WO2016074413A1 - 显示基板及其制作方法、显示面板及显示装置 - Google Patents

显示基板及其制作方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2016074413A1
WO2016074413A1 PCT/CN2015/075207 CN2015075207W WO2016074413A1 WO 2016074413 A1 WO2016074413 A1 WO 2016074413A1 CN 2015075207 W CN2015075207 W CN 2015075207W WO 2016074413 A1 WO2016074413 A1 WO 2016074413A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
display
reset
area
layer
Prior art date
Application number
PCT/CN2015/075207
Other languages
English (en)
French (fr)
Inventor
薛红伟
陈霖东
孔益
管礼志
刘俊豪
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/785,787 priority Critical patent/US9798192B2/en
Publication of WO2016074413A1 publication Critical patent/WO2016074413A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • Embodiments of the present invention relate to a display substrate, a method of fabricating the same, a display panel, and a display device.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the TFT-LCD is composed of an array substrate and a color filter substrate.
  • a liquid crystal layer is disposed between the array substrate and the color filter substrate, and the deflection of the liquid crystal molecules is controlled to control the intensity of the light, and then the color image display is realized by the filtering action of the color filter substrate.
  • the liquid crystal molecules are arranged in a uniform direction.
  • a driving IC Integrated Circuit
  • a via hole is required at the binding position of the display panel, so that the lead at the binding position is connected to the gate line or the data line of the display area, thereby inputting the control signal of the driving IC output to the Data lines and gate lines.
  • Embodiments of the present invention provide a display substrate, a method of fabricating the same, a display panel, and a display device, which can solve the defect that the prepared alignment grooves are different in depth due to the low flatness of the friction surface of the friction roller.
  • At least one embodiment of the present invention provides a display substrate including a display area and a non-display area, wherein
  • a reset region is disposed in the non-display area, and the thickness of the thin film layer disposed in the reset region is smaller than a thickness of a thin film layer disposed in a region adjacent to the reset region;
  • a step height difference between the reset region and a film layer at a boundary with an adjacent region of the reset region a dimension of the reset region in a rubbing direction perpendicular to the display substrate in a plane of the display substrate It is greater than or equal to the size of the display area.
  • the display substrate is an array substrate or a color filter substrate.
  • the display substrate is an array substrate
  • a protection layer is disposed in the reset region, and the protection layer covers an area other than the binding position.
  • the protective layer includes a gate insulating layer.
  • the organic thin film layer covers a region other than the reset region.
  • the reset region corresponds to a position of the sealant on the surface of the array substrate.
  • the embodiment of the invention further provides a display panel comprising any one of the display substrates as described above.
  • Embodiments of the present invention also provide a display device including the display substrate as described above.
  • the embodiment of the invention further provides a method for manufacturing a display substrate, comprising:
  • the thickness of the thin film layer disposed in the reset region being smaller than a thickness of a thin film layer disposed in a region adjacent to the reset region;
  • the size of the reset region is greater than or equal to the size of the display region in a rubbing direction perpendicular to the display substrate.
  • the method when the binding position is set in the reset area, the method includes:
  • a protective layer is formed in a region other than the binding position in the reset region.
  • the method includes:
  • the photoresist located in the completely remaining region of the photoresist is stripped.
  • the method of forming the reset region includes:
  • the passivation layer On the surface of the passivation layer, at least the passivation layer and the organic thin film layer at the position of the corresponding reset region are removed by a mask exposure process.
  • 1a is a schematic structural diagram of a display substrate according to an embodiment of the present invention.
  • FIG. 1b is a schematic structural diagram of a display substrate provided with a reset area according to an embodiment of the present invention
  • FIG. 2a is a structural diagram of another display substrate provided with a reset area according to an embodiment of the present invention intention
  • FIG. 2b is a schematic structural diagram of still another display substrate provided with a reset area according to an embodiment of the present invention
  • 2c is a cross-sectional view showing a structure of a reset region of a display substrate according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing another structure of a reset region of a display substrate according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for fabricating a display substrate according to an embodiment of the present invention.
  • 5a-5d are schematic structural diagrams of various manufacturing processes of a display substrate according to an embodiment of the invention.
  • FIG. 6 is a schematic diagram of a display panel according to an embodiment of the invention.
  • An embodiment of the present invention provides a display substrate 01, as shown in FIG. 1a, which may include a display area 10 and a non-display area 20.
  • a reset region 201 may be disposed in the non-display area 20, and the thickness K of the thin film layer disposed in the reset region 201 is smaller than the thickness K' of the thin film layer disposed in the region adjacent to the reset region 201.
  • the step width of the reset region 201 and the adjacent region boundary (O-O') film layer is highly uniform. Thus, during the rolling of the rubbing roller, the cloth of the rubbing roller is uniformly biased at the step position of the above-mentioned boundary (O-O'), so that a uniform deformation occurs.
  • the film layer disposed in the reset region 201 may be one layer or multiple layers.
  • the thickness K of the film layer disposed in the reset region 201 The distance from the surface of the film layer to the surface of the substrate 02 (shown in Figure 2c), i.e., the thickness of the film layer.
  • the thickness K of the film layer provided in the reset region 201 is the distance from the surface of the uppermost film layer in the multilayer film layer to the surface of the substrate 02, that is, The total thickness of the multilayer film layer.
  • the thickness K' of the film layer disposed in the adjacent region is similarly available.
  • the size L of the resetting region 201 is greater than or equal to the dimension L' of the display region, wherein the direction Y is perpendicular to the rubbing direction X of the display substrate, so that the cloth having the uniform deformation on the rubbing roller 30 can be completely
  • the display area is covered to increase the flatness of the friction surface at the interface with the display area 10, and the orientation grooves formed on the alignment layer of the display area 10 are uniform in depth.
  • Embodiments of the present invention provide a display substrate, which may include a display area and a non-display area, and a reset area is disposed in the non-display area.
  • a display substrate which may include a display area and a non-display area, and a reset area is disposed in the non-display area.
  • the thickness of the film layer provided in the reset region is smaller than the thickness of the film layer disposed in the region adjacent to the reset region. Thereby, there is a step difference between the film layer on the surface of the reset region and the film layer on the surface of the adjacent region.
  • the step of the film layer at the interface between the reset region and the adjacent region of the reset region is highly uniform, so that the friction roller is in contact with the step difference at the boundary during the rolling process from the non-display region to the display region, so that the friction process In the middle, the cloth of the rubbing roller is uniformly stressed at the step position at the above-mentioned boundary, so that a uniform deformation occurs.
  • the size of the reset area is greater than or equal to the size of the display area in the rubbing direction perpendicular to the display substrate, the cloth having the uniform deformation on the rubbing roller can completely cover the display area, thereby improving the connection with the display area.
  • the flatness of the friction surface at the position makes the orientation grooves formed on the alignment layer of the display region uniform in depth. Further, the poor alignment of the block gray scale due to the unevenness of the orientation grooves is avoided.
  • the first display substrate 01 may be an array substrate or a counter substrate facing the array substrate, such as a color filter substrate. Since the rubbing alignment process is performed before the cutting process, as shown in FIG. 1a, the uncut display substrate includes a plurality of spaced apart display regions 10 and non-display regions 20.
  • the adjacent area of the reset area 201 may be different according to the position of the reset area 201. For example, when the reset area 201 is far from the display area 10, the adjacent area is also located in the non-display area. When the reset area 201 is in close proximity to the display area 10, the adjacent area may be a display area.
  • the display area 10 of the array substrate includes a plurality of pixel units defined by horizontally and vertically intersecting gate lines and data lines, and one TFT is disposed in each of the pixel units.
  • the gate signal turns on the TFT connected to the row gate line through the gate line.
  • the data signal is input to the source of the TFT through the data line, and then the pixel electrode in the pixel unit is charged through the drain of the TFT, thereby controlling the liquid crystal molecules corresponding to the position of the pixel unit to rotate to display different gray scales. .
  • a specific binding process may be that a lead 100 made of a metal material is disposed on the non-display area 20. One end of the lead 100 is connected to the gate line or the data line in the display area 20, and the other end is connected to the driving IC located at the binding position A. It should be noted that the lead 100 may be made of a gate metal and formed simultaneously with the gate line, or may be made of a source/drain metal layer and formed simultaneously with the data line.
  • the film layer in the reset area 201 needs to be flush with the surface of the lead 100 as shown in FIG. 2a, so that The surface of the lead 100 can be exposed to be connected to the driver IC.
  • the lead 100 other than the bonding position A may be exposed to the external environment due to the surface being exposed, such as oxidation or contamination. This causes an open circuit or short circuit of the drive circuit, which affects the quality of the display.
  • the protective layer 101 may be disposed in the reset region 201. As shown in FIG. 2b, the protective layer 101 covers an area other than the binding position A. Thereby, it is possible to protect the lead 100 that does not need to be in contact with the driver IC.
  • the protective layer 101 can be fabricated after the reset area 201 is fabricated.
  • the thin film layer of the reset region 201 on the side of the gate line away from the substrate substrate as shown in FIG. 2c, the thin film layer includes the gate insulating layer 102
  • the semiconductor active layer 103, the source/drain metal layer 104, and the passivation layer 105 are all removed.
  • the protective layer 101 covering the region other than the binding position A is created.
  • the material of the protective layer may be the same material as the gate insulating layer 102.
  • the preparation of the protective layer 101 may be completed in the process of fabricating the reset region 201.
  • the gate insulating layer 102 on the surface of the gate line in the reset region 201 may be away from the thin film layer on the side of the substrate (eg, the semiconductor active layer 103, source and drain).
  • the metal layer 104 and the passivation layer 105) are all removed.
  • the gate insulating layer at the corresponding bonding position A is removed to expose the lead 100.
  • the region other than the bonding position A and the bonding position A has a step difference in thickness of the thin film layer (gate insulating layer 102).
  • the step difference is small, no significant deformation unevenness is caused to the cloth on the rubbing roller 30.
  • the gate line and the gate insulating layer are closer to the base substrate of the array substrate. Therefore, in the process of fabricating the reset region 201, after removing the thin film layer on the gate insulating layer, the thin film layer of the junction area (O-O') of the reset region 201 and its adjacent region is generated to have a large height uniformity. The difference is the segment.
  • the rubbing roller 30 passes through the above-mentioned binding position, it will also pass through the step of the junction (O-O') of the resetting region 201 and its adjacent region. At this time, the position can cause the cloth on the rubbing roller to be large. Consistent deformation. Therefore, it is still possible to avoid the unevenness of the orientation grooves obtained by the uneven deformation of the cloth.
  • the organic thin film layer 106 may be formed in a partial region between the source/drain metal layer 104 and the passivation layer 105.
  • the thickness of the organic thin film layer 106 is much larger than the thickness of the passivation layer 105, when the reset region 201 is formed, as shown in FIG. 3, the organic thin film layer 106 in the reset region 201 and the passivation layer 105 on the surface thereof can be disposed.
  • the removal, so that the organic thin film layer 106 covers a region other than the reset region 201 a large and highly uniform step difference at the junction of the reset region 201 and its adjacent region (O-O') can be formed.
  • the friction roller enters the display region 10 the above-mentioned step is caused to cause a large uniform deformation of the cloth on the friction roller. Therefore, it is still possible to avoid the unevenness of the orientation grooves obtained by the uneven deformation of the cloth.
  • a display panel 07 may include any of the display substrates described above.
  • the above-described reset region 201 may correspond to the position of the sealant 04 on the surface of the array substrate 06. In this way, even if the lead 100 is exposed during the process of making the reset region 201, it can be glued in the subsequent frame. In the process, the exposed lead 100 at the unbonded position A is covered by the sealant to prevent the lead 100 from being affected by the environment.
  • the display substrate 01 is the array substrate 06, and the opposite substrate 03 opposed to the array substrate 06 may be a color filter substrate. Further, the color filter substrate may have the structure described in any of the display substrates described above.
  • a liquid crystal layer 05 is disposed between the array substrate and the color filter substrate.
  • the display panel provided by the embodiment of the invention has the same structure and advantageous effects as the display substrate provided by the foregoing embodiments.
  • the structure and advantageous effects of the display substrate have been described in detail since the foregoing embodiments. I will not repeat them here.
  • Embodiments of the present invention provide a display device including the display panel as described above. It has the same structure and advantageous effects as the display substrate provided by the foregoing embodiment. The structure and advantageous effects of the display substrate have been described in detail since the foregoing embodiments. I will not repeat them here.
  • the display device may specifically include a liquid crystal display device, for example, the display device may be a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, a watch, a navigator, an electronic paper, or a tablet computer. Any product or part that has a display function.
  • the embodiment of the invention provides a method for manufacturing a display substrate. As shown in FIG. 4, the method may include:
  • a reset region 201 is formed in the non-display area, and a thickness K of the thin film layer provided in the reset region 201 is smaller than a thickness K' of the thin film layer disposed in an adjacent region of the reset region 201.
  • the step difference between the reset region 201 and the adjacent region of the reset region 201 (O-O') film layer is highly uniform.
  • the cloth of the rubbing roller is uniformly stressed at the step of the above-mentioned boundary (O-O'), so that uniform deformation occurs.
  • the size L of the reset region 201 is greater than or equal to the size L' of the display region, wherein the direction Y is a direction perpendicular to the rubbing direction X of the display substrate in the plane of the display substrate such that the rubbing roller 30
  • the upper deformed cloth can completely cover the display area, thereby improving the flatness of the friction surface at the interface with the display area 10, so that the orientation grooves formed on the orientation layer of the display area 10 are uniform in depth.
  • steps S101 and S102 may be performed simultaneously, and then step S103 is performed; or, step S101, step S102, and step S103 may be performed simultaneously.
  • the present invention does not limit the order of the above steps.
  • the bonding position A is set in the reset region 201, since the thickness of the film layer in the reset region 201 is uniform, for example, the film layer in the reset region 201 needs to be flush with the surface of the lead 100 as shown in FIG. 2a, so that The surface of the lead 100 can be exposed to be connected to the driver IC.
  • the lead 100 other than the bonding position A may be exposed to the external environment due to the surface being exposed, such as oxidation or contamination. This causes an open circuit or short circuit of the drive circuit, which affects the quality of the display.
  • the method of fabricating the display substrate may include forming the protective layer 101 in a region other than the bonding position A in the reset region 201. Thereby, it is possible to protect the lead 100 that does not need to be in contact with the driver IC.
  • the protective layer 101 can be fabricated after the reset area 201 is fabricated.
  • the film layer in the reset region 201 on the side of the gate line away from the substrate substrate can be completely removed, as shown in FIG. 2c, the film layer includes the gate insulation.
  • the layer 102, the semiconductor active layer 103, the source/drain metal layer 104, and the passivation layer 105 are removed.
  • the protective layer 101 covering the region other than the binding position A is created.
  • the material of the protective layer may be the same material as the gate insulating layer 102.
  • the preparation of the protective layer 101 may be completed in the process of fabricating the reset region 201.
  • the method when the lead 100 is disposed in the same material as the gate line, the method includes:
  • a gate insulating layer 102, a semiconductor active layer 103, a source/drain metal layer 104, and a passivation layer 105 are sequentially formed on the surface of the lead 100, and lithography is applied on the surface of the passivation layer 105.
  • Glue 300 is sequentially formed on the surface of the lead 100, and lithography is applied on the surface of the passivation layer 105.
  • a photoresist completely removed region 301, a photoresist portion remaining region 302, and a photoresist completely remaining region 303 are formed by a mask exposure and development process using a semi-transmissive reticle.
  • the photoresist completely removed area 301 corresponds to the binding position A
  • the photoresist partial reserved area 302 corresponds to the area other than the binding position A in the reset area 201
  • the photoresist completely reserved area 303 corresponds to the area other than the reset area 201.
  • the passivation layer 105 corresponding to the photoresist completely removed region 301 is etched, The source/drain metal layer 104, the semiconductor active layer 103, and the gate insulating layer 102.
  • the photoresist of the photoresist portion remaining region 302 is ashed.
  • the passivation layer 105, the source/drain metal layer 104, and the semiconductor active layer 103 corresponding to the photoresist portion remaining region 302 are etched.
  • the unetched gate insulating layer 102 protects an area other than the bonding position A in the reset region 201. Therefore, the unetched gate insulating layer 102 can function as a protective layer 101.
  • the region other than the bonding position A and the bonding position A has a step difference in thickness of the thin film layer (gate insulating layer 102).
  • the step difference is small, no significant deformation unevenness is caused to the cloth on the rubbing roller 30.
  • the gate line and the gate insulating layer are closer to the base substrate of the array substrate. Therefore, in the process of fabricating the reset region 201, after removing the thin film layer on the gate insulating layer, a large height uniform step difference is generated between the reset layer 201 and the film layer of the adjacent region (O-O'). .
  • the rubbing roller 30 passes through the above-mentioned binding position, it will also pass through the step of the junction (O-O') of the resetting region 201 and its adjacent region. At this time, the position can cause the cloth on the rubbing roller to be large. Consistent deformation. Therefore, it is still possible to avoid the unevenness of the orientation grooves obtained by the uneven deformation of the cloth.
  • the switching speed of the TFTs is increased.
  • the organic thin film layer 106 may be formed in a partial region between the source/drain metal layer 104 and the passivation layer 105.
  • the method of forming the reset region 201 may include:
  • the passivation layer 105 On the surface of the passivation layer 105, at least the passivation layer 105 and the organic thin film layer 106 at the position corresponding to the reset region 201 are removed by a mask exposure process.
  • the binding position A is not set in the reset region 201
  • a common mask can be used, and the photoresist 300 is coated on the surface of the passivation layer 105, and then formed by mask exposure and development processes.
  • at least the passivation layer 105 and the organic thin film layer 106 corresponding to the photoresist etched regions are etched away.
  • the photoresist in the photoresist retention region is peeled off, and finally The reset area 201 is formed.
  • the bonding position A is set in the reset region 201, as shown in FIG. 3, at least the bonding position and the organic thin film layer 106 in the reset region 201 are etched away, and the bonding position is also required.
  • the gate insulating layer 103 at A is etched. Therefore, the semi-transparent reticle in the same manner as in the fourth embodiment is used for etching to form photoresist regions having different thicknesses after exposure and development. Then, a structure as shown in FIG. 3 is formed by etching, ashing or the like.
  • the method of fabricating the film layer pattern by using the semi-transmissive reticle has been described in detail in the foregoing embodiments, and will not be described herein.
  • the thickness of the organic thin film layer 106 is much larger than the thickness of the passivation layer 105, when the reset region 201 is formed, as shown in FIG. 3, when the organic thin film layer 106 and the passivation layer in the reset region 201 are to be formed.
  • the removal of 105 causes the organic thin film layer 106 to cover a region other than the reset region 201, so that a large and highly uniform step difference at the intersection of the reset region 201 and its adjacent region (O-O') can be formed.
  • the friction roller enters the display region 10 the above-mentioned step is caused to cause a large uniform deformation of the cloth on the friction roller. Therefore, it is still possible to avoid the unevenness of the orientation grooves obtained by the uneven deformation of the cloth.
  • Embodiments of the present invention provide a display substrate, a method for fabricating the same, and a display device, wherein the display substrate may include a display area and a non-display area, and a reset area is disposed in the non-display area.
  • the thickness of the film layer provided in the reset region is smaller than the thickness of the film layer disposed in the adjacent region of the reset region. Thereby, there is a step difference between the film layer on the surface of the reset region and the film layer on the surface of the adjacent region.
  • the step of the film layer at the interface between the reset region and the adjacent region of the reset region is highly uniform, so that the friction roller is in contact with the step difference at the boundary during the rolling process from the non-display region to the display region, so that the friction process In the middle, the cloth of the rubbing roller is uniformly stressed at the step position at the above-mentioned boundary, so that a uniform deformation occurs.
  • the size of the reset region is greater than or equal to the size of the display region in the rubbing direction perpendicular to the display substrate.
  • the cloth which is uniformly deformed on the rubbing roller can completely cover the display area, thereby improving the flatness of the rubbing surface at the interface with the display area, so that the orientation grooves formed on the orientation layer of the display area are uniform in depth. Further, the problem of unevenness of block gray scale due to the difference in the depth of the orientation grooves is avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板(01)及其制作方法、显示面板(07)及显示装置,该显示基板(01)包括显示区域(10)和非显示区域(20),在非显示区域(20)中设置有复位区(201),复位区(201)设置的薄膜层的厚度小于复位区(201)的相邻区域设置的薄膜层的厚度;复位区(201)与相邻区域交界处薄膜层的段差高度一致;在所述显示基板(01)平面内,在沿垂直于显示面板(07)的摩擦方向上,复位区(201)的尺寸大于等于显示区域(10)的尺寸。该显示基板(01)能够解决由于摩擦辊摩擦面的平坦度低而导致的制备的取向槽深浅不一的缺陷。

Description

显示基板及其制作方法、显示面板及显示装置 技术领域
本发明实施例涉及一种显示基板及其制作方法、显示面板及显示装置。
背景技术
TFT-LCD(Thin Film Transistor Liquid Crystal Display,薄膜晶体管-液晶显示器)作为一种平板显示装置,因其具有体积小、功耗低、无辐射以及制作成本相对较低等特点,越来越多地被应用于高性能显示领域当中。
TFT-LCD由阵列基板和彩膜基板构成。在阵列基板和彩膜基板之间设置有液晶层,通过控制液晶分子的偏转,从而实现对光线强弱的控制,然后通过彩膜基板的滤光作用,实现彩色图像显示。为了使得对液晶的偏转分子进行有效的控制,需要通过在阵列基板和彩膜基板上分别设置取向层,并通过摩擦工艺在取向层的表面制备出方向一致的取向槽,以使得位于取向槽中的液晶分子沿一致方向排列。
然而,由于基板在摩擦方向上存在段差,导致摩擦辊上摩擦布的表面产生不同的变形区域。然而,又由于不同变形区域的摩擦强度不一致,导致在取向工艺过程中,制备的取向槽深浅不一。进而在显示的过程中,会产生块状灰度不均的配向不良现象(Rubbing Mura)。
例如,为了对显示面板图像显示进行控制,需要在显示面板的绑定位置绑定(Bonding)驱动IC(Integrated Circuit,集成电路)。通常在绑定过程中,需要在显示面板的绑定位置设置过孔,以使位于绑定位置的引线与显示区域的栅线或数据线相连接,从而将驱动IC输出的控制信号输入至所述数据线和栅线。
然而,由于过孔位置处的一些薄膜层被去除,所以所述过孔与其周边区域之间存在段差。从而降低了摩擦面的平坦度,在取向工艺过程中,使制备的取向槽深浅不一,造成配向不良的产生。从而大大降低显示面板的显示效果以及产品的质量。
发明内容
本发明的实施例提供一种显示基板及其制作方法、显示面板及显示装置,能够解决由于摩擦辊摩擦面的平坦度低,导致制备的取向槽深浅不一的缺陷。
本发明至少一实施例提供一种显示基板,包括显示区域和非显示区域,其中,
在所述非显示区域中设置有复位区,所述复位区设置的薄膜层的厚度小于与所述复位区相邻的区域设置的薄膜层的厚度;
所述复位区和与所述复位区相邻区域交界处的薄膜层的段差高度一致;在所述显示基板平面内,在沿垂直于所述显示基板的摩擦方向上,所述复位区的尺寸大于等于所述显示区域的尺寸。
例如,所述显示基板为阵列基板或彩膜基板。
例如,在所述显示基板为阵列基板的情况下,当绑定位置设置于所述复位区内时,在所述复位区内设置保护层,所述保护层覆盖所述绑定位置以外的区域。
例如,在所述绑定位置处的引线与显示区域的栅线同层同材料的情况下,所述保护层包括栅极绝缘层。
例如,在所述显示基板为阵列基板的情况下,当所述阵列基板的源漏金属层表面设置有有机薄膜层时,所述有机薄膜层覆盖除了所述复位区以外的区域。
例如,在所述显示基板为阵列基板的情况下,所述复位区与位于所述阵列基板表面的封框胶的位置相对应。
本发明实施例还提供一种显示面板,包括如上所述的任意一种显示基板。
本发明实施例还提供一种显示装置,包括如上所述的显示基板。
本发明实施例还提供一种显示基板的制作方法,包括:
在衬底基板上形成显示区域;
在所述衬底基板上形成非显示区域;其中,
在所述非显示区域中形成复位区,所述复位区设置的薄膜层的厚度小于与所述复位区相邻的区域设置的薄膜层的厚度;
所述复位区和与所述复位区相邻区域交界处的薄膜层的段差高度一致;
在所述显示基板平面内,在沿垂直于所述显示基板的摩擦方向上,所述复位区的尺寸大于等于所述显示区域的尺寸。
例如,在所述显示基板为阵列基板的情况下,当绑定位置设置于所述复位区内时,所述方法包括:
在所述复位区中除了所述绑定位置以外的区域形成保护层。
例如,在所述绑定位置处的引线与显示区域的栅线同层同材料的情况下,所述方法包括:
在所述引线的表面依次形成栅极绝缘层、半导体有源层、源漏金属层以及钝化层,并在所述钝化层的表面涂覆光刻胶;
通过一次掩膜曝光、显影工艺形成光刻胶完全去除区域、光刻胶部分保留区域以及光刻胶完全保留区域;其中,所述光刻胶完全去除区域对应所述绑定位置,所述光刻胶部分保留区域对应所述复位区中除了所述绑定位置以外的区域,所述光刻胶完全保留区域对应所述复位区以外的区域;
刻蚀对应所述光刻胶完全去除区域的所述钝化层、所述源漏金属层、所述半导体有源层以及所述栅极绝缘层;
将所述光刻胶部分保留区域的光刻胶灰化掉,并刻蚀对应所述光刻胶部分保留区域的所述钝化层、所述源漏金属层以及所述半导体有源层;
将位于所述光刻胶完全保留区域的所述光刻胶剥离。
例如,在所述显示基板为阵列基板的情况下,当所述源漏金属层与所述钝化层之间形成有有机薄膜层时,形成所述复位区的方法包括:
在所述钝化层的表面,通过一次掩膜曝光工艺,至少将对应复位区位置处的所述钝化层和所述有机薄膜层去除。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明实施例提供的一种显示基板的结构示意图;
图1b为本发明实施例提供的一种设置有复位区的显示基板的结构示意图;
图2a为本发明实施例提供的另一种设置有复位区的显示基板的结构示 意图;
图2b为本发明实施例提供的又一种设置有复位区的显示基板的结构示意图;
图2c为本发明实施例提供的一种显示基板的复位区结构的截面图;
图3为本发明实施例提供的另一种显示基板的复位区结构的截面图;
图4为本发明实施例提供的一种显示基板的制作方法流程图;
图5a-5d为发明实施例提供的一种显示基板各个制作过程中的结构示意图;
图6为本发明一实施例提供的一种显示面板示意图。
附图说明:
01-显示基板;02-衬底基板;03-对置基板;04-封框胶;05-液晶层;06-阵列基板;07-显示面板;10-显示区域;100-引线;101-保护层;102-栅极绝缘层;103-半导体有源层;104-源漏金属层;105-钝化层;106-有机薄膜层;20-非显示区域;201-复位区;30-摩擦辊;A-绑定位置;X-显示基板的摩擦方向;Y-垂直于显示基板的摩擦方向;300-光刻胶;301-光刻胶完全去除区域;302-光刻胶部分保留区域;303-光刻胶完全保留区域。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明一实施例提供一种显示基板01,如图1a所示,可以包括显示区域10和非显示区域20。其中,如图1b所示,可以在非显示区域20中设置有复位区201,所述复位区201设置的薄膜层的厚度K小于与复位区201相邻的区域设置的薄膜层的厚度K’。所述复位区201与相邻区域交界处(O-O’)薄膜层的段差高度一致。这样在摩擦辊滚动的过程中,摩擦辊的布毛在上述交界处(O-O’)的段差位置受力均匀,从而发生一致的形变。
需要说明的是,复位区201设置的薄膜层可以是一层,也可以是多层。当复位区201设置的薄膜层为一层时,复位区201设置的薄膜层的厚度K, 为所述一层薄膜层的表面到衬底基板02(如图2c所示)表面的距离,即所述一层薄膜层的厚度。当复位区201设置的薄膜层为多层时,复位区201设置的薄膜层的厚度K为所述多层薄膜层中最上层的薄膜层的表面到衬底基板02表面的距离,即所述多层薄膜层的总厚度。此外,相邻区域设置的薄膜层的厚度K’同理可得。
此外,在方向Y上,复位区201的尺寸L大于等于显示区域的尺寸L’,其中,所述方向Y垂直于显示基板的摩擦方向X,以使摩擦辊30上形变一致的布毛能够完全覆盖显示区域,从而提高与显示区域10相接处的摩擦面的平整度,使形成于显示区域10的取向层上的取向槽深浅一致。
本发明实施例提供一种显示基板,可以包括显示区域和非显示区域,在非显示区域中设置有复位区。其中,一方面,复位区设置的薄膜层的厚度小于与复位区相邻的区域设置的薄膜层的厚度。从而使得复位区表面的薄膜层与相邻区域表面的薄膜层之间具有段差。此外,复位区和与复位区相邻区域交界处的薄膜层的段差高度一致,从而使得摩擦辊从非显示区域向显示区域滚动的过程中,与上述交界处的段差相接触,这样在摩擦过程中,摩擦辊的布毛在上述交界处的段差位置受力均匀,从而发生一致的形变。另一方面,由于在沿垂直于显示基板的摩擦方向上,复位区的尺寸大于等于显示区域的尺寸,从而使摩擦辊上形变一致的布毛能够完全覆盖显示区域,从而提高与显示区域相接处的摩擦面的平整度,使形成于显示区域的取向层上的取向槽深浅一致。进而避免了由于取向槽深浅不一,而造成的块状灰度不均的配向不良现象。
需要说明的是,第一、上述显示基板01可以是阵列基板或者与阵列基板对置的对置基板,例如彩膜基板。由于摩擦取向工艺在切割工艺之前进行,因此如图1a所示,未切割的显示基板上包括多个间隔设置的显示区域10和非显示区域20。
第二、上述复位区201的相邻区域,可以根据复位区201设置位置的不同而不同。例如,当复位区201距离显示区域10较远时,相邻区域还位于非显示区域。当复位区201紧邻显示区域10时,相邻区域可以是显示区域。
接下来,以显示基板为阵列基板为例,通过具体的实施例对设置有复位区的阵列基板的结构进行详细的描述。
实施例一
阵列基板的显示区域10中包括多条有横纵交叉的栅线和数据线界定而成的像素单元,每个像素单元内设置有一个TFT。在显示过程中,栅极信号通过栅线将与该行栅线相连接的TFT打开。然后,数据信号通过数据线输入至TFT的源极,再经过TFT的漏极对像素单元中的像素电极充电,从而控制与该像素单元位置相对应的液晶分子进行旋转,以显示不同的灰阶。
为了将上述驱动信号(栅极信号和数据信号)输入至显示区域10,一般在阵列基板的非显示区域20中需要设置绑定位置A,以将能够输出驱动信号的驱动IC绑定于显示基板上。
具体的绑定过程可以是,在非显示区域20上设置有由金属材料制成的引线100。引线100的一端与显示区域20中的栅线或数据线相连接,另一端与位于绑定位置A的驱动IC相连接。需要说明的是,所述引线100可以采用栅极金属制成,与栅线同时形成,也可以采用源漏金属层制成,与数据线同时形成。
当上述绑定位置A设置于复位区201内时,由于复位区201内的薄膜层厚度一致,因此复位区201中的薄膜层如图2a所示,需要和引线100的表面平齐,以使引线100的表面能够露出,从而与驱动IC进行连接。
然而这样一来,绑定工艺完成之后,绑定位置A以外的引线100会因为表面裸露,从而会受到外部环境的影响,例如氧化或污染。从而造成驱动电路的断路或短路,影响显示器的质量。
为了解决上述问题,可以在复位区201中设置保护层101。如图2b所示,所述保护层101覆盖绑定位置A以外的区域。从而可以对无需与驱动IC相接处的引线100进行保护。
例如,保护层101可以在制作完复位区201以后再制作。例如,当引线100与栅线同层同材料设置时,可以将复位区201中位于栅线远离衬底基板一侧的薄膜层(如图2c所示,所述薄膜层包括栅极绝缘层102、半导体有源层103、源漏金属层104、钝化层105)全部去除。然后,在复位区201中,制作覆盖绑定位置A以外的区域的保护层101。该保护层的材料可以采用与栅极绝缘层102相同的材料。
或者,也可在制作复位区201的过程中完成保护层101的制备。
例如,当引线100与栅线同层同材料设置时,可以将复位区201中位于栅线表面的栅极绝缘层102远离衬底基板一侧的薄膜层(例如半导体有源层103、源漏金属层104、钝化层105)全部去除。而将对应绑定位置A处的栅极绝缘层去除,以露出引线100。
虽然上述两种制作方法中,绑定位置A与绑定位置A以外的区域具有一个薄膜层(栅极绝缘层102)厚度的段差。但是由于该段差较小,从而不会对摩擦辊30上的布毛造成明显的变形不均。
并且,当引线100与栅线同层同材料设置时,由于栅线和栅极绝缘层距离阵列基板的衬底基板较近。因此,制作复位区201的过程中,将栅极绝缘层上的薄膜层去除后,会造成复位区201与其相邻区域的交界处(O-O’)的薄膜层产生较大的高度一致的段差。当摩擦辊30经过上述绑定位置后,还会经过复位区201与其相邻区域的交界处(O-O’)的段差,这时,该位置可以使得摩擦辊上的布毛发生较大的一致化的变形。因此,仍然可以避免由布毛变形不均而造成的制得的取向槽深浅不一。
实施例二
为了降低阵列基板上数据线与像素电极之间的寄生电容,以提高TFT的开关速度。可以在源漏金属层104与钝化层105之间的部分区域制作有机薄膜层106。
由于有机薄膜层106的厚度远大于钝化层105的厚度,因此在制作复位区201时,如图3所示,可以将复位区201中的有机薄膜层106和位于其表面的钝化层105去除,以使有机薄膜层106覆盖除了复位区201以外的区域,就可以形成位于复位区201和与其相邻区域交接处(O-O’)的很大的且高度一致的段差。当摩擦辊进入显示区域10前,经过上述段差时,使得摩擦辊上的布毛发生较大的一致化的变形。因此,仍然可以避免由布毛变形不均而造成的制得的取向槽深浅不一。
实施例三
如图6所示,为本发明一实施例提供的一种显示面板07,可包括如上所述的任一显示基板。在显示基板01为阵列基板06的情况下,上述复位区201可以与位于阵列基板06表面的封框胶04的位置相对应。这样一来,即使在制作复位区201的过程中,将引线100裸露出来,也可以在后续的封框胶制 作工序中,通过封框胶将非绑定位置A处裸露的引线100进行覆盖,从而避免上述引线100受到环境的影响。
图6中,显示基板01为阵列基板06,与阵列基板06对置的对置基板03可以为彩膜基板。且彩膜基板也可以具有如上所述任一显示基板所述的结构。在阵列基板和彩膜基板之间设置有液晶层05。
本发明实施例提供的显示面板,具有与前述实施例提供的显示基板相同的结构和有益效果。由于前述实施例已经对该显示基板的结构和有益效果进行了详细的描述。此处不再赘述。
本发明实施例提供一种显示装置,包括如上所述的显示面板。具有与前述实施例提供的显示基板相同的结构和有益效果。由于前述实施例已经对该显示基板的结构和有益效果进行了详细的描述。此处不再赘述。
需要说明的是,在本发明实施例中,显示装置具体可以包括液晶显示装置,例如,该显示装置可以为液晶显示器、液晶电视、数码相框、手机、手表、导航仪、电子纸或平板电脑等任何具有显示功能的产品或者部件。
本发明实施例提供一种显示基板的制作方法,如图4所示,可以包括:
S101、在衬底基板上形成显示区域10。
S102、在衬底基板上形成非显示区域20。
S103、在所述非显示区域中形成复位区201,复位区201设置的薄膜层的厚度K小于复位区201的相邻区域设置的薄膜层的厚度K’。
所述复位区201与复位区201相邻区域交界处(O-O’)薄膜层的段差高度一致。这样在摩擦过程中,摩擦辊的布毛在上述交界处(O-O’)的段差处受力均匀,从而发生一致的形变。
此外,在方向Y上,复位区201的尺寸L大于等于显示区域的尺寸L’,其中,所述方向Y为在显示基板平面内沿垂直于显示基板的摩擦方向X的方向,使得摩擦辊30上形变一致的布毛能够完全覆盖显示区域,从而提高了与显示区域10相接处的摩擦面的平整度,使得形成于显示区域10的取向层上的取向槽深浅一致。
需要说明的是,上述步骤S101、步骤S102可以同时进行,然后再进行步骤S103;或者,步骤S101、步骤S102以及步骤S103可以同时进行。本发明对上述步骤的次序不做限制。
接下来,以显示基板为阵列基板为例,通过具体的实施例对设置有复位区的阵列基板的制作方法进行详细的描述。
实施例四
当绑定位置A设置于复位区201内时,由于复位区201内的薄膜层厚度一致,例如,复位区201中的薄膜层如图2a所示,需要和引线100的表面平齐,以使得引线100的表面能够露出,从而与驱动IC进行连接。
然而这样一来,绑定工艺完成之后,绑定位置A以外的引线100会因为表面裸露,从而会受到外部环境的影响,例如氧化或污染。从而造成驱动电路的断路或短路,影响显示器的质量。
为了解决上述问题,所述显示基板的制作方法,可以包括在复位区201中除了绑定位置A以外的区域形成保护层101。从而可以对无需与驱动IC相接处的引线100进行保护。
例如,保护层101可以在制作完复位区201以后再制作。例如,当引线100与栅线同层同材料设置时,可以将复位区201中位于栅线远离衬底基板一侧的薄膜层全部去除,如图2c所示,所述薄膜层包括栅极绝缘层102、半导体有源层103、源漏金属层104以及钝化层105。然后,在复位区201中,制作覆盖绑定位置A以外的区域的保护层101。该保护层的材料可以采用与栅极绝缘层102相同的材料。
或者,也可在制作复位区201的过程中完成保护层101的制备。
例如,当引线100与栅线同层同材料设置时,所述方法包括:
首先,如图5a所示,在引线100的表面依次形成栅极绝缘层102、半导体有源层103、源漏金属层104以及钝化层105,并在钝化层105的表面涂覆光刻胶300。
然后,如图5b所示,利用半透过掩模版,通过一次掩膜曝光、显影工艺形成光刻胶完全去除区域301、光刻胶部分保留区域302以及光刻胶完全保留区域303。
其中,光刻胶完全去除区域301对应绑定位置A,光刻胶部分保留区域302对应复位区201中除了绑定位置A以外的区域,光刻胶完全保留区域303对应复位区201以外的区域。
接下来,如图5c所示,刻蚀对应光刻胶完全去除区域301的钝化层105、 源漏金属层104、半导体有源层103以及栅极绝缘层102。
然后,如图5d所示,将光刻胶部分保留区域302的光刻胶灰化掉。并刻蚀对应光刻胶部分保留区域302的钝化层105、源漏金属层104以及半导体有源层103。从而使得未被刻蚀的栅极绝缘层102对复位区201中除了绑定位置A以外的区域进行保护。因此,所述未被刻蚀的栅极绝缘层102能够起到保护层101的保护作用。
最后,将位于光刻胶完全保留区域303的光刻胶剥离300,形成如图2c所示的结构。
虽然上述两种制作方法中,绑定位置A与绑定位置A以外的区域具有一个薄膜层(栅极绝缘层102)厚度的段差。但是由于该段差较小,从而不会对摩擦辊30上的布毛造成明显的变形不均。
并且,当引线100与栅线同层同材料设置时,由于栅线和栅极绝缘层距离阵列基板的衬底基板较近。因此制作复位区201的过程中,将栅极绝缘层上的薄膜层去除后,会造成复位区201与其相邻区域的交界处(O-O’)的薄膜层产生较大的高度一致的段差。当摩擦辊30经过上述绑定位置后,还会经过复位区201与其相邻区域的交界处(O-O’)的段差,这时,该位置可以使摩擦辊上的布毛发生较大的一致化的变形。因此,仍然可以避免由布毛变形不均而造成的制得的取向槽深浅不一。
实施例五
在显示基板01为阵列基板的情况下,为了降低阵列基板上数据线与像素电极之间的寄生电容,以提高TFT的开关速度。可以在源漏金属层104与钝化层105之间的部分区域制作有机薄膜层106。
因此,形成复位区201的方法可以包括:
在所述钝化层105的表面,通过一次掩膜曝光工艺,至少将对应复位区201位置处的钝化层105和有机薄膜层106去除。
需要说明的是,当复位区201中未设置绑定位置A时,可以采用普通掩膜板,在钝化层105的表面涂覆光刻胶300,然后在通过掩膜曝光、显影工艺形成对应复位区201位置的光刻胶去除区域,以及对应钝化层105表面其它位置的光刻胶保留区域。接下来,至少刻蚀掉对应光刻胶刻蚀区域的钝化层105和有机薄膜层106。然后,将光刻胶保留区域的光刻胶剥离,最终形 成复位区201。
或者,当将绑定位置A设置在复位区201时,如图3所示,在至少刻蚀掉复位区201中的钝化层105和有机薄膜层106的同时,还需要在将绑定位置A处的栅极绝缘层103刻蚀。因此刻蚀采用同实施例四中的半透过掩模版,在曝光显影后形成厚度不同的光刻胶区域。然后采用刻蚀、灰化等工艺形成如图3所示的结构。由于采用半透过掩模版制作薄膜层图案的方法在前述实施例中已经详细说明,此处不再赘述。
需要说明的是,由于有机薄膜层106的厚度远大于钝化层105的厚度,因此在制作复位区201时,如图3所示,当将复位区201中的有机薄膜层106和钝化层105去除,使有机薄膜层106覆盖除了复位区201以外的区域,就可以形成位于复位区201与其相邻区域交接处(O-O’)的很大的且高度一致的段差。当摩擦辊进入显示区域10前,经过上述段差时,使得摩擦辊上的布毛发生较大的一致化的变形。因此,仍然可以避免由布毛变形不均而造成的制得的取向槽深浅不一。
本发明实施例提供一种显示基板及其制作方法、显示装置,其中所述显示基板可以包括显示区域和非显示区域,在非显示区域中设置有复位区。其中,一方面,复位区设置的薄膜层的厚度小于复位区的相邻区域设置的薄膜层的厚度。从而使得复位区表面的薄膜层与相邻区域表面的薄膜层之间具有段差。此外,复位区和与复位区相邻区域交界处的薄膜层的段差高度一致,从而使得摩擦辊从非显示区域向显示区域滚动的过程中,与上述交界处的段差相接触,这样在摩擦过程中,摩擦辊的布毛在上述交界处的段差位置受力均匀,从而发生一致的形变。另一方面,由于在沿垂直于显示基板的摩擦方向上,复位区的尺寸大于等于显示区域的尺寸。使得摩擦辊上形变一致的布毛能够完全覆盖显示区域,从而提高了与显示区域相接处的摩擦面的平整度,使得形成于显示区域的取向层上的取向槽深浅一致。进而避免了由于取向槽深浅不一,而造成的块状灰度不均的不良现象。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所附权利要求的保护范围为准。
本专利申请要求于2014年11月14日递交的中国专利申请第201410650620.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (12)

  1. 一种显示基板,包括显示区域和非显示区域,其中,
    在所述非显示区域中设置有复位区,所述复位区设置的薄膜层的厚度小于与所述复位区相邻的区域设置的薄膜层的厚度;
    所述复位区和与所述复位区相邻区域交界处的薄膜层的段差高度一致;
    在所述显示基板平面内,在沿垂直于所述显示基板的摩擦方向上,所述复位区的尺寸大于等于所述显示区域的尺寸。
  2. 根据权利要求1所述的显示基板,其中,所述显示基板为阵列基板或彩膜基板。
  3. 根据权利要求1或2所述的显示基板,其中,在所述显示基板为阵列基板的情况下,当绑定位置设置于所述复位区内时,在所述复位区内设置保护层,所述保护层覆盖所述绑定位置以外的区域。
  4. 根据权利要求3所述的显示基板,其中,在所述绑定位置处的引线与显示区域的栅线同层同材料的情况下,所述保护层包括栅极绝缘层。
  5. 根据权利要求1-4任一项所述的显示基板,其中,在所述显示基板为阵列基板的情况下,当所述阵列基板的源漏金属层表面设置有有机薄膜层时,所述有机薄膜层覆盖除了所述复位区以外的区域。
  6. 根据权利要求1-5任一项所述的显示基板,其中,在所述显示基板为阵列基板的情况下,所述复位区与位于所述阵列基板表面的封框胶的位置相对应。
  7. 一种显示面板,包括如权利要求1-6任一项所述的显示基板。
  8. 一种显示装置,包括如权利要求7所述的显示面板。
  9. 一种显示基板的制作方法,包括:
    在衬底基板上形成显示区域;
    在所述衬底基板上形成非显示区域;其中,
    在所述非显示区域中形成复位区,所述复位区设置的薄膜层的厚度小于与所述复位区相邻的区域设置的薄膜层的厚度;所述复位区和与所述复位区相邻区域交界处的薄膜层的段差高度一致;
    在所述显示基板平面内,在沿垂直于所述显示基板的摩擦方向上,所述 复位区的尺寸大于等于所述显示区域的尺寸。
  10. 根据权利要求9所述的显示基板的制作方法,其中,在所述显示基板为阵列基板的情况下,当绑定位置设置于所述复位区内时,所述方法包括:
    在所述复位区中除了所述绑定位置以外的区域形成保护层。
  11. 根据权利要求9或10所述的显示基板的制作方法,在所述绑定位置处的引线与显示区域的栅线同层同材料的情况下,所述方法包括:
    在所述引线的表面依次形成栅极绝缘层、半导体有源层、源漏金属层以及钝化层,并在所述钝化层的表面涂覆光刻胶;
    通过一次掩膜曝光、显影工艺形成光刻胶完全去除区域、光刻胶部分保留区域以及光刻胶完全保留区域;其中,所述光刻胶完全去除区域对应所述绑定位置,所述光刻胶部分保留区域对应所述复位区中除了所述绑定位置以外的区域,所述光刻胶完全保留区域对应所述复位区以外的区域;
    刻蚀对应所述光刻胶完全去除区域的所述钝化层、所述源漏金属层、所述半导体有源层以及所述栅极绝缘层;
    将所述光刻胶部分保留区域的光刻胶灰化掉,并刻蚀对应所述光刻胶部分保留区域的所述钝化层、所述源漏金属层以及所述半导体有源层;
    将位于所述光刻胶完全保留区域的所述光刻胶剥离。
  12. 根据权利要求9-11任一项所述的显示基板的制作方法,其中,在所述显示基板为阵列基板的情况下,当所述源漏金属层与所述钝化层之间形成有有机薄膜层时,形成所述复位区的方法包括:
    在所述钝化层的表面,通过一次掩膜曝光工艺,至少将对应复位区位置处的所述钝化层和所述有机薄膜层去除。
PCT/CN2015/075207 2014-11-14 2015-03-27 显示基板及其制作方法、显示面板及显示装置 WO2016074413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/785,787 US9798192B2 (en) 2014-11-14 2015-03-27 Display substrate and manufacturing method thereof, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410650620.XA CN104330911B (zh) 2014-11-14 2014-11-14 一种显示面板及其制作方法、显示装置
CN201410650620.X 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016074413A1 true WO2016074413A1 (zh) 2016-05-19

Family

ID=52405667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075207 WO2016074413A1 (zh) 2014-11-14 2015-03-27 显示基板及其制作方法、显示面板及显示装置

Country Status (3)

Country Link
US (1) US9798192B2 (zh)
CN (1) CN104330911B (zh)
WO (1) WO2016074413A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330911B (zh) * 2014-11-14 2017-11-14 合肥京东方光电科技有限公司 一种显示面板及其制作方法、显示装置
CN104678656B (zh) * 2015-03-24 2017-12-19 京东方科技集团股份有限公司 一种基板及阵列基板
JP6278942B2 (ja) * 2015-10-21 2018-02-14 日本航空電子工業株式会社 フレキソ印刷による絶縁膜の形成方法
CN205318069U (zh) * 2015-12-30 2016-06-15 京东方科技集团股份有限公司 一种阵列基板和显示装置
CN105589261B (zh) * 2016-03-17 2019-06-25 京东方科技集团股份有限公司 显示基板及其制作方法、液晶显示装置
CN109828399A (zh) * 2019-03-18 2019-05-31 武汉华星光电技术有限公司 显示面板及显示装置
CN114545696B (zh) * 2022-02-25 2023-10-03 厦门天马微电子有限公司 一种阵列基板及其母板、显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710530B2 (en) * 2004-03-16 2010-05-04 Sharp Kabushiki Kaisha Color filter substrate and display apparatus using the same
CN202512326U (zh) * 2012-02-27 2012-10-31 北京京东方光电科技有限公司 一种基板
CN202794786U (zh) * 2012-07-20 2013-03-13 北京京东方光电科技有限公司 一种阵列基板及显示装置
CN103869546A (zh) * 2014-03-06 2014-06-18 京东方科技集团股份有限公司 一种基板
CN104330911A (zh) * 2014-11-14 2015-02-04 合肥京东方光电科技有限公司 一种显示面板及其制作方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318380A (ja) * 2000-05-12 2001-11-16 Sanyo Electric Co Ltd 液晶表示装置
KR100928928B1 (ko) * 2006-06-30 2009-11-30 엘지디스플레이 주식회사 액정표시패널의 제조방법
KR20080057784A (ko) * 2006-12-21 2008-06-25 삼성전자주식회사 배향막 인쇄 제판 및 이를 이용한 표시 장치용 모기판의제조 방법
JP5130916B2 (ja) * 2008-01-08 2013-01-30 三菱電機株式会社 アクティブマトリクス用走査線駆動回路
KR101253497B1 (ko) * 2008-06-02 2013-04-11 엘지디스플레이 주식회사 액정표시장치용 어레이 기판의 제조방법
JP5471028B2 (ja) * 2009-05-15 2014-04-16 三菱電機株式会社 液晶表示装置
CN203630483U (zh) * 2013-12-30 2014-06-04 厦门天马微电子有限公司 阵列基板及液晶显示器
CN204101854U (zh) * 2014-11-14 2015-01-14 合肥京东方光电科技有限公司 一种显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710530B2 (en) * 2004-03-16 2010-05-04 Sharp Kabushiki Kaisha Color filter substrate and display apparatus using the same
CN202512326U (zh) * 2012-02-27 2012-10-31 北京京东方光电科技有限公司 一种基板
CN202794786U (zh) * 2012-07-20 2013-03-13 北京京东方光电科技有限公司 一种阵列基板及显示装置
CN103869546A (zh) * 2014-03-06 2014-06-18 京东方科技集团股份有限公司 一种基板
CN104330911A (zh) * 2014-11-14 2015-02-04 合肥京东方光电科技有限公司 一种显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
US20160342031A1 (en) 2016-11-24
CN104330911B (zh) 2017-11-14
CN104330911A (zh) 2015-02-04
US9798192B2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
US9698171B2 (en) Array substrate and method of manufacturing the same, and display device
WO2016074413A1 (zh) 显示基板及其制作方法、显示面板及显示装置
US9274368B2 (en) COA substrate, method for fabricating the same and display device
US9905593B2 (en) Mask plate and method for manufacturing array substrate
US20110128459A1 (en) Thin film transistor array substrate, fabrication method thereof, and liquid crystal display using the tft array substrate
JP6596048B2 (ja) アライメントマーク付き基板の製造方法
WO2016045395A1 (zh) 阵列基板及其制作方法、显示装置
WO2015000255A1 (zh) 阵列基板、显示装置及阵列基板的制造方法
US9219088B2 (en) Array substrate, manufacturing method thereof, and display device
WO2017000431A1 (zh) 阵列基板及其制备方法、显示面板及显示装置
WO2020093442A1 (zh) 阵列基板的制作方法及阵列基板
WO2016155429A1 (zh) 显示基板及其制造方法、显示装置
US20160190163A1 (en) Tft array substrate and method for manufacturing the same, and display device
US20150185530A1 (en) TFT Array Substrate, Liquid Crystal Panel and LCD
US9905591B2 (en) Array substrate comprising separating region and manfacturing method thereof,display apparatus
EP3644120A1 (en) Photomask structure and method for manufacturing array substrate
US9715147B2 (en) Array substrate for LCD panel and manufacturing method thereof
US20150372013A1 (en) Array substrate, manufacturing method thereof, and display device
US8263447B2 (en) Pixel structure and manufacturing method thereof and display panel
KR20170037074A (ko) 표시 장치 및 이의 제조 방법
US20140168558A1 (en) Tft array substrate and liquid crystal display
US8153337B2 (en) Photomask and method for fabricating source/drain electrode of thin film transistor
US20160274404A1 (en) Display panel, display device, and method for manufacturing display panel
KR101616919B1 (ko) 박막 트랜지스터 어레이 기판의 제조방법
KR101148437B1 (ko) 액정표시장치의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785787

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.10.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15859880

Country of ref document: EP

Kind code of ref document: A1