WO2017122623A1 - 硬化膜およびその製造方法 - Google Patents

硬化膜およびその製造方法 Download PDF

Info

Publication number
WO2017122623A1
WO2017122623A1 PCT/JP2017/000442 JP2017000442W WO2017122623A1 WO 2017122623 A1 WO2017122623 A1 WO 2017122623A1 JP 2017000442 W JP2017000442 W JP 2017000442W WO 2017122623 A1 WO2017122623 A1 WO 2017122623A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured film
photosensitive resin
group
mol
bis
Prior art date
Application number
PCT/JP2017/000442
Other languages
English (en)
French (fr)
Inventor
荘司優
増田有希
磯部王郎
奥田良治
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020187019949A priority Critical patent/KR102553742B1/ko
Priority to CN201780006274.3A priority patent/CN108473679B/zh
Priority to US16/063,893 priority patent/US10908500B2/en
Priority to JP2017501733A priority patent/JP6915533B2/ja
Publication of WO2017122623A1 publication Critical patent/WO2017122623A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0751Silicon-containing compounds used as adhesion-promoting additives or as means to improve adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/085Photosensitive compositions characterised by adhesion-promoting non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a cured film of a photosensitive resin composition and a method for producing the same. More specifically, the present invention relates to a photosensitive resin composition suitably used for a surface protective film such as a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescent element, a cured film thereof, and a manufacturing method thereof.
  • a surface protective film such as a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescent element, a cured film thereof, and a manufacturing method thereof.
  • Patent Document 1 a positive photosensitive resin composition containing a hydroxystyrene resin, a polyamic acid, and a quinonediazide compound has been proposed.
  • this resin composition in the unexposed area, the solubility in an alkaline solution as a developer is suppressed due to the interaction between the phenolic hydroxyl group of the hydroxystyrene resin and the quinonediazide compound.
  • the quinonediazide compound in the exposed area, the quinonediazide compound generates an acid by light, so that the solubility in an alkaline solution is remarkably improved.
  • a positive-type relief pattern can be created by the difference in solubility between the unexposed area and the exposed area in the alkaline solution.
  • Patent Document 2 a positive photosensitive resin composition containing a compound having a polyhydroxystyrene resin, an alkoxymethyl group or a methylol group has been proposed, realizing high sensitivity and low stress.
  • Patent Document 3 polybenzoxazole having a flexible group synthesized from an aliphatic dicarboxylic acid
  • the semiconductor device production process includes a step of stripping the resist, but the insulating film between the metal rewirings is required to have resistance to a resist stripping solution as chemical resistance.
  • the above materials are not sufficiently resistant to the resist stripping solution, and may swell, dissolve, and peel off.
  • polybenzoxazole having a flexible group synthesized from an aliphatic dicarboxylic acid is a metal (for example, copper, etc.) due to an increase in stress on the substrate wafer due to dehydration and ring closure during curing and a decrease in interaction due to a decrease in functional group. ), And the adhesion with the metal deteriorates after a reliability test such as a thermal shock test.
  • the present invention solves the problems associated with the prior art as described above, and provides a cured film having high chemical resistance, high elongation, and high adhesion to metals, particularly copper.
  • the present invention relates to the following.
  • it is a cured film obtained by curing a photosensitive resin composition containing a polybenzoxazole precursor, and the ratio of the polybenzoxazole precursor ring-closed to the polybenzoxazole is 10% or more and 60% or less. It relates to a cured film.
  • the photosensitive resin composition is coated on a substrate and dried to form a photosensitive resin film, or a photosensitive sheet formed from the photosensitive resin composition is laminated on a substrate to be photosensitive.
  • a method for producing a cured film including a step of forming a resin film, a step of exposing through a mask, a step of eluting or removing the irradiated portion with an alkaline solution, and a step of heat-treating the photosensitive resin film after development About.
  • the present invention relates to an interlayer insulating film or a semiconductor protective film on which the cured film is disposed, a semiconductor electronic component, and a semiconductor device.
  • the present invention it is possible to obtain a cured film having high chemical resistance, high elongation, and high adhesion to metals, particularly copper.
  • the electronic component or the semiconductor device of the present invention has a good shape, a pattern with excellent adhesion and chemical resistance, and has high reliability.
  • the cured film of the present invention is a cured film obtained by curing a photosensitive resin composition, wherein the photosensitive resin composition contains a polybenzoxazole precursor, and the polybenzoxazole precursor in the cured film is polybenzoxazole.
  • the cured film is characterized in that the ratio of ring closure is 10% or more and 60% or less. That is, a resin in which the specific poly (o-hydroxyamide) structural unit in the cured film is partially oxazolated.
  • the cured film is a film obtained by applying a photosensitive resin composition, exposing and developing, and applying a temperature of 150 ° C. to 320 ° C. to advance a thermal crosslinking reaction.
  • the ratio of the polybenzoxazole precursor ring-closed to the polybenzoxazole is 10% to 60%, thereby improving the resistance of the cured film to the resist stripping solution and completely By not closing the ring, it is possible to secure high adhesion to the metal.
  • the ring closure rate indicates the ratio of the polybenzoxazole precursor structural unit ring-closed to the polybenzoxazole, and is calculated by FT-IR measurement.
  • the ring closure rate in the cured film is set to 60% or less, more preferably 55% or less, polar groups derived from the polybenzoxazole precursor remain, and adhesion to other materials such as sealing resin and metal Can be improved. Furthermore, by introducing a flexible structure into the polybenzoxazole precursor, the entanglement of molecular chains is increased, and a cured film having high mechanical properties, particularly high elongation can be obtained.
  • the cured film of the present invention has both chemical resistance and adhesion to metal by making the ratio of the polybenzoxazole precursor ring-closed to the polybenzoxazole 10% to 60%, and is flexible. By having an ionic structure in the polybenzoxazole precursor, it also has high extensibility.
  • polybenzoxazole precursor examples include, but are not limited to, poly (o-hydroxyamide) or a polymer obtained by partially protecting the hydroxyl group of poly (o-hydroxyamide) with an organic group.
  • the polybenzoxazole precursor of the present invention has (A) a dicarboxylic acid having a structural unit represented by the general formula (1) and having a structure of X 1 (COOH) 2 , or a structure of X 1 (COZ) 2 . It is a polyamide that can be obtained by polycondensation of a dicarboxylic acid derivative having a diamine and a diamine having the structure of Y 1 (NH 2 ) 2 .
  • X 1 and Y 1 are each independently a divalent to octavalent organic group having two or more carbon atoms
  • R 1 and R 2 are each independently hydrogen or an organic group having 1 to 20 carbon atoms.
  • N1 is an integer in the range of 2 to 500
  • p and q are each independently an integer of 0 to 4
  • r and s are each independently an integer of 0 to 2, provided that p, q, For r and s, when the value is 0, the functional groups in parentheses each represent a hydrogen atom.
  • the polybenzoxazole precursor of the present invention preferably contains 50% or more of repeating units having a value of p or q of 1 or more and 4 or less, based on the total structural units. It is more preferable that it contains more than%.
  • Examples of the dicarboxylic acid having the structure of X 1 (COOH) 2 or the dicarboxylic acid derivative having the structure of X 1 (COZ) 2 include cyclobutanedicarboxylic acid, cyclohexanedicarboxylic acid, malonic acid, dimethylmalonic acid, ethylmalonic acid, isopropyl Malonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid, Hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipic acid 3-methyladipic acid,
  • A represents —, —O—, —S—, —SO 2 —, —COO—, —OCO—, —CONH—, —NHCO—, —C (CH 3 ) 2 —, —C (CF 3) 2 - with a divalent radical selected from the group consisting of).
  • Z is a group selected from an organic group having 1 to 12 carbon atoms or a halogen element, and is a group selected from the following structural formula Is preferred.
  • B and C include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a trifluoromethyl group, a halogen group, a phenoxy group, and a nitro group.
  • Examples of the diamine having the structure of Y 1 (NH 2 ) 2 include m-phenylenediamine, p-phenylenediamine, 3,5-diaminobenzoic acid, 1,5-naphthalenediamine, 2,6-naphthalenediamine, 9 , 10-anthracenediamine, 2,7-diaminofluorene, 4,4′-diaminobenzanilide, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3-carboxy-4,4′-diaminodiphenyl ether, 3-sulfonic acid-4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone,
  • a decrease in adhesion to a metal is suppressed by a decrease in interaction due to an increase in stress on the substrate wafer and a decrease in functional groups due to dehydration ring closure during curing.
  • a diamine having a structural unit represented by the general formula (2) as Y 1.
  • R 3 to R 6 each independently represents an alkylene group having 1 to 6 carbon atoms
  • R 7 to R 14 each independently represents hydrogen, fluorine or an alkyl group having 1 to 6 carbon atoms, provided that x, y and z each independently represents an integer of 0 to 35.
  • Examples of the diamine having the structural unit represented by the general formula (2) include ethylenediamine, 1,3-diaminopropane, 2-methyl-1,3-propanediamine, 1,4-diaminobutane, and 1,5-diamino.
  • Pentane 2-methyl-1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11 -Diaminoundecane, 1,12-diaminododecane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (amino) Methyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 4,4'-methylenebis (Cyclohexylamine), 4,4′-methylenebis (2-methylcyclohexylamine), KH-511, ED-600, ED-900, ED-2003, E
  • —S—, —SO—, —SO 2 —, —NH—, —NCH 3 —, —N (CH 2 CH 3 ) —, —N (CH 2 CH 2 CH 3 ) —, —N (CH Bonds such as (CH 3 ) 2 ) —, —COO—, —CONH—, —OCONH—, —NHCONH— may be included.
  • the content of the polyether structural unit represented by the general formula (2) is in the range of 5 to 40 mol% in the total diamine residues. It is preferable that it is 5 mol% or more in all diamine residues at the point which can ensure the high ductility of the obtained cured film, and it is more preferable that it is 10 mol% or more.
  • the content of the diamine having the structural unit represented by the general formula (2) is preferably 40 mol% or less in the total diamine residues in terms of maintaining solubility in an alkaline solution. It is more preferably at most mol%, further preferably at most 20 mol%.
  • Y 1 is represented by general formula (2).
  • the molecular weight of the structural unit represented by the general formula (2) is preferably 150 or more, more preferably 600 or more, and further preferably 900 or more.
  • molecular weight is 2,000 or less, it is preferable at the point which maintains the solubility to an alkaline solution, 1800 or less is more preferable, and 1500 or less is further more preferable.
  • the molecular weight is more preferably 600 or more and 1,800 or less, and further preferably 900 or more and 1,500 or less. Thereby, lower stress property and sensitivity can be improved.
  • the tetramethylene ether group is excellent in heat resistance.
  • the polyether structural unit represented by General formula (2) has a tetramethylene ether glycol structural unit.
  • the tetramethylene ether glycol structural unit is preferably 50 mol% or more. All the polyether structural units may be tetramethylene ether glycol structural units.
  • RT-1000, HE-1000, HT-1100, HT-1700 (trade name, manufactured by HUNTSMAN Co., Ltd.) and the like can be used, but the present invention is not limited thereto.
  • the molecular weight of Y 1 component in the resin component (A), with respect to the diamine monomer containing a Y 1 structure, for example, measured by LC-MS, can be obtained as the molecular weight of the main signal.
  • an aliphatic group having a siloxane structure may be copolymerized within a range where the heat resistance is not lowered, and the adhesion to the substrate can be improved.
  • the diamine component include those obtained by copolymerizing 1 to 15 mol% of bis (3-aminopropyl) tetramethyldisiloxane, bis (p-aminophenyl) octamethylpentasiloxane, and the like.
  • the copolymerization is 1 mol% or more, it is preferable from the viewpoint of improving the adhesion to a substrate such as a silicon wafer, and when it is 15 mol% or less, it is preferable from the viewpoint of maintaining solubility in an alkaline solution.
  • the component (A) in the present invention preferably has a weight average molecular weight of 10,000 or more and 50,000 or less.
  • a weight average molecular weight 10,000 or more in terms of polystyrene by GPC (gel permeation chromatography)
  • mechanical properties after curing can be improved.
  • the weight average molecular weight is 50,000 or less
  • developability with an alkaline solution can be improved.
  • 20,000 or more is more preferable.
  • it is sufficient that at least one weight average molecular weight is in the above range.
  • the component (A) seals the end of the main chain with an end-capping agent.
  • the end capping agent include monoamines, acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds.
  • the terminal of the resin by sealing the terminal of the resin with a terminal sealing agent having a hydroxyl group, a carboxyl group, a sulfonic acid group, a thiol group, a vinyl group, an ethynyl group, or an allyl group, the dissolution rate of the resin in an alkaline solution and the resulting curing can be obtained.
  • the mechanical properties of the membrane can be easily adjusted to a preferred range.
  • the introduction ratio of the end-capping agent is preferably 0.1 mol% or more with respect to all amine components in order to prevent the molecular weight of the component (A) from increasing and the solubility in an alkaline solution from decreasing. Especially preferably, it is 5 mol% or more.
  • the introduction ratio of the terminal blocking agent is preferably 60 mol% or less, particularly preferably 50 in order to suppress a decrease in mechanical properties of the cured film obtained by lowering the molecular weight of the resin having the structural unit (A). It is less than mol%.
  • a plurality of end-capping agents may be reacted to introduce a plurality of different end groups.
  • Monoamines used for the end-capping agents include M-600, M-1000, M-2005, M-2070 (above trade names, manufactured by HUNTSMAN Co., Ltd.), aniline, 2-ethynylaniline, 3-ethynylaniline, 4 -Ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2 -Hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5 Aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2 Carboxy-6-aminonaphthalene, 2-carboxy-5
  • Acid anhydrides such as phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, etc., as acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene Monocarboxylic acids such as 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, Monoacid chloride compounds in which these carboxyl groups are converted to acid chlorides, terephthalic acid, phthal
  • transduced into (A) component used for this invention can be easily detected with the following method.
  • a resin having a terminal blocking agent introduced therein is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component as structural units, and this is measured by gas chromatography (GC) or NMR measurement.
  • GC gas chromatography
  • the end-capping agent used in the present invention can be easily detected.
  • the resin component into which the end-capping agent has been introduced can also be easily detected by directly measuring it with a pyrolysis gas chromatograph (PGC), infrared spectrum and 13 C-NMR spectrum.
  • PPC pyrolysis gas chromatograph
  • the component (A) used in the present invention is polymerized using a solvent.
  • the polymerization solvent is not particularly limited as long as it can dissolve dicarboxylic acids, dicarboxylic acid derivatives, tetracarboxylic dianhydrides and diamines which are raw material monomers.
  • the polymerization solvent used in the present invention is preferably used in an amount of 100 parts by mass or more, more preferably 150 parts by mass or more, based on 100 parts by mass of the resin obtained in order to dissolve the resin after the reaction. Moreover, in order to obtain resin as a powder at the time of precipitation collection
  • the photosensitive resin composition before curing of the present invention includes a component (A) in the previous period, (B) a compound that generates an acid by light (hereinafter, may be abbreviated as (B) component), (C) heat It is a positive photosensitive resin composition containing a crosslinking agent.
  • the positive photosensitive resin composition is not limited in its shape as long as these components are contained, and may be, for example, a paste or a sheet.
  • the photosensitive sheet of the present invention is not completely cured by applying the photosensitive resin composition of the present invention on a support and drying it at a temperature and time within a range where the solvent can be volatilized.
  • the support is not particularly limited, but various commercially available films such as polyethylene terephthalate (PET) film, polyphenylene sulfide film, and polyimide film can be used.
  • PET polyethylene terephthalate
  • the bonding surface between the support and the photosensitive resin composition may be subjected to a surface treatment such as silicone, a silane coupling agent, an aluminum chelating agent, or polyurea in order to improve adhesion and peelability.
  • the thickness of the support is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m from the viewpoint of workability.
  • the photosensitive resin composition As a method of applying the photosensitive resin composition to the support, spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, comma roll
  • the method include a coater, a gravure coater, a screen coater, and a slit die coater.
  • the film thickness after drying is usually 0.5 ⁇ m or more and 100 ⁇ m or less.
  • Oven, hot plate, infrared, etc. can be used for drying.
  • the drying temperature and the drying time may be in a range where the solvent can be volatilized, and it is preferable to appropriately set a range in which the photosensitive resin composition is in an uncured or semi-cured state. Specifically, it is preferable to carry out from 1 minute to several tens of minutes in the range of 40 ° C to 150 ° C. Moreover, you may heat up in steps combining these temperatures, for example, you may heat-process at 80 degreeC and 90 degreeC for 2 minutes each.
  • the positive photosensitive resin composition before curing of the present invention contains a compound that generates an acid by light, that is, a photosensitive agent that is a photoacid generator.
  • the photosensitive agent in the present invention is a positive type that is solubilized by light, and a quinonediazide compound or the like is preferably used.
  • quinonediazide sulfonic acid is ester-bonded to a polyhydroxy compound
  • quinonediazide sulfonic acid is sulfonamide-bonded to a polyamino compound
  • quinonediazide sulfonic acid is ester-bonded and / or sulfonamide to a polyhydroxypolyamino compound. Examples include those that are combined. Although all the functional groups of these polyhydroxy compounds, polyamino compounds, and polyhydroxypolyamino compounds may not be substituted with quinonediazide, it is preferable that 40 mol% or more of the entire functional groups are substituted with quinonediazide on average. .
  • a positive photosensitive resin composition that is sensitive to i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of a mercury lamp, which is a general ultraviolet ray. Obtainable.
  • Polyhydroxy compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP -IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-BP, TML-H , TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP (
  • Polyamino compounds include 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl Examples thereof include, but are not limited to, sulfide.
  • examples of the polyhydroxypolyamino compound include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3,3′-dihydroxybenzidine, and the like, but are not limited thereto.
  • the quinonediazide compound contains an ester with a phenol compound and a 4-naphthoquinonediazidesulfonyl group. Thereby, high sensitivity and higher resolution can be obtained by i-line exposure.
  • the content of the component (B) is preferably 1 part by mass or more, and more preferably 10 parts by mass or more, because sufficient sensitivity can be obtained after exposure with respect to 100 parts by mass of the component (A).
  • the content of the quinonediazide compound is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, which does not deteriorate the film characteristics with respect to 100 parts by mass of the component (A). By setting the content of the quinonediazide compound within this range, higher sensitivity can be achieved while obtaining the desired film characteristics.
  • other photoacid generators such as onium salts and diaryl compounds, sensitizers and the like may be added as necessary.
  • the positive photosensitive resin composition before curing of the present invention preferably contains (C) a thermal cross-linking agent (hereinafter sometimes abbreviated as (C) component).
  • C a thermal cross-linking agent
  • a compound having at least two alkoxymethyl groups or methylol groups is preferable. By having at least two of these groups, it is possible to form a crosslinked structure by condensation reaction with the resin and the same kind of molecules.
  • component (B) a wider range of designs is possible for improving the sensitivity and mechanical properties of the cured film.
  • Preferred examples of the component (C) include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML- PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DMLBisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM- PAP, HML-TPPHBA, HML-TPPHAP,
  • the content of the component (C) is preferably 5 parts by mass or more for obtaining chemical resistance to the solvent with respect to 100 parts by mass of the component (A), and 40 parts by mass for obtaining sufficient mechanical properties.
  • the following is preferable. Within this range, a wide range of designs can be performed more appropriately in order to improve sensitivity and mechanical properties of the cured film.
  • a low molecular compound having a phenolic hydroxyl group may be contained within a range that does not reduce the shrinkage residual film ratio after curing. Thereby, the development time can be shortened.
  • Examples of these compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP- CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIP-PC, BIR-PC, BIR-PTBP BIR-BIPC-F (trade name, manufactured by Asahi Organic Materials Co., Ltd.) and the like. Two or more of these may be contained.
  • the content of the low molecular compound having a phenolic hydroxyl group is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the component (A).
  • the photosensitive resin composition before curing of the present invention preferably contains (D) a compound represented by the general formula (3) (hereinafter sometimes abbreviated as (D) component).
  • (D) component a compound represented by the general formula (3)
  • the adhesion between the heat-cured film and the metal material, particularly copper is remarkably improved. This is derived from the fact that the S atom and N atom of the compound represented by the general formula (3) interact efficiently with the metal surface, and has a three-dimensional structure that easily interacts with the metal surface. caused by. Due to these effects, the positive photosensitive resin composition of the present invention can obtain a cured film having excellent adhesion to a metal material.
  • R 18 to R 20 in the general formula (3) a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an aryl ether group, a carboxyl group, Examples thereof include a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, and combinations thereof, and may further have a substituent.
  • R 15 to R 17 each represents an oxygen atom, a sulfur atom, or a nitrogen atom, and at least one of R 15 to R 17 represents a sulfur atom.
  • 1 and m and n each represent an integer of 0 to 2.
  • R 18 to R 20 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • the amount of component (D) added is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of component (A). By making the addition amount 0.1 parts by mass or more, the effect of adhesion to the metal material can be sufficiently obtained, and by making it 10 parts by mass or less, the photosensitive resin composition used in the present invention can be obtained. In the case of the positive type, it is preferable because the decrease in sensitivity of the positive type photosensitive resin composition before curing can be suppressed by the interaction with the photosensitive agent.
  • R 15 to R 17 of the component (D) used in the present invention each represents an oxygen atom, a sulfur atom, or a nitrogen atom, and at least one of R 15 to R 17 is preferably a sulfur atom.
  • the sensitivity may be impaired by the interaction between the photosensitizer and the nitrogen atom-containing compound.
  • the effect of improving adhesion can be obtained without reducing the sensitivity of the positive-type photosensitive resin composition before curing because the interaction effect with the photosensitive agent is reduced by containing sulfur atoms.
  • Examples of the compound represented by the general formula (3) include the following, but are not limited to the following structures.
  • the (B) component, (C) component, and (D) component in the cured film in the present invention are subjected to degassing analysis (for example, pyrolysis GC / MS) of the cured film, thereby leaving the respective component residues.
  • degassing analysis for example, pyrolysis GC / MS
  • the positive photosensitive resin composition before curing of the present invention preferably contains (E) a compound represented by the following general formula (4) (hereinafter sometimes abbreviated as (E) component).
  • E a compound represented by the following general formula (4)
  • the mechanical characteristic of the cured film after reliability evaluation and the fall of adhesiveness with a metal material can be suppressed.
  • R 21 represents a hydrogen atom or an alkyl group having 2 or more carbon atoms
  • R 22 represents an alkylene group having 2 or more carbon atoms
  • R 23 represents an alkylene group having 2 or more carbon atoms
  • k represents an integer of 1 to 4
  • the component (E) acts as an antioxidant to suppress oxidative degradation of the aliphatic group or phenolic hydroxyl group of the component (A). Moreover, the oxidation of a metal material can be suppressed by the antirust effect
  • R 21 in the component (E) used in the present invention represents a hydrogen atom or an alkyl group having 2 or more carbon atoms
  • R 22 represents an alkylene group having 2 or more carbon atoms
  • R 23 represents a monovalent to tetravalent organic group containing at least one of an alkylene group having 2 or more carbon atoms, an oxygen atom, and a nitrogen atom.
  • k represents an integer of 1 to 4.
  • R 23 includes an alkyl group, a cycloalkyl group, an aryl group, an aryl ether group, a carboxyl group, a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, —O—, —NH—, —NHNH—, and A combination thereof may be used, and further a substituent may be included.
  • alkyl ether and —NH— are preferably contained from the viewpoint of solubility in a developer and metal adhesion, and from the viewpoint of interaction with the component (A) and metal adhesion due to metal complex formation— NH- is more preferred.
  • the amount of component (E) added is preferably 0.1 to 10 parts by mass and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of component (A). Since the addition amount is 0.1 parts by mass or more, the oxidative deterioration of the aliphatic group and the phenolic hydroxyl group can be suppressed, and the oxidation of the metal material can be suppressed by the rust preventive action on the metal material. ,preferable. Moreover, it is preferable that the addition amount be 10 parts by mass or less because a decrease in sensitivity of the positive photosensitive resin composition before curing can be suppressed by interaction with the photosensitive agent.
  • Examples of the component (E) include the following, but are not limited to the following structures.
  • the positive photosensitive resin composition before curing of the present invention contains (F) a thermal crosslinking agent having a structural unit represented by the general formula (5) (hereinafter sometimes abbreviated as (F) component). It is preferable to do. By containing the component (F), it is possible to further improve mechanical properties and reduce stress.
  • R 25 and R 26 each independently represent a hydrogen atom or a methyl group.
  • R 24 is a divalent organic group having an alkylene group having 2 or more carbon atoms, and is linear. , Any of branched, and annular may be used.
  • R 25 and R 26 of the component (F) used in the present invention each independently represent a hydrogen atom or a methyl group.
  • R 24 is a divalent organic group having an alkylene group having 2 or more carbon atoms, and may be linear, branched or cyclic.
  • R 24 is an alkyl group, cycloalkyl group, alkoxy group, alkyl ether group, alkylsilyl group, alkoxysilyl group, aryl group, aryl ether group, carboxyl group, carbonyl group, allyl group, vinyl group, heterocyclic group, Combinations of these may be mentioned, and further a substituent may be included.
  • the component (F) used in the present invention has a flexible alkylene group and a rigid aromatic group, it has heat resistance and can improve the mechanical properties of the cured film and reduce the stress.
  • the crosslinking group include, but are not limited to, an acrylic group, a methylol group, an alkoxymethyl group, and an epoxy group.
  • an epoxy group is preferable because it reacts with the phenolic hydroxyl group of the component (A) to improve the heat resistance of the cured film, and film shrinkage due to dehydration hardly occurs, and stress to the generated substrate can be reduced. .
  • Examples of the component (F) used in the present invention include the following, but are not limited to the following structures.
  • n 2 is an integer of 1 to 5
  • n 3 is an integer of 1 to 20.
  • the component (F) used in the present invention preferably has n 2 of 1 to 2 and n 3 of 3 to 7 from the viewpoint of achieving both heat resistance and mechanical properties.
  • the content of the component (F) is preferably 2 to 35 parts by mass and more preferably 5 to 25 parts by mass with respect to 100 parts by mass of the component (A).
  • the addition amount 2 or more By making the addition amount 2 or more, the effect of improving the mechanical properties and reducing the stress can be obtained, and by making the addition amount 35 parts by mass or less, the sensitivity of the positive photosensitive resin composition before curing is lowered. Can be suppressed.
  • the content of the component (E) used in the present invention is preferably in the range of 10 to 50 parts by mass with respect to 100 parts by mass of the component (F) used in the present invention. Within this range, deterioration of the alkylene group after reliability evaluation can be suppressed, so that a decrease in mechanical properties of the cured film after reliability evaluation can be suppressed.
  • the positive photosensitive resin composition before curing of the present invention preferably contains a solvent.
  • Solvents include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2 -Polar aprotic solvents such as imidazolidinone, N, N'-dimethylpropyleneurea, N, N-dimethylisobutyramide, methoxy-N, N-dimethylpropionamide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, propylene Ethers such as glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, ethyl acetate, butyl acetate, isobuty
  • the content of the solvent is preferably 100 parts by mass or more in order to dissolve the composition with respect to 100 parts by mass of the component (A), and 1,500 masses to form a coating film having a thickness of 1 ⁇ m or more. It is preferable to contain a part or less.
  • the cured film obtained by curing the positive photosensitive resin composition of the present invention is a surfactant, an ester such as ethyl lactate or propylene glycol monomethyl ether acetate, ethanol, etc. for the purpose of improving the wettability with the substrate as necessary.
  • an ester such as ethyl lactate or propylene glycol monomethyl ether acetate, ethanol, etc.
  • Alcohols, ketones such as cyclohexanone and methyl isobutyl ketone, and ethers such as tetrahydrofuran and dioxane.
  • trimethoxyaminopropylsilane, trimethoxyepoxysilane as a silicon component on the cured film obtained by curing the positive photosensitive resin composition of the present invention within a range not impairing the storage stability.
  • Silane coupling agents such as trimethoxyvinylsilane and trimethoxythiolpropylsilane may be contained.
  • a preferable content is 0.01 to 5 parts by mass with respect to 100 parts by mass of the resin having the structural unit (A).
  • the cured film obtained by curing the positive photosensitive resin composition of the present invention may contain another alkali-soluble resin in addition to the component (A).
  • alkali-soluble polyimide, polybenzoxazole, acrylic polymer copolymerized with acrylic acid, novolak resin, siloxane resin, and the like can be given.
  • Such a resin is soluble in an alkaline solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, and sodium carbonate.
  • the viscosity of the positive photosensitive resin composition before curing of the present invention is preferably 2 to 5,000 mPa ⁇ s.
  • the solid content concentration so that the viscosity is 2 mPa ⁇ s or more, it becomes easy to obtain a desired film thickness.
  • the viscosity is 5,000 mPa ⁇ s or less, it becomes easy to obtain a highly uniform coating film.
  • a positive photosensitive resin composition having such a viscosity can be easily obtained, for example, by setting the solid content concentration to 5 to 60% by mass.
  • the (A) component of the cured film which hardened the photosensitive resin composition used for this invention contains the structural unit represented by General formula (1), it may be copolymerized with other structures, such as a polyimide. May be.
  • monomers to be copolymerized include acid dianhydrides such as pyromellitic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenyltetra.
  • Heptanetetracarboxylic dianhydride bicyclo [3.3.1. ] Tetracarboxylic dianhydride, bicyclo [3.1.1. ] Hept-2-enetetracarboxylic dianhydride, bicyclo [2.2.2. ] Octanetetracarboxylic dianhydride, adamantanetetracarboxylic acid, 4,4 '-(fluorenyl) diphthalic anhydride, 3,4'-oxydiphthalic anhydride, 4,4'-oxydiphthalic anhydride, 4, And 4 '-(hexafluoroisopropylidene) diphthalic anhydride.
  • diamine examples include m-phenylenediamine, p-phenylenediamine, 3,5-diaminobenzoic acid, 1,5-naphthalenediamine, 2,6-naphthalenediamine, 9,10-anthracenediamine, and 2,7-diamino.
  • the polybenzoxazole precursor preferably has a ring closure rate of 10% to 60%.
  • a ring closure rate of 10% to 60%.
  • the photosensitive resin composition before curing of the present invention is applied to a substrate.
  • the substrate may be a metal copper plating substrate, a silicon wafer, and the material may be ceramics, gallium arsenide, or the like, but is not limited thereto.
  • the coating method include spin coating using a spinner, spray coating, and roll coating.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but is usually applied so that the film thickness after drying is 0.1 to 150 ⁇ m.
  • the substrate can be pretreated with the above-mentioned silane coupling agent.
  • Surface treatment is performed by spin coating, dipping, spray coating, steam treatment or the like. In some cases, a heat treatment is subsequently performed at 50 ° C. to 300 ° C. to advance the reaction between the substrate and the silane coupling agent.
  • the substrate coated with the photosensitive resin composition is dried to obtain a photosensitive resin composition film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like in the range of 50 ° C. to 150 ° C. for 1 minute to several hours.
  • exposure is performed by irradiating the photosensitive resin composition film with actinic radiation through a mask having a desired pattern.
  • actinic radiation there are ultraviolet rays, visible rays, electron beams, X-rays and the like.
  • developers include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethyl
  • an alkaline compound such as aminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine is preferred.
  • these alkaline solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added singly or in combination. Good. After development, it is preferable to rinse with water. Here, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide
  • a temperature of 150 ° C. to 320 ° C. is applied to advance the thermal crosslinking reaction, thereby improving heat resistance and chemical resistance.
  • This heat treatment is carried out for 5 minutes to 5 hours by selecting the temperature and raising the temperature stepwise, or by selecting a temperature range and continuously raising the temperature. As an example, heat treatment is performed at 130 ° C. and 200 ° C. for 30 minutes each.
  • the lower limit of the curing conditions in the present invention is preferably 170 ° C. or higher, but more preferably 180 ° C. or higher in order to sufficiently cure.
  • the upper limit of the curing condition is preferably 280 ° C. or lower. However, since the present invention provides a cured film particularly excellent in low-temperature curability, 250 ° C. or lower is more preferable.
  • the heat-resistant resin film formed from the photosensitive resin composition of the present invention can be used for electronic parts such as semiconductor devices and multilayer wiring boards. Specifically, it is suitably used for applications such as a semiconductor passivation film, a semiconductor element surface protective film, an interlayer insulating film, an interlayer insulating film of a multilayer wiring for high-density mounting, and an insulating layer of an organic electroluminescent element. It is not limited to this, and various structures can be taken.
  • FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having a bump according to the present invention.
  • a passivation film 3 is formed on an input / output aluminum (hereinafter abbreviated as “Al”) pad 2 in the silicon wafer 1, and a via hole is formed in the passivation film 3.
  • the insulating film 4 is formed as a pattern of a cured film obtained by curing the photosensitive resin composition of the present invention, and further, a metal (Cr, Ti, etc.) film 5 is formed so as to be connected to the Al pad 2; Metal wiring (Al, Cu, etc.) 6 is formed by electrolytic plating or the like.
  • the metal film 5 etches the periphery of the solder bump 10 to insulate between the pads.
  • a barrier metal 8 and a solder bump 10 are formed on the insulated pad.
  • the cured film obtained by curing the photosensitive resin composition of the insulating film 7 can be subjected to thick film processing in the scribe line 9.
  • the resin of the present invention is excellent in mechanical characteristics, stress from the sealing resin can be relieved even during mounting, so that damage to the low-k layer can be prevented and a highly reliable semiconductor device can be provided.
  • FIG. 2a of FIG. 2 an input / output Al pad 2 and a passivation film 3 are formed on a silicon wafer 1, and an insulating film 4 is formed as a pattern of a cured film obtained by curing the photosensitive resin composition of the present invention. .
  • a metal (Cr, Ti, etc.) film 5 is formed so as to be connected to the Al pad 2, and as shown in 2c of FIG. 2, the metal wiring 6 is formed by a plating method. Form a film.
  • the photosensitive resin composition before curing of the present invention is applied, and an insulating film 7 is formed in a pattern as shown in 2d of FIG. 2 through a photolithography process.
  • the photosensitive resin composition before curing of the insulating film 7 is subjected to thick film processing in the scribe line 9.
  • each layer can be formed by repeating the above steps.
  • a barrier metal 8 and a solder bump 10 are formed. Then, the wafer is diced along the last scribe line 9 and cut into chips. If the insulating film 7 has no pattern formed on the scribe line 9 or if a residue remains, cracks or the like occur during dicing, which affects the reliability evaluation of the chip. For this reason, it is very preferable to provide pattern processing excellent in thick film processing as in the present invention in order to obtain high reliability of the semiconductor device.
  • the varnish was applied by spin coating using a coating / developing apparatus ACT-8 so that the film thickness after pre-baking on a silicon wafer at 120 ° C. for 3 minutes would be 10 ⁇ m.
  • the temperature was raised to 220 to 320 ° C. at a temperature rising rate of 3.5 ° C./min at an oxygen concentration of 20 ppm or less in a nitrogen stream, and 1 at 220 to 320 ° C. Heat treatment was performed for a time. When the temperature is 50 ° C.
  • the silicon wafer was taken out and immersed in 45% by mass of hydrofluoric acid for 5 minutes to peel off the cured film of the resin composition from the wafer.
  • This film was cut into strips having a width of 1 cm and a length of 9 cm, and using Tensilon RTM-100 (manufactured by Orientec Co., Ltd.) at a room temperature of 23.0 ° C. and a humidity of 45.0% RH, a tensile rate of 50 mm /
  • the sample was pulled in minutes and the elongation at break was measured. The measurement was performed on 10 strips per specimen, and the average value of the top 5 points was obtained from the results.
  • a value of elongation at break of 60% or more is considered to be very good, 4, 20% or more and less than 60% is considered good, 3 is 10% or more and less than 20% is allowed, and 2 or less is less than 10% It was evaluated as 1 as a failure.
  • Adhesion evaluation with metallic copper was performed by the following method. First, varnish was applied on a metal copper plating substrate having a thickness of about 3 ⁇ m by a spin coater using a spinner (Mikasa Co., Ltd.), and then a hot plate (D-SPIN made by Dainippon Screen Mfg. Co., Ltd.) was applied. Then, it was baked for 3 minutes on a hot plate at 120 ° C., and finally a pre-baked film having a thickness of 8 ⁇ m was produced. Using an inert oven CLH-21CD-S (manufactured by Koyo Thermo System Co., Ltd.), this film was heated to 220-320 ° C.
  • CLH-21CD-S manufactured by Koyo Thermo System Co., Ltd.
  • the ring closure rate here refers to the ring closure rate of the polybenzoxazole precursor structural unit.
  • a cured film was produced from the varnish, and the ring closure rate was calculated.
  • the ring closure rate in this example was calculated by spin-coating varnish on a silicon wafer and drying at 120 ° C. for 3 minutes to obtain a coating film having a thickness of 5 ⁇ m. Furthermore, this coating film was heated at 220 ° C. for 10 minutes or 320 ° C. for 10 minutes to obtain a cured film (cured film (A) heated at 220 ° C., cured film (B) heated at 320 ° C.). The ring closure rate of the cured film (A) at 220 ° C.
  • the heating temperature of the cured film (A) is the curing temperature of the cured film.
  • the heating temperature 320 ° C. of the cured film (B) is a temperature at which the component (A) in the cured film is completely cured (the curing rate becomes 100%).
  • the thermal decomposition temperature of the cured film can be analyzed by thermogravimetry (TGA).
  • the wafer was taken out and immersed in 45% by mass of hydrofluoric acid for 5 minutes to peel off the resin composition film from the wafer.
  • This film was cut into strips having a width of 1 cm and a length of 9 cm, and using Tensilon RTM-100 (manufactured by Orientec Co., Ltd.) at a room temperature of 23.0 ° C and a humidity of 45.0% RH, a tensile rate of 5 mm /
  • the sample was pulled in minutes and the elongation at break was measured. The measurement was performed on 10 strips per specimen, and the average value of the top 5 points was obtained from the results.
  • the value of elongation at break of 60% or more is very good, 4, 20% or more but less than 60% is good, 3, 10% or more and less than 20% is acceptable, 2 or less than 10% is bad It was set to 1.
  • the substrate was taken out, and a 10-row, 10-column grid-like cut was made at intervals of 2 mm using a single blade on the cured film.
  • the sample substrate was subjected to a heat storage treatment at 150 ° C. for 500 hours using a high-temperature storage tester, and then the above-described peeling test was performed. In any of the substrates, the number of peels in the peeling test was 0, indicating that the number of peeling was extremely good, 4, 1 or more, but less than 20, good, 3, 20 or more, but less than 50, or 2, 50 or more, and 1 as bad.
  • RT-1000 containing propylene oxide and tetramethylene ether glycol structures (20.00 g, 0.020 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050). Mol), PBOM (14.33 g, 0.044 mol) was added together with 50 g of NMP and reacted at 85 ° C. for 1 hour. Further, 5-norbornene-2,3-dicarboxylic acid anhydride (3.94 g, 0.024 mol) was added as a terminal blocking agent together with 10 g of NMP and reacted at 85 ° C. for 30 minutes.
  • the reaction mixture was cooled to room temperature, acetic acid (52.82 g, 0.88 mol) was added together with 87 g of NMP, and the mixture was stirred at room temperature for 1 hour. After stirring, the solution was poured into 3 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried for 3 days in a ventilator at 50 ° C. to obtain an alkali-soluble polyamide resin (A-1) powder.
  • the resin (A-1) had a weight average molecular weight of 40,000 and PDI of 2.2.
  • Synthesis Example 2 Synthesis of Alkali-Soluble Polyamide Resin (A-2) RT-1000 (20.00 g, 0 containing BAHF (29.30 g, 0.080 mol), propylene oxide and tetramethylene ether glycol structure under a dry nitrogen stream .020 mol) was dissolved in 205 g of NMP. To this, PBOM (28.67 g, 0.080 mol) was added together with 20 g of NMP and reacted at 85 ° C. for 3 hours.
  • A-2 Alkali-Soluble Polyamide Resin
  • HFHA 2,2′-bis [N- (3-aminobenzoyl) -3-amino-4-hydroxyphenyl] hexafluoropropane
  • 1, 3-Bis (3-aminopropyl) tetramethyldisiloxane (1.49 g, 0.0060 mol) was added together with 20 g of NMP and reacted at 85 ° C. for 30 minutes.
  • 5-norbornene-2,3-dicarboxylic acid anhydride (6.57 g, 0.040 mol) was added as a terminal blocking agent together with 10 g of NMP and reacted at 85 ° C. for 30 minutes.
  • 4,4′-oxydiphthalic anhydride (hereinafter referred to as ODPA) (2.17 g, 0.0070 mol) was added together with 30 g of NMP and reacted at 85 ° C. for 1 hour.
  • ODPA 4,4′-oxydiphthalic anhydride
  • the solution was poured into 3 L of water to obtain a white precipitate.
  • the precipitate was collected by filtration, washed with water three times, and then dried for 3 days with a ventilating dryer at 50 ° C. to obtain an alkali-soluble polyamide resin (A-2) powder.
  • the resin (A-2) had a weight average molecular weight of 31,600 and PDI of 1.9.
  • Synthesis Example 3 Synthesis of Alkali-Soluble Polyamide Resin (A-3) According to Synthesis Example 2, BAHF (32.96 g, 0.090 mol), PBOM (29.38 g, 0.082 mol), RT-1000 (10.
  • Synthesis Example 4 Synthesis of Alkali-Soluble Polyamide Resin (A-4) According to Synthesis Example 1, BAHF (27.47 g, 0.075 mol), PBOM (30.10 g, 0.084 mol), propylene oxide and ethylene glycol structure ED-900 (9.00 g, 0.020 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5-norbornene-2,3- Dicarboxylic acid anhydride (5.25 g, 0.032 mol), acetic acid (48.02 g, 0.80 mol), and NMP 409 g were used in the same manner to obtain an alkali-soluble polyamide resin (A-4) powder. As a result of evaluation by the above method, the resin (A-4) had a weight average molecular weight of 34,500 and PDI of 2.1.
  • Synthesis Example 5 Synthesis of Alkali-Soluble Polyamide Resin (A-5) According to Synthesis Example 2, BAHF (29.30 g, 0.080 mol), PBOM (30.10 g, 0.084 mol), ED-900 (18.
  • Synthesis Example 6 Synthesis of Alkali-Soluble Polyamide Resin (A-6) According to Synthesis Example 2, BAHF (32.96 g, 0.090 mol), PBOM (30.10 g, 0.084 mol), ED-900 (9.
  • Synthesis Example 7 Synthesis of Alkali-Soluble Polyamide Resin (A-7) According to Synthesis Example 1, BAHF (34.79 g, 0.095 mol), PBOM (31.53 g, 0.088 mol), 1,3-bis ( 3-aminopropyl) tetramethyldisiloxane (1.24 g, 0.0050 mol), 5-norbornene-2,3-dicarboxylic anhydride (3.94 g, 0.024 mol), acetic acid (52.82 g, 0 .50 mol) and 352 g of NMP were used in the same manner to obtain an alkali-soluble polyamide resin (A-7) powder. As a result of evaluation by the above method, the resin (A-7) had a weight average molecular weight of 35,800 and PDI of 2.5.
  • Synthesis Example 8 Synthesis of poly (o-hydroxyamide) (A-8) 100 g of N-methylpyrrolidone was charged in a dry nitrogen stream, and 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (32 .96 g, 0.090 mol) and m-aminophenol (2.18 g, 0.020 mol) were added and dissolved by stirring at room temperature, and the temperature of the reaction solution was kept at ⁇ 10 to 0 ° C.
  • Synthesis Example 9 Synthesis of Alkali-Soluble Polyamide Resin (A-9) According to Synthesis Example 2, BAHF (32.96 g, 0.090 mol), PBOM (29.38 g, 0.082 mol), HT-1100 (11.
  • Synthesis Example 10 Synthesis of Alkali-Soluble Polyamide Resin (A-10) According to Synthesis Example 2, BAHF (32.96 g, 0.090 mol), PBOM (29.38 g, 0.082 mol), HT-1700 (17.
  • the solution was poured into 3 L of water to obtain a white precipitate.
  • the precipitate was collected by filtration, washed with water three times, and then dried for 3 days with a ventilator at 50 ° C. to obtain a powder of a closed ring polyimide resin (A-11).
  • the imidation ratio of the obtained resin was 97%.
  • the weight average molecular weight of the resin (A-11) was 38,800, and the PDI was. 1.9.
  • Synthesis Example 12 Synthesis of Alkali-Soluble Polyamide Resin (A-12) 27.2 g (0.4 mol) of imidazole was placed in a 250 ml three-necked flask under a nitrogen stream and dissolved in 100 g of NMP with stirring at room temperature. While maintaining this at ⁇ 10 to 0 ° C., a liquid in which dodecanedioic acid dichloride (26.72 g, 0.1 mol) was dissolved in 100 g of NMP was added so that the temperature of the reaction solution did not exceed 0 ° C. It was added dropwise over time. After the dropping, the reaction solution was further stirred at room temperature for 3 hours, poured into 1 L of pure water, and the precipitate was filtered.
  • A-12 Alkali-Soluble Polyamide Resin
  • Synthesis Example 14 Synthesis of Alkali-soluble Polyamide Resin (A-14) 27.2 g (0.4 mol) of imidazole was placed in a 250 ml three-necked flask under a nitrogen stream, and dissolved in 100 g of NMP with stirring at room temperature. While maintaining this at ⁇ 10 to 0 ° C., a liquid in which sebacic acid dichloride (23.91 g, 0.1 mol) was dissolved in 100 g of NMP was added for 1 hour so that the temperature of the reaction solution did not exceed 0 ° C. It was dripped over. After the dropping, the reaction solution was further stirred at room temperature for 3 hours, poured into 1 L of pure water, and the precipitate was filtered.
  • A-14 Alkali-soluble Polyamide Resin
  • the amount in () of the thermal crosslinking agent indicates the amount (parts by mass) added to 100 parts by mass of the component (A).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyamides (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

高耐薬品性、高伸度性、金属銅高密着性の硬化膜を提供する。 ポリベンゾオキサゾール前駆体を含有する感光性樹脂組成物を硬化した硬化膜であって、ポリベンゾオキサゾール前駆体がポリベンゾオキサゾールに閉環している割合が10%以上60%以下であることを特徴とする硬化膜。

Description

硬化膜およびその製造方法
 本発明は、感光性樹脂組成物の硬化膜およびその製造方法に関する。より詳しくは、半導体素子等の表面保護膜、層間絶縁膜、有機電界発光素子の絶縁層などに好適に用いられる感光性樹脂組成物およびその硬化膜並びにその製造方法に関する。
 従来、半導体素子の表面保護膜や層間絶縁膜、有機電解素子の絶縁層やTFT基板の平坦化膜には、耐熱性や電気絶縁性等に優れたポリイミド系樹脂、ポリベンゾオキサゾール系樹脂が広く使用されている。さらに、生産性の向上のために感光性を付与した感光性ポリイミドや、感光性ポリベンゾオキサゾールの検討も行われている)。しかしこれらは現像時の膜減りが大きく、あるいは使用時の環境による影響が大きく、工業的な使用は困難であると指摘されてきた。
 一方で、ヒドロキシスチレン樹脂とポリアミド酸、キノンジアジド化合物を含有するポジ型感光性樹脂組成物(特許文献1)が提案されている。この樹脂組成物において、未露光部では、ヒドロキシスチレン樹脂のフェノール性水酸基とキノンジアジド化合物との相互作用から、現像液であるアルカリ溶液に対する溶解性が抑制さる。一方、露光部ではキノンジアジド化合物が光により酸を発生することでアルカリ溶液に対する溶解性が著しく向上する。この未露光部と露光部のアルカリ溶液に対する溶解性の差により、ポジ型のレリーフパターンを作成することができる。
 さらに、ポリヒドロキシスチレン樹脂、アルコキシメチル基またはメチロール基を有する化合物を含有するポジ型感光性樹脂組成物(特許文献2)が提案されており、高感度化、低応力性を実現している。
 また、脂肪族ジカルボン酸から合成される柔軟性基を有するポリベンゾオキサゾール(特許文献3)が柔軟性を有する感光性樹脂組成物として提案されている。
特開2007-156243号公報 特許第4692219号公報 特開2008-224984号公報
 近年は、半導体の高集積化に伴い、多層の金属再配線を形成する半導体デバイスに注目が集められている。半導体デバイスの生産プロセスには、レジストを剥離する工程が含まれるが、金属再配線間の絶縁膜には、耐薬品性としてレジスト剥離液への耐性が求められる。しかしながら、上記の材料では、レジスト剥離液への耐性が十分ではなく、膨潤や溶出、剥がれなどが生じてしまう場合があった。
 耐薬品性を向上させる上では、多量の架橋剤を導入することが考えられるが、多量の架橋剤によって3次元網目構造が形成された結果、得られる硬化膜の機械特性が著しく低下してしまう場合があった。
 また、脂肪族ジカルボン酸から合成される柔軟性基を有するポリベンゾオキサゾールは、硬化時の脱水閉環により基板ウエハへの応力の増加や官能基の減少による相互作用の低下により、金属(例えば銅など)との密着性が低下してしまい、特に熱衝撃試験などの信頼性試験後に金属との密着性が低下してしまという問題があった。
 本発明は、上記のような従来技術に伴う問題点を解決し、高耐薬品性、高伸度性、および金属、特に銅との高密着性を有する硬化膜を提供するものである。
 上記課題を解決するため、本発明は次のものに関する。
 すなわち、ポリベンゾオキサゾール前駆体を含有する感光性樹脂組成物を硬化した硬化膜であって、ポリベンゾオキサゾール前駆体がポリベンゾオキサゾールに閉環している割合が10%以上60%以下であることを特徴とする硬化膜に関する。
 また、前記感光性樹脂組成物を基板上に塗布し、乾燥して感光性樹脂膜を形成する工程または前記感光性樹脂組成物から形成された感光性シートを基材上にラミネートして感光性樹脂膜を形成する工程と、マスクを介して露光する工程と、照射部をアルカリ溶液で溶出または除去する工程と、および現像後の感光性樹脂膜を加熱処理する工程を含む硬化膜の製造方法に関する。
 また、前記硬化膜が配置された層間絶縁膜または半導体保護膜、半導体電子部品、および半導体装置に関する。
 本発明によれば、高耐薬品性、高伸度性、金属、特に銅との高密着性の硬化膜を得ることができる。また、本発明の電子部品または半導体装置は、良好な形状と接着性、耐薬品性に優れたパターンを有し、信頼性の高いものである。
バンプを有する半導体装置のパット部分の拡大断面を示した図である。 バンプを有する半導体装置の詳細な作製方法を示した図である。
 本発明の硬化膜は、感光性樹脂組成物を硬化した硬化膜であって、前記感光性樹脂組成物がポリベンゾオキサゾール前駆体を含有し、前記硬化膜におけるポリベンゾオキサゾール前駆体がポリベンゾオキサゾールに閉環している割合が10%以上60%以下であることを特徴とする硬化膜である。つまり、硬化膜中の特定ポリ(o-ヒドロキシアミド)構造単位が、一部オキサゾール化された樹脂である。硬化膜とは、感光性樹脂組成物を塗布、露光・現像を経て、150℃~320℃の温度を加えて熱架橋反応を進行させた膜のことである。
 本発明の硬化膜は、ポリベンゾオキサゾール前駆体がポリベンゾオキサゾールに閉環している割合が10%以上60%以下であることにより、硬化膜のレジスト剥離液への耐性を向上させ、かつ完全には閉環させないことにより、金属との高密着性も確保できる。ここで閉環率は、ポリベンゾオキサゾール前駆体構造単位がポリベンゾオキサゾールに閉環している割合を示し、FT-IR測定により算出される。硬化膜における閉環率を10%以上、より好ましくは15%以上とすることで、ポリベンゾオキサゾール前駆体に由来する極性基を減少させ、レジスト剥離液への親和性を低下させることができ、耐薬品性を確保できる。また、硬化膜における閉環率を60%以下、より好ましくは55%以下とすることにより、ポリベンゾオキサゾール前駆体に由来する極性基を残存させ、封止樹脂や金属など他の材料との接着性を向上させることができる。さらに、ポリベンゾオキサゾール前駆体に柔軟性構造を導入することにより、分子鎖の絡み合いが増大し、高い機械特性、特に高伸度の硬化膜を得ることができる。
 すなわち、本発明の硬化膜は、ポリベンゾオキサゾール前駆体がポリベンゾオキサゾールに閉環している割合を10%以上60%以下とすることにより、耐薬品性および金属への密着性を両立し、柔軟性構造をポリベンゾオキサゾール前駆体に有することで、高伸度性も具備するものである。
 ポリベンゾオキサゾール前駆体の例としては、ポリ(o‐ヒドロキシアミド)、もしくはポリ(o‐ヒドロキシアミド)のヒドロキシル基を一部有機基で保護したポリマーなどが挙げられるが、これらに限定されない。
 本発明のポリベンゾオキサゾール前駆体は、(A)一般式(1)で表される構造単位を有し、X(COOH)の構造を有するジカルボン酸、またはX(COZ)の構造を有するジカルボン酸誘導体とY(NHの構造を有するジアミンを重縮合させて得ることができるポリアミドである。
Figure JPOXMLDOC01-appb-C000006
(式中、X、Yはそれぞれ独立に2個以上の炭素原子を有する2価~8価の有機基、R、Rはそれぞれ独立に水素、または炭素数1~20の有機基のいずれかを示す。n1は2~500の範囲の整数、p、qはそれぞれ独立に0~4の整数、r、sはそれぞれ独立に0~2の整数を示す。ただし、p、q、r、sについては、値が0の場合には、括弧内の官能基はそれぞれ水素原子を示す。)
 本発明のポリベンゾオキサゾール前駆体は、アルカリ溶液溶解性の点から、p、またはqの値が1以上、4以下である繰り返し単位を全構造単位中に対し50%以上含むことが好ましく、70%以上含むことがより好ましい。
 X(COOH)の構造を有するジカルボン酸、またはX(COZ)の構造を有するジカルボン酸誘導体としては、シクロブタンジカルボン酸、シクロヘキサンジカルボン酸、マロン酸、ジメチルマロン酸、エチルマロン酸、イソプロピルマロン酸、ジ-n-ブチルマロン酸、スクシン酸、テトラフルオロスクシン酸、メチルスクシン酸、2,2-ジメチルスクシン酸、2,3-ジメチルスクシン酸、ジメチルメチルスクシン酸、グルタル酸、ヘキサフルオログルタル酸、2-メチルグルタル酸、3-メチルグルタル酸、2,2-ジメチルグルタル酸、3,3-ジメチルグルタル酸、3-エチル-3-メチルグルタル酸、アジピン酸、オクタフルオロアジピン酸、3-メチルアジピン酸、オクタフルオロアジピン酸、ピメリン酸、2,2,6,6-テトラメチルピメリン酸、スベリン酸、ドデカフルオロスベリン酸、アゼライン酸、セバシン酸、ヘキサデカフルオロセバシン酸、1,9-ノナン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ヘンエイコサン二酸、ドコサン二酸、トリコサン二酸、テトラコサン二酸、ペンタコサン二酸、ヘキサコサン二酸、ヘプタコサン二酸、オクタコサン二酸、ノナコサン二酸、トリアコンタン二酸、ヘントリアコンタン二酸、ドトリアコンタン二酸、ジグリコール酸などの脂肪族ジカルボン酸や、さらに、トリメリット酸、トリメシン酸などのトリカルボン酸、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、また、Xが下記の構造式から選ばれた芳香族基の場合が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000007
(式中、Aは―、―O―、―S―、―SO―、―COO―、―OCO―、―CONH―、―NHCO―、―C(CH―、―C(CF―からなる群から選択される2価の基を有する。)
 X(COZ)の構造を有するジカルボン酸誘導体としては、Zが炭素数1~12の有機基、もしくはハロゲン元素から選ばれた基であり、下記の構造式から選ばれた基であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、B及びCは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、トリフルオロメチル基、ハロゲン基、フェノキシ基、ニトロ基などが挙げられるが、これらに限定されない。)
 Y(NHの構造を有するジアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,5-ジアミノ安息香酸、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、9,10-アントラセンジアミン、2,7-ジアミノフルオレン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3-カルボキシ-4,4’-ジアミノジフェニルエーテル、3-スルホン酸-4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、4-アミノ安息香酸4-アミノフェニルエステル、9,9-ビス(4-アミノフェニル)フルオレン、1,3-ビス(4-アニリノ)テトラメチルジシロキサン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、4,4’-ジアミノ-6,6’-ビス(トリフルオロメチル)-[1,1’-ビフェニル]-3,3’-ジオール、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2’-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]プロパン、2,2’-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]ヘキサフルオロプロパン、2,2’-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]プロパン、2,2’-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]ヘキサフルオロプロパン、ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]スルホン、ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]スルホン、9,9-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]フルオレン、9,9-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]フルオレン、N、N’-ビス(3-アミノベンゾイル)-2,5-ジアミノ-1,4-ジヒドロキシベンゼン、N、N’-ビス(4-アミノベンゾイル)-2,5-ジアミノ-1,4-ジヒドロキシベンゼン、N、N’-ビス(4-アミノベンゾイル)-4,4’-ジアミノ-3,3-ジヒドロキシビフェニル、N、N’-ビス(3-アミノベンゾイル)-3,3’-ジアミノ-4,4-ジヒドロキシビフェニル、N、N’-ビス(4-アミノベンゾイル)-3,3’-ジアミノ-4,4-ジヒドロキシビフェニル、2-(4-アミノフェニル)-5-アミノベンゾオキサゾール、2-(3-アミノフェニル)-5-アミノベンゾオキサゾール、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、2-(3-アミノフェニル)-6-アミノベンゾオキサゾール、1,4-ビス(5-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,4-ビス(6-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,3-ビス(5-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,3-ビス(6-アミノ-2-ベンゾオキサゾリル)ベンゼン、2,6-ビス(4-アミノフェニル)ベンゾビスオキサゾール、2,6-ビス(3-アミノフェニル)ベンゾビスオキサゾール、ビス[(3-アミノフェニル)-5-ベンゾオキサゾリル]、ビス[(4-アミノフェニル)-5-ベンゾオキサゾリル]、ビス[(3-アミノフェニル)-6-ベンゾオキサゾリル]、ビス[(4-アミノフェニル)-6-ベンゾオキサゾリル]などの芳香族ジアミンや、これらの芳香族環の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物、下記に示す構造であるものなどを挙げることができるが、これらに限定されない。共重合させる他のジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本発明に用いる(A)構造単位において、硬化時の脱水閉環により基板ウエハへの応力の増加や官能基の減少による相互作用の低下により、金属(例えば銅など)との密着性の低下を抑制できることから、Yとして一般式(2)で表される構造単位を有するジアミンを含んでいることが好ましい。
Figure JPOXMLDOC01-appb-C000011
(式中、R~Rはそれぞれ独立に炭素数1から6のアルキレン基を表す。R~R14はそれぞれ独立に水素、フッ素または炭素数1から6のアルキル基を表す。但し、x、y、zはそれぞれ独立に0~35の整数を表す。)
 一般式(2)で表される構造単位を有するジアミンとしては例えば、エチレンジアミン、1,3-ジアミノプロパン、2-メチル-1,3-プロパンジアミン、1,4-ジアミノブタン、1,5-ジアミノペンタン、2-メチル-1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176、D-200、D-400、D-2000、THF-100、THF-140、THF-170、RE-600、RE-900、RE-2000、RP-405、RP-409、RP-2005、RP-2009、RT-1000、HE-1000、HT-1100、HT-1700、(以上商品名、HUNTSMAN(株)製)などが挙げられるが、アルキレンオキシド構造を含むことがより柔軟性が増し高伸度化できる点で好ましい。また、―S―、―SO―、―SO―、―NH―、―NCH―、―N(CHCH)―、―N(CHCHCH)―、―N(CH(CH)―、―COO―、―CONH―、―OCONH―、―NHCONH―などの結合を含んでもよい。
 一般式(2)で表される構造単位において、エーテル基のもつ柔軟性により、硬化膜とした際に高伸度性を付与することができる。また、前記エーテル基の存在により、金属と錯形成や水素結合することができ、金属との高い密着性を得ることができる。
 一般式(2)で表されるポリエーテル構造単位の含有量が全ジアミン残基中5~40モル%の範囲内であることが好ましい。得られる硬化膜の高伸度性を確保できる点で、全ジアミン残基中、5モル%以上であることが好ましく、10モル%以上であることがより好ましい。また、一般式(2)で表される構造単位を有するジアミンの含有量は、アルカリ溶液への溶解性を維持する点で、全ジアミン残基中、40モル%以下であることが好ましく、30モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。
 また、本発明に用いる(A)一般式(1)で表されるポリベンゾオキサゾール前駆体(以下、(A)成分と省略する場合がある)において、Yとして一般式(2)で表される構造単位の分子量が、150以上であることにより、硬化膜における加熱硬化に伴う基板ウエハへの応力増加を抑制できる。すなわち、Y成分の柔軟性が応力を緩和することができ、低応力化が実現できる。また、低紫外線吸収性の柔軟性基の導入によりi線透過性が向上し高感度化も同時に実現できる。一般式(2)で表される構造単位の分子量は、150以上が好ましく、600以上がより好ましく、900以上がさらに好ましい。また、分子量が2,000以下であれば、アルカリ溶液への溶解性を維持する点で好ましく、1800以下がより好ましく、1500以下がさらに好ましい。600以上、1,800以下の分子量であることがより好ましく、900以上、1,500以下の分子量であることがさらに好ましい。これにより、より低応力性、感度を高めることができる。
 また、アルキルエーテルの中でも、テトラメチレンエーテル基は耐熱性に優れる。このため、一般式(2)で表されるポリエーテル構造単位がテトラメチレンエーテルグリコール構造単位を有することが好ましい。テトラメチレンエーテルグリコール構造単位を有することで、信頼性試験後の金属密着性を付与できる。一般式(2)で表されるポリエーテル構造単位中に、テトラメチレンエーテルグリコール構造単位が、50モル%以上であることが好ましい。ポリエーテル構造単位が、すべてテトラメチレンエーテルグリコール構造単位でもよい。例として、RT-1000、HE-1000、HT-1100、HT-1700、(以上商品名、HUNTSMAN(株)製)などを用いることができるが、これに限定されない。
 (A)成分の樹脂におけるY成分の分子量は、Y構造を含むジアミンモノマーに関して、例えばLC-MSで測定し、主要シグナルの分子量として求めることができる。
 また、耐熱性を低下させない範囲で、シロキサン構造を有する脂肪族の基を共重合してもよく、基板との接着性を向上させることができる。 具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどを1~15モル%共重合したものなどが挙げられる。共重合を1モル%以上とした場合、シリコンウエハなどの基板との接着性を向上できる点で好ましく、15モル%以下とした場合、アルカリ溶液へ溶解性を維持できる点で好ましい。
 本発明における(A)成分は、重量平均分子量10,000以上50,000以下であることが好ましい。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算で10,000以上とすることにより、硬化後の機械特性を向上させることができる。一方、重量平均分子量を50,000以下とすることにより、アルカリ溶液による現像性を向上させることができる。機械特性を得るため、20,000以上がより好ましい。また、ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、もしくはポリベンゾオキサゾールを2種以上含有する場合、少なくとも1種の重量平均分子量が上記範囲であればよい。
 また、ポジ型感光性樹脂組成物の保存安定性を向上させるため、(A)成分は主鎖末端を末端封止剤で封止することが好ましい。末端封止剤としては、モノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などが挙げられる。また、樹脂の末端を水酸基、カルボキシル基、スルホン酸基、チオール基、ビニル基、エチニル基またはアリル基を有する末端封止剤により封止することで、樹脂のアルカリ溶液に対する溶解速度や得られる硬化膜の機械特性を好ましい範囲に容易に調整することができる。
 末端封止剤の導入割合は、(A)成分の分子量が高くなり、アルカリ溶液への溶解性が低下することを抑制するため、全アミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上である。また、末端封止剤の導入割合は、(A)構造単位を有する樹脂の分子量が低くなることで、得られる硬化膜の機械特性低下を抑えるため、好ましくは60モル%以下、特に好ましくは50モル%以下である。複数の末端封止剤を反応させ、複数の異なる末端基を導入してもよい。
 末端封止剤に用いるモノアミンとしては、M-600,M-1000,M-2005,M-2070(以上商品名、HUNTSMAN(株)製)、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが好ましい。これらを2種以上用いてもよい。
 酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の一方のカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやイミダゾール、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物などが好ましい。これらを2種以上用いてもよい。
 また、本発明に用いる(A)成分に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、構成単位であるアミン成分と酸無水物成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、本発明に使用の末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂成分を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13C-NMRスペクトルで測定することによっても、容易に検出可能である。
 また、本発明に用いる(A)成分は溶媒を用いて重合する。重合溶媒は、原料モノマーであるジカルボン酸類やジカルボン酸類誘導体、テトラカルボン酸二無水物類とジアミン類を溶解できればよく、その種類は特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、N,N-ジメチルイソ酪酸アミド、メトキシ-N,N-ジメチルプロピオンアミドのアミド類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどの環状エステル類、エチレンカーボネート、プロピレンカーボネートなどのカーボネート類、トリエチレングリコールなどのグリコール類、m-クレゾール、p-クレゾールなどのフェノール類、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどを挙げることができる。
 本発明に用いる重合溶媒は、反応後の樹脂を溶解させるため、得られる樹脂100質量部に対して100質量部以上使用することが好ましく、150質量部以上使用することがより好ましい。また、沈殿回収時に樹脂を粉末として得るために1,900質量部以下使用することが好ましく、950質量部以下使用することがより好ましい。
 また、本発明の硬化前の感光性樹脂組成物は、前期(A)成分、(B)光により酸を発生する化合物(以下、(B)成分と省略する場合がある)、(C)熱架橋剤を含有するポジ型感光性樹脂組成物である。このポジ型感光性樹脂組成物はこれらの成分が含まれていればその形状に制限はなく、例えばペースト状であってもシート状であってもよい。
 また、本発明の感光性シートとは、本発明の感光性樹脂組成物を支持体上に塗布し、溶媒を揮発させることが可能な範囲の温度および時間で乾燥し、完全に硬化されていないシート状のもので、アルカリ水溶液に可溶である状態のものを指す。
 支持体は特に限定されないが、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。支持体と感光性樹脂組成物との接合面には、密着性と剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理を施してもよい。また、支持体の厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましい。さらに塗布で得られた感光性組成物の膜表面を保護するために、膜表面上に保護フィルムを有してもよい。これにより、大気中のゴミやチリ等の汚染物質から感光性樹脂組成物の表面を保護することができる。
 感光性樹脂組成物を支持体に塗布する方法としてはスピンナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、0.5μm以上100μm以下であることが好ましい。
 乾燥には、オーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、溶媒を揮発させることが可能な範囲であればよく、感光性樹脂組成物が未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、40℃から150℃の範囲で1分から数十分行うことが好ましい。また、これらの温度を組み合わせて段階的に昇温してもよく、例えば、80℃、90℃で各2分ずつ熱処理してもよい。
 本発明の硬化前のポジ型感光性樹脂組成物は、光により酸を発生する化合物、即ち光酸発生剤である感光剤を含有する。本発明における感光剤は光によって可溶化するポジ型であり、キノンジアジド化合物などが好ましく用いられる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステル結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物、ポリアミノ化合物、ポリヒドロキシポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくてもよいが、平均して官能基全体の40モル%以上がキノンジアジドで置換されていることが好ましい。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)に感光するポジ型の感光性樹脂組成物を得ることができる。
 ポリヒドロキシ化合物は、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(以上、商品名、本州化学工業製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(以上、商品名、旭有機材工業製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業製)、ノボラック樹脂などが挙げられるが、これらに限定されない。
 ポリアミノ化合物は、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィドなどが挙げられるが、これらに限定されない。
 また、ポリヒドロキシポリアミノ化合物は、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジヒドロキシベンジジンなどが挙げられるが、これらに限定されない。
 これらの中でもキノンジアジド化合物が、フェノール化合物および4-ナフトキノンジアジドスルホニル基とのエステルを含むことがより好ましい。これによりi線露光で高い感度と、より高い解像度を得ることができる。
 (B)成分の含有量は、(A)成分100質量部に対して、露光後、十分な感度が得られる、1質量部以上が好ましく、10質量部以上がより好ましい。また、キノンジアジド化合物の含有量は、(A)成分100質量部に対して、膜特性を低下させない、50質量部以下が好ましく、40質量部以下がより好ましい。キノンジアジド化合物の含有量をこの範囲とすることにより、目的の膜特性を得ながらより高感度化を図ることができる。 さらに、オニウム塩やジアリール化合物などの他の光酸発生剤や、増感剤などを必要に応じて添加してもよい。
 本発明の硬化前のポジ型感光性樹脂組成物は、(C)熱架橋剤(以下、(C)成分と省略する場合がある)を含有することが好ましい。具体的には、アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物が好ましい。これらの基を少なくとも2つ有することで、樹脂および同種分子と縮合反応して架橋構造体とすることができる。また、(B)成分と併用することで、感度や硬化膜の機械特性の向上のためにより幅広い設計が可能になる。
 (C)成分の好ましい例としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DMLBisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。これらを2種以上含有してもよい。この中でも、HMOM-TPHAP、MW-100LMを添加した場合、キュア時のリフローが起こりにくくなり、パターンが高矩形になるためより好ましい。
 (C)成分の含有量は、(A)成分100質量部に対して、溶剤に対する耐薬品性を得るために5質量部以上とすることが好ましく、十分な機械特性を得るために40質量部以下とすることが好ましい。この範囲内であれば感度や硬化膜の機械特性の向上のために幅広い設計をより適切に行うことができる。
 また、必要に応じて、キュア後の収縮残膜率を小さくしない範囲でフェノール性水酸基を有する低分子化合物を含有してもよい。これにより、現像時間を短縮することができる。
 これらの化合物としては、例えば、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X(以上、商品名、本州化学工業(株)製)、BIP-PC、BIR-PC、BIR-PTBP、BIR-BIPC-F(以上、商品名、旭有機材工業(株)製)等が挙げられる。これらを2種以上含有してもよい。
 フェノール性水酸基を有する低分子化合物の含有量は、(A)成分100質量部に対して、1~40質量部含有することが好ましい。
 本発明の硬化前の感光性樹脂組成物は、(D)一般式(3)で表される化合物(以下、(D)成分と省略する場合がある)を含有することが好ましい。(D)成分を含有することで、加熱硬化後の膜と金属材料、とりわけ銅との密着性を著しく向上させる。これは、一般式(3)で表される化合物のS原子やN原子が金属表面と効率良く相互作用することに由来しており、さらに金属面と相互作用しやすい立体構造となっていることに起因する。これらの効果により、本発明のポジ型感光性樹脂組成物は、金属材料との接着性に優れた硬化膜を得ることができる。一般式(3)中のR18~R20としては、水素原子、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アルキルシリル基、アルコキシシリル基、アリール基、アリールエーテル基、カルボキシル基、カルボニル基、アリル基、ビニル基、複素環基、それらを組み合わせたものなど挙げられ、さらに置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000012
(一般式(3)中、R15~R17は、酸素原子、硫黄原子、または窒素原子のいずれかを示し、R15~R17のうち少なくとも1つは硫黄原子を示す。lは0または1を示し、m、nは0~2の整数を示す。R18~R20は、各々独立に、水素原子または炭素数1~20の有機基を示す。)
 また、(D)成分の添加量は、(A)成分100質量部に対し、0.1~10質量部が好ましい。添加量を0.1質量部以上とすることで、金属材料に対する密着性の効果を十分に得ることができ、また10質量部以下とすることで、本発明に用いられる感光性樹脂組成物がポジ型の場合には、感光剤との相互作用により、硬化前のポジ型感光性樹脂組成物の感度低下を抑制できるため好ましい。
 本発明に用いる(D)成分のR15~R17は、酸素原子、硫黄原子、または窒素原子のいずれかを示し、R15~R17のうち少なくとも1つは硫黄原子であることが好ましい。一般に、窒素原子を含有する化合物を添加する場合、感光剤と窒素原子含有化合物の相互作用により感度を損なう場合がある。しかし、硫黄原子を含有することにより感光剤との相互作用効果が低下することで、硬化前のポジ型感光性樹脂組成物の感度を低下させることなく密着性向上の効果を得ることができる。また、金属以外の基板への密着性の観点から、トリアルコキシメチル基を有することがより好ましい。
 一般式(3)で表される化合物は、例として以下のものが挙げられるが、下記構造に限らない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 また、本発明における硬化膜中の(B)成分、(C)成分、及び(D)成分は、硬化膜の脱ガス分析(例えば、熱分解GC/MS)を行うことにより、それぞれの成分残基を検出することができる。
 本発明の硬化前のポジ型感光性樹脂組成物は、(E)下記一般式(4)で表される化合物(以下、(E)成分と省略する場合がある)を含有することが好ましい。(E)成分を含有することで、信頼性評価後の硬化膜の機械特性や、金属材料との密着性の低下を抑制することができる。
Figure JPOXMLDOC01-appb-C000018
(一般式(4)中、R21は水素原子または炭素数2以上のアルキル基を示し、R22は炭素数2以上のアルキレン基を示す。R23は、炭素数2以上のアルキレン基、酸素原子、および窒素原子のうち少なくともいずれかを含む1~4価の有機基を示す。kは1~4の整数を示す。)
 (E)成分は、酸化防止剤として作用することで、(A)成分の脂肪族基やフェノール性水酸基の酸化劣化を抑制する。また、金属材料への防錆作用により、金属材料の酸化を抑制することができる。
 本発明で用いる(E)成分のR21は、水素原子または炭素数2以上のアルキル基を示し、R22は炭素数2以上のアルキレン基を示す。R23は、炭素数2以上のアルキレン基、酸素原子、および窒素原子のうち少なくともいずれかを含む1~4価の有機基を示す。kは1~4の整数を示す。硬化膜中の(A)成分と金属材料の両方に相互作用することで、硬化膜と金属材料との密着性を向上させることができる。硬化膜中の(A)成分と金属材料の両方に対して、より効率的に相互作用するために、kは2~4の整数がより好ましい。R23としては、アルキル基、シクロアルキル機、アリール基、アリールエーテル基、カルボキシル基、カルボニル基、アリル基、ビニル基、複素環基、-O-、-NH-、-NHNH-、またそれらを組み合わせたものなど挙げられ、さらに置換基を有していてもよい。この中でも、現像液への溶解性や金属密着性の点から、アルキルエーテル、-NH-を含有することが好ましく、(A)成分との相互作用と金属錯形成による金属密着性の点から-NH-がより好ましい。
 また、(E)成分の添加量は、(A)成分100質量部に対し、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。添加量を0.1質量部以上とすることで、脂肪族基やフェノール性水酸基の酸化劣化を抑制でき、また、金属材料への防錆作用により、金属材料の酸化を抑制することができるため、好ましい。また、添加量を10質量部以下とすることで、感光剤との相互作用により、硬化前のポジ型感光性樹脂組成物の感度低下を抑制できるため好ましい。
 (E)成分は、例として以下のものが挙げられるが、下記構造に限らない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 本発明の硬化前のポジ型感光性樹脂組成物は、(F)一般式(5)で表される構造単位を有する熱架橋剤(以下、(F)成分と省略する場合がある)を含有することが好ましい。(F)成分を含有することで、更なる機械特性向上と低応力化が可能である。
Figure JPOXMLDOC01-appb-C000027
(一般式(5)中、R25およびR26は、各々独立に、水素原子またはメチル基を示す。R24は炭素数2以上のアルキレン基を有する2価の有機基であり、直鎖状、分岐状、および環状のいずれでも良い。)
 本発明で用いる(F)成分のR25およびR26は、各々独立に、水素原子またはメチル基を示す。また、R24は炭素数2以上のアルキレン基を有する2価の有機基であり、直鎖状、分岐状、および環状のいずれでもよい。R24は、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アルキルシリル基、アルコキシシリル基、アリール基、アリールエーテル基、カルボキシル基、カルボニル基、アリル基、ビニル基、複素環基、またそれらを組み合わせたものなどが挙げられ、さらに置換基を有していてもよい。
 本発明で用いる(F)成分は、柔軟なアルキレン基と剛直な芳香族基を有するため、耐熱性を有し、かつ硬化膜の機械特性の向上と低応力化が可能である。架橋基としては、アクリル基やメチロール基、アルコキシメチル基、エポキシ基が挙げられるがこれらに限定されない。この中でも、(A)成分のフェノール性水酸基と反応し、硬化膜の耐熱性を向上できる点と、脱水による膜収縮が起こりにくく、発生する基板への応力を低減できる点から、エポキシ基が好ましい。
 本発明に用いる(F)成分は、例えば以下のものが挙げられるが、下記構造に限らない。
Figure JPOXMLDOC01-appb-C000028
(式中nは1~5の整数、nは1~20の整数である。)
 本発明に用いる(F)成分は、上記構造の中でも、耐熱性と機械特性を両立する点から、nは1~2、nは3~7であることが好ましい。
 また、(F)成分の含有量は、(A)成分100質量部に対し、2~35質量部が好ましく、5~25質量部がより好ましい。添加量を2以上にすることにより、機械特性の向上と低応力化の効果が得られ、また添加量を35質量部以下にすることにより、硬化前のポジ型感光性樹脂組成物の感度低下を抑制できる。
 また、本発明で用いる(F)成分100質量部に対して、本発明で用いる(E)成分の含有量が10質量部~50質量部の範囲であることが好ましい。この範囲内であれば、信頼性評価後のアルキレン基の劣化を抑制できるため、信頼性評価後の硬化膜の機械特性低下を抑制できる。
 本発明の硬化前のポジ型感光性樹脂組成物は、溶剤を含有することが好ましい。溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、N,N‐ジメチルイソ酪酸アミド、メトキシ-N,N-ジメチルプロピオンアミドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートなどのエステル類、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メチル-3-メトキシブタノールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。これらを2種以上含有してもよい。
 溶剤の含有量は、(A)成分100質量部に対して、組成物を溶解させるため、100質量部以上含有することが好ましく、膜厚1μm以上の塗布膜を形成させるため、1,500質量部以下含有することが好ましい。
 本発明のポジ型感光性樹脂組成物を硬化した硬化膜は、必要に応じて基板との濡れ性を向上させる目的で界面活性剤、乳酸エチルやプロピレングリコールモノメチルエーテルアセテートなどのエステル類、エタノールなどのアルコール類、シクロヘキサノン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエ-テル類を含有してもよい。
 また、基板との接着性を高めるために、保存安定性を損なわない範囲で本発明のポジ型感光性樹脂組成物を硬化した硬化膜にシリコン成分として、トリメトキシアミノプロピルシラン、トリメトキシエポキシシラン、トリメトキシビニルシラン、トリメトキシチオールプロピルシランなどのシランカップリング剤を含有してもよい。好ましい含有量は、(A)構造単位を有する樹脂100質量部に対して0.01~5質量部である。
 本発明のポジ型感光性樹脂組成物を硬化した硬化膜は、(A)成分以外に他のアルカリ可溶性の樹脂を含有してもよい。具体的には、アルカリ可溶性のポリイミド、ポリベンゾオキサゾール、アクリル酸を共重合したアクリルポリマー、ノボラック樹脂、シロキサン樹脂などが挙げられる。このような樹脂は、テトラメチルアンモニウムヒドロキシド、コリン、トリエチルアミン、ジメチルアミノピリジン、モノエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどのアルカリの溶液に溶解するものである。これらのアルカリ可溶性樹脂を含有することにより、硬化膜の密着性や優れた感度を保ちながら、各アルカリ可溶性樹脂の特性を付与することができる。
 本発明の硬化前のポジ型感光性樹脂組成物の粘度は、2~5,000mPa・sが好ましい。粘度が2mPa・s以上となるように固形分濃度を調整することにより、所望の膜厚を得ることが容易になる。一方、粘度が5,000mPa・s以下であれば、均一性の高い塗布膜を得ることが容易になる。このような粘度を有するポジ型感光性樹脂組成物は、例えば固形分濃度を5~60質量%にすることで容易に得ることができる。
 また、本発明に用いる感光性樹脂組成物を硬化した硬化膜の(A)成分は、一般式(1)で表される構造単位を含んでいれば、ポリイミドなどの他の構造と共重合させてもよい。共重合させるモノマーとしては、酸二無水物として、例えば、ピロメリット酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、p-フェニレンビス(トリメリット酸モノエステル)酸二無水物、p-ビフェニレンビス(トリメリット酸モノエステル)酸二無水物、エチレンビス(トリメリット酸モノエステル)酸二無水物、ビスフェノールAビス(トリメリット酸モノエステル)酸二無水物、ブタンテトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.1.]ヘプタンテトラカルボン酸二無水物、ビシクロ[3.3.1.]テトラカルボン酸二無水物、ビシクロ[3.1.1.]ヘプト-2-エンテトラカルボン酸二無水物、ビシクロ[2.2.2.]オクタンテトラカルボン酸二無水物、アダマタンテトラカルボン酸、4,4’-(フルオレニル)ジフタル酸無水物、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物などが挙げらる。
 ジアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,5-ジアミノ安息香酸、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、9,10-アントラセンジアミン、2,7-ジアミノフルオレン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3-カルボキシ-4,4’-ジアミノジフェニルエーテル、3-スルホン酸-4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、4-アミノ安息香酸4-アミノフェニルエステル、9,9-ビス(4-アミノフェニル)フルオレン、1,3-ビス(4-アニリノ)テトラメチルジシロキサン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、4,4’-ジアミノ-6,6’-ビス(トリフルオロメチル)-[1,1’-ビフェニル]-3,3’-ジオール、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2’-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]プロパン、2,2’-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]ヘキサフルオロプロパン、2,2’-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]プロパン、2,2’-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]ヘキサフルオロプロパン、ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]スルホン、ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]スルホン、9,9-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]フルオレン、9,9-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]フルオレン、N、N’-ビス(3-アミノベンゾイル)-2,5-ジアミノ-1,4-ジヒドロキシベンゼン、N、N’-ビス(4-アミノベンゾイル)-2,5-ジアミノ-1,4-ジヒドロキシベンゼン、N、N’-ビス(4-アミノベンゾイル)-4,4’-ジアミノ-3,3-ジヒドロキシビフェニル、N、N’-ビス(3-アミノベンゾイル)-3,3’-ジアミノ-4,4-ジヒドロキシビフェニル、N、N’-ビス(4-アミノベンゾイル)-3,3’-ジアミノ-4,4-ジヒドロキシビフェニル、2-(4-アミノフェニル)-5-アミノベンゾオキサゾール、2-(3-アミノフェニル)-5-アミノベンゾオキサゾール、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、2-(3-アミノフェニル)-6-アミノベンゾオキサゾール、1,4-ビス(5-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,4-ビス(6-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,3-ビス(5-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,3-ビス(6-アミノ-2-ベンゾオキサゾリル)ベンゼン、2,6-ビス(4-アミノフェニル)ベンゾビスオキサゾール、2,6-ビス(3-アミノフェニル)ベンゾビスオキサゾール、ビス[(3-アミノフェニル)-5-ベンゾオキサゾリル]、ビス[(4-アミノフェニル)-5-ベンゾオキサゾリル]、ビス[(3-アミノフェニル)-6-ベンゾオキサゾリル]、ビス[(4-アミノフェニル)-6-ベンゾオキサゾリル]などが挙げられるが、これに限定されない。これらを2種以上用いてもよい。
 ポリベンゾオキサゾール前駆体は、閉環率が10%以上60%以下であることが好ましい。閉環率をこの範囲内とすることで、得られる硬化膜の金属への密着性を損なわず、レジスト剥離液に対する高耐薬品性を付与できるとともに、ポリベンゾオキサゾール前駆体アミド基の分子鎖間に対する立体障害により、分子鎖間の分子間相互作用が弱められ、得られる硬化膜が高伸度となる点で好ましい。
 次に、本発明の硬化前の感光性樹脂組成物を用いて耐熱性樹脂パターンを形成する方法について説明する。
 本発明の硬化前の感光性樹脂組成物を基板に塗布する。基板としては金属銅めっき基板、シリコンウエハ、また材質としてはセラミックス類、ガリウムヒ素、などが用いられるが、これらに限定されない。塗布方法としてはスピナーを用いた回転塗布、スプレー塗布、ロールコーティングなどの方法がある。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1~150μmになるように塗布される。
 基板と感光性樹脂組成物との接着性を高めるために、基板を前述のシランカップリング剤で前処理することもできる。例えば、シランカップリング剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20質量%溶解させた溶液を、スピンコート、浸漬、スプレー塗布、蒸気処理などにより表面処理をする。場合によっては、その後50℃~300℃までの熱処理を行い、基板とシランカップリング剤との反応を進行させる。
 次に感光性樹脂組成物を塗布した基板を乾燥して、感光性樹脂組成物被膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃~150℃の範囲で1分間~数時間行うことが好ましい。
 次に、この感光性樹脂組成物被膜上に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。
 樹脂のパターンを形成するには、露光後、現像液を用いて露光部を除去する。現像液としては、テトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の溶液が好ましい。また場合によっては、これらのアルカリ溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像後は水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 現像後、150℃~320℃の温度を加えて熱架橋反応を進行させ、耐熱性および耐薬品性を向上させる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する。一例としては、130℃、200℃で各30分ずつ熱処理する。本発明においてのキュア条件の下限としては170℃以上が好ましいが、十分に硬化を進行させるために180℃以上であることがより好ましい。また、キュア条件の上限としては、280℃以下が好ましいが、本発明は特に低温硬化性において優れた硬化膜を提供するものであるため、250℃以下がより好ましい。
 本発明の感光性樹脂組成物により形成した耐熱性樹脂被膜は、半導体装置や多層配線板等の電子部品に使用することができる。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、層間絶縁膜、高密度実装用多層配線の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられるが、これに制限されず、様々な構造をとることができる。
 次に、本発明の感光性樹脂組成物を硬化した硬化膜を用いた、バンプを有する半導体装置への応用例について図面を用いて説明する。図1は、本発明のバンプを有する半導体装置のパット部分の拡大断面図である。図1に示すように、シリコンウエハ1には入出力用のアルミニウム(以下、Alと略す)パッド2上にパッシベーション膜3が形成され、そのパッシベーション膜3にビアホールが形成されている。この上に本発明の感光性樹脂組成物を硬化した硬化膜によるパターンとして絶縁膜4が形成され、更に、金属(Cr、Ti等)膜5がAlパッド2と接続されるように形成され、電解めっき等で金属配線(Al、Cu等)6が形成されている。金属膜5はハンダバンプ10の周辺をエッチングして、各パッド間を絶縁する。絶縁されたパッドにはバリアメタル8とハンダバンプ10が形成されている。絶縁膜7の感光性樹脂組成物を硬化した硬化膜はスクライブライン9において、厚膜加工を行うことができる。感光性樹脂組成物を硬化した硬化膜に柔軟成分を導入した場合は、ウエハの反りが小さいため、露光やウエハの運搬を高精度に行うことができる。また、本発明の樹脂は機械特性にも優れるため、実装時も封止樹脂からの応力を緩和することできるため、low-k層のダメージを防ぎ、高信頼性の半導体装置を提供できる。
 次に、半導体装置の詳細な作製方法について図2に記す。図2の2aに示すように、シリコンウエハ1に入出力用のAlパッド2、さらにパッシベーション膜3を形成させ、本発明の感光性樹脂組成物硬化した硬化膜によるパターンとして絶縁膜4を形成させる。続いて、図2の2bに示すように、金属(Cr、Ti等)膜5をAlパッド2と接続されるように形成させ、図2の2cに示すように、金属配線6をメッキ法で成膜する。次に、図2の2d’に示すように、本発明の硬化前の感光性樹脂組成物を塗布し、フォトリソ工程を経て図2の2dに示すようなパターンとして絶縁膜7を形成する。この際に、絶縁膜7の硬化前の感光性樹脂組成物はスクライブライン9において、厚膜加工を行うことになる。3層以上の多層配線構造を形成する場合は、上記の工程を繰り返して行い各層を形成することができる。
 次いで、図2の2eおよび2fに示すように、バリアメタル8、ハンダバンプ10を形成する。そして、最後のスクライブライン9に沿ってダイシングしてチップ毎に切り分ける。絶縁膜7がスクライブライン9においてパターンが形成されていない場合または残渣が残っていた場合は、ダイシングの際クラック等が発生しチップの信頼性評価に影響する。このため、本発明のように、厚膜加工に優れたパターン加工を提供できることは、半導体装置の高信頼性を得るために非常に好ましい。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。まず、各実施例および比較例における評価方法について説明する。評価には、あらかじめ1μmのポリテトラフルオロエチレン製のフィルター(住友電気工業(株)製)で濾過した硬化前の感光性樹脂組成物(以下ワニスと呼ぶ)を用いた。
 (1)分子量測定
 (A)構造単位を有する樹脂の重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)装置Waters2690-996(日本ウォーターズ(株)製)を用いて確認した。展開溶媒をN-メチル-2-ピロリドン(以降NMPと呼ぶ)として測定し、ポリスチレン換算で重量平均分子量(Mw)及び分散度(PDI=Mw/Mn)を計算した。
 (2)耐薬品性の評価
 ワニスを、シリコンウエハ上に120℃で3分間プリベークを行った後の膜厚が10μmとなるように塗布現像装置ACT-8を用いてスピンコート法で塗布し、プリベークした後、イナートオーブンCLH-21CD-Sを用いて、窒素気流下において酸素濃度20ppm以下で毎分3.5℃の昇温速度で220~320℃まで昇温し、220~320℃で1時間加熱処理を行なった。温度が50℃以下になったところでシリコンウエハを取り出し、その硬化膜を有機薬液(ジメチルスルホキシド:25%水酸化テトラメチルアンモニウム水溶液=92:2)に65℃で60分間浸漬させ、パターンの剥がれや溶出の有無を観察した。その結果が、パターンの剥がれや溶出なしの場合は良好として2、パターンの剥がれや溶出が観測された場合は不良として1、と評価した。
 (3)高伸度性(破断点伸度)評価
 ワニスを8インチのシリコンウエハ上に、120℃で3分間のプリベーク後の膜厚が11μmとなるように塗布現像装置ACT-8を用いてスピンコート法で塗布およびプリベークした後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で220℃まで昇温し、220℃で1時間加熱処理を行なった。温度が50℃以下になったところでシリコンウエハを取り出し、45質量%のフッ化水素酸に5分間浸漬することで、ウエハより樹脂組成物の硬化膜を剥がした。この膜を幅1cm、長さ9cmの短冊状に切断し、テンシロンRTM-100((株)オリエンテック製)を用いて、室温23.0℃、湿度45.0%RH下で引張速度50mm/分で引っ張り、破断点伸度の測定を行なった。測定は1検体につき10枚の短冊について行ない、結果から上位5点の平均値を求めた。破断点伸度の値が60%以上のものを極めて良好として4、20%以上60%未満のものを良好として3、10%以上20%未満のものを可として2、10%未満のものを不良として1、と評価した。
 (4)密着性評価
 次の方法にて金属銅との密着性評価を行なった。
まず、厚さ約3μmの金属銅めっき基板上にワニスをスピンナ(ミカサ(株)製)を用いてスピンコート法で塗布し、次いでホットプレート(大日本スクリーン製造(株)製D-SPIN)を用いて120℃のホットプレートで3分ベークし、最終的に厚さ8μmのプリベーク膜を作製した。この膜をイナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で220~320℃まで昇温し、220~320℃で1時間加熱処理を行なった。温度が50℃以下になったところで基板を取り出し、基板を2分割し、それぞれの基板についてキュア後の膜に片刃を使用して2mm間隔で10行10列の碁盤目状の切り込みをいれた。このうち一方のサンプル基板を用い、“セロテープ”(登録商標)による引き剥がしによって100マスのうち何マス剥がれたかで金属材料/樹脂硬化膜間の接着特性の評価を行なった。また、もう一方のサンプル基板については、プレッシャークッカー試験(PCT)装置(タバイエスペエック(株)製HAST CHAMBER EHS-211MD)を用いて121℃、2気圧の飽和条件で400時間PCT処理を行なった後、上記の引き剥がしテストを行なった。いずれの基板についても引き剥がしテストで剥がれ個数が0を極めて良好として4、1以上20未満を良好として3、20以上50未満を可として2、50以上を不良として1とした。
 (5)硬化膜の閉環率の算出
 得られた硬化膜(A)を300~350℃で加熱した硬化膜(B)を得た。これらの硬化膜(A)、および硬化膜(B)の赤外吸収スペクトルを測定し、1050cm-1付近のC-O伸縮振動に起因するピークの吸光度を求めた。赤外吸収スペクトルの測定は、測定装置として「FT-720」(商品名、株式会社堀場製作所製)を使用した。硬化膜(B)の閉環率を100%として、次の式から硬化膜(A)の閉環率を算出した。ここでいう閉環率とは、ポリベンゾオキサゾール前駆体構造単位の閉環率を示す。本実施例では、ワニスより硬化膜を作製し、閉環率の算出を行った。本実施例における閉環率の算出は、ワニスをシリコンウエハ上にスピンコートして、120℃で3分間乾燥し、膜厚5μmの塗布膜を得た。さらにこの塗布膜を220℃で10分、または320℃で10分加熱して硬化膜(220℃で加熱した硬化膜(A)、320℃で加熱した硬化膜(B))を得た。これらの硬化膜(A)、および硬化膜(B)を用いて次の式から220℃での硬化膜(A)の閉環率を算出した。硬化膜(A)の加熱温度が硬化膜の硬化温度である。硬化膜(B)の加熱温度320℃は、硬化膜中の(A)成分が完全に硬化する(硬化率100%となる)温度である。硬化膜の熱分解温度は熱重量減少測定(TGA)により分析できる。
Figure JPOXMLDOC01-appb-M000029
 (6)信頼性評価
 次の方法にて信頼性評価を行なった。
 (6)-1.高温保存(High Temperature Strage、HTS)後の機械特性評価
 ワニスを8インチのシリコンウエハ上に、120℃で3分間のプリベーク後の膜厚が11μmとなるように塗布現像装置ACT-8を用いてスピンコート法で塗布およびプリベークした後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で220℃まで昇温し、220℃で1時間加熱処理を行なった。温度が50℃以下になったところでウエハを取り出し、次に、高温保存試験機を用いて、150℃で500時間処理を行った。ウエハを取り出し、45質量%のフッ化水素酸に5分間浸漬することで、ウエハから樹脂組成物の膜を剥がした。この膜を幅1cm、長さ9cmの短冊状に切断し、テンシロンRTM-100((株)オリエンテック製)を用いて、室温23.0℃、湿度45.0%RH下で引張速度5mm/分で引っ張り、破断点伸度の測定を行なった。測定は1検体につき10枚の短冊について行ない、結果から上位5点の平均値を求めた。破断点伸度の値が60%以上のものをきわめて良好として4、20%以上60%未満のものを良好として3、10%以上20%未満のものを可2、10%未満のものを不良1とした。
 (6)-2.高温保存(HTS)後の密着性評価
 厚さ約3μmの金属銅めっき基板上にワニスをスピンナ(ミカサ(株)製)を用いてスピンコート法で塗布し、次いでホットプレート(大日本スクリーン製造(株)製D-SPIN)を用いて120℃のホットプレートで3分ベークし、最終的に厚さ8μmのプリベーク膜を作製した。この膜をイナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で220℃まで昇温し、220℃で1時間加熱処理を行なった。温度が50℃以下になったところで基板を取り出し、キュア後の膜に片刃を使用して2mm間隔で10行10列の碁盤目状の切り込みをいれた。このサンプル基板について、高温保存試験機を用いて150℃で500時間加熱保存処理を行なった後、上記の引き剥がしテストを行なった。いずれの基板についても引き剥がしテストで剥がれ個数が0を極めて良好として4、1以上20未満を良好として3、20以上50未満を可として2、50以上を不良として1とした。
 合成例1 アルカリ溶液可溶性ポリアミド樹脂(A-1)の合成
 乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以降BAHFと呼ぶ)(27.47g、0.075モル)をNMP257gに溶解させた。ここに、1,1’-(4,4’-オキシベンゾイル)ジイミダゾール(以降PBOMと呼ぶ)(17.20g、0.048モル)をNMP20gとともに加えて、85℃で3時間反応させた。続いて、プロピレンオキシド及びテトラメチレンエーテルグリコール構造を含むRT-1000(20.00g、0.020モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、PBOM(14.33g、0.044モル)をNMP50gとともに加えて、85℃で1時間反応させた。さらに、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)をNMP10gとともに加えて、85℃で30分反応させた。反応終了後、室温まで冷却し、酢酸(52.82g、0.88モル)をNMP87gとともに加えて、室温で1時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、アルカリ可溶性ポリアミド樹脂(A-1)の粉末を得た。上記の方法で評価した結果、樹脂(A-1)の重量平均分子量は40,000、PDIは2.2であった。
 合成例2 アルカリ可溶性ポリアミド樹脂(A-2)の合成
 乾燥窒素気流下、BAHF(29.30g、0.080モル)、プロピレンオキシド及びテトラメチレンエーテルグリコール構造を含むRT-1000(20.00g、0.020モル)をNMP205gに溶解させた。ここに、PBOM(28.67g、0.080モル)をNMP20gとともに加えて、85℃で3時間反応させた。続いて、2,2’-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]ヘキサフルオロプロパン(以降HFHAと呼ぶ)(0.60g、0.0010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)をNMP20gとともに加えて、85℃で30分反応させた。続いて、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(6.57g、0.040モル)をNMP10gとともに加えて、85℃で30分反応させた。さらに、4,4’-オキシジフタル酸無水物(以降ODPAと呼ぶ)(2.17g、0.0070モル)をNMP30gとともに加えて、85℃で1時間反応させた。反応終了後、室温まで冷却し、酢酸(48.02g、0.80モル)をNMP67gとともに加えて、室温で1時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、アルカリ可溶性ポリアミド樹脂(A-2)の粉末を得た。上記の方法で評価した結果、樹脂(A-2)の重量平均分子量は31,600、PDIは1.9であった。
 合成例3 アルカリ可溶性ポリアミド樹脂(A-3)の合成
 前記合成例2に従って、BAHF(32.96g、0.090モル)、PBOM(29.38g、0.082モル)、RT-1000(10.00g、0.010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.91g、0.036モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(49.22g、0.82モル)、NMP360gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-3)の粉末を得た。上記の方法で評価した結果、樹脂(A-3)の重量平均分子量は30,200、PDIは2.2であった。
 合成例4 アルカリ可溶性ポリアミド樹脂(A-4)の合成
 前記合成例1に従って、BAHF(27.47g、0.075モル)、PBOM(30.10g、0.084モル)、プロピレンオキシド及びエチレングリコール構造を含むED-900(9.00g、0.020モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.25g、0.032モル)、酢酸(48.02g、0.80モル)、NMP409gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-4)の粉末を得た。上記の方法で評価した結果、樹脂(A-4)の重量平均分子量は34,500、PDIは2.1であった。
 合成例5 アルカリ可溶性ポリアミド樹脂(A-5)の合成
 前記合成例2に従って、BAHF(29.30g、0.080モル)、PBOM(30.10g、0.084モル)、ED-900(18.00g、0.020モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.25g、0.032モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(50.42g、0.84モル)、NMP340gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-5)の粉末を得た。上記の方法で評価した結果、樹脂(A-5)の重量平均分子量は33,200、PDIは2.0であった。
 合成例6 アルカリ可溶性ポリアミド樹脂(A-6)の合成
 前記合成例2に従って、BAHF(32.96g、0.090モル)、PBOM(30.10g、0.084モル)、ED-900(9.00g、0.010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.25g、0.032モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(50.42g、0.84モル)、NMP360gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-6)の粉末を得た。上記の方法で評価した結果、樹脂(A-6)の重量平均分子量は32,200、PDIは2.2であった。
 合成例7 アルカリ可溶性ポリアミド樹脂(A-7)の合成
 前記合成例1に従って、BAHF(34.79g、0.095モル)、PBOM(31.53g、0.088モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g、0.0050モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(3.94g、0.024モル)、酢酸(52.82g、0.50モル)、NMP352gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-7)の粉末を得た。上記の方法で評価した結果、樹脂(A-7)の重量平均分子量は35,800、PDIは2.5であった。
 合成例8 ポリ(o-ヒドロキシアミド)(A-8)の合成
 乾燥窒素気流下、N-メチルピロリドン100gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(32.96g、0.090モル)、m-アミノフェノール(2.18g、0.020モル)を添加し、室温で攪拌溶解した後、反応溶液の温度を-10~0℃に保ちながら、ドデカン二酸ジクロリド(20.04g、0.075モル)を10分間で滴下した後、4,4’-ジフェニルエーテルジカルボン酸クロリド(7.38g、0.025モル)を加え、室温で3時間攪拌を続けた。反応溶液を3リットルの水に投入し、析出物を回収、純水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリ(o-ヒドロキシアミド)(A-8)の粉末を得た。上記の方法で評価した結果、樹脂(A-8)の重量平均分子量は31,000、PDIは2.3であった。
 合成例9 アルカリ可溶性ポリアミド樹脂(A-9)の合成
 前記合成例2に従って、BAHF(32.96g、0.090モル)、PBOM(29.38g、0.082モル)、HT-1100(11.00g、0.010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.91g、0.036モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(49.22g、0.50モル)、NMP360gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-9)の粉末を得た。上記の方法で評価した結果、樹脂(A-9)の重量平均分子量は31,200、PDIは2.3であった。
 合成例10 アルカリ可溶性ポリアミド樹脂(A-10)の合成
 前記合成例2に従って、BAHF(32.96g、0.090モル)、PBOM(29.38g、0.082モル)、HT-1700(17.00g、0.010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.91g、0.036モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(49.22g、0.50モル)、NMP360gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-10)の粉末を得た。上記の方法で評価した結果、樹脂(A-10)の重量平均分子量は32,100、PDIは2.4であった。
 合成例11 既閉環ポリイミド樹脂(A-11)の合成
 乾燥窒素気流下、BAHF(11.9g、0.0325モル)、RT-1000(15.0g、0.015モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(0.62g、0.0025モル)、5-ノルボルネン-2,3-ジカルボン酸(0.82g、0.005モル)、をNMP125gに溶解させた。ここに4,4’-オキシジフタル酸無水物(13.95g、0.045モル)をNMP25gとともに加えて、60℃で1時間攪拌し、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し既閉環ポリイミド樹脂(A-11)の粉末を得た。得られた樹脂のイミド化率は97%であった。上記の方法で評価した結果、樹脂(A-11)の重量平均分子量は38,800、PDIは.1.9であった。
 合成例12 アルカリ可溶性ポリアミド樹脂(A-12)の合成
 窒素気流下、250mlの三頸フラスコ中にイミダゾール27.2g(0.4モル)を入れ、NMP100gに室温で攪拌溶解させた。これを-10~0℃に保ちながら、ドデカン二酸ジクロリド(26.72g、0.1モル)を100gのNMPに溶解させた液体を、反応溶液の温度が0℃を越えないようにして1時間かけて滴下した。滴下後、室温にて反応溶液をさらに3時間攪拌し、1Lの純水に投入して沈殿物を濾過した。濾過した沈殿物を純水で数回洗浄し、50℃の真空オーブンで100時間乾燥して、下記式で示される酸Aを得た。
続いて、前記合成例2に従って、BAHF(32.96g、0.090モル)、PBOM(7.17g、0.020モル)、酸A(20.49g、0.062モル)、RT-1000(10.00g、0.010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.91g、0.036モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(49.22g、0.82モル)、NMP360gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-12)の粉末を得た。上記の方法で評価した結果、樹脂(A-12)の重量平均分子量は31,200、PDIは2.3であった。
Figure JPOXMLDOC01-appb-C000030
 合成例13 アルカリ可溶性ポリアミド樹脂(A-13)の合成
前記合成例12に従って、BAHF(32.96g、0.090モル)、PBOM(14.69g、0.041モル)、酸A(13.55g、0.041モル)、RT-1000(10.00g、0.010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.91g、0.036モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(49.22g、0.82モル)、NMP360gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-13)の粉末を得た。上記の方法で評価した結果、樹脂(A-13)の重量平均分子量は30,800、PDIは2.3であった。
 合成例14 アルカリ可溶性ポリアミド樹脂(A-14)の合成
 窒素気流下、250mlの三頸フラスコ中にイミダゾール27.2g(0.4モル)を入れ、NMP100gに室温で攪拌溶解させた。これを-10~0℃に保ちながら、セバシン酸ジクロリド(23.91g、0.1モル)を100gのNMPに溶解させた液体を、反応溶液の温度が0℃を越えないようにして1時間かけて滴下した。滴下後、室温にて反応溶液をさらに3時間攪拌し、1Lの純水に投入して沈殿物を濾過した。濾過した沈殿物を純水で数回洗浄し、50℃の真空オーブンで100時間乾燥して、下記式で示される酸Bを得た。
続いて、前記合成例2に従って、BAHF(32.96g、0.090モル)、PBOM(7.17g、0.020モル)、酸B(18.75g、0.062モル)、RT-1000(10.00g、0.010モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.49g、0.0060モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(5.91g、0.036モル)、HFHA(0.60g、0.0010モル)、ODPA(2.17g、0.0070モル)、酢酸(49.22g、0.82モル)、NMP360gを用いて同様に行い、アルカリ可溶性ポリアミド樹脂(A-14)の粉末を得た。上記の方法で評価した結果、樹脂(A-14)の重量平均分子量は29,200、PDIは2.3であった。
Figure JPOXMLDOC01-appb-C000031
 [実施例1~19、比較例1~10]
 得られた樹脂(A-1~A-10、A-12)10gに(B)成分として下記式で表される光酸発生剤を2.0g、(C)成分としてHMOM-TPHAP(C1)を1.0gとMW-100LM(C2)を0.5g加え、溶剤としてγ-ブチロラクトンを20g加えてワニスを作製し、これらの特性を上記評価方法により測定した。得られた結果を表1に示す。
 [実施例20~33、比較例11~13]
 得られた樹脂(A-3、A-8、A-10、A-11~A-14)10gに(B)成分として下記式で表される光酸発生剤を2.0g、(C)成分としてHMOM-TPHAP(C1)を0.5gとMW-100LM(C2)を0.5g加え、溶剤としてγ-ブチロラクトンを20g加えてワニスを作製し、さらに下記式で表される(D-1)、(D-2)、(E-1)、(E-2)、(F)をそれぞれ表2の質量部で加えてワニスを作製し、これらの特性を上記評価方法により測定した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
(C)熱架橋剤の()内は(A)成分の樹脂100質量部に対する添加量(質量部)を示した。
Figure JPOXMLDOC01-appb-T000038
1 シリコンウエハ
2 Alパッド
3 パッシベーション膜
4 絶縁膜
5 金属(Cr、Ti等)膜
6 金属配線(Al、Cu等)
7 絶縁膜
8 バリアメタル
9 スクライブライン
10 ハンダバンプ

Claims (17)

  1. ポリベンゾオキサゾール前駆体を含有する感光性樹脂組成物を硬化した硬化膜であって、ポリベンゾオキサゾール前駆体がポリベンゾオキサゾールに閉環している割合が10%以上60%以下であることを特徴とする硬化膜。
  2. ポリベンゾオキサゾール前駆体が、(A)一般式(1)で表される構造単位を有する請求項1に記載の硬化膜。
    Figure JPOXMLDOC01-appb-C000001
    (式中、X、Yはそれぞれ独立に2個以上の炭素原子を有する2価~8価の有機基を示す。R、Rはそれぞれ独立に水素、または炭素数1~20の有機基のいずれかを示す。nは2~500の整数、p、qはそれぞれ独立に0~4の整数、r、sはそれぞれ独立に0~2の整数を示す。ただし、p、q、r、sが0の時、括弧内の官能基はそれぞれ水素原子を示す。)
  3. ポリベンゾオキサゾール前駆体が、一般式(2)で表されるポリエーテル構造単位を有する請求項1または2に記載の硬化膜。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rはそれぞれ独立に炭素数1~6のアルキレン基を表す。R~R14はそれぞれ独立に水素、フッ素、または炭素数1~6のアルキル基を表す。但し、括弧内に表される構造はそれぞれ異なる。x、y、zはそれぞれ独立に0~35の整数を表す。)
  4. 前記一般式(2)で表されるポリエーテル構造単位の含有量が全ジアミン残基中5~40モル%である請求項3に記載の硬化膜。
  5. 前記一般式(2)で表されるポリエーテル構造単位の分子量が150以上2,000以下である、請求項3または4に記載の硬化膜。
  6. 前記一般式(2)で表されるポリエーテル構造単位がテトラメチレンエーテルグリコール構造単位を有する請求項3~5のいずれかに記載の硬化膜。
  7. 前記感光性樹脂組成物が、さらに、(B)光により酸を発生する化合物、および(C)熱架橋剤を含有する請求項1~6のいずれかに記載の硬化膜。
  8. 前記感光性樹脂組成物が、さらに、(D)一般式(3)で表される化合物を含有する、請求項1~7のいずれかに記載の硬化膜。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、R15~R17は、酸素原子、硫黄原子、または窒素原子のいずれかを示し、R15~R17のうち少なくとも1つは硫黄原子を示す。lは0または1を示し、m、nは0~2の整数を示す。R18~R20は、各々独立に、水素原子または炭素数1~20の有機基を示す。)
  9. 前記感光性樹脂組成物が、さらに、(E)下記一般式(4)で表される化合物を含有する、請求項1~8のいずれかに記載の硬化膜。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、R21は水素原子または炭素数2以上のアルキル基を表し、R22は炭素数2以上のアルキレン基を表す。R23は、炭素数2以上のアルキレン基、O原子、およびN原子のうち少なくともいずれかを含む1~4価の有機基を示す。kは1~4の整数を示す。)
  10. 前記感光性樹脂組成物が、さらに、(F)下記一般式(5)で表される構造単位を有する熱架橋剤を含有する、請求項1~9のいずれかに記載の硬化膜。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(5)中、R25およびR26は、各々独立に、水素原子またはメチル基を示す。R24は炭素数2以上のアルキレン基を有する2価の有機基であり、直鎖状、分岐状、および環状のいずれでも良い。)
  11. 請求項1~10のいずれかに記載の硬化膜を製造する方法であって、前記感光性樹脂組成物を基板上に塗布し、乾燥して感光性樹脂膜を形成する工程または前記感光性樹脂組成物から形成された感光性シートを基材上にラミネートして感光性樹脂膜を形成する工程と、前記感光性樹脂膜を露光する工程と、現像する工程と、加熱処理する工程を含む、硬化膜の製造方法。
  12. 前記感光性樹脂膜を加熱処理する工程が170℃以上250℃以下の温度で加熱処理する工程を含む、請求項11に記載の硬化膜の製造方法。
  13. 請求項1~10のいずれかに記載の硬化膜が配置された、層間絶縁膜または半導体保護膜。
  14. 請求項1~10のいずれかに記載の硬化膜のレリーフパターン層を有する、半導体電子部品または半導体装置。
  15. 請求項1~10のいずれかに記載の硬化膜が再配線間の層間絶縁膜として配置された、半導体電子部品または半導体装置。
  16. 前記再配線と層間絶縁膜が2~10層繰り返し配置された、請求項15に記載の半導体電子部品または半導体装置。
  17. 請求項1~10のいずれかに記載の硬化膜が2種以上の材質で構成される隣接する基板の層間絶縁膜として配置された、半導体電子部品または半導体装置。
PCT/JP2017/000442 2016-01-15 2017-01-10 硬化膜およびその製造方法 WO2017122623A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187019949A KR102553742B1 (ko) 2016-01-15 2017-01-10 경화막 및 그 제조방법
CN201780006274.3A CN108473679B (zh) 2016-01-15 2017-01-10 固化膜及其制造方法
US16/063,893 US10908500B2 (en) 2016-01-15 2017-01-10 Cured film and method for producing same
JP2017501733A JP6915533B2 (ja) 2016-01-15 2017-01-10 硬化膜およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-006127 2016-01-15
JP2016006127 2016-01-15
JP2016167684 2016-08-30
JP2016-167684 2016-08-30

Publications (1)

Publication Number Publication Date
WO2017122623A1 true WO2017122623A1 (ja) 2017-07-20

Family

ID=59311715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000442 WO2017122623A1 (ja) 2016-01-15 2017-01-10 硬化膜およびその製造方法

Country Status (6)

Country Link
US (1) US10908500B2 (ja)
JP (1) JP6915533B2 (ja)
KR (1) KR102553742B1 (ja)
CN (1) CN108473679B (ja)
TW (1) TWI714703B (ja)
WO (1) WO2017122623A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725490A (zh) * 2017-10-31 2019-05-07 太阳控股株式会社 感光性树脂组合物、干膜、固化物、半导体元件、印刷电路板和电子部件
CN111133382A (zh) * 2017-09-26 2020-05-08 东丽株式会社 感光性树脂组合物、固化膜、具备固化膜的元件、具备固化膜的有机el显示装置、固化膜的制造方法及有机el显示装置的制造方法
JP2021508072A (ja) * 2017-12-28 2021-02-25 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH アルカリ可溶性樹脂および架橋剤を含んでなるネガ型リフトオフレジスト組成物、並びに基板上に金属膜パターンを製造する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158275A (ja) * 1997-11-28 1999-06-15 Toray Ind Inc 耐熱性ポリマー前駆体の脱水閉環方法、およびそれを用いた耐熱性コーティング剤
JP2007132978A (ja) * 2005-11-08 2007-05-31 Toray Ind Inc ポジ型感光性樹脂前駆体組成物
WO2008111470A1 (ja) * 2007-03-12 2008-09-18 Hitachi Chemical Dupont Microsystems, Ltd. 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
WO2010134207A1 (ja) * 2009-05-20 2010-11-25 住友ベークライト株式会社 ポジ型感光性樹脂組成物、硬化膜、保護膜、層間絶縁膜、 およびそれを用いた半導体装置、表示素子
JP2011084562A (ja) * 2009-09-17 2011-04-28 Dainippon Printing Co Ltd 熱塩基発生剤、高分子前駆体組成物、当該組成物を用いた物品
JP2012133091A (ja) * 2010-12-21 2012-07-12 Fujifilm Corp 感光性樹脂組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW525407B (en) * 2000-06-28 2003-03-21 Toray Industries Display
KR100774672B1 (ko) * 2004-05-07 2007-11-08 히다치 가세이듀퐁 마이쿠로시스데무즈 가부시키가이샤 포지티브형 감광성 수지 조성물, 패턴의 제조방법 및전자부품
JP4692219B2 (ja) 2004-10-29 2011-06-01 Jsr株式会社 ポジ型感光性絶縁樹脂組成物およびその硬化物
JP2007156243A (ja) 2005-12-07 2007-06-21 Nissan Chem Ind Ltd ポジ型感光性樹脂組成物及びその硬化膜
MY146083A (en) * 2007-02-19 2012-06-29 Sumitomo Bakelite Co Photosensitive resin composition, cured film, protective film, insulating film, semiconductor device and display device using the same
JP5386781B2 (ja) 2007-03-12 2014-01-15 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
TW201042390A (en) * 2009-05-22 2010-12-01 Sumitomo Bakelite Co Positive photosensitive resin composition, cured layer, protecting layer, interlayer dielectric, and semiconductor device and display chip using same
WO2012172793A1 (ja) * 2011-06-15 2012-12-20 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
KR101807630B1 (ko) * 2013-12-11 2017-12-11 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막의 제조 방법, 경화막, 액정 표시 장치 및 유기 el 표시 장치
WO2015087830A1 (ja) * 2013-12-11 2015-06-18 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
TWI644979B (zh) * 2014-06-27 2018-12-21 日商富士軟片股份有限公司 熱硬化性樹脂組成物、硬化膜、硬化膜的製造方法及半導體元件
JPWO2016017191A1 (ja) * 2014-07-31 2017-04-27 Jsr株式会社 表示素子、感光性組成物およびエレクトロウェッティングディスプレイ
CN107407877B (zh) * 2015-03-24 2021-01-01 东丽株式会社 感光性树脂组合物
EP3358407A4 (en) * 2015-09-28 2019-05-22 Toray Industries, Inc. HARDENED FILM AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158275A (ja) * 1997-11-28 1999-06-15 Toray Ind Inc 耐熱性ポリマー前駆体の脱水閉環方法、およびそれを用いた耐熱性コーティング剤
JP2007132978A (ja) * 2005-11-08 2007-05-31 Toray Ind Inc ポジ型感光性樹脂前駆体組成物
WO2008111470A1 (ja) * 2007-03-12 2008-09-18 Hitachi Chemical Dupont Microsystems, Ltd. 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
WO2010134207A1 (ja) * 2009-05-20 2010-11-25 住友ベークライト株式会社 ポジ型感光性樹脂組成物、硬化膜、保護膜、層間絶縁膜、 およびそれを用いた半導体装置、表示素子
JP2011084562A (ja) * 2009-09-17 2011-04-28 Dainippon Printing Co Ltd 熱塩基発生剤、高分子前駆体組成物、当該組成物を用いた物品
JP2012133091A (ja) * 2010-12-21 2012-07-12 Fujifilm Corp 感光性樹脂組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133382A (zh) * 2017-09-26 2020-05-08 东丽株式会社 感光性树脂组合物、固化膜、具备固化膜的元件、具备固化膜的有机el显示装置、固化膜的制造方法及有机el显示装置的制造方法
KR20200055713A (ko) * 2017-09-26 2020-05-21 도레이 카부시키가이샤 감광성 수지 조성물, 경화막, 경화막을 구비하는 소자, 경화막을 구비하는 유기 el 표시 장치, 경화막의 제조 방법, 및 유기 el 표시 장치의 제조 방법
JPWO2019065351A1 (ja) * 2017-09-26 2020-09-03 東レ株式会社 感光性樹脂組成物、硬化膜、硬化膜を具備する素子、硬化膜を具備する有機el表示装置、硬化膜の製造方法、および有機el表示装置の製造方法
JP7215171B2 (ja) 2017-09-26 2023-01-31 東レ株式会社 感光性樹脂組成物、硬化膜、硬化膜を具備する素子、硬化膜を具備する有機el表示装置、硬化膜の製造方法、および有機el表示装置の製造方法
CN111133382B (zh) * 2017-09-26 2023-10-31 东丽株式会社 感光性树脂组合物、固化膜、具备固化膜的元件与有机el显示装置、及其制造方法
KR102658207B1 (ko) 2017-09-26 2024-04-19 도레이 카부시키가이샤 감광성 수지 조성물, 경화막, 경화막을 구비하는 소자, 경화막을 구비하는 유기 el 표시 장치, 경화막의 제조 방법, 및 유기 el 표시 장치의 제조 방법
CN109725490A (zh) * 2017-10-31 2019-05-07 太阳控股株式会社 感光性树脂组合物、干膜、固化物、半导体元件、印刷电路板和电子部件
CN109725490B (zh) * 2017-10-31 2023-06-06 太阳控股株式会社 感光性树脂组合物、干膜、固化物、半导体元件、印刷电路板和电子部件
JP2021508072A (ja) * 2017-12-28 2021-02-25 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH アルカリ可溶性樹脂および架橋剤を含んでなるネガ型リフトオフレジスト組成物、並びに基板上に金属膜パターンを製造する方法
JP7189217B2 (ja) 2017-12-28 2022-12-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング アルカリ可溶性樹脂および架橋剤を含んでなるネガ型リフトオフレジスト組成物、並びに基板上に金属膜パターンを製造する方法

Also Published As

Publication number Publication date
JPWO2017122623A1 (ja) 2018-11-01
US20190004423A1 (en) 2019-01-03
TW201732433A (zh) 2017-09-16
JP6915533B2 (ja) 2021-08-04
CN108473679A (zh) 2018-08-31
CN108473679B (zh) 2020-12-11
US10908500B2 (en) 2021-02-02
TWI714703B (zh) 2021-01-01
KR20180102576A (ko) 2018-09-17
KR102553742B1 (ko) 2023-07-07

Similar Documents

Publication Publication Date Title
JP6848434B2 (ja) 樹脂および感光性樹脂組成物
JP7003659B2 (ja) 樹脂組成物
CN109906217B (zh) 二胺化合物、使用其的耐热性树脂及树脂组合物
TWI688825B (zh) 半導體電子零件或半導體裝置、及此等之製造方法、感光性樹脂組成物、感光性薄片及其製造方法、硬化膜、層間絕緣膜或半導體保護膜、以及硬化起伏圖案的製造方法
WO2018159384A1 (ja) 樹脂組成物、樹脂シート、硬化パターンおよび半導体電子部品または半導体装置
JP6848491B2 (ja) ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物
WO2018043250A1 (ja) 感光性樹脂組成物、硬化膜、有機el表示装置、半導体電子部品、半導体装置
JP6915533B2 (ja) 硬化膜およびその製造方法
JP6740903B2 (ja) 硬化膜およびその製造方法
WO2019181782A1 (ja) アルカリ可溶性樹脂、感光性樹脂組成物、感光性シート、硬化膜、層間絶縁膜または半導体保護膜、硬化膜のレリーフパターンの製造方法、電子部品または半導体装置
JP2017179364A (ja) ポリアミド樹脂の製造方法およびそれを用いた感光性樹脂組成物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017501733

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187019949

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738377

Country of ref document: EP

Kind code of ref document: A1