WO2018152887A1 - 微发光二极管阵列基板及显示面板 - Google Patents

微发光二极管阵列基板及显示面板 Download PDF

Info

Publication number
WO2018152887A1
WO2018152887A1 PCT/CN2017/076568 CN2017076568W WO2018152887A1 WO 2018152887 A1 WO2018152887 A1 WO 2018152887A1 CN 2017076568 W CN2017076568 W CN 2017076568W WO 2018152887 A1 WO2018152887 A1 WO 2018152887A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light emitting
micro light
color resist
layer
Prior art date
Application number
PCT/CN2017/076568
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/521,658 priority Critical patent/US10504450B2/en
Publication of WO2018152887A1 publication Critical patent/WO2018152887A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Definitions

  • the invention relates to the field of micro light emitting diode display technology, in particular to a micro light emitting diode array substrate and a display panel.
  • Flat display devices are widely used in various consumer electronics such as mobile phones, televisions, personal digital assistants, digital cameras, notebook computers, desktop computers, etc. due to their high image quality, power saving, thin body and wide application range. Products have become the mainstream in display devices.
  • a micro LED ( ⁇ LED) display is a display that realizes image display by using a high-density and small-sized LED array integrated on one substrate as a display pixel.
  • each pixel Addressable, individually driven and lit can be seen as a miniature version of the outdoor LED display, reducing the pixel distance from millimeters to micrometers, and the ⁇ LED display is the same as the Organic Light-Emitting Diode (OLED) display.
  • OLED Organic Light-Emitting Diode
  • Self-illuminating display but compared with OLED display, ⁇ LED display has the advantages of better material stability, longer life, no image imprinting, etc., and is considered to be the biggest competitor of OLED display.
  • the micro light emitting diode display array shows a micro light emitting diode array structure designed above the driving array, and the positive and negative electrodes are used to drive the conductive connection of the array, and the TFT array controls the switching and brightness of the micro light emitting diode of each pixel; and the micro light emitting Due to its micrometer scale, the diode array may cause the micro-light-emitting diode to have a very high density in order to achieve a high pixel count (PPI) display, so that the heat dissipation problem is not smooth, and the heat dissipation problem of the micro-light-emitting diode array substrate may affect the display.
  • PPI pixel count
  • the display effect in the area including the voltage and current curve changes with temperature, and the shortening of the chip life and the thermal annihilation of the micro-light-emitting diode.
  • the color resist layer is made of QD (quantum dot) material
  • QD quantum dot
  • the present invention provides a micro light emitting diode array substrate and a display panel, thereby improving heat dissipation capability.
  • the invention provides a micro light emitting diode array substrate, comprising a glass substrate, the glass substrate a gate electrode and an insulating layer are sequentially formed thereon, a semiconductor layer and a pixel electrode are formed on the insulating layer, a source and a drain are provided on the semiconductor layer, and the drain is connected to an adjacent pixel electrode, and is disposed on the pixel electrode A micro light emitting diode is connected, and the gate, the source, the drain, the pixel electrode, and the lead connected to the pin of the micro light emitting diode are all prepared by using a graphene conductive material.
  • the surface of the micro light emitting diode is covered with a heat dissipation layer.
  • the heat dissipation layer is made of a graphene material.
  • the invention also provides a display panel comprising the micro light emitting diode array substrate, wherein a color resist layer is respectively disposed on the micro light emitting diode.
  • a heat dissipation layer is disposed between the micro light emitting diode and the color resist layer.
  • the heat dissipation layer is made of a graphene material.
  • the micro light emitting diode is a blue light emitting diode
  • the color resist layer includes an R color resist layer and a G color resist layer
  • the R color resist layer and the G color resist layer are respectively disposed as R sub-pixels.
  • the color resist layer is made of a quantum dot material.
  • the heat dissipation layers located at the R color resist layer are respectively connected to each other to form a whole; the heat dissipation layers located at the G color resist layer are respectively connected to each other to form a whole.
  • the present invention is first prepared by using a graphene conductive material at the gate, the source, the drain, the pixel electrode, and the lead connected to the pin of the micro light emitting diode, thereby making the micro light emitting diode
  • the heat can be conducted to other areas to improve the heat dissipation capability.
  • a heat dissipation layer is disposed between the color resist layer on the micro light emitting diode and the micro light emitting diode to further improve the heat dissipation capability.
  • FIG. 1 is a schematic structural view of a first micro light emitting diode array substrate of the present invention
  • FIG. 2 is a schematic structural view of a second micro light emitting diode array substrate of the present invention.
  • FIG. 3 is a schematic structural view of a display panel of the present invention.
  • FIG. 4 is a schematic structural view of another display panel of the present invention.
  • Figure 5 is a projection view of Figure 4.
  • the first micro light-emitting diode array substrate of the present invention comprises a glass substrate 1 , and a gate electrode 2 and an insulating layer 3 are sequentially formed on the glass substrate 1 by using a prior art, and the insulating layer 3 is formed on the insulating layer 3 .
  • the semiconductor layer 4 and the pixel electrode 5 are provided with a source electrode 6 and a drain electrode 7 on the semiconductor layer 4, the drain electrode 7 is connected to the adjacent pixel electrode 5, and a micro light-emitting diode is connected to the pixel electrode 5 by transfer.
  • the gate 2, the source 6, the drain 7, the pixel electrode 5, and the leads connected to the pins of the micro-light-emitting diode 9 are all prepared using a graphene conductive material.
  • the electrode wire and the lead wire By changing the electrode wire and the lead wire to a graphene conductive material, it is possible to solve the heat dissipation problem, and the heat of the micro light-emitting diode 9 and the heat of the electrode wire and the lead wire itself are transferred.
  • a display panel of the present invention includes the first micro-light-emitting diode array substrate, wherein a color resist layer 10 is disposed above the micro-light-emitting diodes 9, and the color resist layer 10 includes an R (Red) color resist layer constituting the pixel unit. 11.
  • the second micro-light-emitting diode array substrate includes a glass substrate 1 on which a gate electrode 2 and an insulating layer 3 are sequentially formed by using a prior art, and a semiconductor layer 4 is formed on the insulating layer 3, and
  • the pixel electrode 5 is provided with a source electrode 6 and a drain electrode 7 on the semiconductor layer 4, the drain electrode 7 is connected to the adjacent pixel electrode 5, and the micro-light-emitting diode 9 is connected to the pixel electrode 5 by transfer.
  • the gate 2, the source 6, the drain 7, the pixel electrode 5, and the leads connected to the pins of the micro LED 9 are all prepared by using a graphene conductive material; the micro-light emitting diode 9 is covered with a heat dissipation layer 8, a heat dissipation layer 8 is made of graphene material, which can further improve the heat dissipation capability.
  • the light emitting diode 9, the heat dissipation layer 8 and the color resist layer 10 are the same as the corresponding parts in FIG. 1 or FIG. .
  • a color resist layer 10 is disposed on the heat dissipation layer 8 of the second micro-light-emitting diode array substrate, and the color resist layer 10 includes a color resist layer 10 including R (Red) color resist layers 11 and G (Green) constituting the pixel unit.
  • the color resist layer 12 and the B (Blue) color resist layer 13 and the color resist layer 10 are all made of a quantum dot material, that is, a QD (quantum dot) material, and the quantum dot can also be called a nanocrystal. Nanoparticles composed of II-VI or III-V elements, the quantum dots generally have a particle size between 1-10 nm.
  • the color resist layer 10 is made of a material that does not withstand high temperatures, a heat dissipation layer 8 made of a graphene material is disposed between the color resist layer 10 and the micro light emitting diode 9, and the heat conducted to the color resist layer 10 can be reduced. Therefore, the stability of the QD material is not affected by the problem of poor heat dissipation; the color resist layer 10 can also be replaced by the QD material as a color enhancement layer.
  • the third display panel of the present invention is based on the second micro-light-emitting diode array substrate, and the micro-light-emitting diode used as the R sub-pixel and the G sub-pixel when the micro-light-emitting diode 9 is a blue micro-light-emitting diode.
  • the color resist layer 10 is disposed above the color resistive layer 10, and the color resist layer 10 includes an R color resist layer 11 and a G color resist layer 12. Since the micro light emitting diode 9 is already a blue light emitting diode, the micro light emitting diode 9 serving as a B subpixel is used. There is no need to further set the color resist layer on the upper side, and the material is reduced.
  • the R color resist layer 11 is disposed between the R color resist layer 11 and the micro light emitting diode 9 at the corresponding position, and the G color resist layer 12 and the micro light emitting diode 9 at the corresponding position are disposed.
  • a heat dissipation layer 8 is respectively disposed, the heat dissipation layer 8 is made of a graphene material, the color resistance layer 10 is made of a quantum dot material, and the color resist layer 10 is gray.
  • the color of the micro light emitting diode in the third display panel is only an example, and is not limited thereto, and any color of the micro light emitting diode conventionally used for display may be an extension of the present invention, for example, a micro light emitting diode.
  • the color is red light
  • the corresponding micro-light emitting diode as the R sub-pixel does not have a color resist layer
  • the B color resist layer is disposed on the micro light-emitting diode as the B sub-pixel, and is set as a micro-light emitting diode of the G sub-pixel.
  • G color resist layer if the green light micro light emitting diode is used, the setting method is similar, and will not be described again.
  • the heat dissipation layers 8 at the R color resist layer 11 are respectively connected to each other to form a whole body, so that the area of the heat dissipation layer 8 is increased, thereby improving the heat dissipation effect; and the heat dissipation layer located at the G color resist layer 12 8 are respectively connected to each other to form an integral body, so that the area of the heat dissipation layer 8 at the same place is also increased, thereby improving the heat dissipation effect.
  • the color resist layer 10 and the heat dissipation layer 8 may be in physical contact, that is, directly stacked on each other. Or, without contact, by setting a heat dissipation layer, the high temperature of the micro light-emitting diode is prevented from affecting the properties of the upper color resist layer.
  • the color resist layer 10 is made of gray graphene.
  • the display panel of the invention cancels the original CF substrate, directly prints the color resist layer on the micro light-emitting diode by printing on the micro light-emitting diode, and does not need to make the CF substrate through the complicated CF substrate. Save on materials and costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种微发光二极管阵列基板,包括玻璃基板(1),玻璃基板(1)上依次形成有栅极(2)、绝缘层(3),在绝缘层(3)上形成有半导体层(4)以及像素电极(5),在半导体层(4)上设有源极(6)、漏极(7),漏极(7)与相邻的像素电极(5)连接,在像素电极(5)上连接有微发光二极管(9),栅极(2)、源极(6)、漏极(7)、像素电极(5)以及与微发光二极管(9)的管脚连接的引线均采用石墨烯导电材料制备得到。还提供一种显示面板,包括微发光二极管阵列基板,在微发光二极管(9)上分别设有色阻层。通过栅极(2)、源极(6)、漏极(7)、像素电极(5)以及与微发光二极管(9)的管脚连接的引线均采用石墨烯导电材料制备得到,从而使得微发光二极管(9)产生的热量能够被传导至其他区域,从而提高散热能力。

Description

微发光二极管阵列基板及显示面板 技术领域
本发明涉及一种微发光二极管显示技术领域,特别是一种微发光二极管阵列基板及显示面板。
背景技术
平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
微发光二极管(Micro LED,μLED)显示器是一种以在一个基板上集成的高密度微小尺寸的LED阵列作为显示像素来实现图像显示的显示器,同大尺寸的户外LED显示屏一样,每一个像素可定址、单独驱动点亮,可以看成是户外LED显示屏的缩小版,将像素点距离从毫米级降低至微米级,μLED显示器和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器一样属于自发光显示器,但μLED显示器相比OLED显示器还具有材料稳定性更好、寿命更长、无影像烙印等优点,被认为是OLED显示器的最大竞争对手。
目前微发光二极管显示阵列示设计在驱动阵列上方的微发光二极管阵列结构,通过正负电极欲驱动阵列的导通连接,以TFT阵列控制每个像素的微发光二极管的开关和亮度;而微发光二极管阵列由于其微米尺度,当为了达到高像素数目(PPI)显示时,会导致微发光二极管的密度极高,使得其存在散热不通畅的问题,微发光二极管阵列基板的散热问题,会影响显示区域内的显示效果,包括电压电流曲线随温度变化而变化,以及芯片寿命的缩短和微发光二极管的热猝灭,当色阻层以QD(quantum dot,量子点)材料制作而成时,由于该种材料耐高温性能差,微发光二极管阵列的高温问题容易影响QD材料的稳定性。
发明内容
为克服现有技术的不足,本发明提供一种微发光二极管阵列基板及显示面板,从而提高散热能力。
本发明提供了一种微发光二极管阵列基板,包括玻璃基板,所述玻璃基板 上依次形成有栅极、绝缘层,在绝缘层上形成有半导体层以及像素电极,在半导体层上设有源极、漏极,所述漏极与相邻的像素电极连接,在像素电极上连接有微发光二极管,所述栅极、源极、漏极、像素电极以及与微发光二极管的管脚连接的引线均采用石墨烯导电材料制备得到。
进一步地,所述微发光二极管的表面上覆盖有散热层。
进一步地,所述散热层由石墨烯材料制成。
本发明还提供了一种显示面板,包括所述的微发光二极管阵列基板,在微发光二极管上分别设有色阻层。
进一步地,所述微发光二极管的与色阻层之间设有散热层。
进一步地,所述散热层由石墨烯材料制成。
进一步地,所述微发光二极管为蓝光微发光二极管,所述色阻层包括R色阻层、G色阻层,所述R色阻层与G色阻层分别设于用于作为R子像素和G子像素的微发光二极管上方。
进一步地,所述色阻层由量子点材料制成。
进一步地,位于R色阻层处的散热层分别相互连接形成一个整体;位于G色阻层处的散热层分别相互连接形成一个整体。
本发明与现有技术相比,首先,通过在栅极、源极、漏极、像素电极以及与微发光二极管的管脚连接的引线均采用石墨烯导电材料制备得到,从而使得微发光二极管处的热量能够经被传导至其他区域,从而提高散热能力;其次,在位于微发光二极管上的色阻层与微发光二极管之间设置散热层,进一步提高散热能力。
附图说明
图1是本发明的第一种微发光二极管阵列基板的结构示意图;
图2是本发明的第二种微发光二极管阵列基板的结构示意图;
图3是本发明的一种显示面板的结构示意图;
图4是本发明的另一种显示面板的结构示意图;
图5是图4的投影图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
如图1所示,本发明的第一种微发光二极管阵列基板,包括玻璃基板1,在玻璃基板1上采用现有技术依次形成有栅极2、绝缘层3,在绝缘层3上形成有半导体层4以及像素电极5,在半导体层4上设有源极6、漏极7,所述漏极7与相邻的像素电极5连接,在像素电极5上通过转印连接有微发光二极管9,所述栅极2、源极6、漏极7、像素电极5以及与微发光二极管9的管脚连接的引线均采用石墨烯导电材料制备得到。
通过将电极线以及引线改为石墨烯导电材料,使得能够解决散热问题,将微发光二极管9的热量以及电极线和引线自身的热量得到转移。
本发明的一种显示面板,包括采用上述的第一种微发光二极管阵列基板,在微发光二极管9上方分别设有色阻层10,色阻层10包括构成像素单元的R(Red)色阻层11、G(Green)色阻层12、以及B(Blue)色阻层13。
如图2所示,第二种微发光二极管阵列基板包括玻璃基板1,在玻璃基板1上采用现有技术依次形成有栅极2、绝缘层3,在绝缘层3上形成有半导体层4以及像素电极5,在半导体层4上设有源极6、漏极7,所述漏极7与相邻的像素电极5连接,在像素电极5上通过转印连接有微发光二极管9,所述栅极2、源极6、漏极7、像素电极5以及与微发光二极管9的管脚连接的引线均采用石墨烯导电材料制备得到;在微发光二极管9上覆盖有散热层8,散热层8采用石墨烯材料制成,这样能够进一步提高散热能力。
如图3所示,作为本发明的第二种显示面板,图中处为发光二极管9、散热曾8以及色阻层10外,其余部分与图1或图2中相应部分相同,此处省略。在采用上述第二种微发光二极管阵列基板的散热层8上分别设有色阻层10,色阻层10包括色阻层10包括构成像素单元的R(Red)色阻层11、G(Green) 色阻层12、以及B(Blue)色阻层13,色阻层10均通过量子点材料制成,即QD(quantum dot,量子点)材料,量子点又可称为纳米晶,时一种II-VI族或III-V族元素组成的纳米颗粒,量子点的粒径一般介于1-10nm之间。
由于色阻层10采用的是不耐受高温的材料,因此在色阻层10与微发光二极管9之间设置由石墨烯材料制成的散热层8,能够降低传导至色阻层10的热量,从而避免因散热不良问题影响QD材料的稳定性;所述色阻层10还可以由QD材料作为颜色增强层进行替换。
如图4所示,作为本发明的第三种显示面板,图中除了为发光二极管9以及散热层8、色阻层10外,其余部分均未示出,其未示出部分的结构与图1中相应的部分相同,因此,此处仅针对改进的地方进行描述。为本发的第三种显示面板,在采用第二种微发光二极管阵列基板的基础上,在微发光二极管9为蓝光微发光二极管时,在用作R子像素和G子像素的微发光二极管9上方设置色阻层10,所述色阻层10包括R色阻层11、G色阻层12,由于微发光二极管9已经为蓝光微发光二极管,因此用作B子像素的微发光二极管9上方不需要再设置色阻层,减少了材料,在R色阻层11与位于相应位置处的微发光二极管9之间设有以及G色阻层12与位于相应位置处的微发光二极管9之间分别设有散热层8,散热层8采用石墨烯材料制成,色阻层10采用量子点材料制成,色阻层10为灰色。
当然,第三种显示面板中微发光二极管的颜色仅为一种示例,不仅限于此,任何常规用作显示的微发光二极管的颜色均可作为本发明的一种延伸,例如,微发光二极管的颜色为红光时,则相应的作为R子像素的微发光二极管不设置色阻层,而在作为B子像素的微发光二极管上设置B色阻层,作为G子像素的微发光二极管上设置G色阻层;若采用绿光的微发光二极管时的设置方式类似,不再赘述。
如图5所示,位于R色阻层11处的散热层8分别相互连接形成一个整体,使该处的散热层8的面积增加,从而提高散热效果;位于G色阻层12处的散热层8分别相互连接形成一个整体,使该处的散热层8的面积也增加,从而提高散热效果。
本发明中色阻层10与散热层8可以为物理接触,即直接相互叠合在一起, 或为不接触,通过设置散热层,防止微发光二极管的高温影响上层色阻层的性质。色阻层10采用灰色石墨烯材。
本发明的显示面板,取消了原有的CF基板,直接在微发光二极管上通过打印的方式将色阻层直接印刷在微发光二极管上,无须再通过复杂的CF基板做做工艺制作CF基板,节省材料以及成本。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (10)

  1. 一种微发光二极管阵列基板,包括玻璃基板,其中:所述玻璃基板上依次形成有栅极、绝缘层,在绝缘层上形成有半导体层以及像素电极,在半导体层上设有源极、漏极,所述漏极与相邻的像素电极连接,在像素电极上连接有微发光二极管,所述栅极、源极、漏极、像素电极以及与微发光二极管的管脚连接的引线均采用石墨烯导电材料制备得到。
  2. 根据权利要求1所述的微发光二极管阵列基板,其中:所述微发光二极管的表面上覆盖有散热层。
  3. 根据权例要求2所述的微发光二极管阵列基板,其中:所述散热层由石墨烯材料制成。
  4. 一种显示面板,其中:包括微发光二极管阵列基板,所述微发光二极管阵列基板包括玻璃基板,所述玻璃基板上依次形成有栅极、绝缘层,在绝缘层上形成有半导体层以及像素电极,在半导体层上设有源极、漏极,所述漏极与相邻的像素电极连接,在像素电极上连接有微发光二极管,所述栅极、源极、漏极、像素电极以及与微发光二极管的管脚连接的引线均采用石墨烯导电材料制备得到,在微发光二极管上分别设有色阻层。
  5. 根据权利要求4所述的显示面板,其中:所述微发光二极管的与色阻层之间设有散热层。
  6. 根据权利要求5所述的显示面板,其中:所述散热层由石墨烯材料制成。
  7. 根据权利要求6所述的显示面板,其中:所述微发光二极管为蓝光微发光二极管,所述色阻层包括R色阻层、G色阻层,所述R色阻层与G色阻层分别设于用于作为R子像素和G子像素的微发光二极管上方。
  8. 根据权利要求7所述的显示面板,其中:所述色阻层由量子点材料制成。
  9. 根据权利要求7所述的显示面板,其中:位于R色阻层处的散热层分 别相互连接形成一个整体;位于G色阻层处的散热层分别相互连接形成一个整体。
  10. 根据权利要求8所述的显示面板,其中:位于R色阻层处的散热层分别相互连接形成一个整体;位于G色阻层处的散热层分别相互连接形成一个整体。
PCT/CN2017/076568 2017-02-27 2017-03-14 微发光二极管阵列基板及显示面板 WO2018152887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/521,658 US10504450B2 (en) 2017-02-27 2017-03-14 Micro light-emitting diode array substrate and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710106472.9A CN106935608B (zh) 2017-02-27 2017-02-27 微发光二极管阵列基板及显示面板
CN201710106472.9 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018152887A1 true WO2018152887A1 (zh) 2018-08-30

Family

ID=59423094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076568 WO2018152887A1 (zh) 2017-02-27 2017-03-14 微发光二极管阵列基板及显示面板

Country Status (3)

Country Link
US (1) US10504450B2 (zh)
CN (1) CN106935608B (zh)
WO (1) WO2018152887A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681135A (zh) * 2018-03-30 2018-10-19 京东方科技集团股份有限公司 显示面板及显示装置
CN108663863B (zh) * 2018-06-25 2021-01-26 Tcl华星光电技术有限公司 阵列基板
JP7132779B2 (ja) * 2018-07-18 2022-09-07 株式会社ジャパンディスプレイ 表示装置及びアレイ基板
CN109216427B (zh) 2018-10-25 2021-03-30 上海天马微电子有限公司 一种显示面板、显示面板的制作方法及显示装置
CN109285856B (zh) * 2018-11-22 2020-07-03 京东方科技集团股份有限公司 Led发光基板及其制作方法、显示装置
JP7105362B2 (ja) * 2019-02-26 2022-07-22 京セラ株式会社 マイクロled素子搭載基板およびそれを用いた表示装置
CN109920815B (zh) * 2019-03-20 2021-09-21 京东方科技集团股份有限公司 一种电路基板及其制作方法和微发光二极管显示基板
CN110190084B (zh) * 2019-06-04 2021-10-15 上海天马微电子有限公司 显示面板及其制作方法、显示装置
CN110571224B (zh) * 2019-08-05 2021-12-28 深圳市华星光电半导体显示技术有限公司 显示装置及其制备方法
CN111048498A (zh) * 2019-11-22 2020-04-21 深圳市华星光电半导体显示技术有限公司 显示装置及显示装置的制作方法
CN113629095B (zh) * 2021-07-19 2022-09-27 深圳市华星光电半导体显示技术有限公司 发光显示装置以及发光显示装置的制作方法
CN113809113B (zh) * 2021-09-07 2023-03-24 厦门天马微电子有限公司 一种显示面板及显示装置
CN113809116B (zh) * 2021-09-16 2024-02-13 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402880A (zh) * 1999-12-03 2003-03-12 美商克立光学公司 加强光放出的微发光二极管数组
CN103066195A (zh) * 2013-01-25 2013-04-24 中国科学院半导体研究所 应用石墨烯作为导热层的倒装结构发光二极管
CN103904108A (zh) * 2014-03-28 2014-07-02 上海大学 具有石墨烯电极的GaN基半导体器件及其制备方法
TW201438218A (zh) * 2013-03-27 2014-10-01 Hon Hai Prec Ind Co Ltd 覆晶式固態發光顯示器
CN105629576A (zh) * 2016-03-28 2016-06-01 深圳市华星光电技术有限公司 一种石墨烯背光模组及石墨烯液晶显示装置
CN105702697A (zh) * 2016-04-06 2016-06-22 深圳市华星光电技术有限公司 石墨烯显示器
CN105720175A (zh) * 2016-03-23 2016-06-29 华灿光电(苏州)有限公司 一种发光二极管的封装方法
CN105976725A (zh) * 2016-06-20 2016-09-28 深圳市华星光电技术有限公司 微发光二极管显示面板
CN106098697A (zh) * 2016-06-15 2016-11-09 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
CN106098720A (zh) * 2016-06-20 2016-11-09 深圳市华星光电技术有限公司 微发光二极管显示器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923124B2 (en) * 2011-01-31 2018-03-20 Mohammad A Mazed Display device
US9177992B2 (en) 2013-01-09 2015-11-03 Nthdegree Technologies Worldwide Inc. Active LED module with LED and transistor formed on same substrate
JP6744108B2 (ja) * 2015-03-02 2020-08-19 株式会社半導体エネルギー研究所 トランジスタ、トランジスタの作製方法、半導体装置および電子機器
WO2016200882A1 (en) * 2015-06-08 2016-12-15 Corning Incorporated Microled display without transfer
CN105914200B (zh) * 2016-04-26 2019-04-05 中山大学 一种可扩展型无源寻址led微显示器件
CN106356386B (zh) * 2016-09-30 2019-06-07 福州大学 一种基于Micro-LED阵列背光源的喷墨打印量子点显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402880A (zh) * 1999-12-03 2003-03-12 美商克立光学公司 加强光放出的微发光二极管数组
CN103066195A (zh) * 2013-01-25 2013-04-24 中国科学院半导体研究所 应用石墨烯作为导热层的倒装结构发光二极管
TW201438218A (zh) * 2013-03-27 2014-10-01 Hon Hai Prec Ind Co Ltd 覆晶式固態發光顯示器
CN103904108A (zh) * 2014-03-28 2014-07-02 上海大学 具有石墨烯电极的GaN基半导体器件及其制备方法
CN105720175A (zh) * 2016-03-23 2016-06-29 华灿光电(苏州)有限公司 一种发光二极管的封装方法
CN105629576A (zh) * 2016-03-28 2016-06-01 深圳市华星光电技术有限公司 一种石墨烯背光模组及石墨烯液晶显示装置
CN105702697A (zh) * 2016-04-06 2016-06-22 深圳市华星光电技术有限公司 石墨烯显示器
CN106098697A (zh) * 2016-06-15 2016-11-09 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
CN105976725A (zh) * 2016-06-20 2016-09-28 深圳市华星光电技术有限公司 微发光二极管显示面板
CN106098720A (zh) * 2016-06-20 2016-11-09 深圳市华星光电技术有限公司 微发光二极管显示器

Also Published As

Publication number Publication date
US10504450B2 (en) 2019-12-10
CN106935608A (zh) 2017-07-07
US20180336839A1 (en) 2018-11-22
CN106935608B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2018152887A1 (zh) 微发光二极管阵列基板及显示面板
WO2018152907A1 (zh) 微发光二极管阵列基板及显示面板
CN108206228B (zh) 发光设备以及发光设备的制造方法
US20220336423A1 (en) Method for manufacturing display device, and substrate for manufacture of display device
US10295872B2 (en) Display substrate, display device and manufacturing method the same
US10355052B2 (en) OLED display device
CN103779380B (zh) 有机发光装置及其制造方法
WO2018227680A1 (zh) Micro LED彩色显示器件
WO2018201796A1 (zh) 像素电路结构及使用其的显示器件
US20160079322A1 (en) Organic light emitting display device, organic light emitting display panel and method of manufacturing the same
WO2019105086A1 (zh) 显示基板及其制作方法、显示面板、显示装置
WO2021233002A1 (zh) 显示基板及其制作方法、显示装置
WO2015096343A1 (zh) 有源矩阵有机发光二极管显示基板、显示装置
US20220310877A1 (en) Display substrate and preparation method thereof, and display panel and preparation method thereof
WO2018166157A1 (zh) 阵列基板、阵列基板的制造方法以及显示装置
KR20110053420A (ko) 액티브 매트릭스 기판, 디스플레이 패널, 표시 장치 및 액티브 매트릭스 기판의 제조 방법
US10510921B2 (en) Graphene display
WO2022179370A1 (zh) 发光器件、显示组件和发光器件的制造方法
US11387387B2 (en) Micro light emitting device display apparatus
TW202011629A (zh) 微發光二極體顯示面板
CN109713009A (zh) 电致发光器件及其制作方法
TWI661574B (zh) 微型發光二極體顯示器、微型發光二極體元件及其製作方法
Chen et al. 58.2: High‐Performance Large‐Size OLED Tv with Ultra Hd Resolution
JP2021108366A (ja) 薄膜デバイス
WO2022083356A1 (zh) 发光器件及其制备方法、显示面板及其制备方法和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15521658

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897574

Country of ref document: EP

Kind code of ref document: A1