメンタル)センサー
JP2013114885A (ja) * 2011-11-29 2013-06-10 Yuhshin Co Ltd 非接触スイッチ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258006A (ja) * 1993-03-02 1994-09-16 Seiko Epson Corp 変位センサ
JPH09505670A (ja) * 1994-09-16 1997-06-03 ムーヴィング マグネット テクノロジィーズ エス.エイ. 速度及び/又は位置の増分(インクレメンタル)センサー
JPH08320327A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd 磁気センサ
JP2013114885A (ja) * 2011-11-29 2013-06-10 Yuhshin Co Ltd 非接触スイッチ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675186B (zh) * 2015-04-24 2019-10-21 日商堀場Stec股份有限公司 微定位間隙感測器組件
WO2017126373A1 (ja) * 2016-01-19 2017-07-27 株式会社村田製作所 磁気媒体検出装置
WO2018096862A1 (ja) * 2016-11-25 2018-05-31 三菱電機株式会社 磁気センサ装置
JPWO2018096862A1 (ja) * 2016-11-25 2018-11-22 三菱電機株式会社 磁気センサ装置
CN109983355A (zh) * 2016-11-25 2019-07-05 三菱电机株式会社 磁传感器装置
US10663320B2 (en) 2016-11-25 2020-05-26 Mitsubishi Electric Corporation Magnetic sensor device

Similar Documents

Publication Publication Date Title
US9279866B2 (en) Magnetic sensor
EP2711728B1 (en) Magnetic sensor device
US9255975B2 (en) Magnetic-field sensing method
CN107076784B (zh) 电流传感器
US9201126B2 (en) Current sensor
JP5979214B2 (ja) 磁気センサ装置
US20090262466A1 (en) Magnetic sensor and magnetic encoder using same
WO2011089978A1 (ja) 磁気センサ
JP6265484B2 (ja) 磁気センサモジュール
CN110709720B (zh) 磁传感器
JP6359858B2 (ja) 磁界検出装置および磁気識別装置
CN104142482B (zh) 测量系统
WO2015022864A1 (ja) 磁気センサ
EP3273202B1 (en) Displacement detection device
CN111198341B (zh) 磁传感器及位置检测装置
JP5799882B2 (ja) 磁気センサ装置
KR20150056064A (ko) 자기 검지 장치
US20180031643A1 (en) Measuring system
CN109959883B (zh) 磁传感器
US20210165057A1 (en) Magnetic sensor
JP5678285B2 (ja) 電流センサ
US20190128700A1 (en) Magnetic sensor
JP2016095138A (ja) 磁気センサ
WO2010095495A1 (ja) 磁気検出装置
JP6285641B2 (ja) 磁気センサ及び磁場成分演算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP