WO2017122348A1 - フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法 - Google Patents

フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法 Download PDF

Info

Publication number
WO2017122348A1
WO2017122348A1 PCT/JP2016/051138 JP2016051138W WO2017122348A1 WO 2017122348 A1 WO2017122348 A1 WO 2017122348A1 JP 2016051138 W JP2016051138 W JP 2016051138W WO 2017122348 A1 WO2017122348 A1 WO 2017122348A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
focus control
area
unit
block
Prior art date
Application number
PCT/JP2016/051138
Other languages
English (en)
French (fr)
Inventor
浩一郎 吉野
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/051138 priority Critical patent/WO2017122348A1/ja
Priority to JP2017561486A priority patent/JP6670853B2/ja
Publication of WO2017122348A1 publication Critical patent/WO2017122348A1/ja
Priority to US16/030,119 priority patent/US10666852B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/958Computational photography systems, e.g. light-field imaging systems for extended depth of field imaging
    • H04N23/959Computational photography systems, e.g. light-field imaging systems for extended depth of field imaging by adjusting depth of field during image capture, e.g. maximising or setting range based on scene characteristics

Definitions

  • the present invention relates to a focus control device, an endoscope device, a method for operating the focus control device, and the like.
  • the depth of field is required as deep as possible in order not to interfere with the diagnosis and treatment of the user.
  • endoscope systems that perform autofocus hereinafter referred to as AF
  • AF autofocus
  • a treatment tool such as an electric scalpel or forceps may be inserted between the target living body and the endoscope system that is the imaging device. is there. In this case, it may focus on the treatment tool having a higher contrast than the living body and cannot focus on the living body.
  • Patent Document 1 discloses a technique of focusing on a subject of interest by the user specifying the obstacle when an obstacle exists between the subject of interest and the imaging device.
  • Patent Document 1 the user needs to specify an obstacle. For this reason, when the technique of Patent Document 1 is used under an endoscopic technique, the movement of a treatment tool that becomes an obstacle is intense, and it is necessary for the user to frequently specify the obstacle, which complicates the operation.
  • a focus control device an endoscope device, and a focus control device having an AF control function that allows a user to focus on a subject of interest without performing complicated operations.
  • An operating method etc. can be provided.
  • One embodiment of the present invention is directed to an area setting unit that sets a plurality of areas each including a plurality of pixels with respect to an image captured by the imaging unit, and a part or all of the set plurality of areas.
  • Direction determination for determining the direction in which the target focus position, which is the target of the in-focus object position with respect to the reference position is in NEAR or FAR and obtaining a direction determination result for each area.
  • a focus control unit that determines the in-focus direction and controls the focus object position based on the in-focus direction.
  • the direction of the target focus position is determined in a plurality of areas, and the focus direction is determined based on the direction determination result and weight information.
  • the in-focus direction can be controlled based on the weight information, and the user can adjust the position of the in-focus object flexibly without performing a complicated operation.
  • Another aspect of the present invention relates to an endoscope apparatus including the focus control apparatus described above.
  • the user can adjust the position of the focused object flexibly without performing a complicated operation.
  • a method for operating a focus control device including a region setting unit, a direction determination unit, and a focus control unit, wherein the region setting unit is an image captured by an imaging unit. For each area, a plurality of areas each including a plurality of pixels are set, and the direction determination unit is configured to focus the object position with respect to a reference position in a part or all of the set areas. It is determined whether the target in-focus position that is the target is NEAR or FAR, direction determination processing is performed for obtaining a direction determination result for each area, and the focus control unit performs the direction determination result and weight information.
  • 2 is a basic configuration example of a focus control device.
  • the structural example of the endoscope apparatus containing a focus control apparatus. 2 is a configuration example of an AF control unit.
  • 5 is a flowchart for explaining focus control.
  • FIG. 8A is a diagram for explaining control of the focus lens of this embodiment in the direction discrimination processing
  • FIG. 8B is a diagram for explaining a conventional method.
  • a subject that is an obstacle may be captured in addition to the subject that the user is paying attention to.
  • the subject of interest is in a state where it can be easily observed in the captured image, that is, in a focused state (in focus).
  • AF autofocus
  • FIG. 1 In order to perform treatment such as excision and suturing of a lesion under an endoscopic technique, as shown in FIG. 1, between a living body to be focused and an endoscope apparatus (endoscope system) that is an imaging apparatus.
  • a treatment tool such as an electric knife or forceps is inserted. Contrast AF focuses on a high-contrast area, so there is a risk of focusing on the treatment tool even though attention is paid to the living body.
  • a treatment tool is inserted into the body together with a scope (imaging unit), and a treatment for a living body is performed using the treatment tool.
  • the treatment tool here is an instrument used for treatment of a living body, and specifically, an energy device such as an electric knife, forceps, or the like.
  • the treatment tool is used for treatment of a living body, for example, an action of pulling up a membranous living body using forceps or excising a living body fixed with forceps with an electric knife.
  • the position on the image where the treatment tool is imaged and the size of the captured image frequently change. Therefore, the area where the obstacle is imaged changes frequently, and if the user manually designates the area, the burden on the user is large.
  • the focused object can be properly focused. Is possible.
  • the focus control apparatus has a plurality of regions each of which includes a plurality of pixels with respect to an image captured by an imaging unit (corresponding to an imaging unit 200 in FIG. 3 described later).
  • the target focus position that is the target of the focused object position with respect to the reference position is in NEAR
  • a direction discriminating unit 2040 that performs a direction discriminating process for discriminating whether the region is FAR and obtaining a direction discriminating result for each region, and NEAR representing the area of the region determined to be NEAR based on the direction discriminating result and the weight information
  • a focusing direction is determined by weighting the area information and FAR area information representing the area of the area determined to be FAR to determine a focusing direction, and the focused object position is controlled based on the determined focusing direction.
  • F Including the carcass control unit 2000.
  • the in-focus object position is an in-focus state of a system composed of an optical system (in a narrow sense, an objective lens system 240 in FIG. 3 described later), an image plane (a surface of the image sensor 250 in FIG. 3), and an object (subject).
  • the imaging device 250 is fixed and the focus lens 220 of the optical system is movable, the position of the focus object 220 is determined by determining the position of the focus lens 220. Will be decided. In that case, a captured image focused on a subject located within the range of the depth of field including the focused object position is acquired.
  • NEAR and FAR represent the direction in which the target in-focus position is located with respect to the reference position, and the target in-focus position is on the imaging unit 200 side (on the optical system and image sensor 250 side) with respect to the reference position. Is NEAR, and the target focus position is FAR when the target focus position is on the opposite side of the imaging unit 200 with respect to the reference position.
  • the control for moving the in-focus object position to the NEAR side is the control for moving the position of the focus lens 220 to the near point side.
  • the control for moving the focused object position to the FAR side can be realized by the control for moving the position of the focus lens 220 to the far point side.
  • the weighting size determination is a process of determining the size relationship between the NEAR area information and the FAR area information after performing weighting based on the weight information.
  • the weight information is first weight information that represents the degree of contribution to the weighted magnitude determination of each area of the plurality of areas, and second weight information that represents the degree of contribution to the weighted magnitude judgment of the NEAR area information and the FAR area information. Is at least one of the information.
  • the weight information of the present embodiment may be a weight used when NEAR area information (or FAR area information or both) is calculated, NEAR area information (or FAR area information, or Both of them) may be a weight for itself.
  • an endoscope apparatus having an AF control function that enables a user to focus on a subject of interest without performing complicated operations can be realized. It becomes possible. Specifically, appropriate AF control becomes possible by the following three points.
  • the moving direction of the focused object position is determined based on the area information. Since the area information is determined by the direction discrimination result of NEAR or FAR, if the direction discrimination result is acquired based on the AF evaluation value (contrast value), the AF evaluation value of each area is used for the subsequent processing. The size of itself does not contribute. Generally, the contrast of the treatment instrument is higher than that of the living body. For this reason, in normal contrast AF, there is a leak in the detection of the treatment tool, and if an area where the treatment tool is imaged is used for AF control, it is easily affected. However, in the method of the present embodiment, the in-focus direction is determined by the size determination (weighting size determination) of the area information. For this reason, each region (evaluation block) has only one vote value regardless of the AF evaluation value of the subject, so that the influence of the treatment tool can be further reduced.
  • the weight of each area when obtaining area information (in a narrow sense, the area of each area determined as NEAR when obtaining NEAR area information). Weight) can be set. Therefore, as will be described later with reference to FIG. 15, when a region of interest in an image can be specified, it is possible to focus on the region of interest with priority.
  • the size determination of the NEAR area information and the FAR area information is not simply performed, but is performed after weighting.
  • the NEAR area information S N and the FAR area information S F it is not determined whether or not S N > S F is satisfied, but is determined whether or not the following expression (1) is satisfied.
  • M in the following equation (1) corresponds to the second weight information.
  • the weight information (second weight information) of the present embodiment is a threshold TH_NEAR for determining the in-focus direction. Also good.
  • the threshold TH_NEAR is a parameter for adjusting the in-focus position (the in-focus object position when the in-focus operation is completed), and therefore the in-focus position is flexible by using the second weight information. Adjustment becomes possible. For example, as will be described later with reference to FIG. 14, the distance to the subject of interest may be estimated, and the value of the second weight information may be adjusted based on the estimation result.
  • the focus control apparatus of the present embodiment includes a memory (storage unit) that stores information (for example, a program and various types of data), and a processor that operates based on the information stored in the memory (the processing unit 300, FIG. 3).
  • the processor sets an area setting process for setting a plurality of areas, each of which is composed of a plurality of pixels, for an image captured by the imaging unit, and a reference position in a part or all of the set areas.
  • Direction determination processing for determining whether the target focus position, which is the target of the in-focus object position, is in NEAR or FAR, and performing direction determination processing for obtaining a direction determination result for each region, and direction determination Based on the result and weight information, the focus direction is determined by determining the weighting size of NEAR area information representing the area of the area determined to be NEAR and FAR area information representing the area of the area determined to be FAR. Then, based on the determined in-focus direction, focus control for controlling the in-focus object position is performed.
  • each unit may be realized by individual hardware, or the function of each unit may be realized by integrated hardware.
  • the processor may be, for example, a CPU (Central Processing Unit). However, the processor is not limited to the CPU, and various processors such as a GPU (GraphicsGProcessing Unit) or a DSP (Digital Signal Processor) can be used.
  • the processor may be a hardware circuit based on ASIC (Application (Specific Integrated Circuit).
  • the memory may be a semiconductor memory such as SRAM or DRAM, a register, a magnetic storage device such as a hard disk device, or an optical storage device such as an optical disk device. There may be.
  • the memory stores instructions that can be read by a computer, and the functions of each unit of the focus control device are realized by executing the instructions by the processor.
  • the instruction here may be an instruction of an instruction set constituting the program, or an instruction for instructing an operation to the hardware circuit of the processor.
  • the operation of the present embodiment is realized as follows, for example.
  • the processor performs a process of setting a plurality of areas for the acquired image, and stores information on the plurality of areas in the memory. Further, the processor reads information on a plurality of areas from the memory, obtains an AF evaluation value (block AF evaluation value) for each area, and stores it in the memory.
  • the processor reads the block AF evaluation value from the memory, performs direction discrimination processing, and stores the direction discrimination result in the memory. Further, the processor reads the direction determination result and the weight information from the memory, performs weighting size determination, obtains the in-focus direction, and stores it in the memory.
  • the processor reads the in-focus direction from the memory, and controls the in-focus object position according to the in-focus direction.
  • the control of the in-focus object position can be realized by a process of outputting a control signal to a mechanism for driving the focus lens (the focus lens driving unit 230 in FIG. 3).
  • each unit of the focus control apparatus of the present embodiment is realized as a program module that operates on a processor.
  • the area setting unit is realized as an area setting module that sets a plurality of areas each having a plurality of pixels with respect to an image captured by the imaging unit.
  • the direction discriminating unit discriminates whether the target in-focus position, which is the target of the in-focus object position with respect to the reference position, is NEAR or FAR in a part or all of the plurality of set areas, This is realized as a direction determination module that performs a direction determination process for obtaining a direction determination result for each region.
  • the focus control unit performs weighting size determination between NEAR area information indicating the area of the region determined to be NEAR and FAR area information indicating the area of the region determined to be FAR based on the direction determination result and the weight information.
  • This is realized as a focus control module that determines the in-focus direction and controls the in-focus object position based on the determined in-focus direction.
  • the device (electronic device) including the focus control device of the present embodiment is not limited to the endoscope device, and may be another device.
  • devices such as a digital still camera, a video camera, and a mobile phone may include the focus control device of this embodiment. In this case, the influence of the obstacle is suppressed, and the flexible AF control can be performed without causing the user to perform complicated operations.
  • the endoscope apparatus includes a rigid endoscope 100 that is an insertion portion into the body, an imaging unit 200 connected to the rigid endoscope 100, a processing unit 300, a display unit 400, and an external I / F unit 500. And a light source unit 600.
  • the light source unit 600 includes a white light source 610 that generates white light, and a light guide cable 620 that guides light emitted from the white light source 610 to a rigid mirror.
  • the rigid mirror 100 includes a lens system 110 that includes an imaging lens, a relay lens, an eyepiece lens, and the like, and a light guide unit 120 that guides light emitted from the light guide cable 620 to the distal end of the rigid mirror.
  • the imaging unit 200 includes an objective lens system 240 that forms an image of light emitted from the lens system 110.
  • the objective lens system 240 includes a focus lens 220 that adjusts the in-focus object position.
  • the imaging unit 200 further includes an imaging element 250 that photoelectrically converts the reflected light imaged by the objective lens system 240 to generate an image, a focus lens driving unit 230 that drives the focus lens 220, and AF start and end.
  • An AF start / end button 210 to control is provided.
  • the focus lens driving unit 230 is, for example, a voice coil motor (VCM).
  • the imaging element 250 has a structure in which, for example, a plurality of pixels are arranged in a two-dimensional array, and each color filter of RGB is arranged in a Bayer array. It also captures subjects such as image sensors using complementary color filters, stacked image sensors that can receive light of different wavelengths with one pixel without using color filters, and monochrome image sensors that do not use color filters. Any image sensor can be used as long as an image can be obtained.
  • the processing unit 300 includes an A / D conversion unit 310, a preprocessing unit 320, an image processing unit 330, an AF control unit 340, and a control unit 350.
  • the A / D conversion unit 310 converts analog signals sequentially output from the image sensor 250 into digital images, and sequentially outputs them to the preprocessing unit 320.
  • the preprocessing unit 320 performs image processing such as white balance and interpolation processing (demosaicing processing) on the image output from the A / D conversion unit 310, and sequentially outputs the image processing unit 330 and the AF control unit 340. . Details of the AF control unit 340 will be described later.
  • the image processing unit 330 performs image processing such as color conversion, gradation conversion, edge enhancement, enlargement / reduction processing, and noise reduction on the image output from the preprocessing unit 320 and sequentially outputs the images to the display unit 400.
  • the display unit 400 is a liquid crystal monitor, for example, and displays images sequentially output from the image processing unit 330.
  • the control unit 350 is connected to the external I / F unit 500, the image processing unit 330, the AF control unit 340, the image sensor 250, the AF start / end button 210, and the like, and inputs and outputs control signals.
  • the external I / F unit 500 is an interface for performing input from the user to the endoscope apparatus. For example, a mode button for switching the AF mode, a setting button for setting the position and size of the AF area, and image processing It includes an adjustment button for adjusting the parameters.
  • the AF control unit 340 includes an area setting unit 2010, a block feature amount calculation unit 2020, an AF evaluation value calculation unit 2030, a direction determination unit (block direction determination unit) 2040, and an invalidity.
  • a block setting unit (invalid area setting unit) 2050, a block state determination unit 2060, an invalid frame setting unit 2070, an in-focus direction determination unit 2080, an in-focus determination unit 2090, and a focus lens position determination unit 2095 are provided. Yes.
  • the area setting unit 2010 sets an area used for AF on the captured image.
  • the area here may include both the AF area and the evaluation block.
  • the block feature amount calculation unit 2020 calculates a feature amount for each evaluation block.
  • the AF evaluation value calculation unit 2030 calculates an evaluation value used for AF for each evaluation block.
  • the direction determination unit 2040 determines the direction of the target in-focus position based on the AF evaluation value for each evaluation block.
  • the direction discrimination result here is information representing NEAR or FAR in a narrow sense.
  • the invalid block setting unit 2050 sets an invalid block based on the feature amount.
  • the invalid block here represents an evaluation block that is not used for determining the in-focus direction.
  • the block state determination unit 2060 determines the block state that is the final direction determination result based on the history information of the direction determination result.
  • the invalid frame setting unit 2070 determines whether to set the processing target frame itself as an invalid frame.
  • the invalid frame here represents a frame that is not used for determining the in-focus direction.
  • the focusing direction determination unit 2080 determines the focusing direction, that is, the moving direction of the focused object position (or the moving direction of the focus lens 220 corresponding to the moving direction).
  • the in-focus determination unit 2090 determines whether or not the in-focus state is achieved by moving the in-focus object position, that is, whether or not the in-focus operation is completed.
  • a focus lens position determination unit 2095 determines a position to move the focus lens. Specifically, the position is determined in consideration of the movement corresponding to the obtained in-focus direction (movement of the wobbling center position) and the movement for determining the direction (wobbling operation).
  • the focus control unit 2000 in FIG. 2 may correspond to a configuration excluding the region setting unit 2010 and the direction determination unit 2040 in the AF control unit 340 illustrated in FIG. 4, for example.
  • the focus control device according to the present embodiment may correspond to the AF control unit 340, but is not limited thereto, and various types such as the entire processing unit 300 in FIG. Variations are possible. Various modifications such as omitting some of the components of the focus control device and adding other components are possible. Further, the points that can be variously modified are the same for the other configurations of FIGS.
  • the wobbling operation of the focus lens is started so as to synchronize with the acquisition timing of images sequentially output from the A / D converter 310, and based on the image acquired by the wobbling operation, A focusing operation is performed (S101).
  • the focusing operation in S100 is, for example, a process performed for each frame.
  • the focusing operation and the focusing completion determination are performed in each frame, and the focus lens position is changed until it is determined that the focusing is completed. Continue while.
  • the focus lens is moved to the focusing position, and the focusing operation (wobbling) is ended (S104).
  • the AF control unit 340 starts a standby operation.
  • the AF control unit 340 performs a scene change detection process (S105).
  • the AF control unit 340 uses the images sequentially output from the preprocessing unit 320, for example, to detect a scene change by monitoring, for example, a change in image color, brightness, AF evaluation value, image movement, and the like. To do.
  • the AF control unit 340 determines whether or not a scene change is detected (S106). When no scene change is detected, the operation from S105 is repeated, and when a scene change is detected, the standby operation is terminated. When the standby operation ends, the AF control unit 340 resumes the focusing operation.
  • the AF control unit 340 fixes the focus lens position at the in-focus position, for example, and does not drive the focus lens.
  • an area setting unit (AF area setting unit) 2010 sets an AF area including a plurality of evaluation blocks on the image (S201).
  • An example of AF area setting is shown in FIG.
  • the outer rectangle represents the entire image
  • the rectangle described as A represents an evaluation block, which is an area to be calculated for AF evaluation values, feature amounts, and the like described later.
  • an area surrounding the entire evaluation block is an AF area.
  • a total of 20 evaluation blocks are set at the center of the image data, with 5 in the horizontal direction and 4 in the vertical direction.
  • the AF evaluation value calculation unit 2030 calculates a block AF evaluation value that is an AF evaluation value of each evaluation block based on the pixel value of the image data output from the preprocessing unit 320 (S202).
  • the block AF evaluation value is a value that increases according to the degree of focus on the subject in the block.
  • the block AF evaluation value is calculated, for example, by applying a band pass filter to each pixel of the image in each evaluation block and accumulating the output value in the block.
  • the direction determination unit 2040 determines the target in-focus direction of each evaluation block from the block AF evaluation value of each evaluation block (S203). An example of the discrimination method will be described with reference to FIG.
  • the latest (current frame) block AF evaluation value output from the AF evaluation value calculation unit 2030 is AfVal [N]
  • the block AF evaluation values output one frame before and two frames before are AfVal [N ⁇ 1], respectively.
  • the movement amount of the focus lens is equivalent to the wobbling amount between N-2 and N-1.
  • the movement amount of the focus lens between N ⁇ 1 and N is equivalent to the wobbling amount + shift amount. In other words, the amount of lens movement varies depending on the timing, and stable direction determination cannot be performed.
  • an AF evaluation value is calculated in two frames N-2 and N-1, and these are compared in N frames to compare the target values.
  • the focus direction is determined, and the moving direction of the wobbling center position is determined. If such an operation is performed, the movement amount (swing width) of the focus lens in each direction determination process can be made constant.
  • the direction determination result can be acquired only once every three frames, and it is difficult to speed up the focusing operation. For example, in the range described in FIG. 8B, the direction discrimination result can be acquired only for two frames N and N + 3.
  • the substantial amount of lens movement can be stabilized by using the above equation (3).
  • the determination corresponding to the case where the focus lens is moved between the position corresponding to the average of N and N ⁇ 2 and the position of N ⁇ 1 is performed.
  • determination corresponding to the case where the focus lens is moved between the position corresponding to the average of N + 1 and N ⁇ 1 and the position of N is performed. This is the same value as the movement amount in N frames.
  • the block AF evaluation value change amount ⁇ obtained by the above equation (3) varies depending on not only the degree of blur but also the luminance and contrast of the subject itself.
  • the block AF evaluation value change amount ⁇ obtained by the above equation (3) is normalized to obtain the block AF evaluation value change rate ⁇ .
  • the following formulas (4) and (5) may be used.
  • AfVal [N] is calculated from the image when the focus lens moves in the NEAR direction in order to determine NEAR when the block AF evaluation value change rate ⁇ is positive and FAR when the block AF evaluation value change rate ⁇ is negative.
  • Ave (a, b, c) represents the average value of a, b, and c.
  • ⁇ / Ave (AfVal [N], AfVal [N-1], AfVal [N-2]) (4)
  • -1 * ⁇ / Ave (AfVal [N], AfVal [N-1], AfVal [N-2]) (5)
  • the block AF evaluation value change rate ⁇ obtained by the above equation (4) or (5) is a value obtained by normalizing the block AF evaluation value change amount ⁇ . For this reason, the value is almost constant according to the change in the degree of focus during wobbling, regardless of the contrast and brightness of the subject.
  • the block feature amount calculation unit 2020 calculates the feature amount (color information, luminance information, bright spot size, etc.) of each evaluation block based on the image data output from the preprocessing unit 320 (S204). Since the feature amount calculation is a widely known method, detailed description thereof is omitted.
  • the invalid block setting unit 2050 sets an invalid block based on the block AF evaluation value change rate ⁇ obtained in S203 and the block feature value obtained in S204 (S205).
  • the invalid block setting unit 2050 sets an evaluation block in which the absolute value of the block AF evaluation value change rate ⁇ is outside a predetermined range as an invalid block. For example, an evaluation block that satisfies
  • one of the images used for calculating the block AF evaluation value change rate ⁇ is blurred. In some cases, a correct direction discrimination result cannot be obtained. In such a case, the block AF evaluation value change rate ⁇ increases.
  • the invalid block setting unit 2050 has dominant non-biological objects such as treatment tools (silver or black) and bright spots based on the block feature values (color information, luminance information, bright spot size, etc.) of the evaluation block.
  • An evaluation block, a high-intensity part, a dark part, etc. are detected, and these evaluation blocks are set as invalid blocks.
  • a block other than a living body or a block whose block direction discrimination result is not reliable can be set as an invalid block.
  • the block state determination unit 2060 determines the block state based on the block direction determination result obtained in S203 and the invalid block setting result obtained in S205 (S206).
  • the block direction discrimination result is unreliable, so the block state of the current frame is invalidated. This is because the block direction determination is performed using the block AF evaluation values of the current frame and the past two frames, as described above using the equation (3).
  • the block state is updated, and until that time, the block state of the immediately preceding frame is inherited. This is to improve the reliability of the block state and prevent frequent fluctuations.
  • FIG. 9 is a flowchart for explaining processing in the block state determination unit 2060.
  • the continuity counter is set to 0 (S302), and the block state is set to an invalid block (S303).
  • the continuity counter represents the number of times that the same direction discrimination result is continued.
  • the continuity counter remains 0 regardless of the current frame direction determination result.
  • FIG. 10 shows a specific example.
  • FIG. 10 is a diagram for a given evaluation block among a plurality of evaluation blocks.
  • the upper part represents the direction determination result in S203 and the invalid block setting result in S205, and the lower part represents the block state.
  • the block state in the frame becomes invalid.
  • the direction determination result is FAR in the A2 frame
  • the direction determination result is NEAR in the A3 frame.
  • the block state is an invalid block.
  • the direction discrimination result is switched from NEAR to FAR, but since the FAR is not yet continuous, the continuity counter is 1.
  • the threshold value is set to 2, and the continuity counter ⁇ the threshold value, so the A4 frame inherits the past state. That is, the direction discrimination result is FAR, but NEAR is maintained as the block state.
  • A5 frame In A5, there is no invalid block in the past two frames. However, since the continuity counter is 0 in the immediately preceding A3 frame, the continuity counter in A5 is 1. Therefore, since the continuity counter ⁇ the threshold value, the frame of A5 takes over the state of the past (A3) and becomes an invalid block.
  • the invalid frame setting unit 2070 sets an invalid frame (S207).
  • the image of the frame itself is not suitable for determining the in-focus direction, and the reliability of the direction determination result is low, so that the in-focus object position is not moved based on the direction determination result.
  • the movement of the focus lens corresponding to the wobbling amount that is, the wobbling operation. Only do.
  • the invalid frame is set when a mist is detected or when an invalid subject is detected.
  • the invalid frame setting unit 2070 first performs mist detection based on the direction determination result of each evaluation block output from the direction determination unit 2040.
  • the block state output from the block state determination unit 2060 is not used here in order to consider the continuity of the direction determination result between frames when detecting mist.
  • the block direction cannot be accurately determined and the focusing operation may become unstable.
  • the mist is generated when the user performs a treatment using a treatment tool such as an electric knife. Therefore, when the mist is generated, the subject is in focus to some extent. For this reason, if the mist is detected and the focusing operation is interrupted, the user's treatment is not adversely affected.
  • the mist is detected from the degree of variation in the direction determination result of each evaluation block between frames and within the frame.
  • mist is generated, there is a large variation in the density of the mist on the image, and the distribution changes greatly in a short period.
  • the AF evaluation value also changes greatly, the block direction discrimination result also changes greatly in the time and space directions as shown in FIG. For this reason, it becomes possible to detect mist by the method as mentioned above.
  • the degree of variation is detected as follows, for example. First, it is determined whether each evaluation block has a direction determination result different from the previous frame (determination of temporal variation). Then, for the evaluation block with the direction determination result different from the previous frame, the direction determination result of the current frame is compared with the surrounding evaluation blocks, and the number of evaluation blocks with different direction determination results is counted (determination of spatial variation degree). ). Then, a block whose total count exceeds a threshold value is determined as a mist block. That is, the mist block here is an evaluation block that is determined to have a large degree of temporal variation and spatial variation.
  • the invalid frame setting unit 2070 determines that it is detected as mist, and sets the current frame as an invalid frame.
  • the invalid frame setting unit 2070 may perform mist detection using a motion vector.
  • a motion vector representing a motion between images is obtained from two images having different acquisition timings (specifically, images of two adjacent frames).
  • the motion vector here is obtained by setting a plurality of points (regions) on the image and targeting each point (region). That is, a plurality of motion vectors are calculated by processing using images of two adjacent frames. Since motion vectors are easily affected by mist, spatial variation among a plurality of motion vectors obtained when mist is generated increases.
  • the invalid frame setting unit 2070 determines the reliability of the motion vector based on the spatial similarity of the motion vector, and performs mist detection. If the motion vectors are spatially similar, it is determined that the reliability is “Yes” because the motion vector is calculated not by the noise component but by the signal component.
  • one motion vector (hereinafter referred to as a target motion vector) is selected from a plurality of local motion vectors in the image.
  • a target motion vector is selected from a plurality of local motion vectors in the image.
  • the adjacent motion vector is a similar vector.
  • the number of similar vectors is counted, and the number of similar vectors is compared with a predetermined threshold. If the number of similar vectors is larger than the threshold value, the target motion vector has a spatial similarity with surrounding motion vectors, and therefore the target motion vector is determined to have reliability “Yes”.
  • the target motion vector has the reliability “none”.
  • the reliability of the entire image is determined from the reliability of each motion vector. If the reliability is low, it is determined that mist has been detected. For example, it may be determined that mist is detected when the number or ratio of motion vectors with low reliability exceeds a given threshold.
  • the invalid frame setting unit 2070 may perform mist detection using both the direction discrimination result and the motion vector. For example, when mist is detected by both the direction determination result and the motion vector, it may be finally determined as mist. The accuracy of mist detection can be improved by using such a method.
  • the invalid frame setting unit 2070 may set the target frame as an invalid frame when an invalid subject is detected. Specifically, invalid subject detection is performed based on the block state output from the block state determination unit 2060. If the invalid block (treatment tool, bright spot, high-intensity part, dark part, block where the block AF evaluation value change rate ⁇ is outside the predetermined range) occupies most of the AF area, it will be focused accurately. The operation cannot be performed. For this reason, when the number of invalid blocks set in S205 exceeds a predetermined threshold, it is determined as an invalid subject and the target frame is set as an invalid frame.
  • the invalid block treatment tool, bright spot, high-intensity part, dark part, block where the block AF evaluation value change rate ⁇ is outside the predetermined range
  • the focus control unit 2000 determines whether or not the target frame is set as an invalid frame by the invalid frame setting unit 2070 (S208). If the target frame is set as an invalid frame, the following focus direction determination process ( In step S209, the focus determination (S210) is skipped and the focus lens position is determined (S211). If it is not an invalid frame, the processing of S209 to S211 is sequentially performed.
  • the focus control unit 2000 uses the invalid frame based on at least one of the direction determination result of each of the plurality of regions and the feature amounts of the plurality of pixels included in each region.
  • the focus control unit 2000 does not move the in-focus object position based on the direction determination result in a frame determined to be an invalid frame.
  • movement based on the direction determination result represents movement of the focus lens by the shift amount of the wobbling center position. Therefore, even when the invalid frame is set, it is not hindered to perform the wobbling operation for moving the direction (moving the focus lens by the wobbling amount with reference to the wobbling center position).
  • the invalid frame setting unit 2070 includes spatial variation information (variation degree) of the direction determination result, temporal variation information of the direction determination result, and variation information of the motion vector that is a feature amount.
  • An invalid frame is set based on at least one.
  • the temporal variation information represents the degree of variation (difference) when the direction determination result in a given area is viewed in time series as described above.
  • Spatial variation information includes direction determination results in a given area and direction determination results in the vicinity thereof (for example, in the case of an evaluation block such as FIG. Indicates the degree of variation.
  • the motion vector variation information represents the degree of variation among a plurality of motion vectors set on one image.
  • the focus direction determination process or the like can be skipped, so that the possibility of moving the focus lens in the wrong direction can be suppressed.
  • any one of the three pieces of variation information may be used, or two or more may be combined.
  • the block AF evaluation value change rate ⁇ is small in the vicinity of the in-focus position, the direction discrimination result tends to have a large degree of variation both in time and space. Therefore, there is a possibility that a state that does not need to be set as an invalid frame is erroneously determined as an invalid frame.
  • the degree of variation of the motion vector is small even near the in-focus position, an invalid frame can be set with high accuracy by combining the variation information of the direction determination result and the variation information of the motion vector.
  • the focusing direction determination unit 2080 determines a final focusing direction based on the block state of each evaluation block output from the block state determination unit 2060 in S206 (S209).
  • the focus control unit 2000 (processor) of the present embodiment sets an invalid area based on the AF evaluation value of each area of a plurality of areas or the feature amounts of a plurality of pixels included in each area.
  • An invalid area setting unit (invalid block setting unit 2050) is included. Therefore, the focus control unit 2000 (focus direction determination unit 2080) corresponds to the weight information in the ratio (nearRatio) of the NEAR area information to the area information of the effective area that is an area excluding at least the invalid area among the plurality of areas. If it is larger than the predetermined threshold (TH_NEAR), it is determined that the focusing direction is the NEAR side.
  • TH_NEAR predetermined threshold
  • FIG. 12 is a flowchart for explaining processing in the in-focus direction determination unit 2080.
  • the number of effective blocks in the AF area is counted (S401).
  • the valid block here is an evaluation block that is not an invalid block. If the block states are NEAR, FAR, and invalid, the total number of NEAR blocks and FAR blocks is the number of valid blocks.
  • the number of blocks whose block state is NEAR is counted (S402), and the ratio (NearRatio) of the NEAR block to the effective block is calculated (S403). And it is judged whether nearRatio is larger than threshold value TH_NEAR (S404), and a focusing direction is determined based on the result. As described above, this corresponds to the process of determining the in-focus direction by the weighting magnitude determination of the NEAR block and the FAR block.
  • the focus direction is determined to be NEAR (S405), and if nearRatio ⁇ TH_NEAR, the focus direction is determined to be FAR (S406).
  • the final focusing position becomes the far side (the far side from the imaging unit 200) as TH_NEAR increases. This is because, if TH_NEAR is large, the focusing direction is not NEAR unless the NEAR block ratio increases accordingly, and the focused object position is moved to the FAR side.
  • the user can adjust the in-focus position according to preference by adjusting the value of TH_NEAR.
  • the focus control unit 2000 (processor) according to the present embodiment estimates the relative distance between the subject determined to be focused by the user and the imaging unit 200 based on the image (FIG. 4 and the like).
  • the focus control unit 2000 may change the threshold based on the estimation result of the attention distance estimation unit. For example, the attention distance estimation unit estimates the state of the subject from the luminance distribution or the like of the entire image, and the focus control unit 2000 (focusing direction determination unit 2080) automatically adjusts the value of TH_NEAR according to the result. It may be.
  • the focus control unit 2000 performs the size determination between the NEAR area information weighted by the second weight information and the FAR area information as the weighting size determination. In this way, it is possible to flexibly set the in-focus position (the in-focus object position when it is determined that the subject of interest is in focus, or the focus lens position that realizes the in-focus object position). Become.
  • the first weight information may be used as described above.
  • the focus control unit 2000 (processor) of the present embodiment further includes an attention area estimation unit (not shown in FIG. 4 and the like) that estimates an area determined to be noticed by the user based on the image.
  • the control unit 2000 may set weight information (first weight information) in which the region estimated by the attention region estimation unit has a large weight, and calculate NEAR area information based on the set weight information.
  • the attention area estimation section first estimates the attention block corresponding to the attention area, and the focus control section 2000 (focusing direction determination section 2080) determines the weight of the attention block.
  • N first weight information, N> 1).
  • the weight of the state (direction) of the block of interest in calculating nearRatio increases.
  • the weight of the state of the target block when determining the in-focus direction is also increased, it is possible to focus on the target region with high accuracy.
  • the focus control unit 2000 obtains NEAR area information based on the first weight information. Specifically, NEAR area information is obtained based on the first weight information set for the area determined to be NEAR. As described above, if the areas of the plurality of regions (evaluation blocks) are all the same, the sum of the weights of the regions determined to be NEAR becomes NEAR area information. More generally, the sum of the products of the area of each region and the weight information may be used as NEAR area information. In this way, it is possible to appropriately focus on the region of interest in the image.
  • the focus control unit 2000 uses the first weight information for calculating the NEAR area information, assuming that processing is performed by paying attention to the area determined as NEAR. However, the focus control unit 2000 may perform processing while paying attention to the area determined as FAR. In this case, the focus control unit 2000 obtains the FAR area information based on the first weight information set in the area determined to be FAR. Specifically, the focus control unit 2000 sets weight information (first weight information) in which the region estimated by the attention region estimation unit has a large weight, and sets the FAR area information based on the set weight information. calculate.
  • the target block may be estimated as follows, for example.
  • the treatment tool and the living body greatly vary, so that the AF evaluation value and block feature amount (color information, luminance information) of the evaluation block change greatly in a short time. For this reason, what is necessary is just to estimate an attention block from the amount of temporal changes of these values.
  • the motion vector of the evaluation block may be calculated using a known method, and the target block may be estimated from the amount of temporal change in the magnitude and direction of the motion vector.
  • the block of interest may be estimated including not only the block having a large change amount but also the surrounding blocks.
  • FIG. 16 is a flowchart for explaining processing when the first weight information is used.
  • the block of interest is first estimated (S501).
  • valid blocks are counted (S502).
  • the weight N is used for counting. Specifically, the weighting of the block of interest is set to N, and the weights other than the block of interest are set to 1. The same applies to the count of the number of NEAR blocks.
  • the weight of the target block is set to N, and the weight other than the target block is set to 1 (S503).
  • S504 to S507 which are the processes after counting, are the same as S403 to S406 in FIG.
  • the focus determination unit 2090 determines whether or not the focus lens has reached the focus position based on the focus direction (NEAR / FAR) output from the focus direction determination unit 2080 and the position where the focus direction is reversed. Is determined (S210).
  • the focus lens behaves so as to reciprocate across the focus position as shown in FIG. 17 after reaching the focus position. This is because the block AF evaluation value change rate ⁇ is very small at the in-focus position, and the in-focus direction is not reversed unless it passes through the in-focus position to some extent. In the in-focus state, the position where the in-focus direction is reversed is almost the same every time. Therefore, it is determined whether or not the in-focus state has been achieved on the condition that (1) the reciprocating motion has been performed a predetermined number of times and (2) the change in the reversal position is small between the reciprocating motions. be able to.
  • FIG. 18 is a flowchart for explaining processing in the focus determination unit 2090.
  • the in-focus determination process is started, it is first determined whether or not the in-focus direction is reversed (S601). In the case of No in S601, the focus determination process for the current frame is terminated.
  • the value of the inversion counter is determined (S602).
  • the inversion counter is a counter representing the number of times the in-focus direction is inverted.
  • the wobbling center position when the in-focus direction is inverted is stored in the memory 1 (S603), and the inversion counter is incremented (S604).
  • the inversion counter 1.
  • the focus lens position (wobbling center position) indicated by B 1 is stored in the memory 1.
  • the inversion counter is 1, the wobbling center position when the in-focus direction is inverted is stored in the memory 2 (S605), and the inversion counter is incremented (S606).
  • the inversion counter 2
  • the focus lens position (wobbling center position) shown in B 2 is stored in the memory 2.
  • the reference position on the FAR side and the reference position on the NEAR side of the reciprocating motion are respectively stored in the memory. Note that whether the memory 1 is NEAR or FAR depends on the situation. At the time of subsequent inversion detection, it may be determined whether or not the fluctuation between the wobbling center position at the time of detection and the reference position stored in the memory is small.
  • the wobbling center position when the in-focus direction is reversed is the position (value stored in the memory 1 or the memory 2) when reversed twice.
  • a comparison is made to determine whether or not the difference (absolute value) is equal to or less than a threshold value (S607).
  • the comparison target uses the inverted position two times before, not the immediately preceding position. For example, in the case of B3, comparison is made with B1, ie, information in the memory 1, and in case of B4, comparison is made with B2, ie, information in the memory 2.
  • the information used for comparison in the memory 1 or 2 is updated to the wobbling center position in the current frame (S608), and the inversion counter is incremented (S609). ).
  • the information in the memory 1 is updated with the wobbling center position at that time.
  • the information in the memory 2 is updated with the wobbling center position at that time. The same applies to the subsequent steps. If the difference is larger than the threshold value (No in S607), it is determined that it is not in focus and the counter is set to 0 (S610).
  • the focus control unit 2000 (processor, focus determination unit 2090 in a narrow sense) has a predetermined count (reversal counter) of the number of switching times when the movement of the focused object position is switched from NEAR to FAR or from FAR to NEAR.
  • the focusing operation is stopped on the condition that the switching threshold (focusing completion determination threshold) is exceeded. This corresponds to the determination in S611.
  • the focus control unit 2000 counts the number of times of switching when the fluctuation of the focused object position that switches from NEAR to FAR or the fluctuation of the focused object position that switches from FAR to NEAR is greater than a predetermined fluctuation threshold. Reset. This corresponds to the processing of S607 and S610. Since the correspondence between the focus object position and the focus lens position is assumed to be known at the design stage of the focus control device (endoscope device), the focus object position here is the focus lens position. It can be replaced.
  • the focus lens position determination unit 2095 determines the next focus lens position using the setting result of the invalid frame setting unit 2070, the in-focus direction determined by the in-focus direction determination unit 2080, and the determination result of the in-focus determination unit 2090. (S211).
  • FIG. 19 is a flowchart for explaining processing in the focus lens position determination unit 2095.
  • the focus lens position is determined so as to maintain the current wobbling center position (S702). Specifically, the shift amount is set to 0 and the wobbling operation on the spot is continued.
  • S703 it is determined in S210 whether the in-focus determination has been made (S703). If it is determined that the subject is in focus, the focus lens position is set as the average position of the values stored in the memory 1 and the memory 2 (S704). In FIG. 17, at the timing of B6 determined to be in focus, the wobbling center position of B5 is stored in the memory 1, and the wobbling center position of B6 is stored in the memory 2. Therefore, the process of S704 corresponds to determining a focus lens position that realizes the movement of the focus lens shown in B7.
  • the focus direction determined in S209 is determined (S705).
  • the focus lens position is determined so that the wobbling center position moves by the shift amount toward the NEAR side (the direction in which the focused object position approaches the imaging unit 200) (S706).
  • the in-focus direction is FAR, the focus lens position is determined so that the wobbling center position is moved by the shift amount to the FAR side (the direction in which the in-focus object position moves away from the imaging unit 200) (S707).
  • the AF evaluation value calculation unit 2030 is not limited to calculating one block AF evaluation value per block, and may calculate a plurality of block AF evaluation values using a plurality of bandpass filters having different frequency bands. Good. Then, the direction determination unit 2040 may obtain a block AF evaluation value change rate ⁇ from each of the plurality of block AF evaluation values, and perform block direction determination based on the block AF evaluation value change rate ⁇ . Thereby, it is possible to accurately determine the block direction even for subjects having various frequency bands.
  • the direction discriminating unit 2040 obtains the direction discriminating result from each of the plurality of block AF evaluation value change rates ⁇ , and when different results are obtained, give priority to the result obtained from the frequency band considered to be noticed by the user. That's fine.
  • the invalid block setting unit 2050 is an evaluation block having an excessively large block AF evaluation value change rate ⁇ , an evaluation block in which a treatment instrument (silver or black) or a bright spot is dominant, a high-luminance portion, a dark portion, or the like. Is set to an invalid block, and an evaluation block having an excessively small block AF evaluation value change rate ⁇ is set to a low contrast block.
  • the block state determination unit 2060 does not invalidate the block state but takes over the block state of the immediately preceding frame.
  • FIG. 20 shows a specific example. In C1 and C2, it is determined that the contrast is low, and the continuity counter is reset to 0. However, the block state is the state of the previous frame (the block state of the frame C3 in FIG. 20). FAR) is taken over. Near the in-focus position, passing through the in-focus position increases the absolute value of the block AF evaluation value change rate ⁇ again, so that the low contrast state does not continue for a long time. For example, as shown at C4 in FIG. 20, a result other than the low contrast is acquired, and the reciprocating motion near the in-focus position is continued.
  • the case where the low contrast state continues for a long period of time is different from the temporary decrease in the block AF evaluation value change rate ⁇ in the vicinity of the in-focus position.
  • this corresponds to a state where the degree of blur is so large that the direction cannot be determined by the wobbling operation (large blur state), or the subject itself has a low contrast. Therefore, the number of times of taking over the past block state (or the number of times of continuing the low contrast state) is counted, and if the count result exceeds the threshold value, it may be determined that the subject is a low contrast subject and the block state is determined to be invalid.
  • the invalid frame setting unit 2070 has been described with respect to an example in which a motion vector is obtained based on an image, the present invention is not limited to this, and sensor information from a motion sensor may be used.
  • the motion sensor here is a sensor that detects the movement of the imaging unit 200, such as an acceleration sensor or a gyro sensor.
  • the invalid frame setting unit 2070 the method based on mist detection and invalid subject detection has been described, but invalid frames can be set by other methods. Specifically, while the imaging unit 200 is moving, it is difficult to perform a focusing operation with high accuracy due to motion blur. For this reason, the invalid frame setting unit 2070 may detect the movement of the imaging unit 200 in addition to the above-described method, and set a frame for which it is determined that the imaging unit 200 is moving as an invalid frame.
  • an invalid frame is determined when the motion vector is larger than a given threshold.
  • Information similar to the motion vector used for the mist detection may be used as the motion vector here.
  • the motion vector corresponding to the treatment tool is large, but in this case, the motion blur is large.
  • the invalid frame There is no need to set the invalid frame. Therefore, a local motion vector and a global motion vector may be obtained as motion vectors, and an invalid frame may be set based on the global motion vector.
  • the in-focus direction determining unit 2080 determines the in-focus direction based on the block state in the current frame, but is not limited to this.
  • the in-focus direction determination unit 2080 may perform a process of updating the in-focus direction when the same in-focus direction continues multiple times. By such processing, it is possible to prevent the focus direction from changing frequently and to realize a stable focus operation.
  • the in-focus determination unit 2090 uses a small change (difference) in the position of the position inverted from FAR to NEAR and the position inverted from NEAR to FAR as a focusing condition. Also good. For example, it has been found that the fluctuation of the width of the reciprocating motion based on the in-focus position is not large. In other words, it is unreliable whether the difference between the position reversed one time before (immediately before) and the latest reversed position is too large or too small. Therefore, if the interval (difference, absolute value of the difference) between the position reversed from FAR to NEAR and the position reversed from NEAR to FAR is not within a predetermined range, it may be determined that it is not in focus.
  • the shift amount when the wobbling center position is moved in the in-focus direction may be a predetermined fixed value, but may be gradually increased when the same direction determination result continues. By performing such processing, the time until the focus lens reaches the in-focus position can be shortened (the in-focus operation can be speeded up).
  • the shift amount may be reduced.
  • the amplitude during the reciprocating motion is reduced, and deterioration of image quality due to the reciprocating motion during the focus determination can be reduced.
  • the amplitude of the reciprocating motion corresponds to the difference between the position inverted from FAR to NEAR and the position inverted from NEAR to FAR described above in the modification example of the focus determination unit 2090. Therefore, when the focus determination unit 2090 determines whether or not the amplitude of the reciprocating motion is within a predetermined range, the “predetermined range” is preferably set in consideration of the shift amount.

Abstract

フォーカス制御装置は、撮像部200で撮像された画像に対して、各領域が複数の画素からなる複数の領域を設定する領域設定部2010と、設定された複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別部2040と、方向判別結果及び重み情報に基づいて、NEAR面積情報とFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、合焦方向に基づいて、合焦物体位置を制御するフォーカス制御部2000を含む。

Description

フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法
 本発明は、フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法等に関する。
 内視鏡システムにおいてはユーザの診断・処置に支障をきたさないため、できるだけ深い被写界深度が要求される。しかし近年では、内視鏡システムにおいても高画素の撮像素子が使用されるに従ってその被写界深度が浅くなってきていることから、オートフォーカス(以下AF)を行う内視鏡システムが提案されている。
 内視鏡手技下では病変の切除や縫合等の処置を行うため、合焦の目標となる生体と撮像装置である内視鏡システムとの間に電気メスや鉗子等の処置具が入る場合がある。この場合、生体と比べてコントラストが高い処置具に合焦してしまい、生体に合焦することが出来ない場合がある。
 特許文献1では、注目被写体と撮像装置との間に障害物が存在する場合、障害物をユーザが指定することで、注目被写体に合焦させる技術が開示されている。
特開2006-245792号公報
 特許文献1では、ユーザが障害物を指定する必要がある。そのため特許文献1の手法を内視鏡手技下で用いた場合、障害物となる処置具の移動が激しいため、ユーザが障害物を頻繁に指定する必要があり操作が煩雑になる。
 本発明の幾つかの態様によれば、ユーザが煩雑な操作を行うことなく注目被写体へ合焦することを可能とするAF制御機能を備えたフォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法等を提供できる。
 本発明の一態様は、撮像部で撮像された画像に対して、各領域が複数の画素からなる複数の領域を設定する領域設定部と、設定された前記複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別処理を行う方向判別部と、前記方向判別結果及び重み情報に基づいて、前記NEARと判定された領域の面積を表すNEAR面積情報と、前記FARと判定された領域の面積を表すFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、前記合焦方向に基づいて、前記合焦物体位置を制御するフォーカス制御部と、を含むフォーカス制御装置に関係する。
 本発明の一態様では、複数の領域で目標合焦位置の方向を判別し、その方向判別結果と重み情報に基づいて、合焦方向を決定する。これにより、重み情報に基づいて合焦方向を制御することができ、ユーザが煩雑な操作を行うことなく、合焦物体位置を柔軟に調整すること等が可能になる。
 また、本発明の他の態様は、上記のフォーカス制御装置を含む内視鏡装置に関係する。
 本発明の他の態様では、処置具等の障害物が撮像される場合であっても、ユーザが煩雑な操作を行うことなく、合焦物体位置を柔軟に調整すること等が可能になる。
 また、本発明の他の態様は、領域設定部と、方向判別部と、フォーカス制御部と、を含むフォーカス制御装置の作動方法であって、前記領域設定部が、撮像部で撮像された画像に対して、各領域が複数の画素からなる複数の領域を設定し、前記方向判別部が、設定された前記複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別処理を行い、前記フォーカス制御部が、前記方向判別結果及び重み情報に基づいて、前記NEARと判定された領域の面積を表すNEAR面積情報と、前記FARと判定された領域の面積を表すFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、決定された前記合焦方向に基づいて、前記合焦物体位置を制御するフォーカス制御装置の作動方法に関係する。
内視鏡装置(撮像部)と被写体(生体、処置具)の位置関係の例。 フォーカス制御装置の基本構成例。 フォーカス制御装置を含む内視鏡装置の構成例。 AF制御部の構成例。 フォーカス制御を説明するフローチャート。 合焦動作を説明するフローチャート。 複数の領域(評価ブロック)の設定例。 図8(A)は方向判別処理における本実施形態のフォーカスレンズの制御を説明する図、図8(B)は従来手法を説明する図。 ブロック状態決定処理を説明するフローチャート。 ブロック状態の時系列的な変化の具体例。 方向判別結果に基づく無効フレームの設定処理の説明図。 合焦方向決定処理を説明するフローチャート。 第2の重み情報(閾値)の調整による合焦位置の調整例。 注目距離推定処理を説明する図。 注目領域検出処理を説明する図。 合焦方向決定処理を説明する他のフローチャート。 合焦判断処理におけるフォーカスレンズの制御を説明する図。 合焦判断処理を説明するフローチャート。 フォーカスレンズ位置決定処理を説明するフローチャート。 ブロック状態の時系列的な変化の具体例。
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
 1.本実施形態の手法
 まず本実施形態の手法について説明する。撮像画像にはユーザが注目している被写体の他に、障害物となる被写体が撮像されることがあり得る。その場合、注目している被写体が、撮像画像において観察しやすい状態、すなわち合焦している(ピントが合っている)状態となることが望ましい。しかし、オートフォーカス(AF)を単純に用いた場合、必ずしも注目している被写体に合焦できるとは限らない。内視鏡手技下では病変の切除や縫合等の処置を行うため、図1に示すように、合焦の目標となる生体と撮像装置である内視鏡装置(内視鏡システム)との間に電気メスや鉗子等の処置具が入る場合がある。コントラストAFであればコントラストが高い領域に合焦するため、生体に注目しているのに、処置具に合焦するおそれがある。
 それに対して、特許文献1に開示された手法のように、ユーザ自身が障害物である被写体を指定する形態であれば、所望の被写体に精度よく合焦させることが可能である。しかし、所定の状況下では撮像画像における障害物の状況が頻繁に変化する可能性があり、そのような場合には変化する毎にユーザが障害物を指定しなくてはならず、ユーザの操作負担が大きい。
 例えば、腹腔鏡手術等の内視鏡手技下では、スコープ(撮像部)とともに処置具を体内に挿入し、当該処置具を用いて生体に対する処置が行われる。ここでの処置具とは、生体に対する処置に用いられる器具であり、具体的には電気メス等のエネルギーデバイスや、鉗子等である。その場合、処置具は生体に対する処置、例えば鉗子を用いて膜状の生体を引っ張り上げたり、鉗子で固定した生体を電気メスで切除したりする行為に利用されるため、ユーザ(ドクター、術者)により頻繁に動かされることになる。結果として、撮像画像において処置具が撮像される画像上位置や、サイズが頻繁に変化する。そのため、障害物が撮像された領域は頻繁に変化し、ユーザが手動で指定するのではユーザ負担が大きいことになる。
 これに対して、障害物の撮像された領域のAF制御に対する寄与度を下げる(狭義にはAF制御から除外する)処理をシステム側で行えば、注目している被写体に適切に合焦させることが可能になる。
 そこで本出願人は以下のようなフォーカス制御装置を提案する。本実施形態に係るフォーカス制御装置は図2に示すように、撮像部(後述する図3の撮像部200に対応)で撮像された画像に対して、各領域が複数の画素からなる複数の領域(評価ブロック)を設定する領域設定部2010と、設定された複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別処理を行う方向判別部2040と、方向判別結果及び重み情報に基づいて、NEARと判定された領域の面積を表すNEAR面積情報と、FARと判定された領域の面積を表すFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、決定された合焦方向に基づいて、合焦物体位置を制御するフォーカス制御部2000を含む。
 ここで合焦物体位置とは、光学系(狭義には後述する図3の対物レンズ系240)、像面(図3の撮像素子250の面)、物体(被写体)からなる系が合焦状態にある場合の、物体の位置を表すものである。例えば、後述する図3に示すように撮像素子250が固定であり、光学系のうちのフォーカスレンズ220が移動可能な例であれば、フォーカスレンズ220の位置を決定することで合焦物体位置が決定されることになる。その場合、合焦物体位置を含む被写界深度の範囲内に位置する被写体に対して合焦した撮像画像が取得される。
 また、NEAR及びFARとは、基準位置に対して目標合焦位置の位置する方向を表すものであり、目標合焦位置が基準位置よりも撮像部200側(光学系及び撮像素子250の側)にある場合にNEARとなり、目標合焦位置が基準位置に対して撮像部200と反対側にある場合にFARとなる。図3のように合焦物体位置がフォーカスレンズ220の位置により制御可能な例であれば、合焦物体位置をNEAR側に移動させる制御は、フォーカスレンズ220の位置を近点側に移動させる制御により実現でき、合焦物体位置をFAR側に移動させる制御は、フォーカスレンズ220の位置を遠点側に移動させる制御により実現できる。
 また、重みづけ大小判定とは、重み情報による重みづけを行った上で、NEAR面積情報とFAR面積情報の大小関係を判定する処理である。重み情報とは、複数の領域の各領域の重みづけ大小判定に対する寄与度を表す第1の重み情報と、NEAR面積情報及びFAR面積情報の重みづけ大小判定に対する寄与度を表す第2の重み情報の少なくとも一方の情報である。言い換えれば、本実施形態の重み情報とは、NEAR面積情報(或いはFAR面積情報、或いはその両方)を算出する際に用いられる重みであってもよいし、NEAR面積情報(或いはFAR面積情報、或いはその両方)自体に対する重みであってもよい。
 このようにすれば、ユーザが煩雑な操作を行うことなく注目被写体へ合焦することが可能になる。特に、内視鏡手技下で想定される様々なシーンにおいて、ユーザが煩雑な操作を行うことなく注目被写体へ合焦することを可能とするAF制御機能を備えた、内視鏡装置の実現が可能となる。具体的には、以下の3点により適切なAF制御が可能になる。
 1点目として、本実施形態では、面積情報に基づいて合焦物体位置の移動する方向を決定する。面積情報はNEARかFARかの方向判別結果によって決まるものであるため、AF評価値(コントラスト値)に基づいて方向判別結果が取得されれば、それ以降の処理には、各領域のAF評価値自体の大小は寄与しない。一般的には、生体よりも処置具のコントラストの方が高い。そのため、通常のコントラストAFでは、処置具の検出に漏れがあり当該処置具を撮像した領域がAF制御に用いられてしまうと、その影響を受けやすくなる。しかし本実施形態の手法では、面積情報の大小判定(重み付け大小判定)で合焦方向を決定する。このため各領域(評価ブロック)は、被写体のAF評価値によらず一票の価値しか持たないため、より処置具の影響を低減することができる。
 2点目として、本実施形態では、第1の重み情報を用いることで、面積情報を求める際の各領域の重み(狭義にはNEAR面積情報を求める際の、NEARと判定された各領域の重み)を設定することができる。そのため、図15を用いて後述するように、画像中の注目領域が特定できる場合、当該注目領域に優先して合焦させることが可能になる。
 3点目として、本実施形態では、第2の重み情報を用いることで、NEAR面積情報とFAR面積情報の大小判定を単純に行うのではなく、重みづけをした上で判定を行う。例えばNEAR面積情報Sと、FAR面積情報Sとを比較する際、S>Sが満たされるか否かを判定するのではなく、下式(1)が満たされるか否かの判定が可能になる。下式(1)のMが第2の重み情報に対応する。
  M×S>S ・・・・・(1)
 そして、M=(1-Th)/Thと置換すれば、上式(1)は下式(2)のように変形できる。
  S/(S+S)>Th ・・・・・(2)
 上式(2)の左辺は、後述するNEARブロックの比率nearRatioに対応するため、本実施形態の重み情報(第2の重み情報)とは、合焦方向を決定する際の閾値TH_NEARであってもよい。図13を用いて後述するように、閾値TH_NEARは合焦位置(合焦動作完了時の合焦物体位置)を調整するパラメータとなるため、第2の重み情報を用いることで合焦位置の柔軟な調整が可能になる。例えば、図14を用いて後述するように、注目被写体までの距離を推定し、推定結果に基づいて第2の重み情報の値を調整してもよい。
 また、本実施形態のフォーカス制御装置は、情報(例えばプログラムや各種のデータ)を記憶するメモリ(記憶部)と、メモリに記憶された情報に基づいて動作するプロセッサ(図3の処理部300、ハードウェアを含むプロセッサ)と、を含む。プロセッサは、撮像部で撮像された画像に対して、各領域が複数の画素からなる複数の領域を設定する領域設定処理と、設定された複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別処理を行う方向判別処理と、方向判別結果及び重み情報に基づいて、NEARと判定された領域の面積を表すNEAR面積情報と、FARと判定された領域の面積を表すFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、決定された前記合焦方向に基づいて、前記合焦物体位置を制御するフォーカス制御と、を行う。
 プロセッサは、例えば各部の機能が個別のハードウェアで実現されてもよいし、或いは各部の機能が一体のハードウェアで実現されてもよい。プロセッサは、例えばCPU(Central Processing Unit)であってもよい。ただしプロセッサはCPUに限定されるものではなく、GPU(Graphics Processing Unit)、或いはDSP(Digital Signal Processor)等、各種のプロセッサを用いることが可能である。またプロセッサはASIC(Application Specific Integrated Circuit)によるハードウェア回路でもよい。メモリは、例えばSRAM、DRAMなどの半導体メモリであってもよいし、レジスターであってもよいし、ハードディスク装置等の磁気記憶装置であってもよいし、光学ディスク装置等の光学式記憶装置であってもよい。例えば、メモリはコンピュータにより読み取り可能な命令を格納しており、当該命令がプロセッサにより実行されることで、フォーカス制御装置の各部の機能が実現されることになる。ここでの命令は、プログラムを構成する命令セットの命令でもよいし、プロセッサのハードウェア回路に対して動作を指示する命令であってもよい。
 本実施形態の動作は例えば以下のように実現される。プロセッサは、取得した画像に対して複数の領域を設定する処理を行い、当該複数の領域に関する情報をメモリに記憶する。さらに、プロセッサは、メモリから複数の領域の情報を読み出し、各領域のAF評価値(ブロックAF評価値)を求めメモリに記憶する。プロセッサは、メモリからブロックAF評価値を読み出し、方向判別処理を行って方向判別結果をメモリに記憶する。また、プロセッサは、メモリから方向判別結果と重み情報を読み出し、重みづけ大小判定を行って合焦方向を求め、メモリに記憶する。さらにプロセッサは、メモリから合焦方向を読み出し、当該合焦方向に従って合焦物体位置を制御する。合焦物体位置の制御は、具体的にはフォーカスレンズを駆動する機構(図3のフォーカスレンズ駆動部230)に対して、制御信号を出力する処理により実現できる。
 また、本実施形態のフォーカス制御装置の各部は、プロセッサ上で動作するプログラムのモジュールとして実現される。例えば、領域設定部は、撮像部で撮像された画像に対して、各領域が複数の画素からなる複数の領域を設定する領域設定モジュールとして実現される。方向判別部は、設定された複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別処理を行う方向判別モジュールとして実現される。フォーカス制御部は、方向判別結果及び重み情報に基づいて、NEARと判定された領域の面積を表すNEAR面積情報と、FARと判定された領域の面積を表すFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、決定された前記合焦方向に基づいて、前記合焦物体位置を制御するフォーカス制御モジュールとして実現される。
 以下、本実施形態について詳細に説明する。まず本実施形態に係るフォーカス制御装置、及びフォーカス制御装置を含む内視鏡装置のシステム構成例を説明した後、本実施形態の合焦動作の流れを説明する。なお、本実施形態のフォーカス制御装置を含む装置(電子機器)は、内視鏡装置に限定されるものではなく、他の装置であってもよい。例えば、デジタルスチルカメラやビデオカメラ、携帯電話等の機器が本実施形態のフォーカス制御装置を含んでもよい。その場合にも、障害物による影響を抑止し、ユーザに煩雑な操作を行わせることなく、柔軟なAF制御が可能になる点は同様である。
 2.システム構成例
 本実施形態に係るフォーカス制御装置を含む内視鏡装置について、図3を用いて説明する。本実施形態における内視鏡装置は、体内への挿入部である硬性鏡100と、硬性鏡100に接続される撮像部200と、処理部300と、表示部400と、外部I/F部500と、光源部600を備えている。
 光源部600は、白色光を発生する白色光源610と、白色光源610からの出射光を硬性鏡に導光するライトガイドケーブル620を備えている。硬性鏡100は結像レンズ、リレーレンズ、接眼レンズ等を含んで構成されるレンズ系110と、ライトガイドケーブル620からの出射光を、硬性鏡先端まで導光するライトガイド部120を備えている。撮像部200は、レンズ系110からの出射光を結像する対物レンズ系240を備える。対物レンズ系240は、合焦物体位置を調整するフォーカスレンズ220を含んで構成されている。撮像部200はさらに、対物レンズ系240で結像された反射光を光電変換して画像を生成する撮像素子250と、フォーカスレンズ220を駆動するフォーカスレンズ駆動部230と、AFの開始、終了を制御するAF開始/終了ボタン210を備えている。フォーカスレンズ駆動部230は、例えばボイスコイルモーター(VCM)である。
 撮像素子250は、例えば複数の画素が2次元配列状に配置された構造で、各画素にはRGBのいずれかのカラーフィルタがベイヤ配列で配置されている。また、補色カラーフィルタを用いた撮像素子や、カラーフィルタを用いずに1つの画素で異なる波長の光を受光可能な積層型の撮像素子、カラーフィルタを用いないモノクロ撮像素子など、被写体を撮像して画像を得られるものであれば、任意の撮像素子を使用できる。
 処理部300はA/D変換部310と、前処理部320と、画像処理部330と、AF制御部340と、制御部350を備えている。A/D変換部310は、撮像素子250から順次出力されるアナログ信号をデジタルの画像に変換して、前処理部320に順次出力する。前処理部320はA/D変換部310から出力された画像に対して、ホワイトバランス、補間処理(デモザイキング処理)等の画像処理を施し、画像処理部330とAF制御部340に順次出力する。AF制御部340の詳細については後述する。画像処理部330は、前処理部320から出力された画像に対して色変換、階調変換、エッジ強調、拡縮処理、ノイズリダクション等の画像処理を施し、表示部400に画像を順次出力する。表示部400は例えば液晶モニタであり、画像処理部330から順次出力される画像を表示する。
 制御部350は外部I/F部500や画像処理部330、AF制御部340、撮像素子250、AF開始/終了ボタン210などと相互に接続されており、制御信号の入出力を行う。外部I/F部500は、内視鏡装置に対するユーザからの入力等を行うためのインターフェースであり、例えばAFモードを切り替えるモードボタン、AF領域の位置やサイズを設定するための設定ボタン、画像処理のパラメータを調整するための調整ボタンなどを含んで構成されている。
 AF制御部340は、例えば図4に示したように、領域設定部2010と、ブロック特徴量算出部2020と、AF評価値算出部2030と、方向判別部(ブロック方向判別部)2040と、無効ブロック設定部(無効領域設定部)2050と、ブロック状態決定部2060と、無効フレーム設定部2070と、合焦方向決定部2080と、合焦判断部2090と、フォーカスレンズ位置決定部2095を備えている。
 領域設定部2010は、撮像画像に対してAFに用いられる領域を設定する。ここでの領域とはAF領域と評価ブロックの両方を含んでもよい。ブロック特徴量算出部2020は、各評価ブロックを対象として、特徴量を算出する。AF評価値算出部2030は、各評価ブロックを対象として、AFに用いられる評価値を算出する。方向判別部2040は、各評価ブロックを対象として、AF評価値に基づいて目標合焦位置の方向を判別する。ここでの方向判別結果は、狭義にはNEAR又はFARを表す情報である。無効ブロック設定部2050は、特徴量に基づいて無効ブロックを設定する。ここでの無効ブロックは、合焦方向決定に用いられない評価ブロックを表す。ブロック状態決定部2060は、方向判別結果の履歴情報に基づいて、最終的な方向判別結果であるブロック状態を決定する。無効フレーム設定部2070は、処理対象フレーム自体を無効フレームに設定するか否かを判定する。ここでの無効フレームは、合焦方向決定に用いられないフレームを表す。合焦方向決定部2080は、合焦方向、すなわち合焦物体位置の移動方向(或いは当該移動方向に対応するフォーカスレンズ220の移動方向)を判別する。合焦判断部2090は、合焦物体位置の移動により、合焦状態となったか否か、すなわち合焦動作を完了するか否かを判断する。フォーカスレンズ位置決定部2095は、フォーカスレンズを移動する位置を決定する.具体的には、求められた合焦方向に対応する移動(ウォブリング中心位置の移動)と、方向判別用の移動(ウォブリング動作)を考慮して位置を決定する。
 なお、AF制御部340の各部で行われる処理の詳細については後述する。また、図2におけるフォーカス制御部2000は、例えば図4に示したAF制御部340のうちの、領域設定部2010と方向判別部2040を除いた構成に対応するものであってもよい。また、本実施形態に係るフォーカス制御装置は、AF制御部340に対応するものであってもよいが、これに限定されず、図3の処理部300全体をフォーカス制御装置とする等、種々の変形実施が可能である。また、フォーカス制御装置の一部の構成要素を省略する、他の構成要素を追加するなどの種々の変形実施が可能である。また、種々の変形実施が可能な点は、図3、図4の他の構成についても同様である。
 3.AF制御部の処理の詳細
<概要>
 本実施形態においてAF制御部340で行われるAF制御の概要について、図5を用いて説明する。AF制御部340は、ユーザがAF開始/終了ボタン210を操作しAFが開始されるとまず合焦動作を開始する。
 合焦動作が開始されると、A/D変換部310から順次出力される画像の取得タイミングに同期するように、フォーカスレンズのウォブリング動作を開始し、ウォブリング動作で取得された画像に基づいて、合焦動作を実施する(S101)。
 合焦動作により合焦が完了したか否かを判定し(S102)、完了していない場合にはフォーカスレンズ位置を変更し(S103)、再度合焦動作を行う。S100の合焦動作は、例えば1フレームごとに行われる処理となり、各フレームにおいて合焦動作及び合焦完了判定を行い、合焦が完了したと判定されるまで、当該処理をフォーカスレンズ位置を変更しながら継続する。S102で合焦完了した場合は、フォーカスレンズを合焦位置に移動し、合焦動作(ウォブリング)を終了する(S104)。
 合焦動作が終了した場合、AF制御部340は待機動作を開始する。待機動作が開始されると、AF制御部340はシーン変化の検出処理を行う(S105)。ここでAF制御部340は、例えば前処理部320から順次出力される画像を用いて、例えば画像の色や輝度、AF評価値の変化や、画像の動き等を監視することでシーン変化を検出する。次にAF制御部340は、シーン変化が検出されたか否かの判断を行う(S106)。シーン変化が検出されない場合はS105からの動作を繰り返し、シーン変化が検出された場合は待機動作を終了する。待機動作が終了した場合、AF制御部340は合焦動作を再開する。なお待機動作が実行されている間、AF制御部340は、例えばフォーカスレンズ位置を合焦位置に固定し、フォーカスレンズの駆動は行わない。
 次に、AF制御部340における合焦動作(S101)の詳細について、図6のフローチャートを用いて説明する。
<AF領域設定>
 この処理が開始されると、まず領域設定部(AF領域設定部)2010により、画像上に複数の評価ブロックからなるAF領域を設定する(S201)。AF領域の設定の例を図7に示す。図7において外周の矩形は画像全体を表し、Aと記載されている矩形は後述のAF評価値や特徴量等の算出対象の領域である、評価ブロックを表している。また、図7において、評価ブロック全体を囲む範囲をAF領域とする。図7では画像データの中央部に、横方向に5個、縦方向に4個の合計20個の評価ブロックを設定している。
<ブロックAF評価値算出>
 AF評価値算出部2030は、前処理部320から出力される画像データの画素値に基づいて、各評価ブロックのAF評価値であるブロックAF評価値を算出する(S202)。ブロックAF評価値はブロック内の被写体に対する合焦度合いに応じて大きくなる値である。ブロックAF評価値は、例えば各評価ブロック内の画像の各画素に対してバンドパスフィルタを適用し、その出力値をブロック内で累積して算出する。
<ブロック方向判別>
 方向判別部2040は、各評価ブロックのブロックAF評価値から、各評価ブロックの目標合焦方向を判別する(S203)。判別手法の例を図8(A)を用いて説明する。AF評価値算出部2030から出力される最新(現在フレーム)のブロックAF評価値をAfVal[N]、1フレーム前、2フレーム前に出力されたブロックAF評価値をそれぞれAfVal[N-1]、AfVal[N-2]とする。方向判別部2040は、ブロックAF評価値変化量αを下式(3)を用いて算出する。
 α = {(AfVal[N] + AfVal[N-2])/2)} - AfVal[N-1] …(3)
 このような処理を行うことで、図8(A)のようにウォブリングと同時にシフト動作を行う場合(フォーカスレンズをNEAR方向に移動した時とFAR方向に移動させた時の移動量が一定にならない)も、精度よく合焦方向を判別することができる。
 仮に隣接2フレーム間でのAF評価値の比較を行う場合、図8(A)のようにフォーカスレンズを移動させると、N-2とN-1の間ではフォーカスレンズの移動量がウォブリング量相当となるのに対して、N-1とNの間ではフォーカスレンズの移動量がウォブリング量+シフト量相当となる。つまり、タイミングに応じてレンズ移動量が異なってしまうため、安定した方向判別ができなくなってしまう。
 図8(B)に比較例として示した一般的なウォブリング動作であれば、N-2、N-1の2フレームでAF評価値を算出し、Nのフレームでこれらを比較することで目標合焦方向を判別し、ウォブリング中心位置の移動方向を決定している。このような動作を行えば、各方向判別処理におけるフォーカスレンズの移動量(振り幅)は一定とできる。しかし、図8(B)の手法では方向判別結果が3フレームに1回しか取得できず、合焦動作の高速化等が難しい。例えば図8(B)に記載された範囲であれば、方向判別結果が取得できるのはNとN+3の2つのフレームのみとなる。
 その点、上式(3)を用いることで、実質的なレンズ移動量を安定させることができる。例えばNのフレームでは、NとN-2の平均に相当する位置と、N-1の位置との間でフォーカスレンズを移動させた場合に相当する判定を行うことになる。次のN+1のフレームでは、N+1とN-1の平均に相当する位置と、Nの位置との間でフォーカスレンズを移動させた場合に相当する判定を行うことになり、この場合の移動量はNのフレームでの移動量と同様の値となる。以下、各フレームについても同様である。
 このようにすれば、図8(A)のようにウォブリングとシフト動作を同時に行うことが可能になり、被写体に短期間で合焦することができる。また、方向判別結果を1フレームに1回求めることが可能になる。
 ただし、上式(3)で求められるブロックAF評価値変化量αは、ボケの度合いだけでなく、被写体自体の輝度やコントラストに応じても値が異なる。ここでは、各評価ブロックでのボケの度合いを表す指標値を取得することを考慮しているため、被写体の輝度やコントラストに起因する成分は除外することが望ましい。よって本実施形態では、上式(3)で求められるブロックAF評価値変化量αの正規化を行い、ブロックAF評価値変化率βを求める。具体的には、下式(4)、(5)を用いればよい。なお、本実施形態ではブロックAF評価値変化率βが正の場合はNEAR、負の場合はFARと判断するため、フォーカスレンズがNEAR方向に移動した時の画像からAfVal[N]が算出された場合には下式(4)を用い、フォーカスレンズがFAR方向に移動した時の画像からAfVal[N]が算出された場合には下式(5)を用いる。なおAve(a,b,c)はaとbとcの平均値を表す。
 β=α / Ave(AfVal[N], AfVal[N-1], AfVal[N-2]) …(4)
 β=-1 * α / Ave(AfVal[N], AfVal[N-1], AfVal[N-2]) …(5)
 上式(4)又は(5)で求められるブロックAF評価値変化率βは、ブロックAF評価値変化量αを正規化した値である。このため、被写体のコントラストや明るさによらず、ウォブリング時の合焦度合いの変化に応じてほぼ一定の値となる。
<ブロック特徴量算出>
 また、ブロック特徴量算出部2020は、前処理部320から出力される画像データに基づいて各評価ブロックの特徴量(色情報、輝度情報、輝点のサイズ等)を算出する(S204)。特徴量の算出については、広く知られた手法であるため、詳細な説明は省略する。
<無効ブロック設定>
 無効ブロック設定部2050は、S203で求められたブロックAF評価値変化率βや、S204で求められたブロック特徴量に基づいて、無効ブロックを設定する(S205)。
 まず、無効ブロック設定部2050はブロックAF評価値変化率βの絶対値が所定の範囲外にある評価ブロックを無効ブロックに設定する。例えば|β|<第1の閾値又は|β|>第2の閾値(>第1の閾値)となる評価ブロックを無効ブロックに設定する。被写体に十分なコントラストが無い場合や、画像が大ボケしている場合は、正しい方向判別結果が得られない。このような場合は、ブロックAF評価値変化率βが小さくなる。
 また、被写体の動き等により撮影された被写体自体が変化した場合や、急に処置具が入り込んだ場合、ブロックAF評価値変化率βの算出に使用される画像のいずれかが動きボケしている場合などは、正しい方向判別結果が得られない。このような場合は、ブロックAF評価値変化率βが大きくなる。
 つまり、ブロックAF評価値変化率βが過剰に小さい場合や大きい場合に、当該評価ブロックを無効ブロックとすることで、ブロック方向判別結果が信頼できないブロックを無効ブロックに設定でき、合焦方向決定処理の精度を高くすることが可能になる。
 また、無効ブロック設定部2050は、評価ブロックのブロック特徴量(色情報、輝度情報、輝点のサイズ等)から、処置具(銀色か黒色)や輝点など、生体以外の物体が支配的な評価ブロックや、高輝度部、暗部等を検出し、これらの評価ブロックを無効ブロックに設定する。このような処理を行うことで、生体以外のブロックや、ブロック方向判別結果が信頼できないブロックを無効ブロックに設定できる。
<ブロック状態決定>
 次に、ブロック状態決定部2060は、S203で求められたブロック方向判別結果と、S205で求められた無効ブロック設定結果に基づいてブロック状態を決定する(S206)。
 まず、現在フレーム又は過去2フレームに無効ブロックが存在する場合は、ブロック方向判別結果が信頼できないため、現在フレームのブロック状態を無効にする。これは上式(3)を用いて上述したように、ブロック方向判別が、現在フレーム及び過去2フレームのブロックAF評価値を用いて行われるためである。
 また、本実施形態では、同じブロック方向判別結果が閾値以上連続した場合に、ブロック状態を更新し、それまでは、直前フレームのブロック状態を引き継ぐ。これは、ブロック状態の信頼性を向上させ、頻繁に変動するのを防ぐためである。
 図9は、ブロック状態決定部2060での処理を説明するフローチャートである。この処理が開始されると、まず現在フレーム又は過去2フレーム内に無効ブロックが存在するかの判定を行う(S301)。S301でYesの場合には、連続度カウンタを0とし(S302)、ブロック状態を無効ブロックとする(S303)。ここでの連続度カウンタとは、同じ方向判別結果が連続した回数を表す。過去2フレーム内に無効ブロックが存在する場合、現在フレームの方向判別結果がNEAR、或いはFARとなったとしても、その結果を信頼できない。そのため、S302では、現在フレームの方向判別結果によらず、連続度カウンタは0のままである。
 S301でNoの場合、現在フレームと直前フレーム(1つ前のフレーム)の方向判別結果が異なるか否かを判定する(S304)。S304でYesの場合、方向判別結果が変化したということであるから、同じ方向判別結果は連続していないため、連続度カウンタを1とする(S305)。また、連続度カウンタの値が閾値を超えることはないため、ブロック状態は直前フレームの状態を引き継ぐ(S306)。
 S304でNoの場合、過去2フレーム内に無効ブロックが無く、同一の方向判別結果が連続している状態となる。そのため、連続度カウンタが閾値(例えば2)未満であるかの判定処理を行う(S307)。S307でYesの場合は、同一の方向判別結果が連続しているため連続度カウンタをインクリメントする(S308)が、連続回数が充分でないため、ブロック状態は直前フレームの状態を引き継ぐ(S309)。
 S307でNoの場合は、同一の方向判別結果が充分な回数連続したことになるため、現在フレームの方向判別結果により、ブロック状態を置き換える(S310)。
 図10に具体例を示す。図10は複数の評価ブロックのうちの所与の評価ブロックを対象とした図であり、上段がS203の方向判別結果、及びS205の無効ブロック設定結果を表し、下段がブロック状態を表す。
 図10のA1のフレームでこの評価ブロックが無効ブロックに設定されたため、当該フレームでのブロック状態も無効となる。また、A2のフレームでは方向判別結果はFAR、A3のフレームでは方向判別結果はNEARとなっているが、過去2フレーム内に無効ブロックが存在するため、ブロック状態としては無効ブロックとなる。
 また、A4のフレームでは、方向判別結果がNEARからFARに切り替わっているが、FARはまだ連続していないため、連続度カウンタは1となっている。ここでは閾値を2としており、連続度カウンタ≦閾値となるため、A4のフレームは過去の状態を引き継ぐ。つまり、方向判別結果はFARであるが、ブロック状態としてはNEARが維持される。
 また、A5のフレームも同様である。A5では、過去2フレーム内には無効ブロックが存在しない。しかし、直前のA3のフレームで連続度カウンタが0であるため、A5での連続度カウンタは1である。そのため、連続度カウンタ≦閾値となるため、A5のフレームは過去(A3)の状態を引き継ぎ、無効ブロックとなる。
<無効フレーム設定>
 次に、無効フレーム設定部2070は、無効フレームの設定を行う(S207)。無効フレームでは、当該フレームの画像自体が合焦方向の決定に適しておらず、方向判別結果の信頼性も低いため、方向判別結果に基づく合焦物体位置の移動を行わない。これは具体的には、ウォブリング動作の中心位置を移動させずに(シフト量に相当する量のフォーカスレンズの移動を行わずに)、ウォブリング量に相当する量のフォーカスレンズの移動、すなわちウォブリング動作のみを行う。無効フレームとは具体的にはミストが検出された場合、又は無効被写体が検出された場合に設定される。
 そのため、無効フレーム設定部2070は、まず方向判別部2040から出力される各評価ブロックの方向判断結果に基づいて、ミスト検出を行う。後述するように、ミスト検出時にフレーム間の方向判別結果の連続性を考慮するため、ここではブロック状態決定部2060から出力されるブロック状態は使用しない。
 内視鏡手技中にミストが発生すると、精度よくブロック方向判別ができずに合焦動作が不安定になる可能性がある。一方ミストが発生するのは、ユーザが電気メス等の処置具を使用して処置を行う場合であるため、ミスト発生時は被写体にある程度ピントが合っている状態である。このため、ミストを検出して合焦動作を中断すれば、ユーザの処置に悪影響を与えることはない。
 ミスト検出では、例えば、フレーム間およびフレーム内における各評価ブロックの方向判別結果のばらつき度からミストを検出する。ミスト発生時は、画像上でミストの濃淡に大きなバラツキが有り、またその分布が短期間で大きく変化する。この結果、AF評価値も同様に大きく変化することから、図11に示すようにブロック方向判別結果も時間、空間方向に大きく変化する。このため、前述のような手法でミストを検出することが可能になる。
 ばらつき度は例えば、以下のようにして検出する。まず各評価ブロックに対し、直前フレームと異なる方向判別結果か否かを判断する(時間的なばらつき度の判定)。そして、直前フレームと異なる方向判別結果の評価ブロックに対して、現在フレームの方向判別結果を周囲の評価ブロックと比較し、方向判別結果が異なる評価ブロック数をカウントする(空間的なばらつき度の判定)。そして、カウントの総和が閾値を超えたブロックをミストブロックと判定する。すなわち、ここでのミストブロックとは、時間的なばらつき度と空間的なばらつき度の両方が大きいと判定された評価ブロックとなる。
 無効フレーム設定部2070は、ミストブロックの数が所定の閾値を超えた場合、ミストと検出した判断し、現在フレームを無効フレームに設定する。
 また、無効フレーム設定部2070は、動きベクトルを用いてミスト検出を行ってもよい。例えば、取得タイミングの異なる2つの画像(具体的には隣接2フレームの画像)から画像間での動きを表す動きベクトルを求める。ここでの動きベクトルは、画像上に複数の点(領域)を設定し、各点(領域)を対象として求められる。すなわち隣接2フレームの画像を用いた処理により、複数の動きベクトルが算出される。動きベクトルはミストによる影響を受けやすいため、ミスト発生時には求められた複数の動きベクトルの間での空間的なバラツキが大きくなる。
 よって、無効フレーム設定部2070は、動きベクトルの空間的な類似性に基づいて、動きベクトルの信頼性を判定し、ミスト検出を行う。動きベクトルが空間的に類似していれば、動きベクトルがノイズ成分ではなく信号成分により算出されているため、信頼性“有り”と判定する。
 具体的には、まず画像内の複数の局所的な動きベクトルの中から1つの動きベクトル(以下、注目動きベクトル)を選択する。次に、選択した注目動きベクトルと隣接する動きベクトルの差分などから、隣接する動きベクトルが類似ベクトルか否かを判定する。隣接するすべての動きベクトルに対して上記の判定処理を行ったうえで、類似ベクトル数をカウントし、類似ベクトル数と所定の閾値を比較する。類似ベクトル数が閾値より大きい場合、その注目動きベクトルは周囲の動きベクトルと空間的な類似性があるため、その注目動きベクトルは信頼性“有り”と判定する。一方、類似ベクトル数が閾値以下である場合、その注目動きベクトルは信頼性“無し”と判定する。以上の判定を画像内の全ての動きベクトルに対して実行することで、各動きベクトルに対して、信頼性の有無が判定される。
 各動きベクトルの信頼性から、画像全体としての信頼性を判定し、信頼性が低い場合にはミストが検出されたと判定する。例えば、信頼性の低い動きベクトルの数や比率が所与の閾値を超えた場合に、ミストを検出したと判定すればよい。
 また、無効フレーム設定部2070では、方向判別結果と動きベクトルの両方を用いてミスト検出を行ってもよい。例えば、方向判別結果と動きベクトルの両方でミストが検出された場合に、最終的にミストと判断してもよい。このような手法を用いることでミスト検出の精度を向上できる。
 また、無効フレーム設定部2070は、無効被写体が検出された場合に対象フレームを無効フレームに設定してもよい。具体的には、ブロック状態決定部2060から出力されるブロック状態に基づいて、無効被写体検出を行う。AF領域に対して、無効ブロック(処置具、輝点、高輝度部、暗部、ブロックAF評価値変化率βが所定の範囲外となっているブロック)が大部分を占めると、精度よく合焦動作を行うことができない。このため、S205で設定された無効ブロックの数が所定の閾値を超えた場合、無効被写体と判断し、対象フレームを無効フレームとする。
 なお、内視鏡手技において無効フレームに設定されるようなシーンは長時間連続しないため、合焦動作を中断してもユーザの処置に悪影響を与えることはない。
 フォーカス制御部2000は、無効フレーム設定部2070により対象フレームが無効フレームに設定されたか否かの判定を行い(S208)、無効フレームに設定されている場合には、以下の合焦方向決定処理(S209)、合焦判断(S210)の処理をスキップして、フォーカスレンズ位置の決定を行う(S211)。また、無効フレームでない場合には、S209~S211の処理を順次行う。
 以上のように、本実施形態のフォーカス制御部2000(プロセッサ)は、複数の領域の各領域の方向判別結果、及び各領域に含まれる複数の画素の特徴量の少なくとも一方に基づいて、無効フレームを設定する無効フレーム設定部2070をさらに備え、フォーカス制御部2000は、無効フレームと判定されたフレームでは、方向判別結果に基づく合焦物体位置の移動を行わない。
 このようにすれば、方向判別結果の信頼性が低い場合に、不適切な方向に合焦物体位置をシフトさせてしまうことを抑止できる。なお、ここでの「方向判別結果に基づく移動」とは、ウォブリング中心位置のシフト量分のフォーカスレンズの移動を表している。よって無効フレームに設定されたとしても、方向判別を行うためのウォブリング動作(ウォブリング中心位置を基準としてウォブリング量だけのフォーカスレンズの移動)を行うことは妨げられない。
 その際、無効フレーム設定部2070(プロセッサ)は、方向判別結果の空間的な変動情報(ばらつき度)、方向判別結果の時間的な変動情報、及び特徴量である動きベクトルの変動情報のうちの少なくとも1つに基づいて、無効フレームを設定する。
 時間的な変動情報とは、上述したように所与の領域での方向判別結果を時系列的に見た場合のばらつき度(相違度)を表す。空間的な変動情報とは、所与の領域での方向判別結果と、その近傍(例えば図7のような評価ブロックの場合、上下左右の4マス、或いは周囲8マス等)の方向判別結果のばらつき度を表す。動きベクトルの変動情報とは、1つの画像上に設定される複数の動きベクトル間でのばらつき度を表す。
 このようにすれば、ミスト発生時や無効被写体撮像時に、合焦方向決定処理等をスキップできるため、誤った方向にフォーカスレンズを移動してしまう可能性を抑止できる。なお、上記の3つの変動情報はいずれか1つを用いてもよいし、2つ以上を組み合わせてもよい。例えば、合焦位置付近ではブロックAF評価値変化率βが小さくなるため、方向判別結果は時間的にも空間的にもばらつき度合いが大きくなりやすい。そのため、無効フレームに設定しなくてもよい状態を無効フレームであると誤判定するおそれがある。しかし動きベクトルは合焦位置付近でもばらつき度合いが小さいため、方向判別結果の変動情報と動きベクトルの変動情報を組み合わせることで精度よく無効フレームを設定することが可能になる。
<合焦方向決定>
 合焦方向決定部2080は、S206においてブロック状態決定部2060から出力される各評価ブロックのブロック状態に基づいて、最終的な合焦方向を決定する(S209)。
 本実施形態のフォーカス制御部2000(プロセッサ)は、上述したように、複数の領域の各領域のAF評価値、又は各領域に含まれる複数の画素の特徴量に基づいて、無効領域を設定する無効領域設定部(無効ブロック設定部2050)を含む。そこでフォーカス制御部2000(合焦方向決定部2080)は、複数の領域のうち、少なくとも無効領域を除く領域である有効領域の面積情報に対する、NEAR面積情報の比率(nearRatio)が、重み情報に対応する所定の閾値(TH_NEAR)より大きい場合は、合焦方向がNEAR側であると判定する。
 図12が合焦方向決定部2080での処理を説明するフローチャートである。この処理が開始されると、まずAF領域内の有効ブロックの数をカウントする(S401)。ここでの有効ブロックとは、無効ブロックでない評価ブロックである。ブロック状態がNEAR,FAR,無効の3通りであるとすれば、NEARブロックとFARブロックの数の合計が有効ブロックの数となる。
 次に、ブロック状態がNEARであるブロックの数をカウントし(S402)、有効ブロックに対する、NEARブロックの比率(nearRatio)を算出する(S403)。そして、nearRatioが閾値TH_NEARより大きいか否かを判断し(S404)、その結果に基づいて合焦方向を決定する。これは上述したように、NEARブロックとFARブロックの重み付け大小判定で合焦方向を決定する処理に相当する。
 具体的には、nearRatio>TH_NEARの場合は、合焦方向はNEARと判定し(S405)、nearRatio ≦TH_NEARの場合は、合焦方向はFARであると判定する(S406)。
 このような処理を行うことで、例えばS205の無効ブロックの設定処理で処置具の一部が無効ブロックとして検出できず、有効ブロックとなった場合も、精度よく生体に合焦させることが可能となる。なぜなら、処置具の一部が有効ブロックとなり、そのブロック状態(方向)が生体のブロック状態(方向)と異なったとしても、AF領域全体では生体のブロックの方が多くなるため、生体のブロック状態により合焦方向が決定されるからである。
 また図13に示すように、被写体に奥行きがある場合、本処理ではTH_NEARが大きくなるほど、最終的な合焦位置は奥側(撮像部200から遠い側)となる。TH_NEARが大きければ、それだけNEARブロックの比率が高くならなければ合焦方向がNEARとならず、合焦物体位置はFAR側に移動されるためである。
 このため、例えばユーザがTH_NEARの値を調整することで、好みに合わせて合焦位置を調整することが可能になる。
 或いは、本実施形態のフォーカス制御部2000(プロセッサ)は、画像に基づいて、ユーザが注目していると判定される被写体と撮像部200との相対距離を推定する注目距離推定部(図4等には不図示)をさらに備え、フォーカス制御部2000は、注目距離推定部の推定結果に基づいて、閾値を変更してもよい。例えば注目距離推定部は、画像全体の輝度分布等から被写体の状態を推定し、フォーカス制御部2000(合焦方向決定部2080)は、その結果に応じて自動的にTH_NEARの値を調整するようにしてもよい。
 具体的には、図14のように画像の中心付近が明るく周囲が暗い場合、ユーザは腹腔内で手前に位置する臓器に注目していると考えられる。このような場合はTH_NEARの値を小さくすることで、手前に位置する注目臓器に精度よく合焦することができる。
 つまり本実施形態のフォーカス制御部2000(プロセッサ)は、上記重みづけ大小判定として、第2の重み情報による重みづけがされたNEAR面積情報と、FAR面積情報との大小判定を行う。このようにすれば、合焦位置(注目被写体に合焦したと判定された際の合焦物体位置、或いは当該合焦物体位置を実現するフォーカスレンズ位置)を、柔軟に設定することが可能になる。
 以上は、本実施形態における第2の重み情報に関する手法であるが、本実施形態では上述したように第1の重み情報を用いてもよい。
 本実施形態のフォーカス制御部2000(プロセッサ)は、画像に基づいて、ユーザが注目していると判定される領域を推定する注目領域推定部(図4等には不図示)をさらに備え、フォーカス制御部2000は、注目領域推定部で推定された領域が大きな重みとなる重み情報(第1の重み情報)を設定し、設定された重み情報に基づいてNEAR面積情報を算出してもよい。
 例えば図15に示すように、被写体に奥行きがあり、その一部にユーザが注目して処置を行うような場合、ユーザの注目領域に精度よく合焦する必要がある。このような場合は、注目領域推定部は、例えば図15に示すように、まず注目領域に対応する注目ブロックを推定し、フォーカス制御部2000(合焦方向決定部2080)は、注目ブロックの重みをN(第1の重み情報であり、N>1)としてカウントする。このような処理を行うことで、nearRatioの算出における注目ブロックの状態(方向)の重みが大きくなる。結果として、合焦方向を決定する際の注目ブロックの状態の重みも大きくなるため、注目領域に精度よく合焦することが可能となる。
 つまり本実施形態のフォーカス制御部2000(プロセッサ)は、第1の重み情報に基づいて、NEAR面積情報を求める。具体的には、NEARと判定された領域に設定された第1の重み情報に基づいて、NEAR面積情報を求める。上記のように、複数の領域(評価ブロック)の面積が全て同一であれば、NEARと判定された領域の重みの総和がNEAR面積情報となる。より一般化して、各領域の面積と重み情報との積の総和をNEAR面積情報としてもよい。このようにすれば、画像中の注目領域に適切に合焦することができる。
 以上ではNEARと判定された領域に注目して処理を行うことを想定し、フォーカス制御部2000は、NEAR面積情報の算出に第1の重み情報を用いている。ただし、フォーカス制御部2000ではFARと判定された領域に注目して処理を行ってもよい。その場合、フォーカス制御部2000は、FARと判定された領域に設定された第1の重み情報に基づいて、FAR面積情報を求めることになる。具体的には、フォーカス制御部2000は、注目領域推定部で推定された領域が大きな重みとなる重み情報(第1の重み情報)を設定し、設定された重み情報に基づいてFAR面積情報を算出する。
 ここで、注目ブロックの推定は例えば以下のように行えばよい。ユーザが処置を行う領域では、処置具や生体が大きく変動するため、評価ブロックのAF評価値やブロック特徴量(色情報、輝度情報)が短時間で大きく変化する。このため、これらの値の時間的な変化量から、注目ブロックを推定すればよい。また、公知の手法を用いて評価ブロックの動きベクトルを算出し、動きベクトルの大きさや方向の時間的な変化量から、注目ブロックを推定してもよい。また、注目ブロックに占める無効(処置具)ブロックの割合が大きくなることを防ぐため、変化量が大きなブロックに限らず、その周囲のブロックまで含めて注目ブロックと推定してもよい。
 図16が第1の重み情報を用いる場合の処理を説明するフローチャートである。この処理が開始されると、まず注目ブロックの推定を行う(S501)。次に有効ブロックのカウントを行う(S502)。ただし、S502ではS401とは異なり、カウントの際に重みNを用いる。具体的には、注目ブロックの重みをNとし、注目ブロック以外の重みを1としてカウントを行う。また、NEARブロック数のカウントでも同様であり、NEARブロックのうち、注目ブロックの重みをNとし、注目ブロック以外の重みを1としてカウントを行う(S503)。
 カウント後の処理であるS504~S507については、図12のS403~S406と同様である。
<合焦判断>
 合焦判断部2090は、合焦方向決定部2080から出力される合焦方向(NEAR/FAR)と、合焦方向が反転した位置に基づいて、フォーカスレンズが合焦位置に到達したか否かを判断する(S210)。
 フォーカスレンズは合焦位置に到達後、図17に示すように合焦位置を挟んで往復運動するような挙動となる。これは、合焦位置ではブロックAF評価値変化率βが非常に小さな値になるため、合焦位置をある程度通り過ぎないと合焦方向が反転しないためである。また、合焦状態では、合焦方向が反転する位置は毎回ほぼ同じ位置となる。そのため、(1)所定回数往復運動が行われたこと、(2)往復運動の間で反転位置の変動が小さいこと、の2点を条件とすることで、合焦したか否かを判断することができる。
 図18は合焦判断部2090での処理を説明するフローチャートである。合焦判断処理が開始されると、まず合焦方向が反転したか否かの判定を行う(S601)。S601でNoの場合には、現在フレームでの合焦判断処理を終了する。
 S601でYesの場合には、反転カウンタの値を判定する(S602)。ここでの反転カウンタとは、合焦方向が反転した回数を表すカウンタである。反転カウンタが0の場合、合焦方向が反転した時のウォブリング中心位置をメモリ1に保存し(S603)、反転カウンタをインクリメントする(S604)。ここでは反転カウンタ=1となる。図17で言えばB1に示したフォーカスレンズ位置(ウォブリング中心位置)がメモリ1に保存される。
 また、反転カウンタが1の場合、合焦方向が反転した時のウォブリング中心位置をメモリ2に保存し(S605)、反転カウンタをインクリメントする(S606)。ここでは、反転カウンタ=2となる。図17で言えばB2に示したフォーカスレンズ位置(ウォブリング中心位置)がメモリ2に保存される。
 S603及びS605の処理により、往復運動のFAR側の参照位置とNEAR側の参照位置がそれぞれメモリに記憶されることになる。なお、メモリ1がNEAR,FARのどちらがになるかは状況によって異なる。これ以降の反転検出時には、当該検出時のウォブリング中心位置と、メモリに記憶されている参照位置との変動が小さいか否かを判定すればよい。
 具体的には、S602でカウンタが2以上の場合、合焦方向が反転した時のウォブリング中心位置を、2回前に反転した時の位置(メモリ1又はメモリ2に保存されている値)と比較し、その差(絶対値)が閾値以下か否かを判定する(S607)。図17のように、FARからNEARの反転と、NEARからFARの反転は交互に検出されるため、比較対象は直前の位置ではなく、2回前の反転した位置を用いる。例えば、B3の場合はB1、すなわりメモリ1の情報との比較が行われ、B4の場合はB2、すなわりメモリ2の情報との比較が行われる。
 差が閾値以下(S607でYes)であれば、メモリ1又はメモリ2のうち、比較に使用した方の情報を現在フレームでのウォブリング中心位置に更新し(S608)、反転カウンタをインクリメントする(S609)。B3のタイミングであれば、その際のウォブリング中心位置により、メモリ1の情報を更新する。B4のタイミングであれば、その際のウォブリング中心位置により、メモリ2の情報を更新する。それ以降についても同様である。差が閾値より大きければ(S607でNo)、合焦状態でないと判断しカウンタを0にする(S610)。
 また、S609の処理後は、反転カウンタが合焦完了判定閾値を超えたかを判定し(S611)、S611でYesの場合、合焦したと判断する(S612)。図17の例では、反転カウンタ>5が条件であったため、6回目の反転であるB6でS612がYesと判定される。
 このように、フォーカス制御部2000(プロセッサ、狭義には合焦判断部2090)は、合焦物体位置の移動がNEARからFAR、又はFARからNEARへと切り替わる切替回数のカウント(反転カウンタ)が所定の切替閾値(合焦完了判定閾値)を超えたことを条件に、合焦動作を停止する。これは上記S611の判定に相当する。その際、フォーカス制御部2000は、NEARからFARへと切り替わる合焦物体位置の変動、又はFARからNEARへと切り替わる合焦物体位置の変動が所定の変動閾値より大きい場合は、切替回数のカウントをリセットする。これは上記S607、S610の処理に相当する。なお、合焦物体位置とフォーカスレンズ位置との対応関係はフォーカス制御装置(内視鏡装置)の設計段階で既知であることが想定されるため、ここでの合焦物体位置はフォーカスレンズ位置と読み替えることが可能である。
 このようにすれば、図17に示した往復運動が実行されたか否かに基づいて、合焦判断を行うことが可能になる。
<フォーカスレンズ位置決定>
 フォーカスレンズ位置決定部2095は、無効フレーム設定部2070の設定結果、合焦方向決定部2080で決定された合焦方向、合焦判断部2090の判断結果を用いて、次のフォーカスレンズ位置を決定する(S211)。
 図19はフォーカスレンズ位置決定部2095での処理を説明するフローチャートである。この処理が開始されると、まず現在フレームが無効フレームであるかを判定する(S701)。無効フレームである場合、現在のウォブリング中心位置を維持するように、フォーカスレンズ位置を決定する(S702)。具体的には、シフト量を0にし、その場でのウォブリング動作を継続する。
 S701でNoの場合、S210において、合焦判断がされたかの判定を行う(S703)。合焦と判断されていた場合には、フォーカスレンズ位置をメモリ1とメモリ2に保存された値の平均位置とする(S704)。図17で言えば合焦と判断されるB6のタイミングでは、メモリ1にはB5のウォブリング中心位置が保存され、メモリ2にはB6のウォブリング中心位置が保存されている。よってS704の処理は、B7に示すフォーカスレンズの移動を実現するフォーカスレンズ位置を決定することに相当する。
 合焦と判断されていない場合、S209で決定された合焦方向の判定を行う(S705)。合焦方向がNEARの場合、ウォブリング中心位置がNEAR側(合焦物体位置が撮像部200に近づく方向)にシフト量だけ移動するように、フォーカスレンズ位置を決定する(S706)。合焦方向がFARの場合、ウォブリング中心位置をFAR側(合焦物体位置が撮像部200から遠ざかる方向)にシフト量だけ移動するように、フォーカスレンズ位置を決定する(S707)。
 4.変形例
 また、本実施形態の手法は上述したものに限定されず、種々の変形実施が可能である。以下、AF制御部340の各部の処理の変形例を説明する。
<ブロックAF評価値、方向判別>
 AF評価値算出部2030は、1ブロック当たり1つのブロックAF評価値を算出するものには限定せず、周波数帯域の異なる複数のバンドパスフィルタを用いて複数のブロックAF評価値を算出してもよい。そして、方向判別部2040は、複数のブロックAF評価値から、それぞれブロックAF評価値変化率βを求め、当該ブロックAF評価値変化率βに基づいて、ブロック方向判別を行ってもよい。これにより、様々な周波数帯域をもつ被写体に対しても、精度よく、ブロック方向判別を実施することができる。例えば、方向判別部2040は、複数のブロックAF評価値変化率βからそれぞれ方向判別結果を求め、異なる結果が得られた場合は、ユーザが注目すると考えられる周波数帯域から得られた結果を優先すればよい。
<無効ブロック設定、ブロック状態決定>
 合焦位置付近ではブロックAF評価値変化率βの値(絶対値)が非常に小さくなるため、大部分のブロックのブロック状態が無効となり、合焦動作ができなくなる場合がある。これを抑止するため、ブロックAF評価値変化率βが閾値以下の場合(低コントラスト)のみ、他の無効ブロックと分けて判断し、異なる処理を行ってもよい。
 具体的には、無効ブロック設定部2050は、ブロックAF評価値変化率βが過剰に大きい評価ブロック、処置具(銀色か黒色)や輝点などが支配的な評価ブロック、高輝度部、暗部等に対応する評価ブロックを無効ブロックに設定し、ブロックAF評価値変化率βが過剰に小さい評価ブロックを低コントラストブロックに設定する。
 そして、ブロック状態決定部2060は、現在フレームが低コントラストブロックの場合は、ブロック状態を無効にするのではなく、直前フレームのブロック状態を引き継ぐ。図20が具体的な例であり、C1及びC2では低コントラストと判定され、連続度カウンタは0にリセットされているが、ブロック状態としては直前フレームの状態(図20ではC3のフレームのブロック状態であるFAR)を引き継ぐ。合焦位置付近では、合焦位置を通り過ぎることで、再びブロックAF評価値変化率βの絶対値が大きくなるため、低コントラスト状態は長期間継続することはない。例えば図20のC4に示したように、低コントラスト以外の結果が取得され、合焦位置付近での往復運動が継続される。
 逆に言えば、低コントラスト状態が長期間継続する場合とは、合焦位置付近での一時的なブロックAF評価値変化率βの低下とは異なる状態であると判定できる。例えば、ウォブリング動作による方向判別ができないほど、ボケの程度が大きい状態(大ボケ状態)であったり、被写体自体が低コントラストである状態に対応する。よって、過去のブロック状態の引き継ぎ回数(或いは低コントラスト状態の継続回数)をカウントしておき、カウント結果が閾値を超えたら、低コントラスト被写体と判断してブロック状態を無効と決定してもよい。
<無効フレーム設定>
 無効フレーム設定部2070では、画像に基づいて動きベクトルを求める例を説明したが、これには限定されず、モーションセンサーからのセンサー情報を用いてもよい。ここでのモーションセンサーは、加速度センサーやジャイロセンサー等、撮像部200の動きを検出するセンサーである。
 また、無効フレーム設定部2070では、ミスト検出、無効被写体検出に基づく手法を説明したが、他の手法による無効フレームの設定も可能である。具体的には、撮像部200が動いている間は、動きボケにより精度よく合焦動作を行うことが難しい。このため、無効フレーム設定部2070は、前述の手法に加えて撮像部200の動きを検出し、撮像部200が動いていると判断されたフレームを無効フレームとして設定してもよい。
 具体的には動きベクトルの大きさが所与の閾値よりも大きい場合に、無効フレームとする。ここでの動きベクトルは、ミスト検出に用いた動きベクトルと同様の情報を用いてもよい。ただし、撮像部200と注目被写体(生体)が相対的に停止しており、処置具が激しく動いている場合にも、処置具に対応する動きベクトルは大きくなるが、この場合は動きボケは大きくなく、無効フレームに設定しなくてもよい。よって、動きベクトルとして、局所動きベクトルとグローバル動きベクトルを求め、そのうちのグローバル動きベクトルに基づいて無効フレームの設定を行ってもよい。
<合焦方向決定>
 合焦方向決定部2080では、現フレームでのブロック状態に基づいて合焦方向を決定したが、これには限定されない。合焦方向決定部2080では、同じ合焦方向が複数回連続した場合に、合焦方向を更新するような処理を行ってもよい。このような処理により、頻繁に合焦方向が変化することを防ぎ、安定した合焦動作を実現することができる。
<合焦判断>
 合焦判断部2090は、FARからNEARに反転した位置、NEARからFARに反転した位置のそれぞれの位置の変動(差)が小さいことを合焦の条件としたが、他の条件を追加してもよい。例えば、合焦位置を基準とした往復運動の幅の変動は、大きくないことがわかっている。逆に言えば、1回前(直前)に反転した位置と、最新の反転した位置との差が大きすぎても小さすぎても、信頼できない。よって、FARからNEARに反転した位置と、NEARからFARに反転した位置との間隔(差、差の絶対値)が、所定の範囲内でない場合は、合焦状態でないと判断してもよい。
<フォーカスレンズ位置決定>
 合焦方向にウォブリング中心位置を移動させる際のシフト量は、所定の固定値であってもよいが、同じ方向判別結果が連続する場合は徐々に増加させてもよい。このような処理を行うことで、フォーカスレンズが合焦位置に到達するまでの時間を短縮する(合焦動作を高速化する)ことができる。
 さらに、フォーカスレンズが合焦位置に到達して往復運動を開始した場合、シフト量を小さくしてもよい。このような処理を行うことで、往復運動時の振幅が小さくなり、合焦判断中の往復運動による画質の劣化を低減することが出来る。なお、往復運動の振幅とは、合焦判断部2090の変形例で上述したFARからNEARに反転した位置と、NEARからFARに反転した位置との差に相当する。よって、合焦判断部2090において、往復運動の振幅が所定範囲内か否かを判定する場合、当該「所定範囲」についてはシフト量を考慮して設定することが望ましい。
 なお、以上のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。またフォーカス制御装置、内視鏡装置の構成、動作も本実施形態で説明したものに限定されず、種々の変形実施が可能である。
100 硬性鏡、110 レンズ系、120 ライトガイド部、
200 撮像部、210 AF開始/終了ボタン、220 フォーカスレンズ、
230 フォーカスレンズ駆動部、240 対物レンズ系、
250 撮像素子、300 処理部、310 A/D変換部、
320 前処理部、330 画像処理部、340 制御部、
350 AF制御部、400 表示部、500 外部I/F部、
600 光源部、610 白色光源、620 ライトガイドケーブル、
2000 フォーカス制御部、2010 領域設定部、
2020 ブロック特徴量算出部、2030 AF評価値算出部、
2040 方向判別部、2050 無効ブロック設定部、
2060 ブロック状態決定部、2070 無効フレーム設定部、
2080 合焦方向決定部、2090 合焦判断部、
2095 フォーカスレンズ位置決定部

Claims (13)

  1.  撮像部で撮像された画像に対して、各領域が複数の画素からなる複数の領域を設定する領域設定部と、
     設定された前記複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別処理を行う方向判別部と、
     前記方向判別結果及び重み情報に基づいて、前記NEARと判定された領域の面積を表すNEAR面積情報と、前記FARと判定された領域の面積を表すFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、前記合焦方向に基づいて、前記合焦物体位置を制御するフォーカス制御部と、
     を含むことを特徴とするフォーカス制御装置。
  2.  請求項1において、
     前記フォーカス制御部は、
     前記複数の領域の各領域の前記重みづけ大小判定に対する寄与度を表す第1の重み情報と、
     前記NEAR面積情報及び前記FAR面積情報の前記重みづけ大小判定に対する寄与度を表す第2の重み情報と、
     の少なくとも一方の情報である前記重み情報に基づいて、前記合焦方向を決定することを特徴とするフォーカス制御装置。
  3.  請求項2において、
     前記フォーカス制御部は、
     前記第1の重み情報に基づいて、前記NEAR面積情報又は前記FAR面積情報を求めることを特徴とするフォーカス制御装置。
  4.  請求項2において、
     前記フォーカス制御部は、
     前記重みづけ大小判定として、前記第2の重み情報による重みづけがされた前記NEAR面積情報と、前記FAR面積情報との大小判定を行うことを特徴とするフォーカス制御装置。
  5.  請求項1において、
     前記フォーカス制御部は、
     前記複数の領域の各領域のAF(AutoFocus)評価値、又は各領域に含まれる前記複数の画素の特徴量に基づいて、無効領域を設定する無効領域設定部を含み、
     前記フォーカス制御部は、
     前記複数の領域のうち、少なくとも前記無効領域を除く領域である有効領域の面積情報に対する、前記NEAR面積情報の比率が、前記重み情報に対応する所定の閾値より大きい場合は、前記合焦方向がNEAR側であると判定することを特徴とするフォーカス制御装置。
  6.  請求項5において、
     前記フォーカス制御部は、
     前記画像に基づいて、ユーザが注目していると判定される被写体と前記撮像部との相対距離を推定する注目距離推定部をさらに備え、
     前記フォーカス制御部は、
     前記注目距離推定部の推定結果に基づいて、前記閾値を変更することを特徴とするフォーカス制御装置。
  7.  請求項5において、
     前記フォーカス制御部は、
     前記画像に基づいて、ユーザが注目していると判定される領域を推定する注目領域推定部をさらに備え、
     前記フォーカス制御部は、
     前記注目領域推定部で推定された領域が大きな重みとなる前記重み情報を設定し、設定された前記重み情報に基づいて、前記NEAR面積情報又は前記FAR面積情報を算出することを特徴とするフォーカス制御装置。
  8.  請求項1において、
     前記フォーカス制御部は、
     前記複数の領域の各領域の前記方向判別結果、及び各領域に含まれる前記複数の画素の特徴量の少なくとも一方に基づいて、無効フレームを設定する無効フレーム設定部をさらに備え、
     前記フォーカス制御部は、
     前記無効フレームと判定されたフレームでは、前記方向判別結果に基づく前記合焦物体位置の移動を行わないことを特徴とするフォーカス制御装置。
  9.  請求項8において、
     前記無効フレーム設定部は、
     前記方向判別結果の空間的な変動情報、前記方向判別結果の時間的な変動情報、及び前記特徴量である動きベクトルの変動情報のうちの少なくとも1つに基づいて、前記無効フレームを設定することを特徴とするフォーカス制御装置。
  10.  請求項1において、
     前記フォーカス制御部は、
     前記合焦物体位置の移動が前記NEARから前記FAR、又は前記FARから前記NEARへと切り替わる切替回数のカウントが所定の切替閾値を超えたことを条件に、合焦動作を停止することを特徴とするフォーカス制御装置。
  11.  請求項10において、
     前記フォーカス制御部は、
     前記NEARから前記FARへと切り替わる前記合焦物体位置の変動、又は前記FARから前記NEARへと切り替わる前記合焦物体位置の変動が所定の変動閾値より大きい場合は、前記切替回数のカウントをリセットすることを特徴とするフォーカス制御装置。
  12.  請求項1乃至11のいずれかに記載のフォーカス制御装置を含むことを特徴とする内視鏡装置。
  13.  領域設定部と、方向判別部と、フォーカス制御部と、を含むフォーカス制御装置の作動方法であって、
     前記領域設定部が、撮像部で撮像された画像に対して、各領域が複数の画素からなる複数の領域を設定し、
     前記方向判別部が、設定された前記複数の領域の一部または全部の領域において、基準位置に対して合焦物体位置の目標である目標合焦位置がNEARにあるかFARにあるかを判別し、各領域に対して方向判別結果を求める方向判別処理を行い、
     前記フォーカス制御部が、前記方向判別結果及び重み情報に基づいて、前記NEARと判定された領域の面積を表すNEAR面積情報と、前記FARと判定された領域の面積を表すFAR面積情報との重みづけ大小判定を行って合焦方向を決定し、決定された前記合焦方向に基づいて、前記合焦物体位置を制御する、
     ことを特徴とするフォーカス制御装置の作動方法。
PCT/JP2016/051138 2016-01-15 2016-01-15 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法 WO2017122348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/051138 WO2017122348A1 (ja) 2016-01-15 2016-01-15 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法
JP2017561486A JP6670853B2 (ja) 2016-01-15 2016-01-15 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法
US16/030,119 US10666852B2 (en) 2016-01-15 2018-07-09 Focus control device, endoscope apparatus, and method for operating focus control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051138 WO2017122348A1 (ja) 2016-01-15 2016-01-15 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/030,119 Continuation US10666852B2 (en) 2016-01-15 2018-07-09 Focus control device, endoscope apparatus, and method for operating focus control device

Publications (1)

Publication Number Publication Date
WO2017122348A1 true WO2017122348A1 (ja) 2017-07-20

Family

ID=59311118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051138 WO2017122348A1 (ja) 2016-01-15 2016-01-15 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法

Country Status (3)

Country Link
US (1) US10666852B2 (ja)
JP (1) JP6670853B2 (ja)
WO (1) WO2017122348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419015A (zh) * 2018-04-11 2018-08-17 浙江大华技术股份有限公司 一种聚焦方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122349A1 (ja) 2016-01-15 2017-07-20 オリンパス株式会社 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法
US11921285B2 (en) 2019-04-19 2024-03-05 Arizona Board Of Regents On Behalf Of The University Of Arizona On-chip signal processing method and pixel-array signal
US11910104B2 (en) 2019-04-19 2024-02-20 ARIZONA BOARD OF REGENTS on behalf of THE UNIVERSITY OF ARIZONA, A BODY CORPORATE All-in-focus imager and associated method
JP7281977B2 (ja) * 2019-06-25 2023-05-26 オリンパス株式会社 焦点調節装置および焦点調節方法
JP2022038252A (ja) * 2020-08-26 2022-03-10 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法、およびプログラム
CN112637504B (zh) * 2020-12-23 2022-05-03 维沃移动通信有限公司 对焦方法及装置
WO2023042354A1 (ja) * 2021-09-16 2023-03-23 オリンパスメディカルシステムズ株式会社 内視鏡プロセッサ、プログラム、およびフォーカスレンズの制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961705A (ja) * 1995-06-14 1997-03-07 Sony Corp オートフォーカス装置
JPH09200508A (ja) * 1996-01-16 1997-07-31 Olympus Optical Co Ltd 画像処理装置
JP2004264827A (ja) * 2003-02-10 2004-09-24 Chinon Ind Inc 焦点距離検出方法及び合焦装置
JP2011039213A (ja) * 2009-08-10 2011-02-24 Canon Inc 撮影システムおよびレンズ装置
JP2012103394A (ja) * 2010-11-09 2012-05-31 Canon Inc 光学機器およびその制御方法
JP2014030516A (ja) * 2012-08-02 2014-02-20 Olympus Corp 内視鏡装置及び内視鏡装置のフォーカス制御方法
JP2014145808A (ja) * 2013-01-28 2014-08-14 Olympus Corp 撮像装置及び撮像装置の制御方法
JP5829360B2 (ja) * 2013-10-04 2015-12-09 オリンパス株式会社 撮像装置、撮像装置の作動方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000574A1 (en) 1995-06-14 1997-01-03 Sony Corporation Focus controlling method and video camera device
JP3867687B2 (ja) * 2003-07-08 2007-01-10 コニカミノルタフォトイメージング株式会社 撮像装置
JP4661269B2 (ja) 2005-03-01 2011-03-30 カシオ計算機株式会社 撮影装置及びプログラム
JP2007155921A (ja) * 2005-12-01 2007-06-21 Pentax Corp 焦点調節装置
US8102465B2 (en) * 2006-11-07 2012-01-24 Fujifilm Corporation Photographing apparatus and photographing method for photographing an image by controlling light irradiation on a subject
JP5219951B2 (ja) 2009-07-16 2013-06-26 キヤノン株式会社 撮像装置及びその制御方法
JP5385163B2 (ja) 2010-01-06 2014-01-08 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP5576739B2 (ja) 2010-08-04 2014-08-20 オリンパス株式会社 画像処理装置、画像処理方法、撮像装置及びプログラム
WO2013031227A1 (ja) * 2011-09-01 2013-03-07 パナソニック株式会社 撮像装置およびプログラム
JP5947507B2 (ja) * 2011-09-01 2016-07-06 キヤノン株式会社 撮像装置及びその制御方法
JP5973708B2 (ja) 2011-10-21 2016-08-23 オリンパス株式会社 撮像装置及び内視鏡装置
JP5953049B2 (ja) 2012-01-24 2016-07-13 オリンパス株式会社 内視鏡システム
JP5996218B2 (ja) 2012-03-07 2016-09-21 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
JP6249769B2 (ja) 2013-12-27 2017-12-20 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法及びプログラム
JPWO2015121969A1 (ja) * 2014-02-14 2017-03-30 富士通株式会社 触感提供装置、及び、システム
WO2016088187A1 (ja) * 2014-12-02 2016-06-09 オリンパス株式会社 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の制御方法
WO2016088186A1 (ja) * 2014-12-02 2016-06-09 オリンパス株式会社 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の制御方法
WO2017122349A1 (ja) 2016-01-15 2017-07-20 オリンパス株式会社 フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961705A (ja) * 1995-06-14 1997-03-07 Sony Corp オートフォーカス装置
JPH09200508A (ja) * 1996-01-16 1997-07-31 Olympus Optical Co Ltd 画像処理装置
JP2004264827A (ja) * 2003-02-10 2004-09-24 Chinon Ind Inc 焦点距離検出方法及び合焦装置
JP2011039213A (ja) * 2009-08-10 2011-02-24 Canon Inc 撮影システムおよびレンズ装置
JP2012103394A (ja) * 2010-11-09 2012-05-31 Canon Inc 光学機器およびその制御方法
JP2014030516A (ja) * 2012-08-02 2014-02-20 Olympus Corp 内視鏡装置及び内視鏡装置のフォーカス制御方法
JP2014145808A (ja) * 2013-01-28 2014-08-14 Olympus Corp 撮像装置及び撮像装置の制御方法
JP5829360B2 (ja) * 2013-10-04 2015-12-09 オリンパス株式会社 撮像装置、撮像装置の作動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419015A (zh) * 2018-04-11 2018-08-17 浙江大华技术股份有限公司 一种聚焦方法及装置
CN108419015B (zh) * 2018-04-11 2020-08-04 浙江大华技术股份有限公司 一种聚焦方法及装置

Also Published As

Publication number Publication date
US10666852B2 (en) 2020-05-26
JP6670853B2 (ja) 2020-03-25
US20180316871A1 (en) 2018-11-01
JPWO2017122348A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6670853B2 (ja) フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法
JP6670854B2 (ja) フォーカス制御装置、内視鏡装置及びフォーカス制御装置の作動方法
JP5953187B2 (ja) 合焦制御装置、内視鏡システム及び合焦制御方法
JP6453905B2 (ja) フォーカス制御装置、内視鏡装置及びフォーカス制御装置の制御方法
JP6249769B2 (ja) 内視鏡装置、内視鏡装置の作動方法及びプログラム
US9444994B2 (en) Image pickup apparatus and method for operating image pickup apparatus
JP5149467B2 (ja) 内視鏡装置
JP6453904B2 (ja) フォーカス制御装置、内視鏡装置及びフォーカス制御装置の制御方法
JP6574448B2 (ja) 内視鏡装置及び内視鏡装置のフォーカス制御方法
US11141050B2 (en) Autofocus control device, endoscope apparatus, and operation method of autofocus control device
JP6533284B2 (ja) フォーカス制御装置、撮像装置、内視鏡システム、フォーカス制御装置の制御方法
US10799085B2 (en) Endoscope apparatus and focus control method
WO2013061939A1 (ja) 内視鏡装置及びフォーカス制御方法
JP6164978B2 (ja) 焦点調整装置、その制御方法、および制御プログラム、並びに撮像装置
JP2018054815A (ja) 領域判別装置、その制御方法、および制御プログラム、並びに撮像装置
CN112825138A (zh) 图像处理设备、图像处理方法、摄像设备及机器可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017561486

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884951

Country of ref document: EP

Kind code of ref document: A1