WO2017121157A1 - 掩膜板及其制作方法和在显示基板制作工艺中的用途 - Google Patents

掩膜板及其制作方法和在显示基板制作工艺中的用途 Download PDF

Info

Publication number
WO2017121157A1
WO2017121157A1 PCT/CN2016/102687 CN2016102687W WO2017121157A1 WO 2017121157 A1 WO2017121157 A1 WO 2017121157A1 CN 2016102687 W CN2016102687 W CN 2016102687W WO 2017121157 A1 WO2017121157 A1 WO 2017121157A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
electrochromic thin
transparent electrode
transparent
film pattern
Prior art date
Application number
PCT/CN2016/102687
Other languages
English (en)
French (fr)
Inventor
马骏
杨成绍
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/533,449 priority Critical patent/US10564538B2/en
Publication of WO2017121157A1 publication Critical patent/WO2017121157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F2001/1517Cyano complex compounds, e.g. Prussian blue
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a mask.
  • the mask is a component used for patterning in a lithography process of a Thin Film Transistor Liquid Crystal Display (TFT-LCD).
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the mask is mainly composed of a transparent substrate and formed on the transparent substrate. It consists of an opaque area with a specific pattern.
  • an opaque film layer for example, a chrome layer
  • the opaque film layer is formed by using an electron beam or a laser according to a predetermined specific pattern. Characterizing, and then performing a patterning process such as development, etching, and stripping, forming an opaque region having a specific pattern on the transparent substrate.
  • each mask in the related art is fixed, that is, each mask uniquely corresponds to one pattern. Since the manufacturing process of the display substrate requires sequentially forming a plurality of patterns on the substrate, it is necessary to prepare a plurality of masks corresponding to the patterns to be formed, so that the manufacturing process of the TFT-LCD is cumbersome and the manufacturing cost is high.
  • Embodiments of the present invention provide a mask and method of making the same and use in a display substrate fabrication process to at least alleviate or eliminate one or more of the problems of known masks.
  • an embodiment of the present invention provides a mask comprising: a transparent substrate; and at least two electrochromic thin film patterns disposed on the transparent substrate and configured to be transparent under an electric field Switch between light state and opaque state.
  • the at least two layers of electrochromic thin film patterns can form at least two different mask patterns on the display substrate under the action of an electric field.
  • the mask further includes a transparent electrode disposed on both sides of each of the at least two layers of electrochromic thin film patterns and configured to apply to the at least two layers of electrochromic thin film patterns electric field.
  • At least one layer of electrochromic thin film pattern is formed on each side of the transparent substrate.
  • one side of the transparent substrate is sequentially provided with a first lower transparent electrode, a first electrochromic thin film pattern and a first upper transparent electrode, and the other side of the transparent substrate is sequentially provided with a first Two transparent electrodes, a second electrochromic thin film pattern and a second upper transparent electrode.
  • the at least two layers of electrochromic thin film patterns are disposed on the same side of the transparent substrate.
  • one side of the transparent substrate is sequentially provided with a lower transparent electrode, a first electrochromic thin film pattern, a common transparent electrode, a second electrochromic thin film pattern, and an upper transparent electrode, wherein the common transparent
  • the electrode is configured to be loaded with a voltage that is less than a voltage applied to the lower transparent electrode and less than a voltage applied to the upper transparent electrode.
  • each of the at least two layers of electrochromic thin film patterns respectively includes an upper transparent electrode disposed on one side and a lower transparent electrode disposed on the other side, the mask sheet further including a plurality of transparent insulating layers And each of the plurality of transparent insulating layers is disposed between a lower transparent electrode of a layer of electrochromic thin film pattern and an upper transparent electrode of an adjacent layer of electrochromic thin film pattern.
  • one side of the transparent substrate is sequentially provided with a first upper transparent electrode, a first electrochromic thin film pattern, a first lower transparent electrode, a first transparent insulating layer, a second upper transparent electrode, and a first a second electrochromic thin film pattern, a second lower transparent electrode, a second transparent insulating layer, a third upper transparent electrode, a third electrochromic thin film pattern, and a third lower transparent electrode.
  • each of the at least two layers of electrochromic thin film patterns includes at least two electrochromic thin film units disposed at intervals, and a gap between the at least two electrochromic thin film units is formed to be transparent Insulation Materials.
  • the mask further includes: a control module disposed at a periphery of the transparent substrate, electrically connected to a transparent electrode of each of the at least two layers of electrochromic thin film patterns, and configured Controlling the voltage across the at least two layers of the electrochromic thin film pattern.
  • the electrochromic thin film pattern is formed of Prussian blue (also known as iron ferrocyanide).
  • the transparent electrode is an indium tin oxide film layer.
  • the transparent insulating material is silicon oxide, silicon nitride or nitrogen. Silicon oxide.
  • the orthographic projections of the at least two layers of electrochromic thin film patterns on the transparent substrate are different.
  • embodiments of the present invention provide the use of the foregoing mask in a display substrate fabrication process.
  • an embodiment of the present invention provides a method of fabricating the above mask, comprising the steps of: providing a transparent substrate; and forming at least two layers of electrochromic thin film patterns on the transparent substrate, wherein At least two layers of electrochromic thin film patterns are configured to switch between a permeable state and an opaque state under the action of an electric field.
  • the step of forming at least two layers of electrochromic thin film patterns on the transparent substrate comprises: forming transparent electrodes on both sides of each of the at least two layers of electrochromic thin film patterns, wherein the transparent The electrode is configured to apply an electric field to the at least two layers of electrochromic thin film patterns.
  • the step of forming at least two layers of electrochromic thin film patterns on the transparent substrate includes forming at least one electrochromic thin film pattern on both sides of the transparent substrate.
  • the step of forming at least two electrochromic thin film patterns on the transparent substrate includes sequentially forming a first lower transparent electrode, a first electrochromic thin film pattern, and a side of the transparent substrate a first upper transparent electrode; and a second lower transparent electrode, a second electrochromic thin film pattern and a second upper transparent electrode are sequentially formed on the other side of the transparent substrate.
  • the step of forming at least two electrochromic thin film patterns on the transparent substrate comprises sequentially forming a lower transparent electrode, a first electrochromic thin film pattern, and a common transparent on one side of the transparent substrate An electrode, a second electrochromic thin film pattern, and an upper transparent electrode.
  • the step of forming at least two electrochromic thin film patterns on the transparent substrate includes sequentially forming a first upper transparent electrode, a first electrochromic thin film pattern, and a pattern on the transparent substrate. a first lower transparent electrode, a first transparent insulating layer, a second upper transparent electrode, a second electrochromic thin film pattern, a second lower transparent electrode, a second transparent insulating layer, a third upper transparent electrode, and a third electrochromic film Graphic and third lower transparent electrode.
  • FIG. 1 is a side view showing a structure of a mask according to an embodiment of the present invention.
  • FIG. 2 is a side view showing another structure of a mask according to an embodiment of the present invention.
  • FIG. 3 is a side view showing a structure of a further mask according to an embodiment of the present invention.
  • FIG. 4 is a schematic top plan view of another mask provided by an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for manufacturing a mask according to an embodiment of the present invention.
  • 6a is a flowchart of a method for manufacturing a mask according to an embodiment of the present invention.
  • 6b is a schematic side view showing a structure of forming a first lower transparent electrode according to an embodiment of the present invention
  • 6c is a schematic side view showing a structure of forming a first electrochromic thin film according to an embodiment of the present invention.
  • 6d is a schematic side view showing a transparent insulating material according to an embodiment of the present invention.
  • 6e is a schematic structural view of forming a first upper transparent electrode according to an embodiment of the present invention.
  • FIG. 7a is a flowchart of a method for manufacturing a display substrate according to an embodiment of the present invention.
  • FIG. 7b is a schematic side view showing a structure of forming a first mask pattern according to an embodiment of the present invention.
  • FIG. 7c is a schematic side view showing a second mask pattern formed by an embodiment of the present invention.
  • FIG. 1 is a schematic side view showing a structure of a mask according to an embodiment of the present invention.
  • the mask includes a transparent substrate 00.
  • At least two electrochromic thin film patterns 10 are formed on the transparent substrate 00, and transparent electrodes 20 are formed on the upper and lower sides of each of the electrochromic thin film patterns.
  • two layers of electrochromic thin film patterns 101 and 102 are formed on the transparent substrate 00.
  • Transparent electrodes 201 and 202 are formed on the upper and lower sides of the electrochromic thin film pattern 101, and transparent electrodes are formed on the upper and lower sides of the electrochromic thin film pattern 102.
  • 203 and 204 are examples of the electrochromic thin film pattern.
  • the at least two electrochromic thin film patterns 10 are configured such that at least two different mask patterns are formed on the display substrate (not shown) under the action of the transparent electrode 20.
  • a mask provided by an embodiment of the present invention includes: a transparent substrate and at least two electrochromic thin film patterns formed on the transparent substrate, wherein the at least two electrochromic thin film patterns are configured to function as transparent electrodes At least two different mask patterns are formed on the display substrate, thereby reducing the number of masks required for the display substrate manufacturing process, thereby simplifying the manufacturing process of the TFT-LCD and reducing the fabrication of the TFT-LCD. cost.
  • the orthographic projection of the at least two electrochromic thin film patterns 10 on the transparent substrate 00 is different.
  • the orthographic projections of the at least two electrochromic thin film patterns 10 on the transparent substrate 00 are completely staggered, or partially overlap but not completely overlap, thereby ensuring that the at least two electrochromic thin film patterns 10 are configured to be under the action of a transparent electrode.
  • At least two different mask patterns are formed on the display substrate.
  • At least one electrochromic thin film pattern is formed on each side of the transparent substrate 00.
  • a layer of electrochromic thin film patterns 101 and 102 are formed on both sides of the transparent substrate 00, respectively.
  • a first lower transparent electrode 201 is formed on one side of the transparent substrate 00, a first electrochromic thin film pattern 101 is formed on the first lower transparent electrode 201, and a first surface is formed on the first electrochromic thin film pattern 101.
  • the upper transparent electrode 202 is formed on each side of the transparent substrate 00.
  • the second lower transparent electrode 203 is formed on the other side of the transparent substrate 00, the second electrochromic thin film pattern 102 is formed on the second lower transparent electrode 203, and the second electrochromic thin film pattern 102 is formed on the second electrochromic thin film pattern 102.
  • a layer of electrochromic film is respectively disposed on both sides of the mask to ensure that the light passes through an electrochromic film pattern and is irradiated onto the display substrate during the exposure process, thereby avoiding the light being multi-layered. When the color film pattern is transferred, deflection may occur to ensure the manufacturing precision of the display substrate.
  • FIG. 2 is a side view showing another structure of a mask provided by an embodiment of the present invention.
  • the transparent substrate 00 is formed with two layers of electrochromic thin film patterns 101 and 102. That is, the lower transparent electrode a is formed on one side of the transparent substrate 00.
  • a first electrochromic thin film pattern 101 is formed on the lower transparent electrode a.
  • a common transparent electrode b is formed on the first electrochromic thin film pattern 101.
  • a second electrochromic thin film pattern 102 is formed on the common transparent electrode b.
  • An upper transparent electrode c is formed on the second electrochromic thin film pattern 102.
  • the voltage applied to the common transparent electrode b is less than the lower transparent
  • the common transparent electrode b is connected to the negative electrode of the power source.
  • each electrochromic thin film pattern includes at least two electrochromic thin film units 11 spaced apart.
  • a gap between adjacent two electrochromic thin film units 11 is formed with a transparent insulating material 30.
  • the gap between the adjacent two electrochromic thin film units 11 includes a region on the transparent electrode 20 that is not covered by the electrochromic thin film unit 11.
  • the transparent insulating material 30 protects the electrochromic thin film pattern 10 and improves the flatness of the surface of the mask.
  • two or more electrochromic thin film patterns may be formed on either side of the mask.
  • three layers of electrochromic thin film patterns 101, 102, and 103 are formed on one side of the mask, wherein upper and lower sides of each electrochromic thin film pattern are respectively formed with upper transparent electrodes and lower transparent layers. electrode.
  • the upper and lower sides of the electrochromic thin film pattern 101 are respectively formed with an upper transparent electrode 1a and a lower transparent electrode 1b.
  • the upper and lower sides of the electrochromic thin film pattern 102 are respectively formed with an upper transparent electrode 2a and a lower transparent electrode 2b, and are electrically Upper and lower transparent electrodes 3a and lower transparent electrodes 3b are formed on the upper and lower sides of the color-changeable film pattern 103, respectively.
  • a transparent insulating layer is formed between two adjacent transparent electrodes. For example, a transparent insulating layer 12 is formed between the transparent electrodes 1b and 2a, and a transparent insulating layer 23 is formed between the transparent electrodes 2b and 3a.
  • the transparent insulating layers 12, 23 electrically isolate the adjacent two transparent electrodes and avoid mutual interference between the two adjacent transparent electrodes, thereby ensuring that the transparent electrodes on the upper and lower sides of each layer of the electrochromic thin film pattern independently control the electrochromic layer of the layer.
  • the light transmission state of the film pattern is not limited to:
  • FIG. 4 is a schematic top plan view of still another mask provided by an embodiment of the present invention.
  • the mask further includes a control module 40 disposed on the periphery of the transparent substrate 00.
  • the control module 40 is electrically connected to the transparent electrodes formed on the upper and lower sides of each layer of the electrochromic thin film pattern, and is configured to control the voltage of each layer of the electrochromic thin film pattern to adjust the light transmission state of each layer of the electrochromic thin film pattern.
  • the light transmitting state herein includes a light transmissive state and an opaque state. Since the control module 40 is located at the periphery of the transparent substrate 00, the mask pattern formed on the display substrate of the mask is not affected.
  • the opaque state here refers to a state in which the light is completely blocked.
  • the permeable state herein refers to a state in which most of the light is transmissive, for example at least 60%, at least 75%, at least 80%, at least 90%, or even 100% of the light is transmitted.
  • the light here is in the display The light used in the exposure process using the mask in the substrate fabrication process.
  • the light transmissive state of the target electrochromic thin film pattern in at least two layers of the electrochromic thin film pattern is adjusted by the control module to be an opaque state, and other electrochromic shapes other than the target electrochromic thin film pattern are used.
  • the transparent state of the film pattern is permeable, and then the target electrochromic film pattern can be used to form a mask pattern on the substrate of the display substrate.
  • the target electrochromic thin film pattern is an electrochromic thin film pattern corresponding to a mask pattern to be formed on the display substrate.
  • the operator selects a specific electrochromic thin film pattern as the target electrochromic thin film pattern in at least two electrochromic thin film patterns of the mask according to the manufacturing progress of the display substrate, and controls
  • the module adjusts the light transmission state of the target electrochromic thin film pattern to an opaque state, and adjusts the light transmission state of the other electrochromic thin film patterns to a permeable state.
  • the electrochromic thin film pattern is, for example, a pattern formed by a Prussian blue film by a patterning process, such as a quartz glass substrate, and a transparent electrode such as an indium tin oxide (ITO) film layer.
  • the transparent insulating material is, for example, silicon oxide, silicon nitride or silicon oxynitride.
  • the transparent insulating layer is formed of, for example, silicon oxide, silicon nitride or silicon oxynitride.
  • a mask provided by an embodiment of the present invention includes: a transparent substrate and at least two electrochromic thin film patterns formed on the transparent substrate, wherein the at least two electrochromic thin film patterns are configured to function as transparent electrodes At least two different mask patterns are formed on the display substrate.
  • the graphics on each mask in the related art are fixed, that is, each mask corresponds to only one graphic. Since the manufacturing process of the display substrate requires sequentially forming a plurality of patterns such as a gate scan line pattern, an active layer pattern, and a passivation layer pattern on the base substrate, it is necessary to prepare a plurality of masks corresponding to the pattern to be formed. board.
  • the mask provided by the embodiment of the present invention uses a mask to form at least two patterns on the display substrate, thereby reducing the number of masks required for the display substrate manufacturing process, thereby simplifying the TFT-
  • the manufacturing process of the LCD reduces the manufacturing cost of the TFT-LCD.
  • FIG. 5 is a flow chart of a method for manufacturing a mask according to an embodiment of the present invention. As shown, in an exemplary embodiment, the method includes the steps of: providing a transparent substrate; and forming at least two layers of electrochromic thin film patterns on the transparent substrate, wherein the at least two layers of electrochromic thin film pattern configuration The switch is switched between a permeable state and an opaque state under the action of an electric field.
  • the step of forming at least two layers of electrochromic thin film patterns on the transparent substrate includes forming a transparent electrode on both sides of each of the at least two electrochromic thin film patterns, wherein the transparent electrode is configured to apply an electric field to the at least two electrochromic thin film patterns.
  • the step of forming at least two layers of electrochromic thin film patterns on the transparent substrate comprises forming at least one electrochromic thin film pattern on both sides of the transparent substrate.
  • the step of forming at least two electrochromic thin film patterns on the transparent substrate includes sequentially forming a first lower transparent electrode, a first electrochromic thin film pattern, and a first upper transparent electrode on one side of the transparent substrate And forming a second lower transparent electrode, a second electrochromic thin film pattern, and a second upper transparent electrode in sequence on the other side of the transparent substrate.
  • the step of forming at least two electrochromic thin film patterns on the transparent substrate includes sequentially forming a lower transparent electrode, a first electrochromic thin film pattern, a common transparent electrode, and a second electricity on one side of the transparent substrate.
  • a photochromic film pattern and an upper transparent electrode includes sequentially forming a lower transparent electrode, a first electrochromic thin film pattern, a common transparent electrode, and a second electricity on one side of the transparent substrate.
  • the step of forming at least two electrochromic thin film patterns on the transparent substrate comprises: sequentially forming a first upper transparent electrode, a first electrochromic thin film pattern, and a first lower transparent electrode on one side of the transparent substrate a first transparent insulating layer, a second upper transparent electrode, a second electrochromic thin film pattern, a second lower transparent electrode, a second transparent insulating layer, a third upper transparent electrode, a third electrochromic thin film pattern, and a third lower Transparent electrode.
  • FIG. 6a is a flowchart of a method for manufacturing a mask according to an embodiment of the present invention. Taking the mask shown in FIG. 1 as an example, the manufacturing method of the mask includes:
  • Step 601 forming a first lower transparent electrode on one side of the transparent substrate.
  • a first lower transparent electrode 201 is formed on one side of the transparent substrate 00.
  • the first lower transparent electrode 201 is, for example, an ITO film layer.
  • Step 602 forming a first electrochromic thin film pattern on the transparent substrate on which the first lower transparent electrode is formed.
  • an electrochromic thin film layer of, for example, a Prussian blue film is deposited on the transparent substrate 00 on which the first lower transparent electrode 201 is formed.
  • the first electrochromic thin film pattern 101 is then formed by one patterning process.
  • the first electrochromic thin film pattern 101 forms a first mask pattern on the display substrate.
  • Step 603 forming a transparent insulating material at a gap between the at least two electrochromic thin film units disposed at intervals of the first electrochromic thin film pattern.
  • the first electrochromic thin film pattern 101 includes at least two electrochromic thin film units 11 spaced apart. In order to ensure the flatness of the surface of the mask and The first electrochromic thin film pattern 101 is protected, and a transparent insulating material 30 is formed in a gap between adjacent two electrochromic thin film units 11. For example, the gap further includes a region on the first lower transparent electrode 201 that is not covered by the electrochromic thin film unit 11.
  • Step 604 forming a first upper transparent electrode on the transparent substrate on which the first electrochromic thin film pattern is formed.
  • the pattern on the side of the mask is completed.
  • Step 605 forming a second lower transparent electrode on the other side of the transparent substrate.
  • Step 606 forming a second electrochromic thin film pattern on the transparent substrate on which the second lower transparent electrode is formed.
  • Step 607 forming a transparent insulating material in a gap between the at least two electrochromic thin film units disposed at intervals of the second electrochromic thin film pattern.
  • Step 608 forming a second upper transparent electrode on the transparent substrate on which the second electrochromic thin film pattern is formed.
  • the steps 605 to 608 are the processes of forming the second electrochromic thin film pattern on the other side of the mask. For details, refer to steps 601 to 604, which are not described herein.
  • Step 609 A control module is disposed on a periphery of the transparent substrate, and the control module is electrically connected to the transparent electrodes formed on the upper and lower sides of each layer of the electrochromic thin film pattern.
  • a control module 40 is provided on the periphery of the transparent substrate 00.
  • the control module 40 is electrically connected to the transparent electrodes formed on the upper and lower sides of each layer of the electrochromic thin film pattern, thereby controlling the voltage of each layer of the electrochromic thin film pattern, thereby adjusting the light transmission state of each of the electrochromic thin film patterns.
  • step 601 step 605, step 602, step 606, step 603, step 607, step 604, step 608, and step 609.
  • the manufacturing method of the mask provided by the embodiment of the present invention can also be used to manufacture the mask shown in any of FIG. 2 to FIG. 4, and the specific manufacturing process can refer to the above steps 601 to 608. .
  • the method for manufacturing the mask provided by the embodiment of the present invention is divided on both sides of the mask. Do not form an electrochromic thin film pattern, which can form two different mask patterns on the display substrate, thereby reducing the number of masks required for manufacturing the display substrate, and simplifying the TFT- The manufacturing process of the LCD reduces the manufacturing cost of the TFT-LCD.
  • FIG. 7a is a flowchart of a method for manufacturing a display substrate according to an embodiment of the present invention. Taking a mask as shown in FIG. 1 as an example, the method includes:
  • Step 701 The control module controls a voltage difference between the first upper transparent electrode and the first lower transparent electrode as a first voltage, adjusts the first electrochromic thin film pattern to an opaque state, and controls the second upper portion through the control module.
  • the voltage difference between the transparent electrode and the second lower transparent electrode is a second voltage, and the second electrochromic thin film pattern is adjusted to be in a light transmissive state.
  • the light transmissive state of the electrochromic thin film pattern is altered by varying the voltage applied to the electrochromic thin film pattern.
  • the electrochromic thin film pattern formed of a Prussian blue film
  • the first voltage is, for example, a low voltage, such as a voltage less than 1 volt (V)
  • the second voltage is, for example, a high voltage, such as a voltage greater than 1V.
  • the voltage difference between the first upper transparent electrode 202 and the first lower transparent electrode 201 is controlled to be a low voltage by the control module, and the second upper transparent electrode 204 and the second lower transparent electrode 203 are controlled.
  • the pressure difference between them is a high voltage, so that the first electrochromic thin film pattern 101 is in an opaque state, and the second electrochromic thin film pattern 102 is in a light transmissive state.
  • Step 702 Form a first mask pattern on the base substrate of the display substrate by using the first electrochromic thin film pattern.
  • the second electrochromic thin film pattern 102 since the second electrochromic thin film pattern 102 is in a light transmissive state, the second electrochromic thin film pattern 102 and the transparent electrode in the mask do not block light, so The first electrochromic thin film pattern 101 in an opaque state forms a first mask pattern (not shown) on the base substrate 50 of the display substrate by one patterning process.
  • Step 703 The control module controls a voltage difference between the first upper transparent electrode and the first lower transparent electrode to be a second voltage, and adjusts the first electrochromic thin film pattern to a permeable state, and controls the second through the control module.
  • the pressure difference between the transparent electrode and the second lower transparent electrode is The first voltage adjusts the second electrochromic thin film pattern to an opaque state.
  • the voltage difference between the first upper transparent electrode 202 and the first lower transparent electrode 201 is controlled to be a high voltage
  • the voltage difference between the second upper transparent electrode 204 and the second lower transparent electrode 203 is controlled to be
  • the low voltage causes the first electrochromic thin film pattern 101 to be in a light transmissive state
  • the second electrochromic thin film pattern 102 is in an opaque state.
  • Step 704 Form a second mask pattern on the base substrate on which the first mask pattern is formed by using the second electrochromic thin film pattern.
  • the mask is flipped.
  • the side on which the second electrochromic thin film pattern 102 is formed is directed toward the display substrate, and then the opaque second electrochromic thin film pattern 102 is used to form the first mask pattern 501 by a patterning process.
  • a second mask pattern (not shown) is formed on the base substrate 50.
  • the orthographic projection of the first electrochromic thin film pattern 101 and the second electrochromic thin film pattern 102 on the transparent substrate is different, the first two layers of the electrochromic thin film pattern are formed on the base substrate 50 of the display substrate.
  • the mask pattern and the second mask pattern are also different, reducing the number of masks that are required for use in the manufacturing process of the display substrate.
  • the one-time patterning process described in the above embodiments includes a process of photoresist coating, exposure, development, etching, photoresist stripping, and the like.
  • the manufacturing method of the display substrate provided by the embodiment of the present invention can also be applied to the mask shown in any of FIG. 2 to FIG. 4, and the mask shown in any one of FIG. 2 to FIG. 4 is used.
  • the process of manufacturing the display substrate refer to the above steps 701 to 704.
  • the mask may not be flipped.
  • the mask is typically flipped such that the second electrochromic thin film pattern 102 in an opaque state is closer to or even in contact with the substrate substrate on which the second mask pattern is to be formed.
  • the second electrochromic thin film pattern 102 is more accurately transferred onto the base substrate, which is advantageous for improving the second mask pattern. Repeatability reduces pattern distortion formed on the substrate and improves the accuracy of the pattern formed on the substrate.
  • the electrochromic thin film pattern in the above embodiment is formed of Prussian blue in view of technical maturity.
  • the electrochromic thin film pattern formed by Prussian blue is blue-black when a low voltage is applied to both ends, and is in an opaque state, and is applied at both ends. When the voltage is raised, it is transparent and in a permeable state.
  • the material of the electrochromic thin film pattern can be any material that can be repeatedly and reversibly switched between an opaque state and a permeable state.
  • the method for manufacturing a display substrate provided by the embodiment of the present invention, two different mask patterns are formed on the display substrate by using electrochromic thin film patterns on both sides of the mask.
  • the number of masks required for the display substrate manufacturing process is reduced, the manufacturing process of the TFT-LCD is simplified, and the manufacturing cost of the TFT-LCD is reduced.
  • Embodiments of the present invention also provide a display substrate.
  • the display substrate is produced by the above manufacturing method.
  • embodiments of the present invention provide a display panel including a display substrate made by the above manufacturing method. Therefore, the manufacturing process of the display panel is simpler and the manufacturing cost is lower.
  • an embodiment of the present invention provides a display device, which includes the above display panel. Therefore, the manufacturing process of the display device is simpler and the manufacturing cost is lower.
  • the display device is any product or component having a display function such as a notebook computer, a mobile phone, a digital photo frame, a tablet computer, a navigator, a television, a display, and the like.
  • Other indispensable components of the display device are understood by those skilled in the art, and are not described herein, nor should they be construed as limiting the invention.
  • Embodiments of the present invention provide a mask, a method of fabricating the same, and use in a process for fabricating a display substrate.
  • the mask includes: a transparent substrate; and at least two layers of electrochromic thin film patterns disposed on the transparent substrate and configured to switch between a permeable state and an opaque state under an electric field.
  • the mask forms at least two different mask patterns on the display substrate, which reduces the number of masks required for the display substrate manufacturing process, simplifies the manufacturing process of the TFT-LCD, and reduces the TFT-LCD. manufacturing cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种掩膜板及其制作方法和在显示基板制作工艺中的用途。该掩膜板包括:透明基板(00);以及至少两层电致变色薄膜图形(10),其设置在所述透明基板(00)上,并且配置成在电场作用下在可透光状态和不透光状态之间切换。该掩膜板在显示基板上形成至少两种不同的掩膜图形,降低了显示基板制造过程中所需要使用的掩膜板的数量。

Description

掩膜板及其制作方法和在显示基板制作工艺中的用途 技术领域
本发明涉及显示技术领域,特别涉及一种掩膜板。
背景技术
掩膜板是在薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)的光刻工艺中用于进行图形制作的一种组件,掩膜板主要由透明基板和形成在该透明基板上的具有特定图形的不透光区域组成。
相关技术中,在制作掩膜板时,通常在透明基板上沉积一层不透光膜层(例如铬层),然后采用电子束或激光按照预设的特定图形对该不透光膜层进行刻画,再经过显影、刻蚀和脱膜等图形化工艺,在透明基板上形成具有特定图形的不透光区域。
但是,相关技术中每张掩膜板上的图形是固定不变的,即每张掩膜板唯一对应一种图形。由于显示基板的制造过程需要在衬底基板上依次形成多个图形,需要准备与要形成的图形相对应的多个掩膜板,使得TFT-LCD的制造过程较繁琐,且制造成本较高。
发明内容
本发明实施例提供了一种掩膜板及其制作方法和在显示基板制作工艺中的用途,从而至少减轻或消除已知掩膜板中的一个或多个问题。
在一方面,本发明实施例提供了一种掩膜板,包括:透明基板;以及至少两层电致变色薄膜图形,其设置在所述透明基板上,并且配置成在电场作用下在可透光状态和不透光状态之间切换。在此实施例中,所述至少两层电致变色薄膜图形在电场作用下可以在显示基板上形成至少两种不同的掩膜图形。
在示例性实施例中,该掩膜板还包括透明电极,其设置在每个所述至少两层电致变色薄膜图形的两侧,并且配置成对所述至少两层电致变色薄膜图形施加电场。
在示例性实施例中,所述透明基板的两侧分别形成有至少一层电致变色薄膜图形。
在示例性实施例中,所述透明基板的一侧依次设置有第一下透明电极、第一电致变色薄膜图形和第一上透明电极,并且所述透明基板的另一侧依次设置有第二下透明电极、第二电致变色薄膜图形和第二上透明电极。
在示例性实施例中,所述至少两层电致变色薄膜图形设置在所述透明基板的同一侧。
在示例性实施例中,所述透明基板的一侧依次设置有下透明电极、第一电致变色薄膜图形、共用透明电极、第二电致变色薄膜图形和上透明电极,其中所述共用透明电极配置成被加载一电压,所述电压小于所述下透明电极上加载的电压并且小于所述上透明电极上加载的电压。
在示例性实施例中,每个所述至少两层电致变色薄膜图形分别包括设置在一侧的上透明电极和另一侧的下透明电极,所述掩膜板还包括多个透明绝缘层,并且每个所述多个透明绝缘层设置在一层电致变色薄膜图形的下透明电极与相邻层电致变色薄膜图形的上透明电极之间。
在示例性实施例中,所述透明基板的一侧依次设置有第一上透明电极、第一电致变色薄膜图形、第一下透明电极、第一透明绝缘层、第二上透明电极、第二电致变色薄膜图形、第二下透明电极、第二透明绝缘层、第三上透明电极、第三电致变色薄膜图形和第三下透明电极。
在示例性实施例中,每个所述至少两层电致变色薄膜图形包括间隔设置的至少两个电致变色薄膜单元,并且所述至少两个电致变色薄膜单元的之间间隙形成有透明绝缘材料。
在示例性实施例中,所述掩膜板还包括:控制模块,其设置在所述透明基板的外围,分别与每个所述至少两层电致变色薄膜图形的透明电极电连接,并且配置成控制每个所述至少两层电致变色薄膜图形两端的电压。
在示例性实施例中,所述电致变色薄膜图形由普鲁士蓝(Prussian blue,又称为亚铁氰化铁)形成。
在示例性实施例中,所述透明电极为氧化铟锡膜层。
在示例性实施例中,所述透明绝缘材料为氧化硅、氮化硅或者氮 氧化硅。
在示例性实施例中,所述至少两层电致变色薄膜图形在所述透明基板上的正投影不同。在另一方面,本发明实施例提供了前述掩膜板在显示基板制作工艺中的用途。
在又一方面,本发明实施例提供了一种制作上述掩膜板的方法,包括下述步骤:提供透明基板;以及在所述透明基板上形成至少两层电致变色薄膜图形,其中所述至少两层电致变色薄膜图形配置成在电场作用下在可透光状态和不透光状态之间切换。
在示例性实施例中,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在每个所述至少两层电致变色薄膜图形的两侧形成透明电极,其中所述透明电极配置成对所述至少两层电致变色薄膜图形施加电场。
在示例性实施例中,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的两侧分别形成至少一层电致变色薄膜图形。
在示例性实施例中,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的一侧依次形成第一下透明电极、第一电致变色薄膜图形和第一上透明电极;以及在所述透明基板的另一侧依次形成第二下透明电极、第二电致变色薄膜图形和第二上透明电极。
在示例性实施例中,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的一侧依次形成下透明电极、第一电致变色薄膜图形、共用透明电极、第二电致变色薄膜图形和上透明电极。
在示例性实施例中,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的一侧依次形成第一上透明电极、第一电致变色薄膜图形、第一下透明电极、第一透明绝缘层、第二上透明电极、第二电致变色薄膜图形、第二下透明电极、第二透明绝缘层、第三上透明电极、第三电致变色薄膜图形和第三下透明电极。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种掩膜板的侧视结构示意图;
图2是本发明实施例提供的另一种掩膜板的侧视结构示意图;
图3是本发明实施例提供的再一种掩膜板的侧视结构示意图;
图4是本发明实施例提供的又一种掩膜板的俯视结构示意图;
图5是本发明实施例提供的一种掩膜板的制造方法的流程图;
图6a是本发明实施例提供的一种掩膜板的制造方法的流程图;
图6b是本发明实施例提供的一种形成第一下透明电极的侧视结构示意图;
图6c是本发明实施例提供的一种形成第一电致变色薄膜图形的侧视结构示意图;
图6d是本发明实施例提供的一种形成透明绝缘材料的侧视结构示意图;
图6e是本发明实施例提供的一种形成第一上透明电极的结构示意图;
图7a是本发明实施例提供的一种显示基板的制造方法的流程图;
图7b是本发明实施例提供的一种形成第一掩膜图形的侧视结构示意图;以及
图7c是本发明实施例提供的一种形成第二掩膜图形的侧视结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1本发明实施例提供的一种掩膜板的侧视结构示意图。参见图1,该掩膜板包括透明基板00。该透明基板00上形成有至少两层电致变色薄膜图形10,每层该电致变色薄膜图形的上下两侧形成有透明电极20。例如,在图1所示的掩膜板中,该透明基板00上形成有两层电致变色薄膜图形101和102。电致变色薄膜图形101的上下两侧形成有透明电极201和202,并且电致变色薄膜图形102的上下两侧形成有透明电极 203和204。
该至少两层电致变色薄膜图形10配置成,在该透明电极20的作用下,在显示基板(图中未示出)上形成至少两种不同的掩膜图形。
因此,本发明实施例提供的一种掩膜板包括:透明基板以及形成在该透明基板上的至少两层电致变色薄膜图形,该至少两层电致变色薄膜图形配置成在透明电极的作用下在显示基板上形成至少两种不同的掩膜图形,由此减少显示基板制造过程中所需要使用的掩膜板的数量,进而简化了TFT-LCD的制造工艺,降低了TFT-LCD的制造成本。
在本发明实施例中,该至少两层电致变色薄膜图形10在透明基板00上的正投影不同。例如,该至少两层电致变色薄膜图形10在透明基板00上的正投影完全错开,或者部分重叠但不完全重叠,从而保证该至少两层电致变色薄膜图形10配置成在透明电极作用下在显示基板上形成至少两种不同的掩膜图形。
例如,在本发明实施例中,该透明基板00的两侧分别形成有至少一层电致变色薄膜图形。例如,在图1所示的掩膜板中,该透明基板00的两侧分别形成有一层电致变色薄膜图形101和102。该透明基板00的一侧形成有第一下透明电极201,该第一下透明电极201上形成有第一电致变色薄膜图形101,并且该第一电致变色薄膜图形101上形成有第一上透明电极202。该透明基板00的另一侧形成有第二下透明电极203,该第二下透明电极203上形成有第二电致变色薄膜图形102,并且该第二电致变色薄膜图形102上形成有第二上透明电极204。在掩膜板的两侧分别设置一层电致变色薄膜图形,保证在曝光过程中,光线穿过一层电致变色薄膜图形后即可照射到显示基板上,避免了光线在多层电致变色薄膜图形中传输时,可能会发生的偏折,保证了显示基板的制造精度。
图2本发明实施例提供的另一种掩膜板的侧视结构示意图。如图2所示,在本发明实施例中,该透明基板00的两侧中的至少一侧形成有两层电致变色薄膜图形101和102。即该透明基板00的一侧形成有下透明电极a。该下透明电极a上形成有第一电致变色薄膜图形101。该第一电致变色薄膜图形101上形成有共用透明电极b。该共用透明电极b上形成有第二电致变色薄膜图形102。该第二电致变色薄膜图形102上形成有上透明电极c。该共用透明电极b上加载的电压小于该下透明 电极a上加载的电压和该上透明电极c上加载的电压。例如,该共用透明电极b与电源的负极连接。通过在两层电致变色薄膜图形之间形成共用透明电极,减少掩膜板中需要形成的透明电极的数量,进而简化了掩膜板的制造工艺,降低了掩膜板的制造成本。
例如,如图2所示,每个电致变色薄膜图形包括间隔设置的至少两个电致变色薄膜单元11。相邻两个电致变色薄膜单元11之间的间隙形成有透明绝缘材料30。相邻两个电致变色薄膜单元11之间的间隙包括透明电极20上该电致变色薄膜单元11未覆盖的区域。该透明绝缘材料30保护电致变色薄膜图形10,并提高掩膜板表面的平整度。
需要说明的是,在本发明实施例中,该掩膜板两侧中的任一侧还可以形成两层以上的电致变色薄膜图形。例如,如图3所示,该掩膜板的一侧形成有三层电致变色薄膜图形101、102、103,其中每层电致变色薄膜图形的上下两侧分别形成有上透明电极和下透明电极。例如,电致变色薄膜图形101的上下两侧分别形成有上透明电极1a和下透明电极1b,电致变色薄膜图形102的上下两侧分别形成有上透明电极2a和下透明电极2b,并且电致变色薄膜图形103的上下两侧分别形成有上透明电极3a和下透明电极3b。相邻两个透明电极之间形成有透明绝缘层。例如,透明电极1b和2a之间形成有透明绝缘层12,并且透明电极2b和3a之间形成有透明绝缘层23。透明绝缘层12、23将相邻两个透明电极电气隔离并且避免相邻两个透明电极之间互相干扰,从而保证每层电致变色薄膜图形上下两侧的透明电极独立控制该层电致变色薄膜图形的透光状态。
图4本发明实施例提供的再一种掩膜板的俯视结构示意图。如图4所示,该掩膜板还包括设置在该透明基板00外围的控制模块40。该控制模块40分别与每层电致变色薄膜图形上下两侧形成的透明电极电连接,并且配置成控制每层电致变色薄膜图形的电压,以调节每层电致变色薄膜图形的透光状态。此处的透光状态包括可透光状态和不透光状态。由于该控制模块40位于该透明基板00的外围,因此不会对该掩膜板在显示基板上形成的掩膜图形造成影响。
此处的不透光状态是指光线完全被阻挡的状态。此处的可透光状态是指大多数光线可以透射的状态,例如至少60%,至少75%,至少80%,至少90%,或者甚至100%的光线被透射。此处的光线是指在显 示基板制作工艺中利用该掩膜板进行曝光时采用的光线。
在实际应用中,通过控制模块调节至少两层电致变色薄膜图形中的目标电致变色薄膜图形的透光状态为不透光状态,除该目标电致变色薄膜图形之外的其他电致变色薄膜图形的透光状态为可透光状态,然后即可采用该目标电致变色薄膜图形,在显示基板的衬底基板上形成一种掩膜图形。该目标电致变色薄膜图形为显示基板上待形成的掩膜图形所对应的电致变色薄膜图形。在显示基板的制造过程中,操作人员根据显示基板的制造进度,在掩膜板的至少两层电致变色薄膜图形中选取特定的电致变色薄膜图形作为目标电致变色薄膜图形,并通过控制模块将该目标电致变色薄膜图形的透光状态调节为不透光状态,而将其他电致变色薄膜图形的透光状态调节为可透光状态。
在上述实施例中,电致变色薄膜图形例如为由普鲁士蓝薄膜通过一次构图工艺所形成的图形,透明基板例如为石英玻璃基板,透明电极例如为氧化铟锡(Indium Tin Oxide,ITO)膜层,并且透明绝缘材料例如为氧化硅、氮化硅或者氮氧化硅。此外,透明绝缘层例如由氧化硅、氮化硅或者氮氧化硅形成。
因此,本发明实施例提供的一种掩膜板包括:透明基板以及形成在该透明基板上的至少两层电致变色薄膜图形,该至少两层电致变色薄膜图形配置成在透明电极的作用下在显示基板上形成至少两种不同的掩膜图形。而相关技术中每张掩膜板上的图形是固定不变的,即每张掩膜板唯一对应一种图形。由于显示基板的制造过程需要在衬底基板上依次形成栅极扫描线图形、有源层图形、和钝化层图形等多个图形,因此需要准备与要形成的图形相对应的多个掩膜板。而采用本发明实施例提供的掩膜板,使用一张掩膜板在显示基板上形成至少两种图形,因此减少显示基板制造过程中所需要使用的掩膜板的数量,进而简化了TFT-LCD的制造工艺,降低了TFT-LCD的制造成本。
图5是本发明实施例提供的一种掩膜板的制造方法的流程图。如图所示,在示例性实施例中,该方法包括步骤:提供透明基板;以及在所述透明基板上形成至少两层电致变色薄膜图形,其中所述至少两层电致变色薄膜图形配置成在电场作用下在可透光状态和不透光状态之间切换。
例如,在所述透明基板上形成至少两层电致变色薄膜图形的步骤 包括:在每个所述至少两层电致变色薄膜图形的两侧形成透明电极,其中所述透明电极配置成对所述至少两层电致变色薄膜图形施加电场。
例如,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的两侧分别形成至少一层电致变色薄膜图形。
例如,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的一侧依次形成第一下透明电极、第一电致变色薄膜图形和第一上透明电极;以及在所述透明基板的另一侧依次形成第二下透明电极、第二电致变色薄膜图形和第二上透明电极。
例如,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的一侧依次形成下透明电极、第一电致变色薄膜图形、共用透明电极、第二电致变色薄膜图形和上透明电极。
例如,在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:在所述透明基板的一侧依次形成第一上透明电极、第一电致变色薄膜图形、第一下透明电极、第一透明绝缘层、第二上透明电极、第二电致变色薄膜图形、第二下透明电极、第二透明绝缘层、第三上透明电极、第三电致变色薄膜图形和第三下透明电极。
在下文中结合具体实施例对该方法进行详细阐述。
图6a是本发明实施例提供的一种掩膜板的制造方法的流程图。以制造如图1所示的掩膜板为例,该掩膜板的制造方法包括:
步骤601、在透明基板的一侧形成第一下透明电极。
例如,如图6b所示,在透明基板00的一侧形成第一下透明电极201。该第一下透明电极201例如为ITO膜层。
步骤602、在形成有该第一下透明电极的透明基板上形成第一电致变色薄膜图形。
如图6c所示,在形成有第一下透明电极201的透明基板00上沉积例如普鲁士蓝薄膜的电致变色薄膜层。然后通过一次构图工艺形成第一电致变色薄膜图形101。该第一电致变色薄膜图形101在显示基板上形成第一掩膜图形。
步骤603、在第一电致变色薄膜图形包括的间隔设置的至少两个电致变色薄膜单元之间的间隙形成透明绝缘材料。
另外,如图6d所示,该第一电致变色薄膜图形101包括间隔设置的至少两个电致变色薄膜单元11。为了保证掩膜板表面的平整度以及 保护该第一电致变色薄膜图形101,在相邻两个电致变色薄膜单元11之间的间隙形成透明绝缘材料30。例如该间隙还包括第一下透明电极201上该电致变色薄膜单元11未覆盖的区域。
步骤604、在形成有第一电致变色薄膜图形的透明基板上形成第一上透明电极。
如图6e所示,在形成有第一电致变色薄膜图形101的透明基板00上形成第一上透明电极202后,即完成该掩膜板一侧的图形的制造。
步骤605、在该透明基板的另一侧形成第二下透明电极。
步骤606、在形成有该第二下透明电极的透明基板上形成第二电致变色薄膜图形。
步骤607、在该第二电致变色薄膜图形包括的间隔设置的至少两个电致变色薄膜单元之间的间隙形成透明绝缘材料。
步骤608、在形成有该第二电致变色薄膜图形的透明基板上形成第二上透明电极。
上述步骤605至步骤608为在掩膜板的另一侧形成第二电致变色薄膜图形的过程,可以参考步骤601至步骤604,此处不予赘述。
步骤609、在该透明基板的外围设置控制模块,并将该控制模块分别与每层电致变色薄膜图形上下两侧形成的透明电极电连接。
如图4所示,在透明基板00的外围设置控制模块40。该控制模块40分别与每层电致变色薄膜图形上下两侧形成的透明电极电连接,从而控制每层电致变色薄膜图形的电压,进而调节该每层电致变色薄膜图形的透光状态。
需要说明的是,上述掩膜板的制造方法的步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。例如,上述掩膜板的制造方法的步骤的执行顺序为:步骤601、步骤605、步骤602、步骤606、步骤603、步骤607、步骤604、步骤608以及步骤609。本领域普通技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
还需要说明的是,本发明实施例提供的掩膜板的制造方法还可以用于制造如图2至图4任一所示的掩膜板,其具体制造过程可以参考上述步骤601至步骤608。
因此,本发明实施例提供的掩膜板的制造方法,在掩膜板两侧分 别形成一层电致变色薄膜图形,采用该掩膜板能够在显示基板上形成两种不同的掩膜图形,因此减少了制造显示基板时所需要使用的掩膜板的数量,简化了TFT-LCD的制造工艺,降低了TFT-LCD的制造成本。
图7a是本发明实施例提供的一种显示基板的制造方法的流程图。以采用如图1所示的掩膜板为例,该方法包括:
步骤701、通过控制模块控制第一上透明电极和第一下透明电极之间的压差为第一电压,调节第一电致变色薄膜图形为不透光状态,并且通过控制模块控制第二上透明电极和第二下透明电极之间的压差为第二电压,调节第二电致变色薄膜图形为可透光状态。
在本发明实施例中,通过改变加载在电致变色薄膜图形上的电压来改变该电致变色薄膜图形的透光状态。例如,对于由普鲁士蓝薄膜形成的电致变色薄膜图形,当加载在该电致变色薄膜图形上的电压为高电压时,该电致变色薄膜图形为可透光状态,并且当加载在该电致变色薄膜图形上的电压为低电压时,该电致变色薄膜图形为不透光状态。因此,在本发明实施例中,该第一电压例如为低电压,比如小于1伏特(V)的电压,并且该第二电压例如为高电压,比如大于1V的电压。例如,如图7b所示,通过控制模块控制第一上透明电极202和第一下透明电极201之间的压差为低电压,并且控制第二上透明电极204和第二下透明电极203之间的压差为高电压,使得第一电致变色薄膜图形101为不透光状态,并且第二电致变色薄膜图形102为可透光状态。
步骤702、采用该第一电致变色薄膜图形在显示基板的衬底基板上形成第一掩膜图形。
例如,如图7b所示,由于第二电致变色薄膜图形102为可透光状态,该第二电致变色薄膜图形102以及该掩膜板中的透明电极不会阻隔光线,因此可以采用处于不透光状态的第一电致变色薄膜图形101,通过一次构图工艺在显示基板的衬底基板50上形成第一掩膜图形(图中未示出)。
步骤703、通过控制模块控制第一上透明电极和第一下透明电极之间的压差为第二电压,调节第一电致变色薄膜图形为可透光状态,并且通过控制模块控制第二上透明电极和第二下透明电极之间的压差为 第一电压,调节第二电致变色薄膜图形为不透光状态。
例如,通过控制模块,控制第一上透明电极202和第一下透明电极201之间的压差为高电压,并且控制第二上透明电极204和第二下透明电极203之间的压差为低电压,使得第一电致变色薄膜图形101为可透光状态,并且第二电致变色薄膜图形102为不透光状态。
步骤704、采用该第二电致变色薄膜图形在形成有该第一掩膜图形的衬底基板上形成第二掩膜图形。
如图7c所示,当调节该掩膜板中的第一电致变色薄膜图形101为可透光状态并且第二电致变色薄膜图形102为不透光状态时,将该掩膜板翻转,使形成有第二电致变色薄膜图形102的一侧朝向该显示基板,然后采用该不透光的第二电致变色薄膜图形102,通过一次构图工艺在形成有该第一掩膜图形501的衬底基板50上形成第二掩膜图形(图中未示出)。
由于该第一电致变色薄膜图形101和第二电致变色薄膜图形102在透明基板上的正投影不同,因此该两层电致变色薄膜图形在显示基板的衬底基板50上形成的第一掩膜图形和第二掩膜图形也不相同,减少了显示基板制造过程中所需要使用的掩膜板的数量。
需要说明的是,上述实施例中所述的一次构图工艺包括光刻胶涂敷、曝光、显影、刻蚀、光刻胶剥离等工艺。
还需要说明的是,本发明实施例提供的显示基板的制造方法还可以应用于如图2至图4任一所示的掩膜板,采用如图2至图4任一所示的掩膜板制造显示基板的过程可以参考上述步骤701至步骤704。
还需要说明的是,在图7c所示的实施例中,掩膜板也可以不翻转。在实际应用中,掩膜板通常翻转,使得处于不透光状态的第二电致变色薄膜图形102更靠近或者甚至接触待形成第二掩模图形的衬底基板。藉此,在利用该第二电致变色薄膜图形102作为掩膜进行曝光时,第二电致变色薄膜图形102被更精确地传递到衬底基板上,这有利于改善第二掩膜图形的重复性,减小在衬底基板上形成的图形变形,并且提高在衬底基板上形成的图形的精度。
还需要说明的是,出于技术成熟度方面的考虑,上述实施例中的电致变色薄膜图形由普鲁士蓝形成。由普鲁士蓝形成的电致变色薄膜图形在两端施加低电压时呈现蓝黑色,处于不透光状态,而在两端施 加高电压时呈现透明状态,处于可透光状态。本领域普通技术人员将理解,该电致变色薄膜图形的材料可以为任何能够在不透光状态和可透光状态之间反复并可逆地切换的材料。
因此,本发明实施例提供的显示基板的制造方法,采用掩膜板两侧的电致变色薄膜图形,在显示基板上形成两种不同的掩膜图形。相较于已知的显示基板制造技术,减少了显示基板制造过程中所需要使用的掩膜板的数量,简化了TFT-LCD的制造工艺,降低了TFT-LCD的制造成本。
本发明实施例还提供了一种显示基板。该显示基板采用上述制造方法制成。
相应地,本发明实施例提供了一种显示面板,该显示面板包括由上述制造方法制成的显示基板。因此,该显示面板的制造过程更简单,且制造成本更低。
相应地,本发明实施例提供了一种显示装置,该显示装置包括上述显示面板。因此,该显示装置的制造过程更简单,且制造成本更低。例如,该显示装置为笔记本电脑、手机、数码相框、平板电脑、导航仪、电视机、显示器等任何具有显示功能的产品或部件。对于显示装置的其它必不可少的组成部分均为本领域普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
本发明实施例提供了一种掩膜板及其制作方法和在显示基板制作工艺中的用途。该掩膜板包括:透明基板;以及至少两层电致变色薄膜图形,其设置在所述透明基板上,并且配置成在电场作用下在可透光状态和不透光状态之间切换。该掩膜板在显示基板上形成至少两种不同的掩膜图形,降低了显示基板制造过程中所需要使用的掩膜板的数量,简化了TFT-LCD的制造工艺,降低了TFT-LCD的制造成本。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种掩膜板,包括:
    透明基板;以及
    至少两层电致变色薄膜图形,其设置在所述透明基板上,并且配置成在电场作用下在可透光状态和不透光状态之间切换。
  2. 根据权利要求1所述的掩膜板,还包括:
    透明电极,其设置在每个所述至少两层电致变色薄膜图形的两侧,并且配置成对所述至少两层电致变色薄膜图形施加电场。
  3. 根据权利要求1所述的掩膜板,其中所述透明基板的两侧分别形成有至少一层电致变色薄膜图形。
  4. 根据权利要求3所述的掩膜板,其中所述透明基板的一侧依次设置有第一下透明电极、第一电致变色薄膜图形和第一上透明电极,并且所述透明基板的另一侧依次设置有第二下透明电极、第二电致变色薄膜图形和第二上透明电极。
  5. 根据权利要求1所述的掩膜板,其中所述至少两层电致变色薄膜图形设置在所述透明基板的同一侧。
  6. 根据权利要求5所述的掩膜板,其中所述透明基板的一侧依次设置有下透明电极、第一电致变色薄膜图形、共用透明电极、第二电致变色薄膜图形和上透明电极,其中所述共用透明电极配置成被加载一电压,所述电压小于所述下透明电极上加载的电压并且小于所述上透明电极上加载的电压。
  7. 根据权利要求5所述的掩膜板,其中每个所述至少两层电致变色薄膜图形分别包括设置在一侧的上透明电极和另一侧的下透明电极,所述掩膜板还包括多个透明绝缘层,并且每个所述多个透明绝缘层设置在一层电致变色薄膜图形的下透明电极与相邻层电致变色薄膜图形的上透明电极之间。
  8. 根据权利要求7所述的掩膜板,其中所述透明基板的一侧依次设置有第一上透明电极、第一电致变色薄膜图形、第一下透明电极、第一透明绝缘层、第二上透明电极、第二电致变色薄膜图形、第二下透明电极、第二透明绝缘层、第三上透明电极、第三电致变色薄膜图形和第三下透明电极。
  9. 根据权利要求1至8中任意一项所述的掩膜板,其中每个所述至少两层电致变色薄膜图形包括间隔设置的至少两个电致变色薄膜单元,并且所述至少两个电致变色薄膜单元的之间间隙形成有透明绝缘材料。
  10. 根据权利要求1至8中任意一项所述的掩膜板,还包括:
    控制模块,其设置在所述透明基板的外围,分别与每个所述至少两层电致变色薄膜图形的透明电极电连接,并且配置成控制每个所述至少两层电致变色薄膜图形两端的电压。
  11. 根据权利要求1至8中任意一项所述的掩膜板,其中所述电致变色薄膜图形由普鲁士蓝形成。
  12. 根据权利要求9所述的掩膜板,其中所述透明绝缘材料为氧化硅、氮化硅或者氮氧化硅。
  13. 根据权利要求1至8中任意一项所述的掩膜板,其中所述至少两层电致变色薄膜图形在所述透明基板上的正投影不同。
  14. 根据权利要求1-13所述的掩膜板在显示基板制作工艺中的用途。
  15. 一种制作如权利要求1所述的掩膜板的方法,包括下述步骤:
    提供透明基板;以及
    在所述透明基板上形成至少两层电致变色薄膜图形,其中所述至少两层电致变色薄膜图形配置成在电场作用下在可透光状态和不透光状态之间切换。
  16. 根据权利要求15所述的方法,其中在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:
    在每个所述至少两层电致变色薄膜图形的两侧形成透明电极,其中所述透明电极配置成对所述至少两层电致变色薄膜图形施加电场。
  17. 根据权利要求15所述的方法,其中在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:
    在所述透明基板的两侧分别形成至少一层电致变色薄膜图形。
  18. 根据权利要求17所述的方法,其中在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:
    在所述透明基板的一侧依次形成第一下透明电极、第一电致变色薄膜图形和第一上透明电极;以及
    在所述透明基板的另一侧依次形成第二下透明电极、第二电致变色薄膜图形和第二上透明电极。
  19. 根据权利要求15所述的方法,其中在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:
    在所述透明基板的一侧依次形成下透明电极、第一电致变色薄膜图形、共用透明电极、第二电致变色薄膜图形和上透明电极。
  20. 根据权利要求15所述的方法,其中在所述透明基板上形成至少两层电致变色薄膜图形的步骤包括:
    在所述透明基板的一侧依次形成第一上透明电极、第一电致变色薄膜图形、第一下透明电极、第一透明绝缘层、第二上透明电极、第二电致变色薄膜图形、第二下透明电极、第二透明绝缘层、第三上透明电极、第三电致变色薄膜图形和第三下透明电极。
PCT/CN2016/102687 2016-01-11 2016-10-20 掩膜板及其制作方法和在显示基板制作工艺中的用途 WO2017121157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/533,449 US10564538B2 (en) 2016-01-11 2016-10-20 Mask plate, method for manufacturing mask plate, and usage of mask plate in manufacturing display substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610016716.X 2016-01-11
CN201610016716.XA CN105629655B (zh) 2016-01-11 2016-01-11 掩膜板

Publications (1)

Publication Number Publication Date
WO2017121157A1 true WO2017121157A1 (zh) 2017-07-20

Family

ID=56044738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102687 WO2017121157A1 (zh) 2016-01-11 2016-10-20 掩膜板及其制作方法和在显示基板制作工艺中的用途

Country Status (3)

Country Link
US (1) US10564538B2 (zh)
CN (1) CN105629655B (zh)
WO (1) WO2017121157A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629655B (zh) * 2016-01-11 2018-08-07 京东方科技集团股份有限公司 掩膜板
KR102006697B1 (ko) * 2018-01-31 2019-08-02 청주대학교 산학협력단 전기변색 디바이스용 다층박막 투명전극 및 이의 제조방법
CN108628053A (zh) * 2018-05-09 2018-10-09 深圳市华星光电技术有限公司 Uv掩膜板及其制作方法
CN110989288B (zh) * 2019-12-20 2022-05-10 京东方科技集团股份有限公司 一种掩膜版、掩膜版系统及制备、光刻方法
KR20220077308A (ko) * 2020-12-01 2022-06-09 삼성디스플레이 주식회사 마스크
CN113791511B (zh) * 2021-09-01 2023-09-15 维沃移动通信有限公司 电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851110B2 (en) * 2007-04-20 2010-12-14 Photronics, Inc. Secure photomask with blocking aperture
KR20130006743A (ko) * 2011-04-04 2013-01-18 엘지이노텍 주식회사 포토마스크
CN103513509A (zh) * 2013-10-25 2014-01-15 北京京东方光电科技有限公司 一种掩膜板、基板及基板的制作方法
CN104423139A (zh) * 2013-08-19 2015-03-18 苹果公司 自适应光掩模及其使用方法
CN105116682A (zh) * 2015-09-30 2015-12-02 京东方科技集团股份有限公司 掩模板及其制备方法
CN105629655A (zh) * 2016-01-11 2016-06-01 京东方科技集团股份有限公司 掩膜板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936121B1 (ko) * 2006-09-06 2010-01-11 주식회사 엘지화학 전기변색층 패턴 형성 방법, 이 방법을 이용한 전기변색소자 제조방법 및 전기변색층 패턴을 구비하는 전기변색소자
US8318409B2 (en) * 2009-10-21 2012-11-27 GM Global Technology Operations LLC Dynamic masking method for micro-truss foam fabrication
TW201207536A (en) * 2010-08-10 2012-02-16 J Touch Corp Electrochromic module and display device integrated with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851110B2 (en) * 2007-04-20 2010-12-14 Photronics, Inc. Secure photomask with blocking aperture
KR20130006743A (ko) * 2011-04-04 2013-01-18 엘지이노텍 주식회사 포토마스크
CN104423139A (zh) * 2013-08-19 2015-03-18 苹果公司 自适应光掩模及其使用方法
CN103513509A (zh) * 2013-10-25 2014-01-15 北京京东方光电科技有限公司 一种掩膜板、基板及基板的制作方法
CN105116682A (zh) * 2015-09-30 2015-12-02 京东方科技集团股份有限公司 掩模板及其制备方法
CN105629655A (zh) * 2016-01-11 2016-06-01 京东方科技集团股份有限公司 掩膜板

Also Published As

Publication number Publication date
US10564538B2 (en) 2020-02-18
US20180314147A1 (en) 2018-11-01
CN105629655A (zh) 2016-06-01
CN105629655B (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2017121157A1 (zh) 掩膜板及其制作方法和在显示基板制作工艺中的用途
JP4818065B2 (ja) 液晶表示装置
JP4344725B2 (ja) 液晶表示装置およびその製造方法
US20150243681A1 (en) Array substrate and method of manufacturing the same, and display device
JP5094010B2 (ja) 液晶表示装置用カラーフィルタ基板及びその製造方法
TWI519873B (zh) Liquid crystal display device and manufacturing method thereof
WO2017128576A1 (zh) Ltps显示面板及其制作方法
WO2018188114A1 (zh) 彩膜基板的制作方法及液晶面板的制作方法
WO2018032670A1 (zh) Tft基板的制作方法
WO2016074413A1 (zh) 显示基板及其制作方法、显示面板及显示装置
KR101760849B1 (ko) 액정 표시 장치
US10168570B2 (en) Display apparatus
KR101069250B1 (ko) 액정표시패널 및 그 제조방법
WO2017181753A1 (zh) 阵列基板、显示面板、显示装置及阵列基板制作方法
JP2003186022A (ja) 液晶表示装置及びその製造方法
US7608541B2 (en) Method of forming fine pattern, liquid crystal display device having a fine pattern and fabricating method thereof
JP4143571B2 (ja) 液晶表示装置
WO2011092952A1 (ja) カラーフィルタ基板、液晶表示パネル及びカラーフィルタ基板の製造方法
JP2018526678A (ja) 光配向に用いられるフォトマスク及び光配向の方法
KR20100136678A (ko) 칼라필터기판 및 이의 제조방법
KR101394571B1 (ko) 배향막 형성용 전사판
KR20040059001A (ko) 공정을 단순화한 액정표시장치의 제조방법
KR101385459B1 (ko) 액정표시장치용 인쇄장치
KR100710178B1 (ko) 액정표시장치용 컬러 필터 기판 및 그 제조방법
KR102162884B1 (ko) 영상표시장치의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15533449

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884711

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16884711

Country of ref document: EP

Kind code of ref document: A1