WO2020098035A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2020098035A1
WO2020098035A1 PCT/CN2018/120574 CN2018120574W WO2020098035A1 WO 2020098035 A1 WO2020098035 A1 WO 2020098035A1 CN 2018120574 W CN2018120574 W CN 2018120574W WO 2020098035 A1 WO2020098035 A1 WO 2020098035A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
quantum dot
substrate
pixel switch
Prior art date
Application number
PCT/CN2018/120574
Other languages
English (en)
French (fr)
Inventor
刘振
卓恩宗
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020098035A1 publication Critical patent/WO2020098035A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present application belongs to the technical field of display devices, and more particularly relates to a display panel and a display device.
  • Quantum dots also known as nanocrystalline particles, are nanoparticles composed of group II-VI or group III-V elements. Quantum dots have quantum confinement effect and can emit fluorescence after being excited. And, quantum dots have been gradually applied to the display device industry because of their advantages such as self-luminescence, high brightness, pure chroma, and wide color gamut.
  • quantum dot displays in the industry generally use a combination of liquid crystal + quantum dots.
  • the main improvement point is to add a layer of quantum dot film between the backlight module and the array substrate, or directly use the quantum dot film as a color film substrate. Color film layer.
  • This kind of quantum dot display requires a backlight module to provide a light source for the display panel, and requires a liquid crystal to control the light transmittance of the display panel.
  • quantum dot technology is used to improve its color gamut and display effect, but because the backlight module and the liquid crystal have A certain weight and a certain amount of space are required, resulting in the quantum dot display still unable to meet the trend of thin and thin display devices.
  • An object of the present application is to provide a display panel, including, but not limited to, satisfying the goal of the quantum dot display to be thinner and lighter.
  • a display panel including:
  • the pixel switch is arranged on the first substrate
  • An electroluminescent layer disposed on the first substrate and electrically connected to the pixel switch;
  • the photoluminescent layer is provided on the side of the protective layer away from the electroluminescent layer;
  • An encapsulation layer covering the first substrate and arranged to wrap the pixel switch, the electroluminescent layer, the protective layer and the photoluminescent layer;
  • the second substrate is disposed on the side of the encapsulation layer away from the photoluminescent layer.
  • the pixel switch is a thin film transistor.
  • the electroluminescent layer may include a plurality of quantum dot light emitting diodes, and the quantum dot light emitting diode is electrically connected to the pixel switch.
  • the quantum dot light emitting diode includes a non-transparent anode, a hole injection layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, an electron injection layer, and a transparent cathode, the non-transparent anode Opposite and spaced apart from the transparent cathode, the hole injection layer, the hole transport layer, the quantum dot light emitting layer, the electron transport layer and the electron injection layer are sequentially stacked on the non-transparent anode And the transparent cathode.
  • the quantum dot light emitting layer includes quantum dots emitting red light or quantum dots emitting blue light.
  • the quantum dot light emitting diode further includes:
  • the noble metal nanocomposite layer is disposed between any two adjacent layers of the hole injection layer, the hole transport layer, the quantum dot light emitting layer, the electron transport layer, and the electron injection layer.
  • the precious metal nanocomposite layer includes a precious metal core and a shell layer surrounding the precious metal core.
  • the thickness of the shell layer is 1-100 nm.
  • the quantum dot light-emitting layer includes quantum dots emitting red light
  • the photoluminescent layer includes a red color block, a green color block, and a blue color block
  • the red color block is transparent
  • the green color block includes quantum dots emitting green light
  • the blue color block includes quantum dots emitting blue light.
  • the quantum dot light-emitting layer includes quantum dots emitting basket color light
  • the photoluminescent layer includes a red color block, a green color block, and a blue color block.
  • the green color block includes green light emitting quantum dots
  • the blue color block is a transparent color block.
  • the display panel further includes:
  • a light sensor is provided on the first substrate, the pixel switch includes a first pixel switch and a second pixel switch, the first pixel switch is electrically connected to the quantum dot light emitting diode, the second The pixel switch is electrically connected to the photosensor.
  • the light sensor includes:
  • the quantum dot light sensing layer includes a mesoporous frame, and the mesoporous frame is provided with quantum dots.
  • the mesoporous frame is provided with holes, and the quantum dots are provided in the holes.
  • the pore size of the hole is 2-7 nm.
  • the thickness of the hole wall of the hole is 1 to 2 nanometers.
  • the display panel provided by the embodiment of the present application uses an electroluminescent layer instead of the backlight module and the liquid crystal to realize self-luminescence, so that the weight and thickness of the display panel are greatly reduced, and at the same time, the photoluminescent layer is used to replace the color resin filter film Layer, the light emitted by the electroluminescent layer can form multiple colors of light after passing through the photoluminescent layer, making the color gamut of the display panel wider, and because the photoluminescent layer is excited by the light emitted by the electroluminescent layer Luminescence can increase the brightness of the display panel, making the displayed image color performance better and more vivid, thus effectively solving the technical problems of quantum dot liquid crystal display that cannot take into account light and thin, wide color gamut and good display effect, making the display panel satisfy The development needs of the display equipment industry.
  • Another object of this application is to provide a display panel, including:
  • a thin film transistor which is arranged on the first substrate
  • the quantum dot light emitting diode is arranged on the first substrate and is electrically connected to the thin film transistor;
  • the quantum dot color film layer is arranged on the side of the protective layer away from the quantum dot light-emitting diode;
  • An encapsulation layer which is doped with a thermally conductive material and covers the first substrate, and is arranged to wrap the thin film transistor, the quantum dot light-emitting diode, the protective layer, and the quantum dot color film layer;
  • the second substrate is disposed on the side of the encapsulation layer away from the quantum dot color film layer.
  • the heat generated by the pixel switch and the electroluminescent layer can be conducted out in time, effectively improving the heat dissipation of the display panel.
  • Another object of the present application is to provide a display device, including:
  • control mechanism includes:
  • a signal processor coupled to the light sensor
  • the display panel includes:
  • the pixel switch is arranged on the first substrate
  • An electroluminescent layer disposed on the first substrate and electrically connected to the pixel switch;
  • the photoluminescent layer is provided on the side of the protective layer away from the electroluminescent layer;
  • An encapsulation layer covering the first substrate and arranged to wrap the pixel switch, the electroluminescent layer, the protective layer and the photoluminescent layer;
  • the second substrate is disposed on the side of the encapsulation layer away from the photoluminescent layer.
  • the display device provided by the embodiment of the present application adopts a display panel, and replaces the backlight module and the liquid crystal by the electroluminescent layer to realize self-luminescence, so that the weight and thickness of the display panel are greatly reduced, and the photoluminescent layer replaces the color resin Filter film layer, the light emitted by the electroluminescent layer can form multiple colors of light after passing through the photoluminescent layer, so that the color gamut of the display panel is wider, and because the photoluminescent layer is excited by the light emitted by the electroluminescent layer It will also emit light afterwards, which can increase the brightness of the display panel, making the displayed image color performance better and more vivid, which effectively solves the technical problems of quantum dot liquid crystal display that cannot take into account light and thin, wide color gamut and good display effect, making The display device meets the development needs of the display equipment industry.
  • FIG. 1 is a schematic cross-sectional view of a display panel provided by an embodiment of this application.
  • FIG. 2 is a schematic cross-sectional view of an electroluminescent layer in a display panel provided by an embodiment of this application;
  • FIG. 3 is a schematic structural diagram of a mesoporous frame of an optical sensor provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • 1 display panel
  • 2 control mechanism
  • 10 first substrate
  • 20 pixel switch
  • 30 electrophiluminescent layer
  • 40 protection layer
  • 50 photoluminescent layer
  • 60 encapsulation layer
  • 70 second substrate
  • 80 light sensor
  • 31 non-transparent anode
  • 32 hole injection layer
  • 33 hole transport layer
  • 34 quantum dot light emitting layer
  • 35 electron transport layer
  • 36 electron injection layer
  • 37 transparent cathode
  • 800-mesoporous frame 801-hole, 802-hole wall.
  • the display panel 1 includes a first substrate 10, a pixel switch 20, an electroluminescent layer 30, a protective layer 40, a photoluminescent layer 50, an encapsulation layer 60, and a second substrate 70, wherein the first substrate 10 is A glass substrate or a flexible transparent substrate is used as a substrate; the pixel switch 20 and the electroluminescent layer 30 are provided on the first substrate 10, and the electroluminescent layer 30 is electrically connected to the pixel switch 20.
  • the pixel switch 20 is optional As a thin-film transistor (TFT), the electroluminescent layer 30 may include a plurality of quantum dot light-emitting diodes.
  • the quantum dot light-emitting diodes correspond to the thin-film transistors one by one, and each quantum dot light-emitting diode can emit light individually after being energized; protection
  • the layer 40 covers the surface of the electroluminescent layer 30.
  • the protective layer 40 is a transparent thin film layer made of silicon dioxide or silicon nitride material, covering the quantum dot light-emitting diode, which can effectively prevent moisture and impurities Contaminate the quantum dot light-emitting diode without blocking the light emitted by the quantum dot light-emitting diode;
  • the photoluminescent layer 50 is provided on the top side of the protective layer, and the photoluminescent layer 50 can be selected as a quantum dot color film layer,
  • the quantum dot color film can produce patterns with multiple colors under the excitation of the light emitted by the quantum dot light-emitting diode.
  • the patterns of multiple colors are combined with each other to form an image that can be seen by the human eye; the encapsulation layer 60 is covered by The first substrate 10 is used to wrap the pixel switch 20, the electroluminescent layer 30, the protective layer 40 and the photoluminescent layer 50, that is, the pixel switch 20, the electroluminescent layer 30, the protective layer 40 and the light are completed on the first substrate 10
  • a transparent encapsulation layer 60 is covered on the first substrate 10 to block the contact of the pixel switch 20, the electroluminescent layer 30, the protective layer 40 and the photoluminescent layer 50 with the outside, thereby blocking Water vapor, oxygen, etc.
  • the heat generated by the pixel switch 20 and the electroluminescent layer 30 can also be conducted out in time to effectively improve the heat dissipation of the packaging layer 60;
  • the second substrate 70 is disposed on the top side of the packaging layer 60, and the second substrate 70 is a glass substrate Or a flexible transparent substrate to protect the inner layer structure and resist external forces.
  • the display panel 1 provided by the embodiment of the present application uses the electroluminescent layer 30 to replace the backlight module and the liquid crystal to realize self-luminescence, so that the weight and thickness of the display panel 1 are greatly reduced, and at the same time, the photoluminescent layer 50 is used to replace the color Resin filter film layer, the light emitted by the electroluminescent layer 30 can form multiple colors of light after passing through the photoluminescent layer 50, making the color gamut of the display panel 1 wider, and because the photoluminescent layer 50 is electroluminescent The light emitted by the layer 30 will also emit light after being excited, which can increase the brightness of the display panel 1 to make the displayed image color performance better and more vivid, thus effectively solving the problem that the quantum dot LCD cannot take into account light and thin, wide color gamut and display The technical problem of good effect makes the display panel 1 meet the development needs of the display device industry.
  • the quantum dot light emitting diode includes a non-transparent anode 31, a hole injection layer 32, a hole transport layer 33, a quantum dot light emitting layer 34, electrons The transport layer 35, the electron injection layer 36, and the transparent cathode 37, wherein the non-transparent anode 31 is opposed to the transparent cathode 37 and spaced apart, the hole injection layer 32, the hole transport layer 33, the quantum dot light emitting layer 34, the electron transport layer 35 And the electron injection layer 36 is sequentially stacked between the non-transparent anode 31 and the transparent cathode 37.
  • the non-transparent anode 31 is made of a non-transparent structure design and a non-transmissive material
  • the transparent cathode 37 is made of a transparent structure design and a translucent material, so that the non-transparent anode 31 and the transparent cathode 37 are connected to the power supply
  • the light emitted by the quantum dot light-emitting layer 34 can pass through the transparent cathode 37 to achieve directional illumination.
  • the hole injection layer 32, the hole transport layer 33, the quantum dot light emitting layer 34, the electron transport layer 35, the electron injection layer 36, and the preparation methods thereof mentioned above are all common in the art, and are implemented in this application Examples will not be elaborated here.
  • the quantum dot light emitting layer 34 includes quantum dots emitting red light, or quantum dots emitting blue light, that is, the quantum dot light emitting layer 34 may emit red light or blue light. Compared with other color lights, the spectrum of red light and blue light is narrower and the energy is higher, which can improve the color purity of the light emitted by the photoluminescent layer 50 after being excited, thereby improving the display quality of the display panel 1.
  • the quantum dot light-emitting diode further includes a noble metal nanocomposite material layer, the noble metal nanocomposite material layer is disposed on the hole injection layer 32, the hole transport layer 33, the quantum dots Between any two adjacent layers in the light emitting layer 34, the electron transport layer 35, and the electron injection layer 36. Since the precious metal nanocomposite layer contains precious metal nanoparticles, the local surface plasmon resonance phenomenon of the precious metal nanoparticles can be used to enhance the luminous efficiency of the quantum dot light emitting layer 34.
  • the precious metal nanoparticles include a precious metal core and a shell layer, wherein the shell layer surrounds the precious metal core, which can effectively increase the spacing between the precious metal cores and fill the surface defects of the precious metal core, Therefore, the enhancement effect brought by the localized surface plasmon resonance phenomenon of the precious metal nanoparticles can be fully utilized.
  • the precious metal core is one of gold, silver, platinum, gold alloy, silver alloy, or platinum alloy
  • the shell layer is made of silicon dioxide, titanium dioxide, carbon, or a polymer material.
  • the polymer material includes But it is not limited to polyvinylpyrrolidone.
  • the thickness of the shell layer is 1-100 nm. Within this range, the spacing between the noble metal cores can be effectively adjusted, thereby making full use of the enhancement effect of the noble metal nanoparticles.
  • the above-mentioned quantum dot light-emitting layer 34 includes quantum dots emitting red light
  • the photoluminescent layer 50 includes a red color block, a green color block and In the blue color block, the red color block is a transparent color block, the green color block contains quantum dots emitting green light, and the blue color block contains quantum dots emitting blue light.
  • the photoluminescent layer 50 is composed of a plurality of pixel regions, and each pixel region includes three sub-pixel regions, and the three sub-pixel regions respectively correspond to a red color block, a green color block, and a blue color block.
  • the red light can directly pass through the red color block, the red light can excite the quantum dots on the green color block to emit green light, and the red light can excite the quantum on the basket color block Dot emits basket colored light, and then adjust the driving current through the pixel switch 20 to adjust the energy intensity of the red light emitted by the quantum dot light emitting layer 34, and then adjust the brightness of red light, green light, and blue light after passing through the photoluminescent layer 50 According to the principle of light mixing, the colors displayed in each pixel area are finally achieved.
  • the above-mentioned quantum dot light-emitting layer 34 includes quantum dots emitting basket colored light
  • the photoluminescent layer 50 includes a red color block, a green color block and Blue color block, where the red color block contains red light emitting quantum dots, the green color block contains green light emitting quantum dots, and the blue color block is a transparent color block.
  • the photoluminescent layer 50 is composed of a plurality of pixel regions, and each pixel region includes three sub-pixel regions, and the three sub-pixel regions respectively correspond to a red color block, a green color block, and a blue color block.
  • the blue light can excite the quantum dots on the red color block to emit red light
  • the blue light can excite the quantum dots on the green color block to emit green light
  • the blue light can be directly transmitted
  • the blue color block, and then the driving current is adjusted through the pixel switch 20 to adjust the energy intensity of the basket color light emitted by the quantum dot light emitting layer 34, and then adjust the brightness of red light, green light and blue light after passing through the photoluminescent layer 50 According to the principle of light mixing, the colors displayed in each pixel area are finally achieved.
  • the above-mentioned display panel 1 further includes a light sensor 80 that is disposed on the first substrate 10 and is wrapped in the encapsulation layer 60.
  • the above pixel switch 20 includes a first pixel switch and a second pixel switch, wherein the first pixel switch is electrically connected to the quantum dot light emitting diode, and the second pixel switch is electrically connected to the photosensor.
  • the display panel 1 since the display panel 1 includes the light sensor 80, the brightness information of the ambient light can be collected by the light sensor 80, the light signal is converted into an electrical signal, and controlled by the signal processor.
  • the signal processor passes the A pixel switch controls the quantum dot light-emitting diode to make corresponding brightness adjustments to achieve the purpose of adjusting the display brightness, and then achieve reasonable use of the device to improve the display effect and enhance the user's visual experience.
  • the above-mentioned light sensor 80 includes a quantum dot light sensing layer.
  • the quantum dot light sensing layer has spectral tunability and environmental stability, and includes a mesoporous frame 800, and a hole 801 is formed in the mesoporous frame 800, and a quantum dot is provided in the hole 801.
  • the mesoporous frame 800 may be selected as a self-assembled mesoporous silicon oxide frame, wherein the hole 801 structure facilitates the implementation of the self-assembled molecular template solution oxide.
  • the molecular template has a good shaping effect, and can allow the quantum dots to be dispersed more evenly in the gap between the organic template and the inner wall of the hole 801.
  • the hydroxyl group is combined with the material used for the quantum dot by van der Waals force, so that the quantum dot is formed in the mesoporous frame 800.
  • the pore size of the hole 801 may be selected from 2 to 7 nm
  • the hole wall 802 of the hole 801 is a silica hole wall
  • the thickness of the hole wall 802 may be selected from 1 to 2 nm.
  • the present application also provides a display device including the above-mentioned display panel 1 and a control mechanism 2, wherein the control mechanism 2 is used to control the operation of the display panel 1, and includes a signal processor, the signal processor and the above The optical sensor 80 is coupled.
  • the display device provided by the embodiment of the present application adopts the display panel 1, and the electroluminescent layer 30 replaces the backlight module and the liquid crystal to realize self-luminescence, so that the weight and thickness of the display panel 1 are greatly reduced, and the photoluminescent layer 50 Instead of the color resin filter film layer, the light emitted by the electroluminescent layer 30 can form multiple colors of light after passing through the photoluminescent layer 50, making the color gamut of the display panel 1 wider, and because the photoluminescent layer 50 is The light emitted by the electroluminescent layer 30 will also emit light after being excited, which can increase the brightness of the display panel 1, making the displayed image color performance better and more vivid, thereby effectively solving the problem that the quantum dot liquid crystal display cannot take into account the thinness and color gamut
  • the technical problem of wide and good display effect makes the display device meet the development needs of the display equipment industry.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(1),包括第一基板(10)、像素开关(20)、电致发光层(30)、保护层(40)、光致发光层(50)、封装层(60)以及第二基板(70),像素开关(20)设置于第一基板(10)上,电致发光层(30)设置于第一基板(10)上并与像素开关(20)电性连接,保护层(40)覆盖于电致发光层(30)的表面,光致发光层(50)设置于保护层(40)的远离电致发光层(30)的一侧,封装层(60)覆盖于第一基板(10)上,设置为包裹像素开关(20)、电致发光层(30)、保护层(40)和光致发光层(50),第二基板(70)设置于封装层(60)的远离光致发光层(50)的一侧。

Description

显示面板及显示装置
本申请要求于2018年11月13日提交中国专利局,申请号为201821866880.0,发明名称为“显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于显示装置的技术领域,更具体地说,是涉及一种显示面板及显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。量子点(Quantum Dots,QDs),又可称为纳米晶颗粒,是一种由Ⅱ—Ⅵ族或Ⅲ—Ⅴ族元素组成的纳米颗粒,量子点具有量子限域效应,受激发后可以发射荧光,而且量子点因具有自发光、亮度高、色度纯、色域广等优点,已经逐渐被应用到显示设备行业。
目前,行业内量子点显示器一般是采用液晶+量子点的组合方式,其主要改进点是在背光模组和阵列基板之间增加一层量子点膜,或者直接以量子点膜作为彩膜基板的彩膜层。这种量子点显示器需要背光模组为显示面板提供光源,需要液晶控制显示面板的透光率,虽然采用了量子点技术,提高了其色域和显示效果,但是由于背光模组和液晶都具有一定的重量和需要占用一定的空间,导致量子点显示器仍然无法满足显示设备朝轻薄化发展的趋势。
申请内容
本申请一目的在于提供了一种显示面板,包括但不限于满足量子点显示器 朝轻薄化发展的目的。
为了实现上述目的,本申请采用的技术方案是:提供了一种显示面板,包括:
第一基板;
像素开关,设置于所述第一基板上;
电致发光层,设置于所述第一基板上并与所述像素开关电性连接;
保护层,覆盖于所述电致发光层的表面;
光致发光层,设置于所述保护层的远离所述电致发光层的一侧;
封装层,覆盖于所述第一基板上,设置为包裹所述像素开关、所述电致发光层、所述保护层和所述光致发光层;以及
第二基板,设置于所述封装层的远离所述光致发光层的一侧。
在一个实施例中,所述像素开关为薄膜晶体管。
在一个实施例中,所述电致发光层可包括多个量子点发光二极管,所述量子点发光二级管与所述像素开关电性连接。
在一个实施例中,所述量子点发光二级管包括非透明阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层、电子注入层以及透明阴极,所述非透明阳极与所述透明阴极相对并间隔设置,所述空穴注入层、所述空穴传输层、所述量子点发光层、所述电子传输层以及所述电子注入层依次层叠于所述非透明阳极和所述透明阴极之间。
在一个实施例中,所述量子点发光层包括发出红色光的量子点或发出蓝色光的量子点。
在一个实施例中,所述量子点发光二级管还包括:
贵金属纳米复合材料层,设置于所述空穴注入层、所述空穴传输层、所述量子点发光层、所述电子传输层以及所述电子注入层中任意相邻两层之间。
在一个实施例中,所述贵金属纳米复合材料层包括贵金属核和包裹所述贵金属核的壳层。
在一个实施例中,所述壳层的厚度为1~100纳米。
在一个实施例中,所述量子点发光层包括发出红色光的量子点,所述光致发光层包括红色色阻块、绿色色阻块和蓝色色阻块,所述红色色阻块为透明色阻块,所述绿色色阻块包含发绿色光的量子点,所述蓝色色阻块包含发蓝色光的量子点。
在一个实施例中,所述量子点发光层包括发出篮色光的量子点,所述光致发光层包括红色色阻块、绿色色阻块和蓝色色阻块,所述红色色阻块包含发红色光的量子点,所述绿色色阻块包含发绿色光的量子点,所述蓝色色阻块为透明色阻块。
在一个实施例中,所述显示面板还包括:
光传感器,设置于所述第一基板上,所述像素开关包括第一像素开关和第二像素开关,所述第一像素开关与所述量子点发光二级管电性连接,所述第二像素开关与所述光传感器电性连接。
在一个实施例中,所述光传感器包括:
量子点光传感层,包括介孔框架,所述介孔框架上设置有量子点。
在一个实施例中,所述介孔框架上开设有孔洞,所述孔洞内设置有所述量子点。
在一个实施例中,所述孔洞的孔径为2~7纳米。
在一个实施例中,所述孔洞的孔壁厚度为1~2纳米。
本申请实施例提供的显示面板,采用电致发光层取代了背光模组和液晶实现自发光,使得显示面板的重量和厚度大大地降低,同时,采用光致发光层取代了彩色树脂滤光薄膜层,电致发光层发出的光通过光致发光层后可以形成多种颜色的光,使得显示面板的色域更广,并且由于光致发光层被电致发光层发出的光激发后也会发光,可以增加显示面板的亮度,使得显示的图像色彩表现更好,更加鲜活,从而有效地解决了量子点液晶显示器无法兼顾轻薄、色域广和显示效果好的技术问题,使得显示面板满足了显示设备行业发展的需求。
本申请的另一目的在于提供了一种显示面板,包括:
第一基板;
薄膜晶体管,设置于所述第一基板上;
量子点发光二级管,设置于所述第一基板上并与所述薄膜晶体管电性连接;
保护层,覆盖于所述量子点发光二级管的表面;
量子点彩膜层,设置于所述保护层的远离所述量子点发光二级管的一侧;
封装层,掺杂有导热材料并覆盖于所述第一基板上,设置为包裹所述薄膜晶体管、所述量子点发光二级管、所述保护层和所述量子点彩膜层;以及
第二基板,设置于所述封装层的远离所述量子点彩膜层的一侧。
本申请实施例提供的显示面板,通过在封装层中掺杂有导热材料,可以将像素开关和电致发光层产生的热量及时传导出来,有效地提高了显示面板的散热性。
本申请的再一目的在于提供了一种显示装置,包括:
显示面板;以及
控制机构,设置为控制所述显示面板运行;
其中,所述控制机构包括:
信号处理器,与所述光传感器耦接;
所述显示面板包括:
第一基板;
像素开关,设置于所述第一基板上;
电致发光层,设置于所述第一基板上并与所述像素开关电性连接;
保护层,覆盖于所述电致发光层的表面;
光致发光层,设置于所述保护层的远离所述电致发光层的一侧;
封装层,覆盖于所述第一基板上,设置为包裹所述像素开关、所述电致发光层、所述保护层和所述光致发光层;以及
第二基板,设置于所述封装层的远离所述光致发光层的一侧。
本申请实施例提供的显示装置,采用了显示面板,通过电致发光层取代了背光模组和液晶实现自发光,使得显示面板的重量和厚度大大地降低,同时光致发光层取代了彩色树脂滤光薄膜层,电致发光层发出的光通过光致发光层后可以形成多种颜色的光,使得显示面板的色域更广,并且由于光致发光层被电致发光层发出的光激发后也会发光,可以增加显示面板的亮度,使得显示的图像色彩表现更好,更加鲜活,从而有效地解决了量子点液晶显示器无法兼顾轻薄、色域广和显示效果好的技术问题,使得显示装置满足了显示设备行业发展的需求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的显示面板的剖面示意图;
图2为本申请实施例提供的显示面板中电致发光层的剖面示意图;
图3为本申请实施例提供的光传感器中介孔框架的结构示意图;
图4为本申请实施例提供的显示装置的结构示意图。
其中,图中各附图标记:
1—显示面板、2—控制机构、10—第一基板、20—像素开关、30—电致发光层、40—保护层、50—光致发光层、60—封装层、70—第二基板、80—光传感器、31—非透明阳极、32—空穴注入层、33—空穴传输层、34—量子点发光层、35—电子传输层、36—电子注入层、37—透明阴极、800—介孔框架、801—孔洞、802—孔壁。
本申请的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
以下将结合附图,对本申请实施例提供的显示面板的具体实施方式进行详细说明,附图中各区域大小和形状不反映真实比例,目的只为示意说明本申请内容。
请参阅图1,显示面板1包括第一基板10、像素开关20、电致发光层30、保护层40、光致发光层50、封装层60以及第二基板70,其中,第一基板10为玻璃基板或柔性透明基板,用作衬底;像素开关20和电致发光层30设置在第一基板10上,电致发光层30与像素开关20电性连接,此处,像素开关20可选为薄膜晶体管(TFT),电致发光层30可包括多个量子点发光二极管,量子点发光二级管与薄膜晶体管一一对应,每个量子点发光二级管在通电后可以单独发光;保护层40覆盖在电致发光层30的表面,保护层40是由二氧化硅或氮化硅材料制成的透明薄膜层,覆盖在量子点发光二级管上,既可有效地防止水汽和杂质沾污量子点发光二级管,又不会遮蔽量子点发光二级管发出的光线; 光致发光层50设置在保护层的顶侧,光致发光层50可选为量子点彩膜层,量子点彩膜在量子点发光二级管发出的光的激发下可产生具有多种颜色的图案,多种颜色的图案相互组合后,形成人眼所能看到的图像;封装层60覆盖在第一基板10上,用于包裹像素开关20、电致发光层30、保护层40和光致发光层50,即在第一基板10上完成像素开关20、电致发光层30、保护层40和光致发光层50制程后,再在第一基板10上封盖一层透明的封装层60以隔断像素开关20、电致发光层30、保护层40和光致发光层50与外界的接触,从而阻挡水汽、氧气等对像素开关20、电致发光层30、保护层40和光致发光层50的侵害,保证了光致发光层50的出光效率,同时,若在封装层60中掺杂有导热材料,还可以将像素开关20和电致发光层30产生的热量及时传导出来,有效地提高封装层60的散热性;第二基板70设置在封装层60的顶侧,第二基板70为玻璃基板或柔性透明基板,起到保护内层结构和抗击外力的作用。
本申请实施例提供的显示面板1,采用电致发光层30取代了背光模组和液晶实现自发光,使得显示面板1的重量和厚度大大地降低,同时,采用光致发光层50取代了彩色树脂滤光薄膜层,电致发光层30发出的光通过光致发光层50后可以形成多种颜色的光,使得显示面板1的色域更广,并且由于光致发光层50被电致发光层30发出的光激发后也会发光,可以增加显示面板1的亮度,使得显示的图像色彩表现更好,更加鲜活,从而有效地解决了量子点液晶显示器无法兼顾轻薄、色域广和显示效果好的技术问题,使得显示面板1满足了显示设备行业发展的需求。
请参阅图2,在本申请提供的显示面板的一个实施例中,上述量子点发光二级管包括非透明阳极31、空穴注入层32、空穴传输层33、量子点发光层34、电子传输层35、电子注入层36以及透明阴极37,其中,非透明阳极31与透明阴极37相对并且间隔设置,空穴注入层32、空穴传输层33、量子点发光层34、电子传输层35以及电子注入层36依次层叠在非透明阳极31和透明阴极37之间。具体地,非透明阳极31采用非透光结构设计和非透光材料制成,透明阴极 37采用透光结构设计和透光材料制成,这样在非透明阳极31和透明阴极37与电源接通后,量子点发光层34发出的光就可以透过透明阴极37实现定向照明。可以理解的是,上述涉及的空穴注入层32、空穴传输层33、量子点发光层34、电子传输层35、电子注入层36及其制备方法均为本领域所常见的,本申请实施例在此不再对其作具体阐述。
在本申请提供的显示面板的一个实施例中,上述量子点发光层34包括发出红色光的量子点,或者发出蓝色光的量子点,即量子点发光层34可发出红色光或蓝色光。由于相较其它颜色光,红色光和蓝色光的光谱更窄,能量更高,能够提高光致发光层50被激发后发出的光的色纯度,从而提高显示面板1的显示质量。
在本申请提供的显示面板的一个实施例中,上述量子点发光二级管还包括贵金属纳米复合材料层,该贵金属纳米复合材料层设置在空穴注入层32、空穴传输层33、量子点发光层34、电子传输层35以及电子注入层36中任意相邻两层之间。由于该贵金属纳米复合材料层包含贵金属纳米颗粒,利用该贵金属纳米颗粒的局域表面等离子体共振现象,可以增强量子点发光层34的发光效率。
在本申请提供的显示面板的一个实施例中,上述贵金属纳米颗粒包括贵金属核和壳层,其中,壳层包裹贵金属核,可有效地增加贵金属核之间的间距,填补贵金属核的表面缺陷,从而充分地发挥贵金属纳米颗粒的局域表面等离子体共振现象所带来的增强效应。
可选地,贵金属核为金、银、铂、金合金、银合金或铂合金中的一种,壳层由二氧化硅、二氧化钛、碳或高分子材料制成,此处,高分子材料包括但不限于聚乙烯吡咯烷酮。
可选地,上述壳层的厚度为1~100纳米。在该范围内可有效地调节贵金属核之间的间距,从而充分利用贵金属纳米颗粒的增强效应。
请参阅图1,在本申请提供的显示面板的一个实施例中,上述量子点发光层34包括发出红色光的量子点,同时,光致发光层50包括红色色阻块、绿色 色阻块和蓝色色阻块,其中,红色色阻块为透明色阻块,绿色色阻块包含发绿色光的量子点,蓝色色阻块包含发蓝色光的量子点。具体地,光致发光层50由多个像素区域组成,每个像素区域包括三个子像素区域,三个子像素区域分别对应为红色色阻块、绿色色阻块和蓝色色阻块,当量子点发光层34发出红色光时,该红色光可直接透过红色色阻块,该红色光可激发绿色色阻块上的量子点发出绿色光,并且该红色光可激发篮色色阻块上的量子点发出篮色光,再通过像素开关20调整驱动电流,来调整量子点发光层34发出的红色光的能量强度,进而调整通过光致发光层50后红色光的亮度、绿色光的亮度以及蓝色光的亮度,最终根据光的混色原理实现每个像素区域所显示的颜色。
请参阅图1,在本申请提供的显示面板的一个实施例中,上述量子点发光层34包括发出篮色光的量子点,同时,光致发光层50包括红色色阻块、绿色色阻块和蓝色色阻块,其中,红色色阻块包含发红色光的量子点,绿色色阻块包含发绿色光的量子点,蓝色色阻块为透明色阻块。具体地,光致发光层50由多个像素区域组成,每个像素区域包括三个子像素区域,三个子像素区域分别对应为红色色阻块、绿色色阻块和蓝色色阻块,当量子点发光层34发出蓝色光时,该蓝色光可激发红色色阻块上的量子点发出红色光,该蓝色光可激发绿色色阻块上的量子点发出绿色光,并且该蓝色光可直接透过蓝色色阻块,再通过像素开关20调整驱动电流,来调整量子点发光层34发出的篮色光的能量强度,进而调整通过光致发光层50后红色光的亮度、绿色光的亮度以及蓝色光的亮度,最终根据光的混色原理实现每个像素区域所显示的颜色。
请参阅图1,在本申请提供的显示面板的一个实施例中,上述显示面板1还包括光传感器80,该光传感器80设置在第一基板10上,并且包裹在封装层60内,同时,上述像素开关20包括第一像素开关和第二像素开关,其中,第一像素开关与量子点发光二极管电性连接,第二像素开关与光传感器电性连接。具体地,由于显示面板1含有光传感器80,通过光传感器80可以采集环境光的亮度信息,将光信号转化为电信号,并且通过信号处理器控制,当环境光发 生变化时信号处理器通过第一像素开关控制量子点发光二极管作出对应的亮度调节,以达到调节显示亮度的目的,进而达到合理利用器件提高显示效果、提升用户的视觉体验。
请参阅图3,在本申请提供的显示面板的一个实施例中,上述光传感器80包括量子点光传感层。该量子点光传感层具有光谱可调性以及环境稳定性,包括介孔框架800,该介孔框架800上开设有孔洞801,该孔洞801内设置有量子点。具体地,介孔框架800可选为自组装介孔氧化硅框架,其中孔洞801结构方便采用自组装分子模板溶液氧化物的实施。该分子模板有很好的定型效果,可以让量子点较为均匀地散布于有机模板与孔洞801的内壁之间设置的缝隙内。此处,羟基通过范德华力与量子点采用的材料结合,以便在介孔框架800形成了量子点。孔洞801的孔径大小可选为2~7纳米,孔洞801的孔壁802为二氧化硅孔壁,孔壁802的厚度可选为1~2纳米。
请参阅图4,本申请还提供了一种显示装置,包括上述显示面板1和控制机构2,其中,控制机构2用于控制显示面板1运行,其包括信号处理器,该信号处理器与上述光传感器80耦接。
本申请实施例提供的显示装置,采用了显示面板1,通过电致发光层30取代了背光模组和液晶实现自发光,使得显示面板1的重量和厚度大大地降低,同时光致发光层50取代了彩色树脂滤光薄膜层,电致发光层30发出的光通过光致发光层50后可以形成多种颜色的光,使得显示面板1的色域更广,并且由于光致发光层50被电致发光层30发出的光激发后也会发光,可以增加显示面板1的亮度,使得显示的图像色彩表现更好,更加鲜活,从而有效地解决了量子点液晶显示器无法兼顾轻薄、色域广和显示效果好的技术问题,使得显示装置满足了显示设备行业发展的需求。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 显示面板,包括:
    第一基板;
    像素开关,设置于所述第一基板上;
    电致发光层,设置于所述第一基板上并与所述像素开关电性连接;
    保护层,覆盖于所述电致发光层的表面;
    光致发光层,设置于所述保护层的远离所述电致发光层的一侧;
    封装层,覆盖于所述第一基板上,设置为包裹所述像素开关、所述电致发光层、所述保护层和所述光致发光层;以及
    第二基板,设置于所述封装层的远离所述光致发光层的一侧。
  2. 如权利要求1所述的显示面板,其中,所述像素开关为薄膜晶体管。
  3. 如权利要求2所述的显示面板,其中,所述电致发光层可包括多个量子点发光二极管,所述量子点发光二级管与所述像素开关电性连接。
  4. 如权利要求3所述的显示面板,其中,所述量子点发光二级管包括非透明阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层、电子注入层以及透明阴极,所述非透明阳极与所述透明阴极相对并间隔设置,所述空穴注入层、所述空穴传输层、所述量子点发光层、所述电子传输层以及所述电子注入层依次层叠于所述非透明阳极和所述透明阴极之间。
  5. 如权利要求4所述的显示面板,其中,所述量子点发光层包括发出红色光的量子点或发出蓝色光的量子点。
  6. 如权利要求5所述的显示面板,其中,所述量子点发光二级管还包括:
    贵金属纳米复合材料层,设置于所述空穴注入层、所述空穴传输层、所述量子点发光层、所述电子传输层以及所述电子注入层中任意相邻两层之间。
  7. 如权利要求6所述的显示面板,其中,所述贵金属纳米复合材料层包括贵金属核和包裹所述贵金属核的壳层。
  8. 如权利要求7所述的显示面板,其中,所述壳层的厚度为1~100纳米。
  9. 如权利要求5所述的显示面板,其中,所述量子点发光层包括发出红色光的量子点,所述光致发光层包括红色色阻块、绿色色阻块和蓝色色阻块,所述红色色阻块为透明色阻块,所述绿色色阻块包含发绿色光的量子点,所述蓝色色阻块包含发蓝色光的量子点。
  10. 如权利要求5所述的显示面板,其中,所述量子点发光层包括发出篮色光的量子点,所述光致发光层包括红色色阻块、绿色色阻块和蓝色色阻块,所述红色色阻块包含发红色光的量子点,所述绿色色阻块包含发绿色光的量子点,所述蓝色色阻块为透明色阻块。
  11. 如权利要求5所述的显示面板,其中,还包括:
    光传感器,设置于所述第一基板上,所述像素开关包括第一像素开关和第二像素开关,所述第一像素开关与所述量子点发光二级管电性连接,所述第二像素开关与所述光传感器电性连接。
  12. 如权利要求11所述的显示面板,其中,所述光传感器包括:
    量子点光传感层,包括介孔框架,所述介孔框架上设置有量子点。
  13. 如权利要求12所述的显示面板,其中,所述介孔框架上开设有孔洞,所述孔洞内设置有所述量子点。
  14. 如权利要求13所述的显示面板,其中,所述孔洞的孔径为2~7纳米。
  15. 如权利要求13所述的显示面板,其中,所述孔洞的孔壁厚度为1~2纳米。
  16. 显示面板,其中,包括:
    第一基板;
    薄膜晶体管,设置于所述第一基板上;
    量子点发光二级管,设置于所述第一基板上并与所述薄膜晶体管电性连接;
    保护层,覆盖于所述量子点发光二级管的表面;
    量子点彩膜层,设置于所述保护层的远离所述量子点发光二级管的一侧;
    封装层,掺杂有导热材料并覆盖于所述第一基板上,设置为包裹所述薄膜晶体管、所述量子点发光二级管、所述保护层和所述量子点彩膜层;以及
    第二基板,设置于所述封装层的远离所述量子点彩膜层的一侧。
  17. 显示装置,包括:
    显示面板;以及
    控制机构,设置为控制所述显示面板运行;
    其中,所述控制机构包括:
    信号处理器,与所述光传感器耦接;
    所述显示面板包括:
    第一基板;
    像素开关,设置于所述第一基板上;
    电致发光层,设置于所述第一基板上并与所述像素开关电性连接;
    保护层,覆盖于所述电致发光层的表面;
    光致发光层,设置于所述保护层的远离所述电致发光层的一侧;
    封装层,覆盖于所述第一基板上,设置为包裹所述像素开关、所述电致发光层、所述保护层和所述光致发光层;以及
    第二基板,设置于所述封装层的远离所述光致发光层的一侧。
PCT/CN2018/120574 2018-11-13 2018-12-12 显示面板及显示装置 WO2020098035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821866880.0U CN208806261U (zh) 2018-11-13 2018-11-13 显示面板及显示装置
CN201821866880.0 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020098035A1 true WO2020098035A1 (zh) 2020-05-22

Family

ID=66239578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120574 WO2020098035A1 (zh) 2018-11-13 2018-12-12 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN208806261U (zh)
WO (1) WO2020098035A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065615A1 (zh) * 2022-09-30 2024-04-04 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161513A (zh) * 2015-08-03 2015-12-16 京东方科技集团股份有限公司 Oled显示装置及其制造方法、彩膜基板及其制造方法
CN105206641A (zh) * 2015-10-12 2015-12-30 Tcl集团股份有限公司 Qled与tft集成器件及其制备方法
JP2016042449A (ja) * 2014-08-19 2016-03-31 株式会社ジャパンディスプレイ 表示装置
JP2016098570A (ja) * 2014-11-21 2016-05-30 矢作建設工業株式会社 アスファルト舗装体、アスファルト舗装路面構造及びアスファルト舗装体の形成方法
CN105932028A (zh) * 2016-06-07 2016-09-07 深圳市华星光电技术有限公司 自发光显示装置
CN107634082A (zh) * 2017-07-13 2018-01-26 深圳市华星光电半导体显示技术有限公司 主动发光显示面板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042449A (ja) * 2014-08-19 2016-03-31 株式会社ジャパンディスプレイ 表示装置
JP2016098570A (ja) * 2014-11-21 2016-05-30 矢作建設工業株式会社 アスファルト舗装体、アスファルト舗装路面構造及びアスファルト舗装体の形成方法
CN105161513A (zh) * 2015-08-03 2015-12-16 京东方科技集团股份有限公司 Oled显示装置及其制造方法、彩膜基板及其制造方法
CN105206641A (zh) * 2015-10-12 2015-12-30 Tcl集团股份有限公司 Qled与tft集成器件及其制备方法
CN105932028A (zh) * 2016-06-07 2016-09-07 深圳市华星光电技术有限公司 自发光显示装置
CN107634082A (zh) * 2017-07-13 2018-01-26 深圳市华星光电半导体显示技术有限公司 主动发光显示面板及其制造方法

Also Published As

Publication number Publication date
CN208806261U (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
KR101882579B1 (ko) 표시 장치
WO2020015173A1 (zh) Oled显示器
US10692941B2 (en) Organic light emitting diode display
WO2014166149A1 (zh) 量子点电致发光显示器件及显示装置
JP4895490B2 (ja) 有機elパネル
KR101990312B1 (ko) 유기전계발광표시장치 및 그 제조방법
KR101496151B1 (ko) 산화물 다이오드를 이용한 디스플레이 장치
KR101241131B1 (ko) 유기전계 발광소자
WO2015010370A1 (zh) 液晶显示屏及显示装置
US11322706B2 (en) Quantum dot film, quantum dot light-emitting assembly and display device
WO2018176546A1 (zh) 量子点发光二极管显示面板及其制备方法、显示装置
WO2019052002A1 (zh) 一种彩膜基板及显示设备
WO2014172951A1 (zh) 有机电致发光二极管显示装置
WO2018232948A1 (zh) Oled显示器及其制作方法
WO2018176525A1 (zh) 量子点led封装结构
WO2016000364A1 (zh) Oled单元及其制作方法、oled显示面板、oled显示设备
KR20150025727A (ko) 백색 유기발광다이오드 및 이를 이용한 표시장치
JPWO2006100957A1 (ja) 色変換基板並びにその製造方法、及び発光装置
WO2019148746A1 (zh) 一种显示装置
KR102409702B1 (ko) 유기발광다이오드 표시장치
CN203179892U (zh) 一种量子点发光二极管显示器件及显示装置
CN110120404B (zh) 双面白光有机发光二极管显示装置及其制造方法
WO2021035957A1 (zh) 一种量子点oled显示面板
US20180197894A1 (en) Pixel structure, manufacturing method and display panel
US7915804B2 (en) Organic electro-luminescent display and method for forming the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18940445

Country of ref document: EP

Kind code of ref document: A1