WO2017121143A1 - 显示基板、显示装置及其制作方法 - Google Patents

显示基板、显示装置及其制作方法 Download PDF

Info

Publication number
WO2017121143A1
WO2017121143A1 PCT/CN2016/098949 CN2016098949W WO2017121143A1 WO 2017121143 A1 WO2017121143 A1 WO 2017121143A1 CN 2016098949 W CN2016098949 W CN 2016098949W WO 2017121143 A1 WO2017121143 A1 WO 2017121143A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
sub
porous film
ordered porous
display device
Prior art date
Application number
PCT/CN2016/098949
Other languages
English (en)
French (fr)
Inventor
江亮亮
王海峰
郭磊
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/537,671 priority Critical patent/US10295872B2/en
Publication of WO2017121143A1 publication Critical patent/WO2017121143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • Embodiments of the present disclosure relate to a display substrate, a display device, and a method of fabricating the same.
  • a liquid crystal display generally uses a color filter layer included therein to filter, for example, white light emitted by a backlight module to form different colors of light by light mixing, thereby realizing color display. Since the material of the color filter layer itself includes dye molecules, it absorbs part of the light emitted by the backlight module, so that the color filter layer has limited luminous efficiency; in addition, the backlight module usually uses an LED (light emitting diode) as a light source, and the LED emits The half-width of the light is wider and the color of the light formed by the interaction with the material of the color filter layer is impure.
  • LED light emitting diode
  • quantum dots As a new type of semiconductor nanomaterial, quantum dots have many unique nano properties.
  • the quantum dot has a uniform particle size, high luminous efficiency, and can emit red, green, or blue light having a narrow half-width with a light or electric excitation, which can greatly improve the color gamut range of the display, thereby realizing wide color gamut display.
  • the quantum dot has a uniform particle size, high luminous efficiency, and can emit red, green, or blue light having a narrow half-width with a light or electric excitation, which can greatly improve the color gamut range of the display, thereby realizing wide color gamut display.
  • Embodiments of the present disclosure provide a display substrate, a display device, and a method of fabricating the same to improve display color gamut and luminous efficiency of the display device.
  • At least one embodiment of the present disclosure provides a display device including an ordered porous film, a plurality of quantum dots, and first and second electrode layers respectively disposed on both sides of the ordered porous film;
  • the porous film includes a plurality of sub-pixel regions arranged in a matrix, each of the sub-pixel regions is provided with a plurality of cells, and a direction of extension of each of the cells forms a non-zero angle with the surface of the ordered porous film and each The channel has an opening at least on the surface of the ordered porous film;
  • the plurality of quantum dots are respectively disposed in at least a portion of the plurality of cells;
  • the second electrode layer includes a plurality of spaced apart regions a sub-electrode, the plurality of sub-electrodes respectively corresponding to the plurality of sub-pixel regions.
  • At least one embodiment of the present disclosure provides a method of fabricating a display device, including: forming a An electrode layer; forming an ordered porous film comprising a plurality of sub-pixel regions arranged in a matrix, each of the sub-pixel regions being formed with a plurality of cells, the extending direction of each of the cells forming a surface with the surface of the ordered porous film a non-zero angle and each of the channels having an opening at least on the surface of the ordered porous film; filling the quantum dots such that at least a portion of the cells are filled with quantum dots; and forming a second electrode layer such that the second electrode layer is formed on a side of the ordered porous film remote from the first electrode layer and includes a plurality of sub-electrodes spaced apart from each other, the plurality of sub-electrodes respectively corresponding to A plurality of sub-pixel regions are described.
  • At least one embodiment of the present disclosure also provides a display substrate including an ordered porous film, a plurality of quantum dots, and first and second electrode layers respectively disposed on both sides of the ordered porous film;
  • the ordered porous film comprises a plurality of sub-pixel regions arranged in a matrix, each of the sub-pixel regions is provided with a plurality of cells, and a direction of extension of each of the cells forms a non-zero angle with the surface of the ordered porous film and each a channel having an opening in the surface of the ordered porous film;
  • the plurality of quantum dots being respectively disposed in at least a portion of the plurality of cells;
  • the second electrode layer comprising a plurality of spaced apart from each other a sub-electrode, the plurality of sub-electrodes respectively corresponding to the plurality of sub-pixel regions.
  • FIG. 1 is a schematic cross-sectional view of a display device in an embodiment of the present disclosure.
  • FIGS. 2a and 2b are schematic views showing the microstructure of the pores of the ordered porous film in the display device according to an embodiment of the present disclosure.
  • FIG 3 is a schematic diagram of a display device in an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a display device in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a display device in an embodiment of the present disclosure.
  • 6a and 6b are schematic cross-sectional views showing the formation of an ordered porous film and a first electrode layer using a metal thin film in an embodiment of the present disclosure.
  • FIG. 7a and 7b are schematic cross-sectional views showing the entire oxidation of a metal thin film to form an ordered porous film in an embodiment of the present disclosure.
  • FIGS. 8a-8c are cross-sectional schematic views of a patterned porous material being patterned to form an ordered porous film comprising a plurality of spaced apart sub-pixel regions in an embodiment of the present disclosure.
  • 9a-9f are schematic cross-sectional views of filled quantum dots in an embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view showing a plurality of transistors and a second electrode layer formed on a second substrate in an embodiment of the present disclosure.
  • Figure 11 is a cross-sectional view showing the formation of a continuous first electrode layer directly on an ordered porous film in an embodiment of the present disclosure.
  • 12a and 12b are schematic cross-sectional views showing the formation of a first electrode layer by patterning after forming an electrode film on an ordered porous film in an embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view showing a display substrate in an embodiment of the present disclosure.
  • color dots can be used as a backlight in a backlight module of a liquid crystal display and a color filter layer formed using a color filter material can be used for color display, and improved Color gamut.
  • the luminous efficiency and utilization rate of the quantum dots are low, and the color gamut is improved due to the need to use a color filter layer formed by using a color filter material.
  • the scope is limited.
  • Embodiments of the present disclosure provide a display substrate, a display device, and a method of fabricating the same.
  • the display device comprises an ordered porous film, a plurality of quantum dots and a first electrode layer and a second electrode layer respectively disposed on two sides of the ordered porous film;
  • the ordered porous film comprises a plurality of sub-pixel regions arranged in a matrix, each of the sub-pixels a plurality of cells are disposed in the pixel region, a direction in which each of the cells extends to form a non-zero angle with the surface of the ordered porous film, and each of the cells has an opening at least on the surface of the ordered porous film
  • the display device includes a plurality of quantum dots respectively disposed in at least a portion of the plurality of cells;
  • the second electrode layer includes a plurality of sub-electrodes spaced apart from each other, the plurality of sub-electrodes respectively corresponding to the Multiple sub-pixel regions.
  • the display substrate, the display device, and the method of fabricating the same provided in the embodiments of the present disclosure can significantly improve the display color gamut of the display device; on the other hand, compared to the manner in which the quantum dots are used as a backlight, the embodiment of the present disclosure
  • the luminous efficiency and utilization of the quantum dots can be greatly improved; on the other hand, since the embodiments of the present disclosure can form an active-emitting quantum dot light-emitting display device, power consumption can be reduced.
  • At least one embodiment of the present disclosure provides a display device 100 including an ordered porous film 120 including a plurality of sub-pixel regions 150 arranged in a matrix (FIG. 1) Only the first sub-pixel region 151, the second sub-pixel region 152, and the third sub-pixel region 153) are shown.
  • Each of the sub-pixel regions 150 is provided with a plurality of holes 121, and the extending direction and orderly porousness of each of the holes 121 A non-zero angle is formed between the surfaces 120a of the film 120 and each of the cells 121 has an opening 122 in the surface 120a of the ordered porous film 120; the display device 100 further includes a plurality of quantum dots 160, the plurality of quantum dots 160 Each of the plurality of cells 121 is disposed in at least a portion of the plurality of cells 121.
  • the display device 100 further includes a first electrode layer 140 and a second electrode layer 190 respectively disposed on both sides of the ordered porous film 120.
  • the second electrode layer 190 includes A plurality of sub-electrodes 190a (only three sub-electrodes 191, 192, 193 are shown in FIG. 1) are disposed at intervals from each other, and the plurality of sub-electrodes 190a respectively correspond to the plurality of sub-pixel regions 150.
  • the extending direction of each of the above-described cells 121 means a direction from the end where the opening 122 is provided in each of the cells 121 to the end of the hole away from the opening 122.
  • the plurality of sub-electrodes 190a included in the second electrode layer 190 respectively correspond to the plurality of sub-pixel regions 150, and the plurality of sub-electrodes 190a and the plurality of sub-pixel regions are respectively in a direction from the first electrode layer 140 to the second electrode layer 190. 150 overlaps.
  • the sub-electrode 191 overlaps the first sub-pixel region 151
  • the sub-electrode 192 overlaps the second sub-pixel region 152
  • the sub-electrode 193 overlaps the third sub-pixel region 153.
  • the first electrode layer 140 is adjacent to the surface 120a of the ordered porous film 120 and the second electrode layer 190 is away from the surface 120a of the ordered porous film 120.
  • the positions of the first electrode layer 140 and the second electrode layer 190 may also be interchanged.
  • the first electrode layer 140 may also include a plurality of sub-electrodes 140a.
  • the sub-electrode 140a included in the first electrode layer 140 and the sub-electrode 190a included in the second electrode layer 190 may have a one-to-one correspondence.
  • the working principle of the display device 100 shown in FIG. 1 provided by the embodiment of the present disclosure is as follows: during the operation of the display device 100, the first electrode layer 140, the second electrode layer 190, and a quantum dot array located therebetween A plurality of light emitting units arranged in a matrix may be formed, each of the light emitting units including a light emitting layer (including a sub-pixel region 150 and quantum dots located in the sub-pixel region 150), a sub-electrode 140a and a sub-electrode 190a corresponding to the light-emitting layer; For each of the light-emitting units, one of the sub-electrodes 140a and the sub-electrodes 190a included as an anode and the other as a cathode (in FIG.
  • the sub-electrode 140a serves as a cathode and the sub-electrode 190a serves as an anode, respectively, see FIG. 1 "-" and "+")
  • the anode can charge the quantum dots 160 in the sub-pixel region 150, and a current path can be formed between the cathode and the anode, so that the quantum dots 160 in the sub-pixel region 150 can be at the cathode and The excitation light is excited by the anode;
  • the quantum dot array light-emitting device can be formed by controlling the light-emitting state of the quantum dots in the sub-pixel region included in each of the light-emitting units.
  • the display device 100 may further include a plurality of transistors 170 spaced apart from each other. As shown in FIG. 1, the plurality of transistors 170 are electrically connected to the plurality of sub-electrodes 190a included in the second electrode layer 190, respectively. . During the operation of the display device 100, the plurality of transistors 170 serve as switching elements of the light-emitting unit, respectively, so that the light-emitting state of the quantum dots 160 in each of the row and column sub-pixel regions 150 can be controlled.
  • transistor 170 can be a thin film transistor (TFT).
  • TFT thin film transistor
  • Embodiments of the present disclosure include, but are not limited to, such.
  • an insulating layer 180 may be disposed on the transistor 170, and the source or the drain of the transistor 170 is electrically connected to the plurality of sub-electrodes 190a included in the second electrode layer 190, for example, through via holes in the insulating layer 180.
  • the display device 100 may include a first base substrate 111 and a second substrate that are opposed to each other Substrate 112.
  • the first base substrate 111 and the second base substrate 112 may each be a glass substrate, a quartz substrate, a plastic substrate, or the like.
  • the display device 100 may form the first electrode layer 140 and the ordered porous film 120 on the first substrate 111, the transistor 170 and the second electrode layer 190 on the second substrate 112, and then the first The base substrate 111 and the second base substrate 112 are formed to face each other; or, the lining may be performed after forming the first electrode layer, the ordered porous film, the second electrode layer, and the transistor on one of the base substrates.
  • the display device 100 is formed in such a manner that the base substrate and the other substrate substrate face each other.
  • the display device 100 may also include a base substrate and is formed by forming a first electrode layer, an ordered porous film, a second electrode layer, and a transistor on the base substrate.
  • a black matrix 110 between adjacent sub-pixel regions 150 of the ordered porous film 120 may be disposed on the first substrate 111, and the black matrix 110 may avoid the emission of quantum dots in different sub-pixel regions 150. For example, crosstalk of different color lights to improve the color gamut.
  • the black matrix 110 is formed, for example, of a black photoresist.
  • a flat layer 113 covering the black matrix 110 may be disposed on the first base substrate 111, and a surface of the flat layer 113 away from the black matrix 110 is substantially planar.
  • At least one of the first electrode layer 140 and the second electrode layer 190 is transparent to transmit light emitted from the quantum dots, thereby making the display device 100 achieves single-sided or double-sided illumination.
  • the light emitted by the quantum dots can also be derived by other means commonly used in the art.
  • the forming material of the first electrode layer and/or the second electrode layer may include a transparent conductive material such as a transparent conductive metal oxide material such as indium tin oxide.
  • the first electrode layer and the second electrode layer may also be made of a metal layer which is relatively thin to be transparent.
  • the metal layer may be formed of a metal material such as aluminum, molybdenum, copper, zirconium or titanium.
  • the thickness of the metal layer may be from 300 nm (nanometer) to 1 ⁇ m (micrometer).
  • each quantum dot column includes a quantum dot or an extension along the channel 121.
  • At least two quantum dots arranged in the direction Fig. 1 is illustrated by arranging one quantum dot column in each channel and the quantum dot column includes three quantum dots as an example); each quantum dot The two ends of the column are respectively in contact with the first electrode layer and the second electrode layer, that is, one end of each quantum dot column close to the first electrode layer is in physical contact with the first electrode layer and is adjacent to the end of the second electrode layer and the second electrode Layer physical contact. This allows the first and second electrode layers to form a current path through the quantum dots located therebetween.
  • each quantum dot column may be greater than or equal to the distance H between the first electrode layer 140 and the second electrode layer 190 (FIG. 1 is exemplified by the fact that L and H are equal).
  • current channels may be formed between the first and second electrode layers by other means, the present disclosure.
  • the embodiment is not limited.
  • the plurality of quantum dots 160 located in the ordered porous film 120 may include a plurality of quantum dots excited by different color lights, and the plurality of quantum dots are respectively disposed on Within different sub-pixel regions.
  • Color display can be achieved by setting a plurality of quantum dots that are excited by different colors of light.
  • the quantum dot 160 located in the ordered porous film 120 includes a first quantum dot 161, a second quantum dot 162, and a third quantum dot 163, and the first quantum dot 161 is located in the first sub-pixel region 151.
  • the second quantum dot 162 is located in the second sub-pixel region 152
  • the third quantum dot 163 is located in the third sub-pixel region 153.
  • the first quantum dot 161 is excited to emit blue light
  • the second quantum dot 162 is excited to emit green light
  • the third quantum dot 163 is excited to emit red light.
  • the types of the quantum dots 160 are not limited to three types, and may be two or more types.
  • the quantum dots in the ordered porous film may include a plurality of first quantum dots and a plurality of second quantum dots, and the second quantum dots and the first quantum dots are respectively located in different sub-pixel regions and emit different colors of light. .
  • the ordered porous film is a film formed using an ordered porous material.
  • Ordered porous materials are new types of nanostructured materials that were rapidly emerging in the 1990s. They have uniform pore size and regular arrangement, and the pore size of the pores can be continuously adjusted within a certain range. According to the definition of the International Union of Pure and Applied Chemistry (IUPAC), ordered porous materials can be classified into three types according to their pore size: microporous materials with pore diameters less than 2 nm (nanometers) and pore sizes ranging from 2 nm to 50 nm.
  • the pore material, a macroporous material having a pore diameter of more than 50 nm, and sometimes a pore diameter of less than 0.7 nm is called an ultramicroporous material.
  • the size of the opening of the tunnel can be designed according to the size of the quantum dot (the average size of the quantum dot ranges from 2 nm to 200 nm) to avoid entering more quantum dots in the channel due to the large size of the channel and The resulting quantum dots have low luminous efficiency.
  • the opening 122 of the at least part of the holes 121 may have an average size of 2 nm to 200 nm.
  • the opening 122 of the at least part of the holes 121 preferably has an average size of 2 nm to 20 nm. This is because the average size of commonly used quantum dots is 2 nm to 20 nm.
  • a size of the cells in the ordered porous film can be controlled such that each of the at least some of the cells 121 is provided with a quantum dot array 160, each of which includes a quantum dot or substantially along the channel. At least two quantum dots arranged in the direction of extension. For any one of the cells 121, in the case where a plurality of irregularly arranged quantum dots are disposed in the cells 121, the probability of agglomeration and self-quenching between the quantum dots 160 in the cells is large, resulting in quantum The luminous efficiency of the dots is lowered.
  • Embodiments of the present disclosure can increase the luminous efficiency of the quantum dots 160 in the cells 121 by employing a quantum dot array in the cells.
  • the ratio of the average size of the openings 122 of the at least some of the cells 121 to the average size of the quantum dots 160 may be greater than 1 and less than 2.
  • the average size of the openings of the cells in the ordered porous film 120 may be set to be all the same, or may be set according to the size of the quantum dots disposed therein, respectively.
  • the material for forming the ordered porous film 120 may include a metal oxide such as alumina or titania.
  • the ordered porous film 120 may comprise a porous anodized aluminum film or a titanium dioxide nanotube array film.
  • the porous anodic aluminum oxide film is usually formed by forming an aluminum metal thin film and anodizing the aluminum metal thin film.
  • Porous anodic aluminum oxide film (AAO) has the advantages of forming highly ordered pores, pore size and pore spacing controllable, good thermal stability, insulation, simple preparation process, etc. In addition, it is a wide band gap material with Good optical properties, in the near ultraviolet to near infrared Very high light transmission.
  • a periodic pore having a pore diameter of 5 nm to 200 nm can be prepared in the porous anodic aluminum oxide film, and the pores can be substantially perpendicular to the substrate for carrying the porous anodic aluminum oxide film.
  • the porous anodic aluminum oxide film formed by the anodic oxidation method is more advantageous for filling the quantum dots and emitting the light emitted from the quantum dots than the ordered porous alumina film formed by other methods commonly used in the art;
  • DISCLOSURE OF THE INVENTION A quantum dot light-emitting display device is fabricated by filling quantum dots in a pore of a porous anodic aluminum oxide film and utilizing the characteristics of quantum dot electroluminescence, thereby greatly improving luminous efficiency and utilization of quantum dots and improving quantum dot light-emitting display device Display color gamut.
  • the forming material of the first electrode layer 140 or the second electrode layer 190 may include molybdenum metal. This is because the difference in thermal expansion coefficient between the molybdenum metal and the aluminum metal is small, and the aluminum metal thin film is formed on the first electrode layer or the second electrode layer formed of molybdenum metal by, for example, magnetron sputtering or the like in a subsequent step.
  • the porous anodic aluminum oxide film is formed, the formed aluminum metal thin film is less likely to be broken when cooled to room temperature; on the other hand, the aluminum metal thin film is directly formed on a substrate (for example, a glass substrate, a quartz substrate, or the like).
  • the molybdenum metal has a good adhesion between the aluminum metal film, thereby reducing the probability of the aluminum metal film falling off.
  • the ordered porous film 120 may also be a titanium dioxide nanotube array film
  • the surface layer of the titanium dioxide nanotube array film may be formed into a morphology similar to a porous anodized aluminum film
  • the lower layer is an ordered array of nanotubes, for example, the diameter of the nanotube may be It is 20 nm to 100 nm.
  • the porous anodic aluminum oxide film is preferred in the embodiment of the present disclosure because it is easier to form a pore having a pore diameter close to that of the quantum dot and extending substantially perpendicular to the surface of the porous anodic aluminum oxide film.
  • embodiments of the present disclosure include, but are not limited to, a porous anodized aluminum oxide film, a titanium dioxide nanotube array film, and any ordered porous film having a good channel perpendicularity and a pore size close to a quantum dot size can be used in the present disclosure.
  • a porous anodized aluminum oxide film a titanium dioxide nanotube array film
  • any ordered porous film having a good channel perpendicularity and a pore size close to a quantum dot size can be used in the present disclosure.
  • the extending direction of the tunnel 121 is as perpendicular as possible to the surface 120a of the ordered porous film 120, which facilitates the passage of light from the quantum dots 160 in the tunnel 121 through the tunnel (ie, avoiding irradiation).
  • the inner wall of the channel 121) is used to increase the utilization of light emitted by the quantum dots 160.
  • each of the above holes 121 The average of the angle formed between the extending direction and the surface 120a of the ordered porous film 120 is in the range of 60 to 90 .
  • the average value of the angle between the extending direction of the cells 121 and the surface 120a of the ordered porous film 120 is in the range of 80° to 90°.
  • FIG. 1 illustrates an example in which the first electrode layer 140 includes a plurality of sub-electrodes 140a and the sub-electrodes 140a included in the first electrode layer 140 are in one-to-one correspondence with the sub-electrodes 190a included in the second electrode layer 190.
  • Embodiments of the present disclosure include, but are not limited to, such.
  • the first electrode layer 140 may also be formed continuously, as shown in FIG.
  • the ordered porous film 120 may also be formed continuously. That is, as long as the second electrode layer in the embodiment of the present disclosure includes a plurality of sub-electrodes insulated from each other and corresponding to the sub-pixel region 150 of the ordered porous film, a plurality of light-emitting units can be formed to realize the quantum dot array display device.
  • each of the cells 121 is a through hole extending through the ordered porous film 120 (i.e., each of the cells 121 is on opposite faces 120a and 120b of the ordered porous film 120). There are openings at all places).
  • each of the cells 121 may have an opening only on one surface of the ordered porous film 120, that is, each of the cells 121 is a blind hole, as shown in FIG.
  • a transistor 170 for controlling the state of light emission of a quantum dot in each sub-pixel region is disposed between the ordered porous film 120 and the second substrate substrate 112. In some embodiments, the transistor 170 may also be disposed between the ordered porous film 120 and the first substrate 111 according to actual needs.
  • the display device 100 provided by the embodiment of the present disclosure may further include a structure of a driving circuit, a gate line, and a data line.
  • a driving circuit a gate line
  • a data line a structure of a driving circuit
  • the embodiment of the present disclosure provides a method for fabricating the display device 100 according to any of the above embodiments. As shown in FIG. 1 , FIG. 3 to FIG. 5 , the manufacturing method includes the following steps S1 to S4 .
  • Step S1 forming the first electrode layer 140.
  • Step S2 forming the ordered porous film 120, the ordered porous film 120 includes a plurality of sub-pixel regions 150 arranged in a matrix, and each of the sub-pixel regions 150 is formed with a plurality of holes 121, and the extending direction of each of the holes 121 is A non-zero angle is formed between the surfaces 120a of the ordered porous film 120 and each of the cells 121 has an opening 122 at least on the surface 120a of the ordered porous film 120.
  • Step S3 filling the quantum dots 160 such that at least a portion of the holes included in each of the sub-pixel regions 150 Each of the channels 121 is filled with quantum dots.
  • Step S4 forming the second electrode layer 190 such that the second electrode layer 190 includes a plurality of sub-electrodes 190a spaced apart from each other, and the plurality of sub-electrodes 190a respectively correspond to the plurality of sub-pixel regions 150.
  • the display device produced by the manufacturing method provided by the embodiment of the present disclosure has a wide display color gamut, high luminous efficiency and utilization of quantum dots, and low power consumption due to the adoption of the active illumination mode.
  • the manufacturing method provided by the embodiment of the present disclosure does not limit the order of the above steps.
  • the first electrode layer or the second electrode layer and the ordered porous film may be simultaneously formed; for example, the order in which the first electrode layer and the second electrode layer are formed may be interchanged.
  • the step S2 of forming the ordered porous film 120 may include: forming a metal thin film 120' as shown in FIG. 6a; anodizing the metal thin film 120' Processing is performed to form an ordered porous film 120 as shown in Figure 6b.
  • the metal thin film 120' may include an aluminum metal layer or a titanium metal layer or the like.
  • the metal thin film 120' may include an aluminum metal layer and a molybdenum metal layer.
  • Embodiments of the present disclosure include, but are not limited to, such.
  • the metal thin film 120' may be deposited on the first base substrate 111 (as shown in FIG. 6a) or the second substrate by magnetron sputtering or the like in a manner conventional in the art.
  • the metal thin film is treated by anodization to form an ordered porous film, and the pore size of the pores in the formed ordered porous film can be adapted to fill the quantum dots and the pores have good perpendicularity.
  • the preparation of the aluminum metal thin film into the ordered porous film 120 by anodization may include the following steps S21 to S23.
  • Step S21 performing oxidation once.
  • a direct current voltage of 35 to 45 V is maintained, and the temperature is kept constant by an ice water bath so that the temperature is lower than room temperature by about 10 °C.
  • the aluminum metal film is oxidized once, and the oxidation time is, for example, 3 to 5 hours (the specific time can be adjusted according to the structure required).
  • Step S22 After completion of one oxidation, the structure obtained by the above step S21 is rinsed and dried.
  • distilled water can be used to rinse through a shower.
  • Step S23 Perform secondary oxidation.
  • the structure obtained in the step S22 is placed in a mixed solution of phosphoric acid (weight ratio of 5 to 8%) and chromic acid (weight ratio of 1 to 2%) at 80 ° C to form Al on the surface of the aluminum metal film by one oxidation.
  • the 2 O 3 film is etched away, and the secondary oxidation is performed on the surface of the hexagonal pit array structure formed after the primary oxidation.
  • the other conditions of the secondary oxidation are consistent with the primary oxidation, and the oxidation time is about 8 to 11 hours.
  • the above process for producing a porous anodic aluminum oxide film by anodization is for illustrative purposes only.
  • Embodiments of the present disclosure include, but are not limited to, such.
  • those skilled in the art can adjust the diameter, shape and shape of the pores formed in the ordered porous film by adjusting the manufacturing process of the porous anodic aluminum oxide film (for example, by adjusting the type of the acid solution, the oxidizing conditions, etc.) as needed. Periodically, etc. I will not repeat them here.
  • a titanium dioxide nanotube array film having a good channel perpendicularity and a pore size of the pores suitable for filling quantum dots can be prepared by a method commonly used in the art. I will not repeat them here.
  • the metal film 120' is partially oxidized.
  • a portion of the metal thin film 120' (as shown in FIG. 6a) in the thickness direction may form the ordered porous film 120 and the other portion (ie, not The oxidized metal film) forms the first electrode layer 140 (as shown in FIG. 6b) or the second electrode layer, that is, the above step S1 (or step S4) and step S2 can be simultaneously performed.
  • the metal film 120' may also be fully oxidized.
  • a first electrode layer 140 as shown in FIG. 7a
  • a second electrode layer and a metal thin film 120' are sequentially formed on, for example, the first base substrate 111; then the metal thin film 120' is entirely oxidized to form an ordered porous structure.
  • Film 120 is shown in Figure 7b. That is to say, the above step S1 or step S4 and step S2 can be sequentially performed.
  • the metal thin film 120' shown in FIG. 7a is an aluminum metal thin film
  • the first electrode layer 140 (as shown in FIG. 7a) or the second electrode layer may be a molybdenum metal layer to reduce the aluminum metal formed thereon. The probability of a film breaking.
  • the step S1 may further include: patterning the conductive film for forming the first electrode layer (for example, the patterning process may be a step including exposure, development, and etching). A photolithography process or other process of forming a set pattern) such that the first electrode layer includes a plurality of sub-electrodes.
  • the step S2 may further include: patterning the ordered porous material for forming an ordered porous film obtained by anodizing to form the ordered porous film. The included sub-pixel regions are spaced apart from each other. Description will be made below with reference to Figs. 8a to 8c.
  • a conductive film 140' sequentially formed on the first substrate 111 is sequentially formed.
  • a photoresist 114 is formed on the ordered porous film 120" and exposed by a mask; then developed to form a photoresist pattern 114' which exposes the ordered porous material 120" a portion of the surface, as shown in FIG. 8b; thereafter, etching the ordered porous material 120" and the conductive film 140' such that the formed ordered porous film 120 includes sub-pixel regions 150 spaced apart from each other, and forming the first
  • An electrode layer 140 includes a plurality of sub-electrodes 140a as shown in Figure 8c.
  • step S3 may be performed to fill the pores in the ordered porous film with quantum dots.
  • the first quantum dot 161, the second quantum dot 162, and the third quantum dot 163, which are excited by different color lights, are respectively filled in the first to third sub-pixel regions 151, 152, and 153 of the ordered porous film, step S3.
  • the following steps S31 to S36 may be included, and step S3 will be described below with reference to FIGS. 9a to 9f.
  • Step S31 As shown in FIG. 9a, a photoresist (for example, a photoresist pattern 114' as shown in FIG. 9a) is formed (for example, coated) on the ordered porous film 120, and the photoresist covers the first Sub-pixel region 151, second sub-pixel region 152 and third sub-pixel region 153; the photoresist on the first sub-pixel region 151 is exposed by a mask, as shown in FIG. 9a; then developed to expose the first The opening 122 of the tunnel 121 in a sub-pixel region 151 is as shown in Fig. 9b.
  • a photoresist for example, a photoresist pattern 114' as shown in FIG. 9a
  • Step S32 immersing the ordered porous film 120 in the first quantum dot solution, so that each of the at least some of the cells 121 in the first sub-pixel region 151 is filled with at least one column of the first quantum dots 161, as shown in FIG. 9b. Shown.
  • the first quantum dot solution can be formed by dispersing the first quantum dot material into a solvent commonly used in the art such as water, ethanol or acetone.
  • Step S33 exposing the photoresist on the second sub-pixel region 152 by using a mask, as shown in FIG. 9c; then performing development to expose the opening 122 of the via 121 in the second sub-pixel region 152, as shown in FIG. 9d. Shown.
  • Step S34 immersing the ordered porous film 120 in the second quantum dot solution such that each of the at least some of the cells 121 in the second sub-pixel region 152 is filled with at least one column of the second quantum dots 162, as shown in FIG. 9d. Shown.
  • the second quantum dot solution can be formed by dispersing the second quantum dot material into a solvent commonly used in the art such as water, ethanol or acetone.
  • Step S35 exposing the photoresist on the third sub-pixel region 153, as shown in FIG. 9e, and then performing development to expose the opening 122 of the via 121 in the third sub-pixel region 153, as shown in FIG. 9f is shown.
  • Step S36 The ordered porous film 120 is immersed in the third quantum dot solution such that at least a portion of the third quantum dots 163 are filled in each of the at least some of the cells 121 in the third sub-pixel region 153.
  • the third quantum dot solution can be formed by dispersing the third quantum dot material into a solvent commonly used in the art such as water, ethanol or acetone.
  • the above steps S31 to S36 are described by taking only three kinds of quantum dots as an example.
  • the filling method of the quantum dots can refer to the above steps.
  • the above merely exemplarily illustrates how different kinds of quantum dots are filled into different pixel regions.
  • quantum dots can also be filled into the cells by other methods commonly used in the art.
  • the first electrode layer in the above step S1 and the second electrode layer in the step S4 may be formed on the two substrate substrates, respectively.
  • a first electrode layer 140 and an ordered porous film 120 are formed on the first substrate 111;
  • a second electrode layer 190 is formed on the second base substrate 112; the first base substrate 111 and the second base substrate 112 are opposed to each other to form any of FIGS. 1 and 3-5.
  • a display device as shown.
  • a current path can be formed between the first and second electrode layers,
  • the second electrode layer on the second substrate may be in close contact with the surface of the ordered porous film on the first substrate as much as possible.
  • the first substrate and the second substrate may be opposed to each other under vacuum to avoid air.
  • the water vapor in the light affects the luminescence of the quantum dots.
  • the method for fabricating the display device may further include: forming a plurality of transistors 170 arranged in a matrix on the second substrate 112, causing the second electrode layer 190 to cover the plurality of transistors and making the first
  • the plurality of sub-electrodes 190a included in the two-electrode layer 190 are electrically connected to the plurality of transistors 170, respectively, through via holes in the insulating layer 180, respectively, as shown in FIG.
  • the manufacturing process can be simplified by forming the ordered porous film and the transistor on the different base substrates, respectively, and then opposing the substrate to each other.
  • the first electric power in the above step S1 The pole layer and the second electrode layer in step S4 may also be formed on the same base substrate.
  • a continuous first electrode layer 140 may be formed on the ordered porous film 120 by magnetron sputtering after forming the second electrode layer 190 and the ordered porous film 120.
  • the electrode film 149 may be formed on the ordered porous film 120 by magnetron sputtering, as shown in FIG. 12a; then the electrode film 149 is patterned.
  • the process is performed to form a first electrode layer 140 comprising a plurality of sub-electrodes 140a spaced apart from one another, as shown in Figure 12b.
  • the second electrode layer may also be formed in a similar manner, that is, after forming the first electrode layer and the ordered porous film, an electrode film is formed on the ordered porous film by magnetron sputtering, and then the electrode film is patterned. To form a second electrode layer.
  • the above embodiment uses magnetron sputtering to form an electrode layer (first electrode or second electrode layer) on the ordered porous film, which is advantageous for filling the material of the electrode layer into the pores of the ordered porous film, and It is advantageous to bring the electrode layer into close contact with the quantum dots in the channel. Further, in this case, the height of each quantum dot row in the channel in the direction from the first electrode layer to the second electrode layer may be greater than the distance between the first electrode layer and the second electrode layer.
  • the above magnetron sputtering method can employ a magnetron sputtering method commonly used in the art. I will not repeat them here.
  • the display device provided by the embodiment of the present disclosure may include only one substrate substrate, thereby eliminating the need to face the two substrate substrates to each other. step.
  • the above mainly describes the steps of forming the first and second electrode layers, the ordered porous film, and filling the quantum dots.
  • the method for fabricating the display device provided by some embodiments of the present disclosure may further include the steps of forming a black matrix and a film layer such as an insulating layer. I will not repeat them here.
  • the method for fabricating the display device provided by the above embodiments of the present disclosure is merely illustrative, and the embodiments of the present disclosure include but are not limited thereto.
  • At least one embodiment of the present disclosure also provides a display substrate 300, as shown in FIG. 13, the display substrate 300 includes an ordered porous film 320 including a plurality of sub-pixel regions 350 arranged in a matrix, each sub- A plurality of cells 321 are disposed in the pixel region 350, each of the holes 321 extending at an angle to the surface 320a of the ordered porous film 320 and each of the cells 321 having an opening 322 at least on the surface 320a of the ordered porous film 320;
  • the substrate 300 further includes a plurality of quantum dots 360, which are respectively disposed in each of the sub-pixel regions 350.
  • the display substrate 300 further includes a first electrode layer 340 and a second electrode layer 390 respectively disposed on both sides of the ordered porous film 321 , and the second electrode layer 190 includes a plurality of spaced apart portions
  • the sub-electrodes 390a correspond to the plurality of sub-pixel regions 350, respectively.
  • each of the above-described holes 321 means a direction from the end where the opening 322 is provided in each of the holes 321 to the end of the opening away from the opening 322.
  • the plurality of sub-electrodes 390a included in the second electrode layer 390 respectively correspond to the plurality of sub-pixel regions 350, and the plurality of sub-electrodes 390a and the plurality of sub-pixel regions are respectively in a direction from the first electrode layer 340 to the second electrode layer 390. 350 overlap.
  • the working principle of the display substrate provided by the embodiment of the present disclosure is similar to that of the display device provided by any of the above embodiments, and the repeated description is not repeated.
  • the second electrode layer 390 is located between the ordered porous film 320 and the substrate substrate 310 for carrying the ordered porous film 320.
  • the first electrode layer 340 is located between the ordered porous film 320 and the base substrate 310.
  • the first electrode layer 340 includes a plurality of sub-electrodes 340a.
  • the sub-electrode 340a included in the first electrode layer 340 and the sub-electrode 390a included in the second electrode layer 390 may have a one-to-one correspondence.
  • the first electrode layer 340 may also be a continuously formed film layer.
  • the display substrate provided in this embodiment can form a first electrode layer or a second electrode layer on the side of the ordered porous film away from the substrate 310 by using, for example, magnetron sputtering.
  • the description of Figures 6a to 7b is incorporated in the embodiment.
  • the arrangement of the first and second electrode layers, the ordered porous film, and the quantum dots in the display substrate provided in this embodiment can be referred to the arrangement of the corresponding structures in the above display device. The repetitions are not repeated here.
  • the display substrate or the display device provided by any of the above embodiments of the present disclosure may be used as a backlight in, for example, a liquid crystal display device, and may also be a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigation device. Any product or part that has a display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板、显示装置及其制作方法,该显示装置(100)包括:有序多孔薄膜(120),其包括的呈矩阵排列的子像素区域(150)中的每个内都设置有多个孔道(121),每个孔道(121)在所述有序多孔薄膜(120)的表面(120a)具有开口(122);多个量子点(160),其分别设置于至少部分所述孔道(121)中;以及分别设置于所述有序多孔薄膜(120)两侧的第一电极层(140)和第二电极层(190),所述第二电极层(190)包括的多个彼此间隔设置的子电极(190a)分别对应所述子像素区域(150)。该显示基板、及显示装置及其制作方法具有较高的色域和量子点发光效率。

Description

显示基板、显示装置及其制作方法 技术领域
本公开实施例涉及一种显示基板、显示装置及其制作方法。
背景技术
液晶显示器通常是利用其包括的彩色滤光层过滤背光模组发出的例如白光后通过混光作用形成不同颜色的光,从而实现彩色显示。由于彩色滤光层的材料本身包括染料小分子,会吸收背光模组发出的部分光,使得彩色滤光层的发光效率有限;此外,背光模组通常采用LED(发光二极管)作为光源,LED发出的光的半峰宽较宽并且与彩色滤光层的材料相互作用形成的光的色彩不纯。
量子点作为一种新型的半导体纳米材料,具有许多独特的纳米性质。尤其是量子点粒径均一、发光效率高并且受光或电激发后可发出半峰宽较窄的红光、绿光或蓝光等,可大大提升显示的色域范围,因此在实现广色域显示上有着广泛的应用。
发明内容
本公开实施例提供一种显示基板、显示装置及其制作方法,以提高显示装置的显示色域和发光效率。
本公开至少一个实施例提供一种显示装置,其包括有序多孔薄膜、多个量子点以及分别设置于所述有序多孔薄膜两侧的第一电极层和第二电极层;所述有序多孔薄膜包括呈矩阵排列的多个子像素区域,每个子像素区域内设置有多个孔道,每个孔道的延伸方向与所述有序多孔薄膜的表面之间形成一不为零的角度且每个孔道至少在所述有序多孔薄膜的所述表面具有开口;所述多个量子点分别设置于所述多个孔道中的至少部分孔道内;所述第二电极层包括多个彼此间隔设置的子电极,所述多个子电极分别对应所述多个子像素区域。
本公开至少一个实施例提供一种显示装置的制作方法,其包括:形成第 一电极层;形成有序多孔薄膜,其包括呈矩阵排列的多个子像素区域,每个子像素区域内形成有多个孔道,每个孔道的延伸方向与所述有序多孔薄膜的表面之间形成一不为零的角度且每个孔道至少在所述有序多孔薄膜的所述表面具有开口;填充量子点,以使至少部分所述孔道中的每个孔道内都填充有量子点;以及形成第二电极层,以使所述第二电极层形成于所述有序多孔薄膜的远离所述第一电极层的一侧并且包括多个彼此间隔的子电极,所述多个子电极分别对应所述多个子像素区域。
本公开至少一个实施例还提供一种显示基板,其包括有序多孔薄膜、多个量子点以及分别设置于所述有序多孔薄膜两侧的第一电极层和第二电极层;所述有序多孔薄膜包括呈矩阵排列的多个子像素区域,每个子像素区域内设置有多个孔道,每个孔道的延伸方向与所述有序多孔薄膜的表面之间形成一不为零的角度且每个孔道在所述有序多孔薄膜的所述表面具有开口;所述多个量子点分别设置于所述多个孔道中的至少部分孔道中;所述第二电极层包括多个彼此间隔设置的子电极,所述多个子电极分别对应所述多个子像素区域。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,并非对本公开的限制。
图1是本公开一实施例中显示装置的剖视示意图。
图2a和图2b是本公开一实施例的显示装置中有序多孔薄膜的孔道的微观结构示意图。
图3是本公开一实施例中显示装置的示意图。
图4是本公开一实施例中显示装置的示意图。
图5是本公开一实施例中显示装置的示意图。
图6a和图6b是本公开一实施例中利用金属薄膜形成有序多孔薄膜和第一电极层的剖视示意图。
图7a和图7b是本公开一实施例中将金属薄膜全部氧化以形成有序多孔薄膜的剖视示意图。
图8a至图8c是本公开一实施例中将制作的有序多孔材料进行图案化处理以形成包括多个彼此间隔的子像素区域的有序多孔薄膜的剖视示意图。
图9a至图9f是本公开一实施例中填充量子点的剖视示意图。
图10是本公开一实施例中在第二衬底基板上形成多个晶体管和第二电极层的剖视示意图。
图11是本公开一实施例中在有序多孔薄膜上直接形成连续的第一电极层的剖视示意图。
图12a和图12b是本公开一实施例中在有序多孔薄膜上形成电极薄膜之后通过图案化处理的方式形成第一电极层的剖视示意图。
图13是本公开一实施例中显示基板的剖视示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在研究中,本申请的发明人注意到,虽然可以采用将量子点作为液晶显示器的背光模组中的背光源并且搭配利用彩色滤色材料形成的彩色滤光层的方式实现彩色显示,并且提高色域。但这种方式中,量子点的发光效率和利用率较低,且由于需要使用利用彩色滤色材料形成的彩色滤光层,色域提升 范围有限。
本公开的实施例提供一种显示基板、显示装置及其制作方法。该显示装置包括有序多孔薄膜、多个量子点和分别设置于有序多孔薄膜两侧的第一电极层和第二电极层;有序多孔薄膜包括呈矩阵排列的多个子像素区域,每个子像素区域内设置有多个孔道,每个孔道的延伸方向与所述有序多孔薄膜的表面之间形成一不为零的角度且每个孔道至少在所述有序多孔薄膜的该表面具有开口;该显示装置包括的多个量子点分别设置于所述多个孔道中的至少部分孔道内;所述第二电极层包括多个彼此间隔设置的子电极,所述多个子电极分别对应所述多个子像素区域。
一方面,本公开实施例中提供的显示基板、显示装置及其制作方法可以显著提高显示装置的显示色域;另一方面,与将量子点作为背光源使用的方式相比,本公开实施例可以大大提高量子点的发光效率和利用率;再一方面,由于本公开实施例可以形成主动发光的量子点发光显示装置,因而可以降低功耗。
如图1所示,本公开至少一实施例提供一种显示装置100,该显示装置100包括有序多孔薄膜120,该有序多孔薄膜120包括呈矩阵排列的多个子像素区域150(图1中仅示出了第一子像素区域151、第二子像素区域152、第三子像素区域153),每个子像素区域150内设置有多个孔道121,每个孔道121的延伸方向与有序多孔薄膜120的表面120a之间形成一不为零的角度且每个孔道121在有序多孔薄膜120的表面120a具有开口122;该显示装置100还包括多个量子点160,该多个量子点160分别设置于上述多个孔道121中的至少部分孔道内;该显示装置100还包括分别设置于有序多孔薄膜120两侧的第一电极层140和第二电极层190,第二电极层190包括多个彼此间隔设置的子电极190a(图1中仅示出了三个子电极191、192、193),该多个子电极190a分别对应多个子像素区域150。
上述每个孔道121的延伸方向是指从每个孔道121设置有开口122的端部到该孔道的远离开口122的端部的方向。
第二电极层190包括的多个子电极190a分别对应上述多个子像素区域150是指在从第一电极层140到第二电极层190的方向上,该多个子电极190a分别与该多个子像素区域150交叠。例如,如图1所示,在从第一电极层140 到第二电极层190的方向上,子电极191与第一子像素区域151交叠,子电极192与第二子像素区域152交叠,子电极193与第三子像素区域153交叠。
在图1所示的实施例中,第一电极层140靠近有序多孔薄膜120的表面120a并且第二电极层190远离有序多孔薄膜120的表面120a。当然,第一电极层140和第二电极层190的位置也可以互换。
此外,如图1所示,第一电极层140也可以包括多个子电极140a。例如,第一电极层140包括的子电极140a与第二电极层190包括的子电极190a可以一一对应。
本公开实施例提供的如图1所示的显示装置100的工作原理如下:在显示装置100的工作过程中,第一电极层140、第二电极层190以及位于二者之间的量子点阵列可以形成呈矩阵排列的多个发光单元,每个发光单元包括发光层(包括子像素区域150和位于该子像素区域150内的量子点)、该发光层对应的子电极140a和子电极190a;对于每个发光单元而言,其包括的子电极140a和子电极190a中的一个作为阳极并且另一个作为阴极(在图1中,子电极140a作为阴极且子电极190a作为阳极,分别参见图1中的“-”和“+”),阳极可以对子像素区域150内的量子点160进行充电,并且阴极和阳极之间可以形成电流通道,从而该子像素区域150内的量子点160可以在阴极和阳极的作用下受激发光;通过控制每个发光单元包括的子像素区域内的量子点的发光状态,可以形成量子点阵列发光装置。
例如,本公开一实施例提供的显示装置100还可以包括彼此间隔设置的多个晶体管170,如图1所示,该多个晶体管170分别与第二电极层190包括的多个子电极190a电连接。在显示装置100的工作过程中,该多个晶体管170分别作为上述发光单元的开关元件,从而可以控制各行、列子像素区域150内的量子点160的发光状态。
例如,晶体管170可以为薄膜晶体管(TFT)。本公开实施例包括但不限于此。
例如,在晶体管170上还可以设置有绝缘层180,晶体管170的源极或漏极例如通过绝缘层180中的过孔与第二电极层190包括的多个子电极190a电连接。
例如,显示装置100可以包括彼此对置的第一衬底基板111和第二衬底 基板112。例如,第一衬底基板111、第二衬底基板112都可以为玻璃基板、石英基板或塑料基板等。
例如,显示装置100可以通过在第一衬底基板111上形成第一电极层140和有序多孔薄膜120、在第二衬底基板112上形成晶体管170和第二电极层190、之后将第一衬底基板111与第二衬底基板112彼此对置的方式形成;或者,也可以通过在一个衬底基板上形成第一电极层、有序多孔薄膜、第二电极层和晶体管之后使该衬底基板与另一衬底基板彼此对置的方式形成显示装置100。
例如,显示装置100也可以包括一个衬底基板,并且通过在该衬底基板上形成第一电极层、有序多孔薄膜、第二电极层和晶体管的方式形成。
例如,在第一衬底基板111上可以设置有位于有序多孔薄膜120的相邻的子像素区域150之间的黑矩阵110,黑矩阵110可以避免不同子像素区域150中的量子点发出的例如不同颜色光的串扰,以提高色域。黑矩阵110例如由黑色光刻胶形成。
例如,在第一衬底基板111上还可以设置有覆盖黑矩阵110的平坦层113,平坦层113的远离黑矩阵110的表面大致为平面。
例如,在本公开至少一实施例提供的显示装置100中,第一电极层140和第二电极层190中的至少一个是透明的,以使量子点发出的光透射出去,从而可以使显示装置100实现单面发光或双面发光。当然,也可以采用本领域常用的其它方式将量子点发出的光导出。
例如,第一电极层和/或第二电极层的形成材料可以包括透明导电材料,例如氧化铟锡等透明导电金属氧化物材料。例如,上述第一电极层和第二电极层也可以采用制作得比较薄以至于透明的金属层,例如,该金属层的形成材料可以为诸如铝、钼、铜、锆、钛等金属材料。为了保证量子点发出的光可以透过上述金属层,例如,该金属层的厚度可以为300nm(纳米)~1μm(微米)。
例如,在本公开一实施例提供的显示装置100中,上述至少部分孔道121中的每个孔道121内设置有至少一个量子点列,每个量子点列包括一个量子点或沿孔道121的延伸方向排列的至少两个量子点(图1以每个孔道内设置有一个量子点列且该量子点列包括三个量子点为例进行说明);每个量子点 列的两端分别与第一电极层和第二电极层接触,即每个量子点列的靠近第一电极层的一端与第一电极层物理接触且靠近第二电极层的一端与第二电极层物理接触。这样可以使第一、二电极层通过位于二者之间的量子点形成电流通道。
在每个量子点列的两端分别与第一电极层和第二电极层接触的情况下,例如,在从第一电极层140到第二电极层190的方向上,每个量子点列的高度L可以大于或等于第一电极层140到第二电极层190之间的距离H(图1以L与H相等为例进行说明)。
当然,除了通过使每个量子点列的两端分别与第一电极层和第二电极层接触的方式之外,也可以通过其它方式使第一、二电极层之间形成电流通道,本公开实施例不做限定。
例如,在本公开一实施例提供的显示装置100中,位于有序多孔薄膜120中的多个量子点160可以包括受激发出不同颜色光的多种量子点,该多种量子点分别设置于不同的子像素区域内。通过设置受激发出不同颜色光的多种量子点,可以实现彩色显示。
例如,如图1所示,位于有序多孔薄膜120中的量子点160包括第一量子点161、第二量子点162和第三量子点163,第一量子点161位于第一子像素区域151内,第二量子点162位于第二子像素区域152内,第三量子点163位于第三子像素区域153内。例如,第一量子点161受激发出蓝光,第二量子点162受激发出绿光,第三量子点163受激发出红光。
需要说明的是,上述量子点160的种类不局限于3种,也可以为2种或大于3种。例如,有序多孔薄膜中的量子点可以包括多个第一量子点和多个第二量子点,第二量子点与第一量子点分别位于不同的子像素区域中且可发出不同颜色的光。
有序多孔薄膜是采用有序多孔材料形成的薄膜。有序多孔材料是20世纪90年代迅速兴起的新型纳米结构材料,具有孔道大小均匀且排列规则、孔道的孔径在一定范围内可连续调节等特性。按照国际纯粹和应用化学联合会(IUPAC)的定义,有序多孔材料根据其孔径大小可以分为三类:孔径小于2nm(纳米)的为微孔材料,孔径在2nm至50nm范围内的为介孔材料,孔径大于50nm的为大孔材料,有时也将孔径小于0.7nm的称为超微孔材料。
在本公开实施例中,可以根据量子点的尺寸(量子点的平均尺寸范围为2nm~200nm)设计孔道开口的尺寸,以避免因孔道的尺寸太大而造成的孔道内进入较多量子点以及由此导致的量子点发光效率低。
例如,在本公开至少一实施例提供的显示装置100中,上述至少部分孔道121的开口122的平均尺寸可以为2nm~200nm。
例如,在本公开一实施例提供的显示装置100中,上述至少部分孔道121的所述开口122平均尺寸优选为2nm~20nm。这是因为常用的量子点的平均尺寸为2nm~20nm。
例如,可以通过控制有序多孔薄膜中的孔道的尺寸,以使上述至少部分孔道121中的每个孔道121内设置有一个量子点列160,每个量子点列包括一个量子点或大致沿孔道的延伸方向排列的至少两个量子点。对于任意一个孔道121而言,在该孔道121中设置有多个不规则排列的量子点的情况下,该孔道中的量子点160之间发生团聚和自淬灭现象的几率较大,导致量子点的发光效率降低。本公开实施例通过采用在该孔道内设置一个量子点列的方式,可以提高该孔道121中量子点160的发光效率。
例如,在本公开至少一实施例提供的显示装置100中,上述至少部分孔道121的开口122的平均尺寸与量子点160的平均尺寸之比可以大于1且小于2。这样设置,在将有序多孔薄膜浸入量子点溶液中以将量子点填充到孔道内的过程中,有利于使至少部分孔道121中的每个孔道内进入一个量子点列,以提高量子点的发光效率。
由于发出不同颜色光的多种量子点的尺寸通常不同,因此有序多孔薄膜120中的孔道的开口的平均尺寸可以设置为全部相同,也可以分别根据设置于其中的量子点的尺寸进行设置。
例如,在本公开至少一实施例提供的显示装置100中,有序多孔薄膜120的形成材料可以包括金属氧化物,例如氧化铝或二氧化钛等。例如,有序多孔薄膜120可以包括多孔阳极氧化铝膜或二氧化钛纳米管阵列膜。
多孔阳极氧化铝膜通常通过形成铝金属薄膜并对该铝金属薄膜进行阳极氧化的方式形成。多孔阳极氧化铝膜(AAO)具有可形成高度有序的孔道、孔道的孔径和孔间距可控、热稳定性好、绝缘、制备工艺简单等优点;此外,它还是一种宽带隙材料,具有良好的光学特性,在近紫外至近红外波段具有 很高的透光性。如图2a和图2b所示,多孔阳极氧化铝膜中可以制备有孔径为5nm~200nm的周期性孔道,且孔道可基本与用于承载该多孔阳极氧化铝膜的衬底垂直。因此,与采用本领域常用的其它方法形成的有序多孔氧化铝膜相比,采用阳极氧化法形成的多孔阳极氧化铝膜更有利于量子点的填充并且使量子点发出的光发射出去;本公开实施例通过在多孔阳极氧化铝膜的孔道中填充量子点并利用量子点电致发光的特性制作量子点发光显示装置,可大大提高量子点的发光效率和利用率并提升量子点发光显示装置的显示色域。
例如,当有序多孔薄膜120包括多孔阳极氧化铝膜时,第一电极层140或第二电极层190的形成材料可以包括钼金属。这是因为,钼金属与铝金属的热膨胀系数相差较小,当在采用钼金属形成的第一电极层或第二电极层上通过例如磁控溅射等方式形成铝金属薄膜以在后续步骤中形成多孔阳极氧化铝膜时,形成的铝金属薄膜在冷却至室温时不容易发生断裂现象;另一方面,与将铝金属薄膜直接形成在基板(例如玻璃基板、石英基板等)上的方式相比,钼金属与铝金属薄膜之间具有较好的粘结力,因而可以降低铝金属薄膜脱落的几率。
例如,有序多孔薄膜120也可以为二氧化钛纳米管阵列膜,二氧化钛纳米管阵列膜的表层可以形成为类似多孔阳极氧化铝膜的形貌,下层为纳米管有序阵列,例如,纳米管直径可以为20nm-100nm。
由于多孔阳极氧化铝膜中更容易形成孔径与量子点的尺寸接近且延伸方向基本与多孔阳极氧化铝膜的表面垂直的孔道,本公开实施例优选多孔阳极氧化铝膜。
当然,本公开实施例包括但不限于多孔阳极氧化铝膜、二氧化钛纳米管阵列膜,任何具有孔道垂直性好并且孔道的孔径接近量子点尺寸等特性的有序多孔薄膜都可以用于本公开的实施例。
在本公开实施例提供的显示装置100中,孔道121的延伸方向尽量垂直于有序多孔薄膜120的表面120a,这样有利于孔道121中的量子点160发出的光通过孔道(即,避免照射到孔道121的内壁上),以提高量子点160发出的光的利用率。
例如,在本公开至少一实施例提供的显示装置100中,上述每个孔道121 的延伸方向与有序多孔薄膜120的表面120a之间形成的角度的平均值在60°至90°的范围内。
例如,进一步地,孔道121的延伸方向与有序多孔薄膜120的表面120a之间角度的平均值在80°至90°的范围内。
图1以第一电极层140包括多个子电极140a并且第一电极层140包括的子电极140a与第二电极层190包括的子电极190a一一对应为例进行说明。本公开实施例包括但不限于此。例如,第一电极层140也可以连续形成,如图3所示。
例如,如图4所示,有序多孔薄膜120也可以连续形成。也就是说,只要本公开实施例中的第二电极层包括彼此绝缘且对应有序多孔薄膜的子像素区域150的多个子电极,即可形成多个发光单元,以实现量子点阵列显示装置。
在图1、图3和图4所示的实施例中,每个孔道121都为贯穿有序多孔薄膜120的通孔(即每个孔道121在有序多孔薄膜120的相对的表面120a和120b处都设置有开口)。当然,每个孔道121也可以只在有序多孔薄膜120的一个表面具有开口,即每个孔道121为盲孔,如图5所示。
在图1、图3至图5所示的实施例中,用于控制每个子像素区域内的量子点发光状态的晶体管170设置在有序多孔薄膜120与第二衬底基板112之间。在一些实施例中,也可以根据实际需要将晶体管170设置于有序多孔薄膜120与第一衬底基板111之间。
此外,本公开实施例提供的显示装置100还可以包括驱动电路、栅线和数据线等结构。本公开实施例不做赘述。
本公开实施例提供一种上述任一实施例提供的显示装置100的制作方法,如图1、图3至图5所示,该制作方法包括以下步骤S1至步骤S4。
步骤S1:形成第一电极层140。
步骤S2:形成有序多孔薄膜120,使该有序多孔薄膜120包括呈矩阵排列的多个子像素区域150,每个子像素区域150内形成有多个孔道121,每个孔道121的延伸方向与有序多孔薄膜120的表面120a之间形成一不为零的角度且每个孔道121至少在有序多孔薄膜120的表面120a具有开口122。
步骤S3:填充量子点160,以使每个子像素区域150包括的至少部分孔 道121中的每个孔道内都填充有量子点。
步骤S4:形成第二电极层190,以使第二电极层190包括多个彼此间隔设置的子电极190a,所述多个子电极190a分别对应所述多个子像素区域150。
本公开实施例提供的制作方法制作出的显示装置的显示色域广、量子点的发光效率和利用率高且因采用主动式发光模式而功耗低。
本公开实施例提供的制作方法不限定上述各步骤的顺序。例如,第一电极层或第二电极层与有序多孔薄膜可以同时形成;例如,第一电极层和第二电极层的形成顺序可以互换。
例如,在本公开至少一实施例提供的显示装置的制作方法中,形成有序多孔薄膜120的步骤S2可以包括:形成金属薄膜120′,如图6a所示;对金属薄膜120′进行阳极氧化处理,以形成有序多孔薄膜120,如图6b所示。
在该步骤中,例如,金属薄膜120′可以包括铝金属层或钛金属层等。例如,金属薄膜120′可以包括铝金属层和钼金属层。本公开实施例包括但不限于此。
例如,金属薄膜120′可以通过磁控溅射等本领域常用的方式沉积在第一衬底基板111(如图6a所示)或第二衬底基板。
采用阳极氧化法对金属薄膜进行处理以形成有序多孔薄膜,可以使形成的有序多孔薄膜中的孔道的孔径适合填充量子点且孔道垂直性好。
以金属薄膜120′为铝金属薄膜为例,采用阳极氧化法将铝金属薄膜制备成有序多孔薄膜120可以包括以下步骤S21至步骤S23。
步骤S21:进行一次氧化。
例如,在0.25~0.4mol/L的草酸溶液中,保持35~45V的直流电压,采用冰水浴保持恒温,使温度低于室温10℃左右。对铝金属薄膜进行一次氧化,氧化时间例如为3~5小时(具体时间可以根据需要得到的结构调整)。
步骤S22:完成一次氧化后,对通过上述步骤S21得到的结构进行冲洗,并进行干燥。
例如,可以使用蒸馏水通过喷淋装置进行冲洗。
步骤S23:进行二次氧化。
将通过步骤S22得到的结构置于80℃的磷酸(重量比5~8%)和铬酸(重量比1~2%)的混合溶液中,将经过一次氧化形成在铝金属薄膜表面上的Al2O3 膜腐蚀掉,二次氧化即在一次氧化后形成的六角形凹坑阵列结构表面进行,二次氧化的其它条件与一次氧化一致,氧化时间约为8~11小时。
以上采用阳极氧化法制作多孔阳极氧化铝膜的过程仅用于示例性说明。本公开实施例包括但不限于此。并且,本领域技术人员可根据需要,通过调整多孔阳极氧化铝膜的制作工艺(例如,通过调整酸溶液的类型、氧化的条件等),调控有序多孔薄膜中形成的孔道的直径、形状和周期性等。此处不做赘述。
当采用钛金属层时,可以采用本领域常用的方法制备出孔道垂直性好且孔道的孔径适合填充量子点的二氧化钛纳米管阵列膜。此处不做赘述。
在图6b所示的实施例中,金属薄膜120′被部分氧化。在这种情况下,例如,金属薄膜120′(如图6a所示)厚度方向上的一部分(即因氧化而形成的金属氧化物层)可以形成有序多孔薄膜120且另一部分(即未被氧化的金属薄膜)形成第一电极层140(如图6b所示)或第二电极层,即上述步骤S1(或步骤S4)和步骤S2可以同时进行。
在本公开的至少一个实施例中,金属薄膜120′也可以被全部氧化。例如,在例如第一衬底基板111上依次形成第一电极层140(如图7a所示)或第二电极层、以及金属薄膜120′;之后将金属薄膜120′全部氧化以形成有序多孔薄膜120,如图7b所示。也就是说,上述步骤S1或步骤S4与步骤S2可以依次进行。
例如,当图7a所示的金属薄膜120′为铝金属薄膜时,第一电极层140(如图7a所示)或第二电极层可以为钼金属层,以降低形成在其上的铝金属薄膜发生断裂现象的几率。
在本公开的至少一个实施例中,上述步骤S1还可以包括:对用于形成第一电极层的导电薄膜进行图案化处理(例如,图案化处理可以为包括曝光、显影和刻蚀等步骤的光刻工艺或其它形成设定图案的工艺)以使第一电极层包括多个子电极。在本公开的至少一个实施例中,上述步骤S2还可以包括:对经过阳极氧化处理的得到的用于形成有序多孔薄膜的有序多孔材料进行图案化处理,以使形成的有序多孔薄膜包括的子像素区域彼此间隔。下面结合图8a至图8c进行说明。
例如,如图8a所示,在第一衬底基板111上依次形成的导电薄膜140′ 和有序多孔薄膜120″上形成光刻胶114,并用掩模板对其进行曝光处理;之后进行显影以形成光刻胶图案114′,该光刻胶图案114′暴露出有序多孔材料120″的部分表面,如图8b所示;之后,对有序多孔材料120″和导电薄膜140′进行刻蚀,使形成的有序多孔薄膜120包括彼此间隔的子像素区域150,以及使形成的第一电极层140包括多个子电极140a,如图8c所示。
在形成有序多孔薄膜之后,可以进行步骤S3,向有序多孔薄膜中的孔道内填充量子点。以有序多孔薄膜的第一至三子像素区域151、152、153中分别填充受激发出不同颜色光的第一量子点161、第二量子点162和第三量子点163为例,步骤S3可以包括以下步骤S31至步骤S36,下面结合图9a至图9f对步骤S3进行说明。
步骤S31:如图9a所示,在有序多孔薄膜120上形成(例如涂覆)光刻胶(例如形成如图9a中所示的光刻胶图案114’),该光刻胶覆盖第一子像素区域151、第二子像素区域152和第三子像素区域153;采用掩模板对第一子像素区域151上的光刻胶进行曝光,如图9a所示;之后进行显影以暴露出第一子像素区域151内的孔道121的开口122,如图9b所示。
步骤S32:将有序多孔薄膜120浸入第一量子点溶液中,以使第一子像素区域151内的至少部分孔道121中的每个孔道中填充有至少一列第一量子点161,如图9b所示。
在该步骤中,第一量子点溶液可通过将第一量子点材料分散至例如水、乙醇或者丙酮等本领域常用的溶剂中形成。
步骤S33:采用掩模板对第二子像素区域152上的光刻胶进行曝光,如图9c所示;之后进行显影以暴露出第二子像素区域152内的孔道121的开口122,如图9d所示。
步骤S34:将有序多孔薄膜120浸入第二量子点溶液中,以使第二子像素区域152内的至少部分孔道121中的每个孔道中填充有至少一列第二量子点162,如图9d所示。
在该步骤中,第二量子点溶液可通过将第二量子点材料分散至例如水、乙醇或者丙酮等本领域常用的溶剂中形成。
步骤S35:对第三子像素区域153上的光刻胶进行曝光,如图9e所示,之后进行显影以暴露出第三子像素区域153内的孔道121的开口122,如图 9f所示。
步骤S36:将有序多孔薄膜120浸入第三量子点溶液中,以使第三子像素区域153内的至少部分孔道121中的每个孔道中填充有至少一列第三量子点163。
在该步骤中,第三量子点溶液可通过将第三量子点材料分散至例如水、乙醇或者丙酮等本领域常用的溶剂中形成。
以上步骤S31至步骤S36仅以3种量子点为例进行说明。当量子点为2种或大于3种时,量子点的填充方法可以参照上述步骤。此外,以上仅仅示例性地说明了如何将不同种量子点填充到不同像素区域。当然,也可以采用本领域常用的其它方法向孔道中填充量子点。
在本公开至少一个实施例提供的制作方法中,上述步骤S1中的第一电极层和步骤S4中的第二电极层可以分别形成在两个衬底基板上。例如,在本公开一实施例提供的显示装置的制作方法中,如图6b、图7b和图9f所示,在第一衬底基板111上形成第一电极层140和有序多孔薄膜120;如图10所示,在第二衬底基板112上形成第二电极层190;使第一衬底基板111与第二衬底基板112彼此对置以形成如图1和图3-5中任一项所示的显示装置。
例如,为了使有序多孔薄膜的孔道中的每个量子点列的两端分别与第一电极层和第二电极层紧密接触以使第一、二电极层之间可以形成电流通道,在将第一衬底基板和第二衬底基板彼此对置时可以尽量时第二衬底基板上的第二电极层与第一衬底基板上的有序多孔薄膜的表面紧密接触。
例如,当有序多孔薄膜中填充的为遇到水或水汽时发光效率会降低的量子点时,可以在真空条件下使第一衬底基板和第二衬底基板彼此对置,以避免空气中的水汽影响量子点的发光。
例如,本公开一实施例提供的显示装置的制作方法还可以包括:在第二衬底基板112上形成呈矩阵排列的多个晶体管170,使第二电极层190覆盖该多个晶体管并且使第二电极层190包括的多个子电极190a例如分别通过绝缘层180中的过孔分别与该多个晶体管170电连接,如图10所示。通过在不同的衬底基板上分别形成有序多孔薄膜和晶体管之后将衬底基板彼此对置的方式,可以简化制作工艺。
在本公开至少一个实施例提供的制作方法中,上述步骤S1中的第一电 极层和步骤S4中的第二电极层也可以在同一个衬底基板上形成。
例如,如图11所示,可以在形成第二电极层190和有序多孔薄膜120之后,通过磁控溅射方式在有序多孔薄膜120上形成连续的第一电极层140。
例如,也可以在形成第二电极层190和有序多孔薄膜120之后,通过磁控溅射方式在有序多孔薄膜120上形成电极薄膜149,如图12a所示;之后对电极薄膜149进行图案化处理,以形成第一电极层140,该第一电极层140包括多个彼此间隔开的子电极140a,如图12b所示。第二电极层也可以采用类似方式形成,即在形成第一电极层和有序多孔薄膜之后,通过磁控溅射方式在有序多孔薄膜上形成电极薄膜,之后对该电极薄膜进行图案化处理以形成第二电极层。
上述实施例采用磁控溅射的方式在有序多孔薄膜上形成电极层(第一电极或第二电极层),有利于使该电极层的材料填充到有序多孔薄膜的孔道中,并有利于使该电极层与孔道中的量子点紧密接触。此外,在这种情况下,孔道中每个量子点列的沿从第一电极层到第二电极层的方向的高度可以大于第一电极层和第二电极层之间的距离。
上述磁控溅射方式可以采用本领域常用的磁控溅射方式。此处不做赘述。
当第一电极层与第二电极层在同一个衬底基板上形成时,本公开实施例提供的显示装置例如可以只包括一个衬底基板,从而省去将两个衬底基板彼此对置的步骤。
以上主要介绍了形成第一、二电极层、有序多孔薄膜以及填充量子点的步骤。此外,本公开的一些实施例提供的显示装置的制作方法还可以包括形成黑矩阵以及绝缘层等膜层的步骤。此处不做赘述。
本公开的上述实施例提供的显示装置的制作方法仅为举例说明,本公开实施例包括但不限于此。
本公开至少一个实施例还提供一种显示基板300,如图13所示,该显示基板300包括有序多孔薄膜320,该有序多孔薄膜320包括呈矩阵排列的多个子像素区域350,每个子像素区域350内设置有多个孔道321,每个孔道321的延伸方向与有序多孔薄膜320的表面320a成一角度且每个孔道321至少在有序多孔薄膜320的表面320a具有开口322;该显示基板300还包括多个量子点360,该多个量子点360分别设置于每个子像素区域350包括的多 个孔道321中的至少部分孔道内;该显示基板300还包括分别设置于有序多孔薄膜321两侧的第一电极层340和第二电极层390,第二电极层190包括多个彼此间隔设置的子电极390a,该多个子电极分别对应多个子像素区域350。
上述每个孔道321的延伸方向是指从每个孔道321设置有开口322的端部到该孔道的远离开口322的端部的方向。
第二电极层390包括的多个子电极390a分别对应上述多个子像素区域350是指在从第一电极层340到第二电极层390的方向上,该多个子电极390a分别与该多个子像素区域350交叠。
本公开实施例提供的显示基板的工作原理与上述任一实施例提供的显示装置的工作原理类似,重复之处不再赘述。
在图13所示的实施例中,第二电极层390位于有序多孔薄膜320和用于承载有序多孔薄膜320的衬底基板310之间。当然,也可以是第一电极层340位于有序多孔薄膜320和衬底基板310之间。
在图13所示的实施例中,第一电极层340包括多个子电极340a。例如,第一电极层340包括的子电极340a与第二电极层390包括的子电极390a可以一一对应。例如,第一电极层340也可以为一个连续形成的膜层。
本实施例提供的显示基板可以采用例如磁控溅射的方式在有序多孔薄膜的远离衬底基板310的一侧形成第一电极层或第二电极层,具体方式可参考上述显示装置100的实施例中结合图6a至图7b的说明。
本实施例提供的显示基板中的第一、二电极层、有序多孔薄膜以及量子点的设置可以参照上述显示装置中相应结构的设置方式。重复之处不再赘述。
例如,本公开上述任一实施例提供的所述显示基板或显示装置可以用作例如液晶显示装置中的背光源,也可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
有以下几点需要说明
(1)本公开实施例附图中,只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计;
(2)附图中各层薄膜厚度和形状不反映真实比例,目的只是示意说明本公开实施例的内容;
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2016年1月15日递交的中国专利申请第201610028824.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种显示装置,包括:
    有序多孔薄膜,包括呈矩阵排列的多个子像素区域,其中,每个子像素区域内设置有多个孔道,每个孔道的延伸方向与所述有序多孔薄膜的表面之间形成一不为零的角度且每个孔道至少在所述有序多孔薄膜的所述表面具有开口;
    多个量子点,分别设置于所述多个孔道中的至少部分孔道内;以及
    分别设置于所述有序多孔薄膜两侧的第一电极层和第二电极层,其中,所述第二电极层包括多个彼此间隔设置的子电极,所述多个子电极分别对应所述多个子像素区域。
  2. 根据权利要求1所述的显示装置,还包括:
    彼此间隔设置的多个晶体管,其中,所述多个晶体管分别与所述第二电极层包括的所述多个子电极电连接。
  3. 根据权利要求1或2所述的显示装置,其中,所述第一电极层和所述第二电极层中的至少一个是透明的。
  4. 根据权利要求1-3中任一项所述的显示装置,其中,
    所述部分孔道中的每个孔道内设置有至少一个量子点列,每个量子点列包括一个量子点或沿所述孔道的延伸方向排列的至少两个量子点,所述至少两个量子点中相邻的量子点彼此接触;
    在从所述第一电极层到所述第二电极层的方向上,每个量子点列的两端分别与所述第一电极层和所述第二电极层接触。
  5. 根据权利要求1-4中任一项所述的显示装置,其中,所述多个量子点包括受激发出不同颜色光的多种量子点,所述多种量子点分别设置于不同的子像素区域内。
  6. 根据权利要求1-5中任一项所述的显示装置,其中,所述有序多孔薄膜的形成材料包括金属氧化物。
  7. 根据权利要求6所述的显示装置,其中,所述有序多孔薄膜包括多孔阳极氧化铝膜或二氧化钛纳米管阵列膜。
  8. 根据权利要求7所述的显示装置,其中,所述有序多孔薄膜包括多孔 阳极氧化铝膜,所述第一电极层或所述第二电极层的材料包括钼金属。
  9. 根据权利要求1-8中任一项所述的显示装置,其中,所述多个孔道的开口的平均尺寸与所述多个量子点的平均直径之比大于1且小于2。
  10. 根据权利要求1-9中任一项所述的显示装置,其中,沿平行于所述有序多孔薄膜的所述表面的方向上,所述多个孔道的开口的平均尺寸在2nm至200nm的范围内。
  11. 根据权利要求10所述的显示装置,其中,所述多个孔道的所述开口的平均尺寸在2nm至20nm的范围内。
  12. 根据权利要求1-11中任一项所述的显示装置,其中,每个孔道的所述延伸方向与所述有序多孔薄膜的所述表面之间形成的所述角度的平均值在60°至90°的范围内。
  13. 根据权利要求12所述的显示装置,其中,所述角度的平均值在80°至90°的范围内。
  14. 一种显示装置的制作方法,包括:
    形成第一电极层;
    形成有序多孔薄膜,其包括呈矩阵排列的多个子像素区域,其中,每个子像素区域内形成有多个孔道,每个孔道的延伸方向与所述有序多孔薄膜的表面之间形成一不为零的角度且每个孔道至少在所述有序多孔薄膜的所述表面具有开口;
    填充量子点,以使至少部分所述孔道中的每个孔道内都填充有量子点;以及
    形成第二电极层,其中,所述第二电极层形成于所述有序多孔薄膜的远离所述第一电极层的一侧并且包括多个彼此间隔的子电极,所述多个子电极分别对应所述多个子像素区域。
  15. 根据权利要求14所述的方法,其中,
    形成金属薄膜,对所述金属薄膜进行阳极氧化处理,以形成所述有序多孔薄膜。
  16. 根据权利要求15所述的方法,其中,在所述金属薄膜的厚度方向上,所述金属薄膜的一部分形成所述有序多孔薄膜且另一部分形成所述第一电极层或所述第二电极层。
  17. 根据权利要求14或15所述的方法,其中,
    在形成所述第二电极层和所述有序多孔薄膜之后,通过磁控溅射方式在所述有序多孔薄膜上形成所述第一电极层,所述第一电极层连续形成;或者
    在形成所述第二电极层和有序多孔薄膜之后,通过磁控溅射方式在所述有序多孔薄膜上形成电极薄膜,之后对所述电极薄膜进行图案化处理,以形成所述第一电极层,所述第一电极层包括多个彼此间隔开的子电极;或者
    在形成所述第一电极层和所述有序多孔薄膜之后,通过磁控溅射方式在所述有序多孔薄膜上形成电极薄膜,之后对所述电极薄膜进行图案化处理,以形成所述第二电极层。
  18. 根据权利要求14或15所述的方法,其中,
    在第一衬底基板上形成所述第一电极层和所述有序多孔薄膜;
    在第二衬底基板上形成所述第二电极层;以及
    使所述第一衬底基板与所述第二衬底基板彼此对置。
  19. 根据权利要求18所述的方法,还包括:
    在所述第二衬底基板上形成呈矩阵排列的多个晶体管,其中,所述第二电极层包括的所述多个子电极分别与所述多个晶体管电连接。
  20. 一种显示基板,包括:
    有序多孔薄膜,其包括呈矩阵排列的多个子像素区域,其中,每个子像素区域内设置有多个孔道,每个孔道的延伸方向与所述有序多孔薄膜的表面之间形成一不为零的角度且每个孔道在所述有序多孔薄膜的所述表面具有开口;
    多个量子点,分别设置于所述多个孔道中的至少部分孔道中;以及
    分别设置于所述有序多孔薄膜两侧的第一电极层和第二电极层,其中,所述第二电极层包括多个彼此间隔设置的子电极,所述多个子电极分别对应所述多个子像素区域。
PCT/CN2016/098949 2016-01-15 2016-09-14 显示基板、显示装置及其制作方法 WO2017121143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/537,671 US10295872B2 (en) 2016-01-15 2016-09-14 Display substrate, display device and manufacturing method the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610028824.9 2016-01-15
CN201610028824.9A CN105609535B (zh) 2016-01-15 2016-01-15 显示基板、显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2017121143A1 true WO2017121143A1 (zh) 2017-07-20

Family

ID=55989315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098949 WO2017121143A1 (zh) 2016-01-15 2016-09-14 显示基板、显示装置及其制作方法

Country Status (3)

Country Link
US (1) US10295872B2 (zh)
CN (1) CN105609535B (zh)
WO (1) WO2017121143A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204104B (zh) 2015-10-30 2018-05-25 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
CN105609535B (zh) * 2016-01-15 2018-11-13 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法
CN106873234B (zh) * 2017-03-16 2019-10-25 京东方科技集团股份有限公司 发光显示器件及其制作方法、发光显示装置
CN107104194B (zh) * 2017-05-26 2019-07-12 吉林大学 一种双面发光的无机钙钛矿量子点led及其制备方法
CN106981504B (zh) * 2017-05-27 2020-03-27 华南理工大学 一种显示面板及显示装置
CN109326729A (zh) * 2017-08-01 2019-02-12 Tcl集团股份有限公司 一种qled器件及其制备方法
CN107644948B (zh) 2017-10-10 2020-03-03 京东方科技集团股份有限公司 一种发光器件、像素电路、其控制方法及相应装置
CN108269941B (zh) * 2018-01-23 2019-08-09 福州大学 一种基于垂直孔道sba-15限域的量子点发光二极管器件的制作方法
CN108102643B (zh) * 2018-01-23 2019-07-09 福州大学 一种基于垂直孔道sba-15限域的量子点发光薄膜的制备方法
CN107991812A (zh) * 2018-01-29 2018-05-04 京东方科技集团股份有限公司 背光模组及其制造方法、显示装置
CN108376745B (zh) 2018-03-01 2020-08-18 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板
CN109585504B (zh) * 2018-10-08 2020-12-25 惠科股份有限公司 显示面板及显示面板的制作方法
CN109671365A (zh) * 2019-01-30 2019-04-23 京东方科技集团股份有限公司 Micro-LED显示基板及其制作方法、显示装置
CN109669301A (zh) * 2019-03-01 2019-04-23 惠科股份有限公司 量子点彩膜基板和显示装置
KR102608888B1 (ko) * 2019-06-04 2023-12-01 (주)포인트엔지니어링 전기접속용 양극산화막 및 광소자 디스플레이 및 광소자 디스플레이 제조 방법
CN110211491B (zh) * 2019-06-05 2021-05-14 京东方科技集团股份有限公司 一种彩膜基板、显示面板及显示面板的制备方法
WO2021079437A1 (ja) * 2019-10-23 2021-04-29 シャープ株式会社 発光素子、表示装置、発光素子の製造方法、及び表示装置の製造方法
CN111129333B (zh) * 2019-12-30 2022-08-19 广东聚华印刷显示技术有限公司 Qled器件、显示装置及qled器件的制备方法
CN113130794B (zh) * 2019-12-31 2022-12-13 Tcl科技集团股份有限公司 一种量子点发光二极管及其制备方法
CN112258987B (zh) * 2020-10-23 2022-06-21 合肥维信诺科技有限公司 透光显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150979A1 (en) * 2002-07-26 2004-08-05 C.R.F. Societa Consortile Per Azioni Light-emitting device comprising porous alumina, and corresponding method of fabrication
CN102255019A (zh) * 2010-05-20 2011-11-23 乐金显示有限公司 量子点发光元件及其制造方法
CN103345884A (zh) * 2013-06-26 2013-10-09 京东方科技集团股份有限公司 双面显示装置及其制备方法
CN105204104A (zh) * 2015-10-30 2015-12-30 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
CN105609535A (zh) * 2016-01-15 2016-05-25 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463367B2 (ja) * 1994-08-31 2003-11-05 ソニー株式会社 量子構造の形成方法
US6710366B1 (en) * 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
EP1578173A1 (en) 2004-03-18 2005-09-21 C.R.F. Società Consortile per Azioni Light emitting device comprising porous alumina and manufacturing process thereof
US7405434B2 (en) * 2004-11-16 2008-07-29 Cornell Research Foundation, Inc. Quantum dot conjugates in a sub-micrometer fluidic channel
KR100763894B1 (ko) * 2006-03-21 2007-10-05 삼성에스디아이 주식회사 Led 칩을 이용한 디스플레이 장치의 제조방법
JP4777448B2 (ja) * 2009-05-19 2011-09-21 シャープ株式会社 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、及び電子線硬化装置
KR20110106084A (ko) * 2010-03-22 2011-09-28 삼성전자주식회사 전계방출형 면광원 장치 및 이를 채용한 화상 표시 장치
KR101209449B1 (ko) * 2011-04-29 2012-12-07 피에스아이 주식회사 풀-칼라 led 디스플레이 장치 및 그 제조방법
CN103293745B (zh) * 2013-05-17 2016-04-20 北京京东方光电科技有限公司 液晶显示屏、显示装置及单色量子点层的制备方法
CN103346154B (zh) 2013-05-27 2016-03-23 北京京东方光电科技有限公司 一种量子点发光二极管及其制备方法、显示器件
JP6430497B2 (ja) * 2013-07-04 2018-11-28 フィリップス ライティング ホールディング ビー ヴィ 流体通路を有する光学素子を備えた照明デバイス
TWM472204U (zh) * 2013-08-07 2014-02-11 Superc Touch Corp 內嵌顯示觸控結構
CN103779509A (zh) * 2014-01-27 2014-05-07 京东方科技集团股份有限公司 发光器件及其制作方法和显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150979A1 (en) * 2002-07-26 2004-08-05 C.R.F. Societa Consortile Per Azioni Light-emitting device comprising porous alumina, and corresponding method of fabrication
CN102255019A (zh) * 2010-05-20 2011-11-23 乐金显示有限公司 量子点发光元件及其制造方法
CN103345884A (zh) * 2013-06-26 2013-10-09 京东方科技集团股份有限公司 双面显示装置及其制备方法
CN105204104A (zh) * 2015-10-30 2015-12-30 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
CN105609535A (zh) * 2016-01-15 2016-05-25 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法

Also Published As

Publication number Publication date
CN105609535A (zh) 2016-05-25
CN105609535B (zh) 2018-11-13
US10295872B2 (en) 2019-05-21
US20180046013A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2017121143A1 (zh) 显示基板、显示装置及其制作方法
WO2017071455A1 (zh) 滤光片及其制作方法、显示基板及显示装置
US10818696B2 (en) Display panel and fabricating method thereof
JP6542867B2 (ja) 表示装置
KR101436123B1 (ko) 초소형 led를 포함하는 디스플레이 및 이의 제조방법
TWI416159B (zh) 顯示裝置和電子裝置
WO2015096367A1 (zh) 有机电致发光显示器件、其制备方法及显示装置
US9406733B2 (en) Pixel structure
WO2018152887A1 (zh) 微发光二极管阵列基板及显示面板
WO2016045271A1 (zh) 显示基板及其制备方法、显示装置
CN106098700B (zh) 像素结构、制作方法及显示面板
US10763452B2 (en) Organic light-emitting diode display device, manufacturing method therefor, and display apparatus
WO2018018895A1 (zh) Oled阵列基板及其制作方法、oled显示面板
WO2016184265A1 (zh) 显示基板及其制作方法和驱动方法以及显示装置
WO2022047852A1 (zh) 显示器件及其制作方法
WO2020093309A1 (zh) 一种显示面板及其制作方法
JP2008059824A (ja) アクティブマトリックス型有機elパネルおよびその製造方法
WO2021073283A1 (zh) 一种基于波长下转换的无电学接触μLED发光器件
CN111384287A (zh) 量子点发光二极管及其制备方法
WO2019223378A1 (zh) 显示基板及其制作方法以及显示器件
US11942574B2 (en) Display device and method of manufacturing the same
US10692889B2 (en) Thin-film transistor array substrate and method of manufacturing the same, as well as display device
WO2020098035A1 (zh) 显示面板及显示装置
KR20060023497A (ko) 새도우 마스크 패턴닝에 의한 적층형 유기 el디스플레이 제작법
WO2020093310A1 (zh) 一种显示面板、显示装置及制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15537671

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884697

Country of ref document: EP

Kind code of ref document: A1