WO2017122698A1 - 車載電源システムおよびこれに含まれるバッテリの状態検知方法 - Google Patents

車載電源システムおよびこれに含まれるバッテリの状態検知方法 Download PDF

Info

Publication number
WO2017122698A1
WO2017122698A1 PCT/JP2017/000682 JP2017000682W WO2017122698A1 WO 2017122698 A1 WO2017122698 A1 WO 2017122698A1 JP 2017000682 W JP2017000682 W JP 2017000682W WO 2017122698 A1 WO2017122698 A1 WO 2017122698A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sub
resistance
internal resistance
voltage
Prior art date
Application number
PCT/JP2017/000682
Other languages
English (en)
French (fr)
Inventor
裕樹 中西
杉江 一宏
毅 千葉
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201780006381.6A priority Critical patent/CN108463737B/zh
Priority to DE112017000360.1T priority patent/DE112017000360T5/de
Priority to US16/066,240 priority patent/US10889187B2/en
Publication of WO2017122698A1 publication Critical patent/WO2017122698A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention provides an in-vehicle power supply system including a main battery, a sub-battery connected in parallel with the main battery, and a voltage adjusting unit that controls a voltage of electric power supplied from the main battery and the sub-battery.
  • the present invention relates to detection of the state of the sub battery included.
  • This in-vehicle power supply system includes a main battery and a sub battery.
  • the main battery is used for power supply for motor assist during vehicle running and auxiliary machinery driving when idling is stopped, and energy during deceleration is stored in the main battery as regenerative energy.
  • the main battery for example, a lithium ion secondary battery, a nickel hydride storage battery, or an electric double layer capacitor is used.
  • the sub-battery is used as an emergency power source when the engine of the vehicle is started, auxiliary equipment is backed up (dark current supply) during parking, or the main battery fails.
  • the sub-battery for example, a high-capacity and inexpensive lead storage battery is used. During normal driving of the vehicle, the main battery is mainly used, and the sub battery is hardly used.
  • the sub-battery since the sub-battery is also used as an emergency power source when the main battery fails, the sub-battery needs to be always usable. Therefore, it is essential to detect the state of the sub-battery even when the vehicle is running, whether the sub-battery has deteriorated or failed (short circuit, disconnection, etc.).
  • Patent Document 1 proposes controlling the output voltage of the alternator during vehicle travel. At this time, the internal resistance of the battery is calculated based on changes in voltage and current, and the state of the battery is detected using this.
  • the internal resistance of the battery can be considered as the sum of component resistance and reaction resistance.
  • reaction resistance only a part of the internal resistance (reaction resistance) of the lead storage battery can be detected during vehicle travel, and the component resistance of the lead storage battery cannot be detected. Therefore, it is difficult to accurately detect the state of the battery.
  • the present invention can accurately detect the state of the sub-battery even when the vehicle is running, and can prevent the sub-battery from operating and causing a power failure. It is another object of the present invention to provide a battery state detection method.
  • One aspect of the present invention includes a main battery, a sub-battery connected in parallel with the main battery, a voltage adjusting unit that controls a voltage of electric power supplied from the main battery and the sub-battery,
  • An in-vehicle power supply system comprising a state detection unit for detecting a state,
  • the state detection unit includes a first calculation unit that calculates a first internal resistance including a reaction resistance and component resistance of the sub battery, a second calculation unit that calculates a second internal resistance including the reaction resistance of the sub battery, A state determination unit for determining the state of the sub-battery,
  • the first calculation unit calculates the first internal resistance based on a voltage drop amount and an inrush current of the sub-battery when power is supplied to the load,
  • the second computing unit operates the voltage adjusting unit to forcibly discharge the sub-battery immediately after the calculation of the first internal resistance and at least once thereafter, and discharges the sub-battery during the forcible discharge. Based on the relationship between voltage and current
  • a method for detecting a state of the sub-battery in an in-vehicle power supply system comprising: A first step of calculating a first internal resistance including a reaction resistance and a component resistance of the sub-battery based on a voltage drop amount and an inrush current of the sub-battery when power is supplied to a load; Immediately after the calculation of the first internal resistance and at least once thereafter, the voltage regulator is operated to forcibly discharge the sub-battery, and the relationship between the voltage and current of the sub-battery during the forcible discharge; A second step of calculating a second internal resistance including a reaction resistance of the sub-battery based on: A third step of determining the state of the sub-battery based on the first internal resistance and the transition of the second internal resistance; including.
  • an on-vehicle power supply system that can accurately detect the state of the sub-battery even when the vehicle is running and can prevent the power failure from occurring without the sub-battery being activated.
  • a battery state detection method can be provided.
  • FIG. 6 is a diagram showing an approximate straight line L obtained by linearly approximating the voltage and current data shown in FIG. 5 by the least square method. It is the schematic which shows the scheme of the state detection by acquisition of the internal resistance of the sub battery 2 from the time of engine starting to the time of vehicle travel.
  • the present invention provides an in-vehicle power supply system including a main battery, a sub-battery connected in parallel with the main battery, and a voltage adjusting unit that controls a voltage of electric power supplied from the main battery and the sub-battery. It relates to sub battery status detection.
  • the main battery is used for motor assist during vehicle travel and power supply to auxiliary equipment.
  • the sub-battery is used as an emergency power source when the vehicle engine starts or when the main battery fails.
  • the main battery is mainly used, and the sub battery is hardly used. For this reason, during normal driving of the vehicle, the state of the sub-battery (internal resistance combining the component resistance and reaction resistance) cannot be accurately grasped.
  • the present invention provides the first internal resistance of the sub-battery acquired based on the voltage drop amount and the inrush current of the sub-battery when supplying power to the load (for example, starter motor) of the sub-battery, and the subsequent forced discharge.
  • the state of the sub-battery is accurately detected using the second internal resistance of the sub-battery acquired based on the change in the voltage and current of the sub-battery.
  • the forcible discharge of the sub-battery and the acquisition of the second internal resistance are normally performed at a time when the sub-battery is hardly used, such as during normal driving of the vehicle (including when idling is stopped).
  • the calculation of the second internal resistance is performed immediately after the calculation of the first internal resistance and at least once thereafter.
  • the calculation of the second internal resistance performed immediately after the calculation of the first internal resistance may be performed periodically or may be performed as necessary.
  • the acquisition of the second internal resistance immediately after the calculation of the first internal resistance may be started as soon as possible after the initialization of the system for controlling the hydraulic system and the electrical system of the vehicle is completed. It may be started within a few minutes from the end of the calculation of resistance.
  • the first internal resistance corresponds to the sum of the reaction resistance and the component resistance.
  • the second internal resistance corresponds to the reaction resistance. If it can be established as an in-vehicle power supply system, a separate battery may be provided.
  • FIG. 1 is a configuration diagram of an in-vehicle power supply system including two power supplies (42V system and 14V system). As shown in FIG. 1, a main battery 1, a sub-battery 2 connected in parallel with the main battery 1, and a voltage adjusting unit (for example, DC / DC) that controls the voltage of power supplied from the main battery 1 and the sub-battery 2. DC converter) 3 and a state detector 4 for detecting the state of the sub-battery 2.
  • the voltage adjustment unit 3 is connected to the main battery 1, and the sub battery 2 is connected in parallel with the voltage adjustment unit 3.
  • the voltage adjustment unit 3 steps down the power supply voltage from the main battery 1 and outputs it, and is connected to the sub battery 2 on the output side of the voltage adjustment unit 3.
  • an alternator (ALT) 5 On the output side of the voltage adjustment unit 3, an alternator (ALT) 5, a starter motor (STA) 6, and an auxiliary machine load 7 are connected to the sub battery 2.
  • a motor generator (MG) 8 for generating a driving force of the vehicle and an actuator 9 for adjusting a hydraulic brake are connected to the main battery 1 before being stepped down on the input side of the voltage adjusting unit 3.
  • the main battery 1 for example, a 36V nickel-metal hydride storage battery is used.
  • the main battery 1 is used for power supply for assisting when the vehicle is running and driving auxiliary equipment when idling is stopped. Further, the energy during deceleration is stored in the main battery 1 as regenerative energy.
  • the sub-battery 2 for example, a 12V lead storage battery is used.
  • the sub-battery 2 is used for vehicle engine start-up, emergency power supply when the main battery 1 fails, or backup (auxiliary load supply) of parked auxiliary equipment (auxiliary load 7).
  • Examples of the auxiliary machine load 7 include a light, a wiper, an air conditioner, and an audio.
  • the vehicle power supply system includes a voltage sensor 10 for detecting a voltage between terminals of the sub battery 2 and a current sensor 11 for detecting a current flowing through the sub battery 2.
  • the state detection unit 4 includes a first calculation unit 12 that obtains a first internal resistance of the sub-battery 2 (total value of reaction resistance and component resistance), and a second internal resistance (reaction of the sub-battery 2).
  • the second calculation unit 13 includes a voltage control unit 13 a that operates the voltage adjustment unit 3.
  • the first calculation unit 12 calculates the first internal resistance based on the voltage drop amount and the inrush current of the sub battery 2 when power is supplied to the load (for example, the STA 6) of the sub battery 2.
  • the second calculation unit 13 operates the voltage adjustment unit 3 to the sub-battery 2 immediately after calculation of the first internal resistance and at least once thereafter (regularly or as necessary) during normal driving of the vehicle.
  • the sub-battery 2 is forcibly discharged by controlling the applied voltage, and the second internal resistance is calculated based on the relationship between the voltage and current of the sub-battery 2 at the time of the forcible discharge.
  • the state determination unit 14 determines the state of the sub-battery 2 based on the first internal resistance and the transition of the second internal resistance.
  • FIG. 3 is a flowchart regarding the state detection of the sub-battery 2 by the state detection unit 4 in the in-vehicle power supply system of FIG. [Calculation of internal resistance (0)]
  • the first calculation unit 12 has data (for example, voltage value and current value of the sub-battery 2 measured by the voltage sensor 10 and the current sensor 11). , Data as shown in FIG.
  • the first calculation unit 12 acquires the voltage drop amount ⁇ V and the inrush current I of the sub battery 2 when the vehicle engine is started based on the data (S20).
  • the first calculation unit 12 calculates the first internal resistance (internal resistance (0)) by the following equation (1) using the acquired voltage drop amount ⁇ V and inrush current I of the sub-battery 2 (S21).
  • the internal resistance (0) indicates the value of the first internal resistance calculated by the first calculation unit 12.
  • Internal resistance (0) (m ⁇ ) Voltage drop amount ⁇ V (V) / inrush current I (A) ⁇ 1000 (1)
  • the internal resistance (0) can be considered as a total value of the reaction resistance (0) and the component resistance (0).
  • the second calculation unit 13 operates the voltage adjustment unit 3 to control the voltage applied to the sub battery 2 to forcibly discharge the sub battery 2 during vehicle travel immediately after the calculation of the internal resistance (0).
  • the voltage and current of the sub battery 2 at that time are measured (S22). More specifically, when the sub battery 2 is discharged, the second calculation unit 13 acquires the voltage value and current value data of the sub battery 2 output from the voltage sensor 10 and the current sensor 11 (S22). Normally, the output voltage of the voltage adjusting unit 3 is adjusted to be higher than the voltage of the sub battery, and power is supplied from the main battery to the load.
  • the output voltage of the voltage adjusting unit 3 When the output voltage of the voltage adjusting unit 3 is temporarily lowered from the normal state by the voltage control unit 13a, the output current of the voltage adjusting unit 3 gradually decreases, and the output current of the sub battery gradually increases to forcibly. Discharged. Thereafter, when the output voltage is raised to the original voltage, the forcible discharge ends. At this time, the load current is maintained substantially constant at about 25A. Thereby, data as shown in FIG. 5 is acquired. In the illustrated example, the output voltage of the voltage adjusting unit 3 temporarily drops from 15V to 11V and then increases to the original 15V.
  • the second calculation unit 13 calculates the second internal resistance (reaction resistance (0)) of the sub battery 2 based on the relationship between the voltage and current of the sub battery 2 using the data acquired above (S23). .
  • the reaction resistance (0) indicates the reaction resistance obtained by calculating the first second internal resistance after calculating the internal resistance (0). Thereafter, the second internal resistance is calculated n times (n is an integer of 1 or more). At this time, the second internal resistance calculated for the nth time is defined as a reaction resistance (n).
  • the reaction resistance (0) can be considered as the reaction resistance (0) included in the internal resistance (0) (S23).
  • the second internal resistance is calculated by the following method.
  • the second calculation unit 13 calculates a range in which the current value monotonously decreases or increases from the data acquired above. At this time, for example, it is desirable to acquire a monotonic decrease or monotonic increase range of 1 second or more at a change rate of 10 A / second to 15 A / second.
  • the second calculation unit 13 linearly approximates the voltage value and current value data within the range by the least square method to obtain an approximate straight line L.
  • the inclination of the approximate straight line L is calculated.
  • the 2nd calculating part 13 calculates reaction resistance (0) from following formula (2) using the value of the calculated inclination.
  • Reaction resistance (0) (m ⁇ ) slope of approximate curve L ⁇ 1000 (2)
  • the range ( ⁇ 24A to ⁇ 12A in FIG. 5) in which the current value monotonously decreases is calculated from the data shown in FIG.
  • the voltage value (V) and current value (A) data within the range is linearly approximated by the least square method to obtain an approximate straight line L shown in FIG. 6, and the slope of 0.0387 ⁇ 1000 (m ⁇ ) is expressed as the reaction resistance. (0).
  • the state determination unit 14 calculates the component resistance (0) included in the internal resistance (0) based on the internal resistance (0) and reaction resistance (0) acquired above (S24). More specifically, the component resistance (0) is calculated from the following equation (3).
  • Component resistance (0) Internal resistance (0)-Reaction resistance (0) (3) Since the second internal resistance is calculated immediately after the calculation of the first internal resistance, it is assumed that there is almost no change in the component resistance of the sub-battery 2 during this period.
  • reaction resistance (n) [Calculation of reaction resistance (n)] Furthermore, the second calculation unit 13 acquires the reaction resistance (n) by the same method as that used when the reaction resistance (0) is calculated periodically or as needed even during subsequent travel (S25). , S26). Reaction resistance (n) indicates the reaction resistance obtained by the n-th calculation of the second internal resistance except immediately after the calculation of the first internal resistance.
  • the state determination unit 14 determines the component resistance ( n) is calculated (S27). More specifically, the component resistance (n) is calculated from the following equation (4).
  • Component resistance (n) ⁇ ⁇ component resistance (0) ⁇ (reaction resistance (n) / reaction resistance (0)) (4)
  • represents deterioration due to normal use of the sub-battery 2 (normal deterioration of the member contributing to the component resistance of the sub-battery) and failure mode (eg, degree of contact failure of the member, short circuit, disconnection). Is a coefficient determined by, and is obtained in advance by actual measurement or the like.
  • ⁇ in the above formula (4) may be 1. That is, in such a case, the increase rate of component resistance, that is, component resistance (n) / component resistance (0) is the same as the increase rate of reaction resistance, that is, reaction resistance (n) / reaction resistance (0).
  • the state determination unit 14 is based on the first internal resistance and the transition of the second internal resistance, that is, based on the values of the internal resistance (0) and the internal resistance (n) acquired as described above.
  • the state of the sub battery 2 is determined. More specifically, in the state determination unit 14, the value of the internal resistance (n) / internal resistance (0) is equal to or greater than a predetermined value (for example, when ⁇ is 1 in Formula (4), it is equal to or greater than 2). In this case, it is determined that the sub-battery 2 is deteriorated due to normal use and cannot be continuously used (S29, S30).
  • the state determination unit 14 It is determined that there is no failure and it can be used continuously, and the sub battery 2 is continuously detected.
  • the in-vehicle power supply system includes the state detection unit 4, so that the state of the sub-battery 2 can be accurately detected even during normal driving of the vehicle as shown in FIG. 7. As a result, it is possible to prevent a failure from occurring due to deterioration of the sub-battery 2 during normal traveling of the vehicle.
  • the case where a nickel metal hydride storage battery is used as the main battery 1 has been described as an example, but other power sources such as a lithium ion secondary battery, an electric double layer capacitor (EDLC), and a fuel cell may be used.
  • EDLC electric double layer capacitor
  • a fuel cell may be used.
  • the case where a lead storage battery is used for the sub-battery 2 has been described as an example, but another power source such as a lithium ion secondary battery may be used.
  • both MG8 and ALT5 are provided in the in-vehicle power supply system. However, if at least one of MG8 and ALT5 is provided, the system can be established. Moreover, in the said embodiment, although both MG8 and STA6 are provided in the vehicle-mounted power supply system, if at least one of MG8 and STA6 is provided, it can be established as the said system.
  • An in-vehicle power supply system includes a main battery, a sub-battery connected in parallel with the main battery, and a voltage adjusting unit that controls a voltage of electric power supplied from the main battery and the sub-battery. Is suitably used for detecting the state of the sub-battery.

Abstract

本発明の車載電源システムは、メインバッテリと、サブバッテリと、メインバッテリおよびサブバッテリから供給される電力の電圧を制御する電圧調整部と、サブバッテリの状態を検知する状態検知部と、を備える。状態検知部は、負荷への電力供給時におけるサブバッテリの電圧降下量および突入電流に基づいて、第1内部抵抗を算出する第1演算部と、第1内部抵抗の算出直後およびその後1回以上、電圧調整部を操作してサブバッテリを強制的に放電させ、強制的な放電時におけるサブバッテリの電圧と電流との関係に基づいて、第2内部抵抗を算出する第2演算部と、第1内部抵抗と第2内部抵抗の推移とに基づいて、サブバッテリの状態を判定する状態判定部とを備える。

Description

車載電源システムおよびこれに含まれるバッテリの状態検知方法
 本発明は、メインバッテリと、前記メインバッテリと並列に接続されたサブバッテリと、前記メインバッテリおよび前記サブバッテリから供給される電力の電圧を制御する電圧調整部と、を備えた車載電源システムに含まれる前記サブバッテリの状態の検知に関する。
 近年、ADAS(Advanced Driver Assistance Systems)市場拡大に伴い、車両の燃費改善および安全機能確保の実現を図るべく、14V系電源を複数、あるいは42V系と14V系の2つの電源を備えた車載電源システムが普及し始めている。この車載電源システムは、メインバッテリおよびサブバッテリを備える。
 メインバッテリは、車両走行時のモータアシストやアイドリングストップ時の補機駆動のための電力供給に用いられ、減速時のエネルギーは回生エネルギーとしてメインバッテリに蓄えられる。メインバッテリとしては、例えば、リチウムイオン二次電池、ニッケル水素蓄電池または電気二重層キャパシタが用いられる。
 サブバッテリは、車両のエンジン始動、駐車時の補機類のバックアップ(暗電流供給)、またはメインバッテリ故障時の緊急用電源として用いられる。サブバッテリとしては、例えば、高容量で安価な鉛蓄電池が用いられる。車両の通常走行時には、メインバッテリが主に用いられ、サブバッテリは、ほとんど使用されない。
 上述したように、サブバッテリはメインバッテリ故障時の緊急用電源としても用いられるため、常時、サブバッテリが使用可能な状態である必要がある。よって、サブバッテリが劣化したり故障(ショートや断線等)したりしていないか、車両の走行時にもサブバッテリの状態を検知することが必須となっている。
 車両に搭載されるエンジン始動用鉛蓄電池の状態を検知する方法は、種々提案されている。例えば、電池の劣化や故障が内部抵抗と相関していることを利用して、車両のエンジン始動時の電池の電圧降下に基づいて内部抵抗を算出し、これを用いて電池の状態を検知する方法が知られている。
 また、車両走行時の鉛蓄電池の状態を検知する方法として、特許文献1では、車両走行時にオルタネータの出力電圧を制御することが提案されている。このとき、電圧および電流の変化に基づいて電池の内部抵抗が算出され、これを用いて電池の状態が検知される。
特開2005-263068号公報
 電池の内部抵抗は、部品抵抗と反応抵抗との総和と考えることができる。しかし、特許文献1の手法では、車両走行時においては、鉛蓄電池の内部抵抗の一部(反応抵抗)しか検出できず、鉛蓄電池の部品抵抗を検出することはできない。そのため、電池の状態を精度良く検知することは困難である。
 そこで、本発明は、車両の走行時においてもサブバッテリの状態を精度良く検知することができ、サブバッテリが作動せずに電源失陥に至ることを未然に防止することが可能な車載電源システムおよびバッテリの状態検知方法を提供することを目的とする。
 本発明の一局面は、メインバッテリと、前記メインバッテリと並列に接続されたサブバッテリと、前記メインバッテリおよび前記サブバッテリから供給される電力の電圧を制御する電圧調整部と、前記サブバッテリの状態を検知する状態検知部と、を備えた車載電源システムであって、
 前記状態検知部は、前記サブバッテリの反応抵抗および部品抵抗を含む第1内部抵抗を求める第1演算部と、前記サブバッテリの反応抵抗を含む第2内部抵抗を求める第2演算部と、前記サブバッテリの状態を判定する状態判定部と、を具備し、
 前記第1演算部は、負荷への電力供給時における前記サブバッテリの電圧降下量および突入電流に基づいて、前記第1内部抵抗を算出し、
 前記第2演算部は、前記第1内部抵抗の算出直後およびその後1回以上、前記電圧調整部を操作して前記サブバッテリを強制的に放電させ、前記強制的な放電時における前記サブバッテリの電圧と電流との関係に基づいて、前記第2内部抵抗を算出し、
 前記状態判定部は、前記第1内部抵抗と、前記第2内部抵抗の推移とに基づいて、前記サブバッテリの状態を判定する。
 また、本発明の別の局面は、メインバッテリと、前記メインバッテリと並列に接続されたサブバッテリと、前記メインバッテリおよび前記サブバッテリから供給される電力の電圧を制御する電圧調整部と、を備えた車載電源システムにおいて前記サブバッテリの状態を検知する方法であって、
 負荷への電力供給時における前記サブバッテリの電圧降下量および突入電流に基づいて、前記サブバッテリの反応抵抗および部品抵抗を含む第1内部抵抗を算出する第1ステップと、
 前記第1内部抵抗の算出直後およびその後1回以上、前記電圧調整部を操作して前記サブバッテリを強制的に放電させ、前記強制的な放電時における前記サブバッテリの電圧と電流との関係に基づいて、前記サブバッテリの反応抵抗を含む第2内部抵抗を算出する第2ステップと、
 前記第1内部抵抗と、前記第2内部抵抗の推移とに基づいて、前記サブバッテリの状態を判定する第3ステップと、
を含む。
 本発明によれば、車両の走行時においてもサブバッテリの状態を精度良く検知することができ、サブバッテリが作動せずに電源失陥に至ることを未然に防止することが可能な車載電源システムおよびバッテリの状態検知方法を提供することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係る車載電源システムの構成図である。 図1に示す車載電源システムの要部を示す構成図である。 図1に示す車載電源システムにおける状態検知部4によるサブバッテリ2の状態検知に関するフローチャートである。 エンジン始動時のサブバッテリ2の電圧および電流の変化を示す図である。 車両走行時における電圧調整部3の操作による強制的放電時のサブバッテリ2の電圧および電流の変化を示す図である。 図5に示す電圧および電流のデータを最小二乗法により線形近似して求められた近似直線Lを示す図である。 エンジン始動時から車両走行中にかけてのサブバッテリ2の内部抵抗の取得による状態検知のスキームを示す概略図である。
 本発明は、メインバッテリと、前記メインバッテリと並列に接続されたサブバッテリと、前記メインバッテリおよび前記サブバッテリから供給される電力の電圧を制御する電圧調整部とを備えた車載電源システムにおける前記サブバッテリの状態検知に関する。メインバッテリは、車両走行時のモータアシストや補機類への電力供給に用いられる。一方、サブバッテリは、車両のエンジン始動やメインバッテリ故障時の緊急用電源に用いられる。車両の通常走行時(アイドリングストップ時も含む)には、主にメインバッテリが用いられ、サブバッテリはほとんど用いられない。このため、車両の通常走行時には、サブバッテリの状態(部品抵抗および反応抵抗を合わせた内部抵抗)を正確に把握することができない。
 そこで、本発明は、サブバッテリの負荷(例えば、スタータモータ)への電力供給時におけるサブバッテリの電圧降下量および突入電流に基づいて取得したサブバッテリの第1内部抵抗と、その後の強制的放電によるサブバッテリの電圧および電流の変化に基づいて取得したサブバッテリの第2内部抵抗とを用いて、サブバッテリの状態を精度良く検知するものである。サブバッテリの強制的放電と第2内部抵抗の取得は、車両の通常走行時(アイドリングストップ時も含む)のように、普通はサブバッテリがほとんど使用されない時点において実施される。これにより、車両の通常走行時においてもサブバッテリの状態を精度良く検知することができ、その結果、車両の通常走行中でのサブバッテリの劣化による故障発生を未然に防止することができる。第2内部抵抗の算出は、第1内部抵抗の算出直後、およびその後1回以上行われる。第1内部抵抗の算出直後よりも後に行なう第2内部抵抗の算出は、定期的に行ってもよく、必要に応じ適宜行ってもよい。なお、第1内部抵抗の算出直後の第2内部抵抗の取得は、車両の油圧系統や電気系統を制御するシステムの初期化が終了した後、可及的速やかに開始すればよく、第1内部抵抗の算出終了時点から数分以内に開始すればよい。第1内部抵抗は、反応抵抗と部品抵抗とを合算したものに相当する。第2内部抵抗は反応抵抗に相当する。車載電源システムとして成立可能であれば、さらに別途バッテリを設けてもよい。
 以下、本発明の一実施形態に係る車載電源システムを示すが、本発明の車載電源システムはこれに限定されない。図1は、2つの電源(42V系と14V系)を備える車載電源システムの構成図である。
 図1に示すように、メインバッテリ1と、メインバッテリ1と並列に接続されたサブバッテリ2と、メインバッテリ1およびサブバッテリ2から供給される電力の電圧を制御する電圧調整部(例えばDC/DCコンバータ)3と、サブバッテリ2の状態を検知するための状態検知部4とを備える。電圧調整部3はメインバッテリ1に接続され、サブバッテリ2は電圧調整部3と並列に接続されている。電圧調整部3は、メインバッテリ1からの電源電圧を降圧して出力し、電圧調整部3の出力側においてサブバッテリ2に接続される。電圧調整部3の出力側において、オルタネータ(ALT)5、スタータモータ(STA)6、および補機負荷7が、サブバッテリ2と接続されている。車両の駆動力を発生させるためのモータジェネレータ(MG)8および油圧ブレーキ調整用のアクチュエータ9が、それぞれ、電圧調整部3の入力側において降圧前のメインバッテリ1に接続されている。
 メインバッテリ1には、例えば36V系のニッケル水素蓄電池が用いられる。メインバッテリ1は、車両走行時のアシストやアイドリングストップ時の補機駆動のための電力供給に用いられる。また、減速時のエネルギーは回生エネルギーとしてメインバッテリ1に蓄えられる。
 サブバッテリ2には、例えば12V系の鉛蓄電池が用いられる。サブバッテリ2は、車両のエンジン始動、メインバッテリ1の故障時の緊急用電源、または駐車中の補機類(補機負荷7)のバックアップ(暗電流供給)に用いられる。
 補機負荷7としては、例えば、ライト、ワイパー、エアコン、オーディオが挙げられる。
 さらに、車両電源システムは、サブバッテリ2の端子間の電圧を検出するための電圧センサ10と、サブバッテリ2を流れる電流を検出するための電流センサ11を備える。
 図2に示すように、状態検知部4は、サブバッテリ2の第1内部抵抗(反応抵抗および部品抵抗の合算値)を求める第1演算部12と、サブバッテリ2の第2内部抵抗(反応抵抗)を求める第2演算部13と、サブバッテリ2の状態を判定する状態判定部14と、を具備する。第2演算部13は、電圧調整部3を操作する電圧制御部13aを備える。
 第1演算部12は、サブバッテリ2の負荷(例えば、STA6)への電力供給時におけるサブバッテリ2の電圧降下量および突入電流に基づいて、第1内部抵抗を算出する。第2演算部13は、車両の通常走行時において、第1内部抵抗の算出直後、およびその後1回以上(定期的にまたは必要に応じて)、電圧調整部3を操作してサブバッテリ2に印加される電圧を制御してサブバッテリ2を強制的に放電させ、当該強制的な放電時におけるサブバッテリ2の電圧と電流との関係に基づいて、第2内部抵抗を算出する。状態判定部14は、第1内部抵抗と、第2内部抵抗の推移とに基づいて、サブバッテリ2の状態を判定する。
 以下、上記の車載電源システムにおける状態検知部4の動作を説明する。図3は、図1の車載電源システムにおける状態検知部4によるサブバッテリ2の状態検知に関するフローチャートである。
[内部抵抗(0)の算出]
 車両のエンジン始動時(サブバッテリ2のSTA6への電力供給時)において、第1演算部12は、電圧センサ10および電流センサ11で測定されたサブバッテリ2の電圧値および電流値のデータ(例えば、図4に示すようなデータ)を取得する。第1演算部12は、上記データに基づいて、車両のエンジン始動時におけるサブバッテリ2の電圧降下量ΔVおよび突入電流Iを取得する(S20)。
 第1演算部12は、取得したサブバッテリ2の電圧降下量ΔVおよび突入電流Iを用いて下記式(1)により第1内部抵抗(内部抵抗(0))を算出する(S21)。内部抵抗(0)は、第1演算部12により算出された第1内部抵抗の値を示す。
 内部抵抗(0)(mΩ)
=電圧降下量ΔV(V)/突入電流I(A)×1000   (1)
 内部抵抗(0)は、反応抵抗(0)および部品抵抗(0)の合算値であると考えることができる。
[反応抵抗(0)の算出]
 第2演算部13は、内部抵抗(0)の算出直後の車両走行時において、電圧調整部3を操作してサブバッテリ2への印加電圧を制御してサブバッテリ2を強制的に放電させ、その時のサブバッテリ2の電圧および電流を測定する(S22)。
 より具体的には、サブバッテリ2の放電時において、第2演算部13は、電圧センサ10および電流センサ11から出力されたサブバッテリ2の電圧値および電流値のデータを取得する(S22)。通常、電圧調整部3の出力電圧は、サブバッテリの電圧より高くなるように調整されており、メインバッテリから負荷に電力が供給されている。電圧制御部13aにより、通常の状態から電圧調整部3の出力電圧を一時的に降下させると、電圧調整部3の出力電流は次第に小さくなり、サブバッテリの出力電流は次第に大きくなって強制的に放電される。その後、出力電圧を元の電圧に上昇させると強制的な放電は終了する。このとき、負荷電流は約25Aでほぼ一定に維持される。これにより、図5に示すようなデータが取得される。図示例では、電圧調整部3の出力電圧が15Vから11Vに向けて一時的に降下した後、元の15Vに上昇している。
 第2演算部13は、上記で取得したデータを用いて、サブバッテリ2の電圧と電流との関係に基づいてサブバッテリ2の第2内部抵抗(反応抵抗(0))を算出する(S23)。反応抵抗(0)は、内部抵抗(0)の算出後、最初の第2内部抵抗の算出により得られた反応抵抗を示す。その後、第2内部抵抗の算出はn回(nは1以上の整数)実施される。このとき、n回目に算出される第2内部抵抗を反応抵抗(n)とする。
 ここで、第2演算部13は、第1内部抵抗の算出直後に第2内部抵抗として反応抵抗(0)を算出するので、第1内部抵抗の算出と第2内部抵抗の算出との間においてサブバッテリ2の反応抵抗は殆ど変化しない。よって、反応抵抗(0)を、内部抵抗(0)に含まれる反応抵抗(0)と考えることができる(S23)。
 具体的には、下記手法により第2内部抵抗を算出する。
 第2演算部13は、上記で取得したデータより電流値が単調に減少または増加する範囲を算出する。このとき、例えば10A/秒~15A/秒の変化率で1秒間以上の単調減少または単調増加の範囲を取得することが望ましい。次に、第2演算部13は、当該範囲内の電圧値および電流値のデータを最小二乗法により線形近似し、近似直線Lを取得する。その近似直線Lの傾きを算出する。さらに、第2演算部13は、算出した傾きの値を用いて下記式(2)より反応抵抗(0)を算出する。
 反応抵抗(0)(mΩ)=近似曲線Lの傾き×1000   (2)
 例えば、図5に示すデータより電流値が単調に減少する範囲(図5中の-24A~-12A)を算出する。当該範囲内の電圧値(V)および電流値(A)のデータを最小二乗法により線形近似し、図6に示す近似直線Lを取得し、その傾き0.0387×1000(mΩ)を反応抵抗(0)とする。
[部品抵抗(0)の算出]
 状態判定部14は、上記で取得した内部抵抗(0)および反応抵抗(0)に基づいて、内部抵抗(0)に含まれる部品抵抗(0)を算出する(S24)。より具体的には、下記式(3)より部品抵抗(0)を算出する。
 部品抵抗(0)=内部抵抗(0)-反応抵抗(0)   (3)
 なお、第1内部抵抗の算出直後に第2内部抵抗を算出するので、この間においてサブバッテリ2の部品抵抗の変化は殆どないと仮定する。
[反応抵抗(n)の算出]
 さらに、第2演算部13は、その後の走行時においても、定期的に、または必要に応じて、反応抵抗(0)を算出した場合と同様の手法より反応抵抗(n)を取得する(S25、S26)。反応抵抗(n)は、第1内部抵抗の算出直後を除くn回目の第2内部抵抗の算出により得られた反応抵抗を示す。
[部品抵抗(n)の算出]
 状態判定部14は、上記で取得した反応抵抗(n)、反応抵抗(0)、および部品抵抗(0)に基づいて、n回目の第2内部抵抗の算出時点におけるサブバッテリ2の部品抵抗(n)を算出する(S27)。より具体的には、下記式(4)より部品抵抗(n)を算出する。
 部品抵抗(n)
=α×部品抵抗(0)×(反応抵抗(n)/反応抵抗(0))   (4)
 式(4)中のαは、サブバッテリ2の通常使用に伴う劣化(サブバッテリの部品抵抗に寄与する部材の通常の劣化)や故障モード(例えば、部材の接触不良、ショート、断線の程度)により決まる係数であり、予め実測等により取得される。例えば、サブバッテリ2の通常使用に伴う劣化による場合、上記式(4)中のαは1としてもよい。すなわち、かかる場合には、部品抵抗の増加率、すなわち部品抵抗(n)/部品抵抗(0)が、反応抵抗の増加率、すなわち反応抵抗(n)/反応抵抗(0)と同じであると考える。
[内部抵抗(n)の算出]
 状態判定部14は、上記で取得した反応抵抗(n)および部品抵抗(n)に基づいて、n回目の第2内部抵抗の算出時点におけるサブバッテリ2の反応抵抗と部品抵抗を合わせた内部抵抗(n)を算出する(S28)。より具体的には、下記式(5)より内部抵抗(n)を算出する。
 内部抵抗(n)=部品抵抗(n)+反応抵抗(n)   (5)
[電池状態の判定]
 状態判定部14は、第1内部抵抗と、第2内部抵抗の推移とに基づいて、すなわち、上記で取得した内部抵抗(0)および内部抵抗(n)の値に基づいて、車両走行時におけるサブバッテリ2の状態を判定する。
 より具体的には、状態判定部14は、内部抵抗(n)/内部抵抗(0)の値が所定値以上(式(4)中のαが1である場合は、例えば2以上)である場合、サブバッテリ2が通常使用による劣化が進行し、継続使用不可能と判定する(S29、S30)。
 状態判定部14は、内部抵抗(n)/内部抵抗(0)の値が所定値未満(式(4)中のαが1である場合は、例えば2未満)である場合、サブバッテリ2は故障しておらず継続使用可能と判定し、サブバッテリ2の状態検知を継続して行う。
 図1に示すように、車載電源システムが状態検知部4を備えることにより、図7に示すように、車両の通常走行時においてもサブバッテリ2の状態を精度良く検知することができる。その結果、車両の通常走行中でのサブバッテリ2の劣化による故障発生を未然に防止することができる。
 上記実施形態ではメインバッテリ1にニッケル水素蓄電池を用いる場合を例示して説明したが、リチウムイオン二次電池、電気二重層キャパシタ(EDLC)、燃料電池等の他の電源を用いてもよい。
 上記実施形態ではサブバッテリ2に鉛蓄電池を用いる場合を例示して説明したが、リチウムイオン二次電池などの他の電源を用いてもよい。
 上記実施形態は、車載電源システムに42V系と14V系の2つの電源を用いる場合であるが、システムとして成立可能であれば、さらに電源を追加してもよい。また、システムとして成立可能であれば電源の電圧を適宜変えてもよい。
 上記実施形態では、車載電源システムにおいてMG8およびALT5の両方が設けられているが、MG8およびALT5のうち少なくとも一方が設けられていれば、当該システムとして成立可能である。
 また、上記実施形態では、車載電源システムにおいてMG8およびSTA6の両方が設けられているが、MG8およびSTA6の少なくとも一方が設けられていれば、当該システムとして成立可能である。
 本発明の車載電源システムは、メインバッテリと、メインバッテリと並列に接続されたサブバッテリと、メインバッテリおよびサブバッテリから供給される電力の電圧を制御する電圧調整部と、を備えた車載電源システムにおけるサブバッテリの状態検知に好適に用いられる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1 メインバッテリ
 2 サブバッテリ
 3 電圧調整部
 4 状態検知部
 5 ALT
 6 STA
 7 補機負荷
 8 MG
 9 アクチュエータ
 10 電圧センサ
 11 電流センサ
 12 第1演算部
 13 第2演算部
 13a 電圧制御部
 14 状態判定部

Claims (10)

  1.  メインバッテリと、前記メインバッテリと並列に接続されたサブバッテリと、前記メインバッテリおよび前記サブバッテリから供給される電力の電圧を制御する電圧調整部と、前記サブバッテリの状態を検知する状態検知部と、を備えた車載電源システムであって、
     前記状態検知部は、前記サブバッテリの反応抵抗および部品抵抗を含む第1内部抵抗を求める第1演算部と、前記サブバッテリの反応抵抗を含む第2内部抵抗を求める第2演算部と、前記サブバッテリの状態を判定する状態判定部と、を具備し、
     前記第1演算部は、負荷への電力供給時における前記サブバッテリの電圧降下量および突入電流に基づいて、前記第1内部抵抗を算出し、
     前記第2演算部は、前記第1内部抵抗の算出直後およびその後1回以上、前記電圧調整部を操作して前記サブバッテリを強制的に放電させ、前記強制的な放電時における前記サブバッテリの電圧と電流との関係に基づいて、前記第2内部抵抗を算出し、
     前記状態判定部は、前記第1内部抵抗と、前記第2内部抵抗の推移とに基づいて、前記サブバッテリの状態を判定する、
    車載電源システム。
  2.  前記第2演算部が、前記電圧調整部を操作する電圧制御部を備える、請求項1に記載の車載電源システム。
  3.  前記電圧調整部が、前記メインバッテリに接続されたDC/DCコンバータを具備し、前記DC/DCコンバータが前記サブバッテリと並列に接続されている、請求項1または2に記載の車載電源システム。
  4.  前記第1演算部が前記第1内部抵抗として内部抵抗(0)を算出した直後に、前記第2演算部は、前記第2内部抵抗として前記内部抵抗(0)に含まれる反応抵抗(0)を算出し、
     前記状態判定部は、前記反応抵抗(0)に基づいて、前記内部抵抗(0)に含まれる部品抵抗(0)を算出する、請求項1~3のいずれか1項に記載の車載電源システム。
  5.  前記状態判定部は、前記反応抵抗(0)と、前記部品抵抗(0)と、前記第2演算部が前記第2内部抵抗としてn回目に算出した反応抵抗(n)とに基づいて、n回目の前記第2内部抵抗の算出時点における前記サブバッテリの部品抵抗(n)を算出し、前記反応抵抗(n)および前記部品抵抗(n)の合算値を内部抵抗(n)として算出する、請求項4に記載の車載電源システム。
  6.  前記状態判定部は、内部抵抗(n)/内部抵抗(0)の値が所定値以上である場合、前記サブバッテリが故障したと判定する、請求項5に記載の車載電源システム。
  7.  メインバッテリと、前記メインバッテリと並列に接続されたサブバッテリと、前記メインバッテリおよび前記サブバッテリから供給される電力の電圧を制御する電圧調整部と、を備えた車載電源システムにおいて前記サブバッテリの状態を検知する方法であって、
     負荷への電力供給時における前記サブバッテリの電圧降下量および突入電流に基づいて、前記サブバッテリの反応抵抗および部品抵抗を含む第1内部抵抗を算出する第1ステップと、
     前記第1内部抵抗の算出直後およびその後1回以上、前記電圧調整部を操作して前記サブバッテリを強制的に放電させ、前記強制的な放電時における前記サブバッテリの電圧と電流との関係に基づいて、前記サブバッテリの反応抵抗を含む第2内部抵抗を算出する第2ステップと、
     前記第1内部抵抗と、前記第2内部抵抗の推移とに基づいて、前記サブバッテリの状態を判定する第3ステップと、
    を含む、状態検知方法。
  8.  前記第2ステップは、前記第1内部抵抗として内部抵抗(0)を算出した直後に、前記第2内部抵抗として、前記内部抵抗(0)に含まれる反応抵抗(0)を算出するステップを含み、
     前記第3ステップは、前記反応抵抗(0)に基づいて、前記内部抵抗(0)に含まれる部品抵抗(0)を算出するステップを含む、請求項7に記載の状態検知方法。
  9.  前記第2ステップは、n回目の前記第2内部抵抗の算出によって反応抵抗(n)を得るステップを含み、
     前記第3ステップは、前記反応抵抗(0)、前記部品抵抗(0)および前記反応抵抗(n)に基づいて、n回目の前記第2内部抵抗の算出時点における前記サブバッテリの部品抵抗(n)を算出し、前記反応抵抗(n)および前記部品抵抗(n)の合算値を内部抵抗(n)として算出するステップを含む、請求項8に記載の状態検知方法。
  10.  前記第3ステップは、内部抵抗(n)/内部抵抗(0)の値が所定値以上である場合、前記サブバッテリが故障したと判定するステップを含む、請求項9に記載の状態検知方法。
      

      
PCT/JP2017/000682 2016-01-13 2017-01-11 車載電源システムおよびこれに含まれるバッテリの状態検知方法 WO2017122698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780006381.6A CN108463737B (zh) 2016-01-13 2017-01-11 车载电源系统及其包含的电池的状态检知方法
DE112017000360.1T DE112017000360T5 (de) 2016-01-13 2017-01-11 Fahrzeugeigenes energieversorgungssystem und ein zustandserfassungsverfahren für batterie, die in fahrzeugeigenem energieversorgungssystem enthalten ist
US16/066,240 US10889187B2 (en) 2016-01-13 2017-01-11 On-vehicle power supply system and a state detecting method for battery contained in on-vehicle power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-004260 2016-01-13
JP2016004260A JP6569540B2 (ja) 2016-01-13 2016-01-13 車載電源システムおよびこれに含まれるバッテリの状態検知方法

Publications (1)

Publication Number Publication Date
WO2017122698A1 true WO2017122698A1 (ja) 2017-07-20

Family

ID=59311260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000682 WO2017122698A1 (ja) 2016-01-13 2017-01-11 車載電源システムおよびこれに含まれるバッテリの状態検知方法

Country Status (5)

Country Link
US (1) US10889187B2 (ja)
JP (1) JP6569540B2 (ja)
CN (1) CN108463737B (ja)
DE (1) DE112017000360T5 (ja)
WO (1) WO2017122698A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192648B2 (ja) * 2019-05-07 2022-12-20 株式会社デンソー 電源装置、電源システム
KR20210011236A (ko) 2019-07-22 2021-02-01 주식회사 엘지화학 배터리 저항 진단 장치 및 방법
DE102019211142A1 (de) * 2019-07-26 2021-01-28 Siemens Mobility GmbH Verfahren zum Betreiben eines Schienenfahrzeugs und Schienenfahrzeug
KR20210037357A (ko) 2019-09-27 2021-04-06 주식회사 엘지화학 배터리 관리 장치
JP7420125B2 (ja) * 2021-09-27 2024-01-23 トヨタ自動車株式会社 電源システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115331A (ja) * 2001-05-28 2003-04-18 Yazaki Corp 車載バッテリ純抵抗測定方法及び装置
JP2013072838A (ja) * 2011-09-29 2013-04-22 Shin Kobe Electric Mach Co Ltd バッテリテスタ
JP2014149280A (ja) * 2013-02-04 2014-08-21 Toshiba Corp 電池性能推定方法および電池性能推定装置
JP2015090342A (ja) * 2013-11-07 2015-05-11 株式会社デンソー 電池特性学習装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223506B4 (de) 2001-05-28 2004-12-23 Yazaki Corp. Verfahren und Einrichtung zum Messen des Wirkwiderstands einer Fahrzeugbordbatterie
JP2005263068A (ja) 2004-03-19 2005-09-29 Auto Network Gijutsu Kenkyusho:Kk バッテリ状態検知装置
US8872474B2 (en) * 2006-02-09 2014-10-28 Karl F. Scheucher Fail safe serviceable high voltage battery pack
ATE553394T1 (de) * 2006-08-22 2012-04-15 Delphi Tech Inc Batterieüberwachungssystem
JP5629760B2 (ja) * 2010-03-30 2014-11-26 本田技研工業株式会社 二次電池の電池容量検出方法
KR20110134019A (ko) * 2010-06-08 2011-12-14 현대자동차주식회사 차량용 배터리의 셀 열화 진단 방법
JP5558941B2 (ja) * 2010-06-30 2014-07-23 三洋電機株式会社 電池の内部抵抗の検出方法
AU2012258672A1 (en) * 2011-05-24 2014-01-16 Fastcap Systems Corporation Power system for high temperature applications with rechargeable energy storage
CN102306943B (zh) * 2011-09-15 2014-05-21 河北工业大学 锂离子电池管理系统及其控制方法
US9146280B2 (en) * 2011-10-26 2015-09-29 Industrial Technology Research Institute Method and system for estimating a capacity of a battery
JP6119143B2 (ja) * 2011-11-01 2017-04-26 日産自動車株式会社 電源の制御装置
WO2013136413A1 (ja) * 2012-03-12 2013-09-19 株式会社日立製作所 電力蓄積システム、および、蓄電モジュールの制御方法
JP5598869B2 (ja) * 2012-03-27 2014-10-01 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
EP2645557A1 (en) * 2012-03-30 2013-10-02 EH Europe GmbH Method of calculating the input current drawn by a power converter
US20140170511A1 (en) * 2012-08-19 2014-06-19 Ftorion, Inc. Flow Battery And Regeneration System With Improved Safety
JP2014081238A (ja) * 2012-10-15 2014-05-08 Sony Corp 電池劣化寿命推定方法、電池劣化寿命推定装置、電動車両および電力供給装置
JP5904134B2 (ja) * 2013-01-29 2016-04-13 トヨタ自動車株式会社 電池システム
KR20140114151A (ko) * 2013-03-18 2014-09-26 주식회사 한라홀딩스 전기 자동차용 충전기의 강제 방전 회로, 그 회로를 포함하는 전기 자동차용 충전기 및 상기 충전기를 포함하여 충전 기능을 갖는 전기 자동차
CN105164392B (zh) * 2013-04-30 2018-01-19 三菱电机株式会社 蓄电池状态检测装置以及蓄电池状态检测方法
KR102210890B1 (ko) * 2013-06-05 2021-02-02 삼성에스디아이 주식회사 배터리 시스템, 및 배터리 시스템의 관리 방법
JP6355919B2 (ja) * 2013-12-25 2018-07-11 古河電気工業株式会社 バッテリの放電能力制御方法及びその装置
US10063066B2 (en) * 2014-01-07 2018-08-28 Utah State University Battery control
US9446678B2 (en) * 2014-03-05 2016-09-20 Ford Global Technologies, Llc Battery model with robustness to cloud-specific communication issues
JP6133817B2 (ja) * 2014-05-14 2017-05-24 本田技研工業株式会社 2電源システム及び電動車両
JP6245094B2 (ja) * 2014-06-30 2017-12-13 日立化成株式会社 電池システム
CN104111377B (zh) * 2014-08-06 2017-02-15 先进储能材料国家工程研究中心有限责任公司 二次电池不同荷电状态下直流内阻的测试方法
US10295611B2 (en) * 2015-06-09 2019-05-21 Premier Technologies, Ltd. Efficient battery tester
US11479139B2 (en) * 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
JP6632918B2 (ja) * 2016-03-18 2020-01-22 Ntn株式会社 二次電池の劣化判定装置
CN110073518B (zh) * 2016-12-16 2022-02-08 株式会社村田制作所 二次电池、电池组、电动车辆、蓄电系统、电动工具以及电子设备
DE102017210616B4 (de) * 2017-06-23 2021-08-12 Audi Ag Verfahren zum Betreiben einer Vielzahl von Nutzeinheiten für einen Verschleißangleich in einer Energieliefervorrichtung sowie Energieliefervorrichtung
US10737584B2 (en) * 2018-10-18 2020-08-11 Ford Global Technologies, Llc Battery state of charge reset
US11133534B2 (en) * 2019-02-22 2021-09-28 Aurora Flight Sciences Corporation Programmable battery pack
US11462918B2 (en) * 2019-02-22 2022-10-04 Aurora Flight Sciences Corporation Battery switch with current control
US11296540B2 (en) * 2019-02-22 2022-04-05 Aurora Flight Sciences Corporation Programmable battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115331A (ja) * 2001-05-28 2003-04-18 Yazaki Corp 車載バッテリ純抵抗測定方法及び装置
JP2013072838A (ja) * 2011-09-29 2013-04-22 Shin Kobe Electric Mach Co Ltd バッテリテスタ
JP2014149280A (ja) * 2013-02-04 2014-08-21 Toshiba Corp 電池性能推定方法および電池性能推定装置
JP2015090342A (ja) * 2013-11-07 2015-05-11 株式会社デンソー 電池特性学習装置

Also Published As

Publication number Publication date
US10889187B2 (en) 2021-01-12
JP6569540B2 (ja) 2019-09-04
JP2017125729A (ja) 2017-07-20
US20200269699A1 (en) 2020-08-27
CN108463737B (zh) 2020-05-19
CN108463737A (zh) 2018-08-28
DE112017000360T5 (de) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017122698A1 (ja) 車載電源システムおよびこれに含まれるバッテリの状態検知方法
JP4835690B2 (ja) 電源装置
JP4840359B2 (ja) エンジン始動装置
US8552688B2 (en) On-vehicle battery condition estimation device
US9780577B2 (en) Electric power supply control device and electric power supply control method
JP5693788B2 (ja) 自動車搭載電気システム、及び、自動車搭載電気システムの駆動方法
JP2008278564A (ja) 電源制御装置
EP1587201A1 (en) Battery power circuit
JP5430265B2 (ja) アイドルストップ車の制御装置
JPWO2012008124A1 (ja) 車両用電源装置
WO2012104957A1 (ja) 電源管理装置
JP2011155791A (ja) 車両用電源装置
WO2019208203A1 (ja) 車載用のバックアップ回路及び車載用のバックアップ装置
JP2014184752A (ja) 電源装置
JP2008289303A (ja) 電力制御装置
JP2007237856A (ja) 車両用電源システム
JP2008054363A (ja) 電源装置
WO2015059929A1 (en) Automotive power supply device and method of controlling an automotive power supply mounted on a vehicle
KR100921046B1 (ko) 차량용 에이비에스의 전원공급시스템 및 그 전원공급방법
JP2008289302A (ja) 電力制御装置
JP5119699B2 (ja) 車両用電源装置
CN103097171B (zh) 用于驱动汽车的恢复系统中的发电机的方法和设备
EP2936651A1 (fr) Circuit electrique d'un vehicule automobile
CN107487306B (zh) 车辆制动的方法及装置
US20110144837A1 (en) Hybrid accessory power module shedding for high voltage battery protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000360

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738452

Country of ref document: EP

Kind code of ref document: A1