WO2017118157A1 - 显示装置和虚拟现实眼镜 - Google Patents

显示装置和虚拟现实眼镜 Download PDF

Info

Publication number
WO2017118157A1
WO2017118157A1 PCT/CN2016/102865 CN2016102865W WO2017118157A1 WO 2017118157 A1 WO2017118157 A1 WO 2017118157A1 CN 2016102865 W CN2016102865 W CN 2016102865W WO 2017118157 A1 WO2017118157 A1 WO 2017118157A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
grating
display device
light
gratings
Prior art date
Application number
PCT/CN2016/102865
Other languages
English (en)
French (fr)
Inventor
赵文卿
董学
陈小川
高健
王倩
卢鹏程
杨明
许睿
王磊
牛小辰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/525,931 priority Critical patent/US10234718B2/en
Publication of WO2017118157A1 publication Critical patent/WO2017118157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0105Holograms with particular structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device and virtual reality glasses.
  • Virtual reality glasses are virtual reality display devices; wearing virtual reality glasses can close the user's vision to the outside world and guide the user to create a feeling in the virtual environment. Therefore, virtual reality glasses can bring new experiences to users, and they are receiving more and more attention.
  • the virtual reality glasses include two display devices respectively disposed corresponding to the left eye and the right eye, and each of the display devices includes a plurality of sub-pixels arranged in an array.
  • the inventors of the present application found that, as shown in FIG. 1, the light rays emitted from the respective sub-pixels propagate in various directions, so that only a small portion of the light rays emitted from the respective sub-pixels can reach the eyes of the user, resulting in utilization of light. low.
  • Embodiments of the present invention provide a display device and virtual reality glasses for increasing the amount of light entering a predetermined spatial position (for example, a human eye) from a sub-pixel in a display device, thereby improving light utilization efficiency of the display device.
  • a predetermined spatial position for example, a human eye
  • an embodiment of the present invention provides a display device, which adopts the following technical solutions:
  • the display device includes an array substrate including a substrate substrate, a plurality of sub-pixels disposed on the substrate, and a grating disposed on the substrate; the grating includes a plurality of sub-gratings having different structures, each sub-grating comprising An adjusting portion for adjusting a propagation direction of the light, the light emitted from the adjusting portion is concentrated to a predetermined spatial position; the array substrate further includes a plurality of preset regions, wherein the plurality of sub-gratings respectively correspond to different presets Subpixels within the region.
  • the display device further includes light disposed on a side of the substrate Source; the light emitted by the light source is parallel light; the light is totally reflected in the array substrate except the area of the adjustment portion in each sub-grating.
  • the display device provided by the embodiment of the invention has the structure as described above, because the sub-gratings having different structures correspond to the sub-pixels located in different preset regions, and the light rays emitted from the adjusting portions of the sub-gratings having different structures are directed
  • the predetermined spatial position for example, the human eye located in front of the display device is concentrated. Therefore, the light emitted from each sub-pixel passes through each sub-grating and is concentrated to a predetermined spatial position in front of the display device, thereby effectively improving the projection from the sub-pixel.
  • the amount of light in a spatial location such as a human eye, can in turn effectively increase the light utilization of the display device.
  • a sub-pixel is located in a preset area, and one sub-pixel corresponds to a sub-grating having a structure.
  • all of the sub-gratings are slit gratings, and the adjustment portion of the sub-gratings is a slit included in the sub-grating.
  • the incident angle of the light incident on all the sub-gratings is ⁇
  • is the angle between the light from the light source and the plane of the substrate
  • the sub-grating includes correspondingly located at the center of the array substrate a first sub-grating of the sub-pixel and a second sub-grating corresponding to the other sub-pixel
  • an exit angle of the light emitted from the first sub-grating is ⁇ 1
  • the outgoing angle ⁇ 1 is a light emitted from the first sub-grating
  • the angle between the planes of the grating, and ⁇ 1 90°.
  • the slit of the first sub-grating extends in a direction parallel to a side of the substrate substrate close to the light source, and the grating constant of the first sub-grating is d 1 .
  • ⁇ 1 is the wavelength of the light of the first color
  • the first color is the color of the sub-pixel corresponding to the first sub-grating for display.
  • all of the second sub-gratings are symmetrically distributed in a center, and the center of symmetry is the center of the array substrate.
  • the direction of the first sub-grating perpendicularly directed to the side of the substrate adjacent to the light source is a predetermined direction
  • the exit angle of the light emitted from the second sub-grating distributed in the predetermined direction is ⁇ 2
  • D is the vertical distance between the predetermined spatial position and the plane of the second sub-grating
  • L is the distance between the second sub-grating and the first sub-grating in a predetermined direction
  • the second sub-grating has a grating constant of d 2 , Wherein ⁇ 2 is the wavelength of the light having the second color, the second color is the color of the sub-pixel corresponding to the second sub-grating for display; and the light incident to the second sub-grating and the light emitted from the second sub-grating
  • ⁇ 2 is the wavelength of the light having the second color
  • the second color is the color of the sub-pixel corresponding to the second sub-grating for display
  • the light incident to the second sub-grating and the light emitted from the second sub-grating When the second sub-grating is located on the same side, the above equation takes a plus sign; when the light incident to the second sub-grating and the light emitted from the second sub-grating are located on the opposite side of the second sub-grating, in the above equation Take the minus sign.
  • the second sub-grating distributed in the predetermined direction comprises an effective number of slits, a width of the slit is the same as the first sub-grating, and the slit included in the second sub-grating has an inclination angle ⁇ ,
  • the light intensity of the light emitted from the sub-grating is I, among them, ⁇ is the wavelength of the color displayed by the sub-pixel corresponding to the sub-grating, a is the width of the slit included in the sub-grating, d is the grating constant of the sub-grating, N is the effective number of slits included in the sub-grating, and ⁇ is the sub-raster
  • I 0 is the intensity of the light of the wavelength ⁇ incident on the sub-grating.
  • the sub-grating includes a first sub-grating corresponding to a sub-pixel located at a center of the array substrate, and a second sub-grating corresponding to the other sub-pixel; the first sub-grating is a slit grating, and the first sub-grating
  • the adjusting portion is a slit included in the first sub-grating; all the second sub-gratings are blazed gratings, and the adjusting portions of the second sub-gratings are respectively groove faces of the respective second sub-gratings.
  • the slit of the first sub-grating extends in a direction parallel to a side of the substrate substrate close to the light source, and the grating constant of the first sub-grating is d 1 .
  • ⁇ 1 is the wavelength of the light of the first color
  • the first color is the color of the sub-pixel corresponding to the first sub-grating for display.
  • the direction of the first sub-grating perpendicularly pointing to the side of the substrate adjacent to the light source is a predetermined direction
  • the illuminating angle of the second sub-grating distributed in the predetermined direction is ⁇
  • the grating constant of the second sub-grating distributed in the predetermined direction is d 2 , Where ⁇ 2 is the wavelength of the ray having the second color, the second color is the color of the sub-pixel corresponding to the second sub-grating for display, and D is the vertical distance between the predetermined spatial position and the plane of the grating, L The distance between the second sub-grating and the first sub-grating in a predetermined direction.
  • all of the sub-gratings are diffraction gratings having strip-shaped projections and strip-shaped grooves on the surface.
  • the area where one sub-pixel is located includes a plurality of preset areas, and each of the sub-pixels corresponds to a plurality of sub-gratings having different structures, so that the light emitted from the plurality of sub-gratings having different structures corresponding to each sub-pixel covers a certain range.
  • each of the plurality of sub-gratings having different structures corresponding to each sub-pixel is a slit grating
  • each of the sub-gratings includes an effective number of slits and a width of the slits
  • the sub-gratings having different structures include The inclination angle ⁇ of the slit is different, and the inclination angle ⁇ is an angle between the extending direction of the slit in each sub-grating and the side surface of the base substrate close to the light source.
  • the maximum difference between the inclination angles ⁇ of the slits included in the plurality of sub-gratings having different structures corresponding to each sub-pixel is 30° to 40°.
  • the area where the adjacent plurality of sub-pixels are located is a preset area, and the adjacent plurality of sub-pixels located in the same preset area correspond to the sub-gratings having a structure.
  • the display device further includes a color filter substrate disposed opposite to the array substrate, and a liquid crystal molecular layer disposed between the array substrate and the color filter substrate, wherein the light emitted by the light source is linearly polarized light, and only the color film substrate back
  • An upper polarizing plate is disposed on one surface of the array substrate, or the light emitted by the light source is natural light, and an upper polarizing plate is disposed on a side of the color film substrate facing away from the array substrate, and the display device further includes a lower polarizing plate and a lower polarizing plate Between the light source and the side surface of the substrate substrate or on the grating.
  • the embodiment of the present invention further provides a virtual reality glasses, which adopts the following technical solutions:
  • the virtual reality glasses include a housing and two display devices as described above in the housing, wherein a predetermined spatial position of one display device corresponds to a left eye of the user, and a predetermined spatial position of the other display device corresponds to a right eye of the user.
  • the virtual reality glasses provided by the embodiments of the present invention include the display device as described above. Therefore, the virtual reality glasses have the same beneficial effects as the above display device, and details are not described herein.
  • FIG. 1 is a propagation path diagram of light rays emitted from sub-pixels in a display device in the prior art
  • Figure 2 is a cross-sectional view showing a display device in an embodiment of the present invention.
  • FIG. 3 is a top plan view of an array substrate according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view 1 of an array substrate according to an embodiment of the present invention.
  • FIG. 5 is a top view of an array substrate according to an embodiment of the present invention.
  • FIG. 6 is a propagation path diagram of light rays emitted from sub-pixels of the array substrate in FIG. 5 according to an embodiment of the present invention
  • Figure 7 is a plan view 3 of the array substrate in the embodiment of the present invention.
  • Figure 8 is a plan view 4 of the array substrate in the embodiment of the present invention.
  • Figure 9 is a cross-sectional view 2 of the array substrate in the embodiment of the present invention.
  • Figure 10 is a cross-sectional view 3 of the array substrate in the embodiment of the present invention.
  • Figure 11 is a cross-sectional view of a diffraction grating having strip-shaped projections and strip-shaped grooves on its surface in an embodiment of the present invention.
  • 3-color film substrate 31-upper polarizing plate; 4-liquid crystal molecular layer.
  • the display device includes an array substrate 1 including a substrate substrate 10 and a plurality of sub-substrates disposed on the substrate substrate 10. Pixel 11.
  • the array substrate 1 further includes a grating 12 disposed on the base substrate 10, the grating 12 including a plurality of sub-gratings 121 having different structures, each of the sub-gratings 121 including an adjustment portion for adjusting a propagation direction of the light, and ejecting from the adjustment portion
  • the light ray is concentrated to a predetermined spatial position; the array substrate 1 further includes a plurality of preset regions A, and the plurality of sub-gratings 121 respectively correspond to the sub-pixels 11 located in different preset regions A.
  • the display device further includes a light source 2 disposed on the side of the base substrate 10; the light emitted by the light source 2 is parallel light; and the light is totally reflected in the array substrate 1 except for the region where the adjustment portion of each of the sub-gratings 121 is located.
  • a predetermined spatial position for example, a human eye located in front of the display device.
  • the above-described "sub-grating 121 having a different structure” means a sub-grating 121 capable of causing light incident on the sub-grating 121 to be emitted at a predetermined exit angle.
  • the total reflection of the light in the array substrate 1 may be various implementations of the total reflection of the light in the array substrate 1 except for the region of the adjustment portion in each sub-grating 121, and the implementation may be different from the structure of the sub-grating 121 included in the grating 12. There is a difference.
  • the grating 12 included in the embodiment of the present invention includes the diffraction gratings having strip-shaped protrusions and strip-shaped grooves on the surface, the refractive index n1 of the grating 12 is smaller than that of the substrate substrate 10.
  • the incident angle ⁇ of the light emitted by the light source 2 satisfies sin ⁇ 1/n such that the light is totally reflected in the array substrate 1 except for the region of the adjustment portion in each sub-grating 121; wherein the incident angle ⁇ is the light source 2
  • the angle between the emitted light and the plane of the substrate 10 is.
  • the array substrate 1 includes a plurality of preset regions A; correspondingly, the corresponding manners of the sub-grating 121 and the sub-pixels 11 having different structures may be various.
  • a sub-pixel 11 is located in a predetermined area A, and one sub-pixel 11 corresponds to a sub-grating 121 having a structure; thereby, the light emitted from each sub-pixel 11 passes through After the sub-gratings 121 corresponding thereto are all propagated in the direction of the pupil pointing to the human eye, the utilization of the light of the display device is the highest; or, as shown in FIG.
  • the area where one sub-pixel 11 is located includes a plurality of preset areas A, 11 pairs of each sub-pixel
  • the preset area A at this time, the adjacent plurality of sub-pixels 11 located in the same preset area A correspond to the sub-grating 121 having a structure, so that the display device can be made while improving the light utilization rate of the display device.
  • the method is relatively simple.
  • the display device provided by the embodiment of the present invention has the structure as described above, since the sub-grating 121 having different structures corresponds to the sub-pixels 11 located in different preset areas A, and is emitted from the adjustment portion of the sub-grating 121 having different structures.
  • the light rays are all concentrated at a predetermined spatial position (for example, a human eye) located in front of the display device. Therefore, the light beams emitted from the respective sub-pixels 11 pass through the respective sub-gratings 121 and are concentrated to a predetermined spatial position in front of the display device, thereby effectively improving the light.
  • the amount of light that is incident on the predetermined spatial position (human eye) from the sub-pixel 11 can further effectively improve the light utilization efficiency of the display device.
  • the display device includes a backlight module located on a side of the array substrate facing away from the color filter substrate, and in the display device in the embodiment of the present invention, as shown in FIG. 2, the light source 2 is located on the array substrate 1 The vicinity of one side surface of the base substrate 10 is included, and therefore, the display device in the embodiment of the present invention is thinner and lighter than the display device of the related art.
  • the following invention provides two embodiments to describe the design of the specific structure of all sub-gratings 121.
  • the area where one sub-pixel 11 is located is a preset area A, and one sub-pixel 11 corresponds to the sub-grating 121 having a structure, and the specific structure of all the sub-gratings 121 is three.
  • the first design is shown in FIG. 3. All the sub-gratings 121 are slit gratings, and the adjustment portion of the sub-grating 121 is a slit included in the sub-grating 121. Since the display device is used in a virtual reality glasses, for example, as shown in FIG. 4 (only one slit is taken as an example), the sub-pixel 11 located at the center of the array substrate 1 is facing the human eye. The light emitted from the sub-grating 121 corresponding to the sub-pixel 11 is emitted in a direction perpendicular to the array substrate 1; the light emitted from the sub-grating 121 corresponding to the other sub-pixels 11 is at an angle to a direction perpendicular to the array substrate 1. .
  • the pair of sub-pixels 11 located at the center of the array substrate 1 The specific structure of the sub-grating 121 should have a certain difference from the specific structure of the other sub-gratings 121.
  • the sub-grating 121 corresponding to the sub-pixel 11 located at the center of the array substrate 1 is defined as a first sub-grating 121 ′, and the sub-grating 121 except the first sub-grating 121 ′ is defined as a first Two sub-gratings 121".
  • the sub-pixel 11 corresponding to the first sub-grating 121' is used for display color (for example, when the sub-pixel 11 is used to display red, ⁇ 1 is a red wavelength), k
  • the light emitted from the first sub-grating 121' is emitted in a direction perpendicular to the array substrate 1.
  • all of the second sub-gratings 121" are symmetrically distributed in a center with the center of symmetry being the center of the array substrate 1 such that during the design of the specific structure of all of the second sub-gratings 121"
  • the specificity of the second sub-grating 121" at other positions on the array substrate 1 is specified.
  • the structure may be simply changed (for example, rotated or mirror symmetrical, etc.) based on the specific structure of the second sub-grating 121" in the predetermined direction, so that the manufacturing method of the display device is relatively simple.
  • the predetermined direction is the direction in which the first sub-grating 121' is vertically directed to the side of the substrate 10 close to the side of the light source 2, and as shown in FIG. 4, the second sub-grating 121 is distributed from a predetermined direction.
  • the exit angle ⁇ 2 of the emitted light is satisfied, Wherein, the exit angle ⁇ 2 is an angle between the light emitted from the second sub-grating 121 ′′ and the plane of the second sub-grating 121 ′, and D is the predetermined spatial position (for example, the human eye) and the second sub-grating 121 .
  • the vertical distance between the planes, L is the distance between the second sub-grating 121" and the first sub-grating 121' in a predetermined direction, that is, in the predetermined direction, the center and the second sub-grating 121" The distance between the centers of a sub-grating 121'.
  • ⁇ 2 is incident to the second sub-grating 121"
  • the angle between the light beam and the normal of the second sub-grating 121" ⁇ 2 is the angle between the light emitted from the second sub-grating 121" and the normal of the second sub-grating 121"
  • the second sub-grating 121" distributed in a predetermined direction includes the same effective number of slits and the width of the slit as the first sub-grating 121' .
  • the inclination angle ⁇ is between the extending direction of the slit in the second sub-grating 121" and the side of the base substrate 10 close to the light source 2.
  • the angle between the extending direction of the slit included in the second sub-grating 121" and the extending direction of the slit included in the first sub-grating 121' has an angle ⁇ as shown in FIG. Satisfy
  • the grating constant d 2 of the second sub-grating 121" can satisfy the above conditions. As can be seen from the above, therefore, Further calculations are available, The meanings of the parameters in the above formulas are the same as those mentioned above, and are not described herein again.
  • the sub-pixels 11 provided on the array substrate 1 generally include sub-pixels 11 for displaying red, sub-pixels 11 for displaying green, and sub-pixels 11 for displaying blue
  • a method of adjusting the intensity of light emitted from each sub-grating 121 so that the light intensity of the light beams emitted from the respective sub-pixels 12 is uniform, so that the light emitted from each of the sub-pixels 11 can be mixed into uniform white light. It helps to improve the uniformity of the display and make the color of the display more realistic.
  • the light intensity formula of the slit grating is among them,
  • is the above ⁇ 1 ;
  • is the above ⁇ 2 .
  • a is the slit included in the sub-grating 121
  • the width, d is the grating constant of the sub-grating 121
  • N is the effective number of slits included in the sub-grating 121
  • is the exit angle of the light emitted from the sub-grating 121, that is, the light emitted from the sub-grating 121 and the sub-grating 121
  • is the above ⁇ 1
  • the sub-grating 121 is the second sub-grating 121 ′
  • is the above ⁇ 2 .
  • I 0 is the intensity of light of a wavelength ⁇ incident on the sub-grating 121.
  • the intensity of the light emitted from the sub-grating 121 can be adjusted by adjusting the width a of the slit included in the sub-grating 121, the grating constant d of the sub-grating 121, and the effective number N of slits included in the sub-grating 121.
  • the above formula can be used to determine the specific mode of adjusting the light intensity by the above parameters, and details are not described herein.
  • the manner of adjusting the intensity of the light emitted from each sub-grating 121 is not limited to the above, and The advantageous effects of adjusting the intensity of the light are not limited to the above.
  • the second design method also defines the sub-grating 121 corresponding to the sub-pixel 11 located at the center of the array substrate 1 as the first sub-grating 121 ′, and defines the sub-grating 121 except the first sub-grating 121 ′. It is the second sub-grating 121".
  • the first sub-grating 121' is a slit grating
  • the adjustment portion of the first sub-grating 121' is a slit included in the first sub-grating 121'.
  • All of the second sub-gratings 121" are blazed gratings; the blazed grating comprises a grating surface and a groove surface, and the adjustment portions of the respective second sub-gratings 121" are respectively groove faces of the respective second sub-gratings 121".
  • all of the second sub-gratings 121" are symmetrically distributed in the center, and the center of symmetry is the center of the array substrate 1.
  • the illuminating angle of the second sub-grating 121 ′′ distributed in a predetermined direction is ⁇ in a predetermined direction, for example, a direction in which the first sub-grating 121 ′ is perpendicularly directed to the side of the substrate 10 close to the light source 2 .
  • a predetermined direction for example, a direction in which the first sub-grating 121 ′ is perpendicularly directed to the side of the substrate 10 close to the light source 2 .
  • the blaze angle ⁇ is equal to the angle ⁇ between the light emitted from the second sub-grating 121" and the direction perpendicular to the array substrate 1, due to and so
  • the grating constant of the second sub-grating 121" distributed in a predetermined direction is d 2
  • ⁇ 2 is the wavelength of the ray having the second color
  • the second color is the color of the sub-pixel 11 corresponding to the second sub-grating 121 ′′ for display
  • D is the predetermined spatial position (for example, the human eye) and the second
  • the vertical distance between the planes of the sub-gratings 121", L is the distance between the second sub-grating 121" and the first sub-grating 121' in a predetermined direction, that is, in a predetermined direction, the second sub-grating 121" The distance between the center and the center of the first sub-grating
  • the intensity of the light emitted from each of the sub-gratings 121 can also be adjusted, and the manner and the beneficial effects of the adjustment are similar to those of the first design, and details are not described herein.
  • all of the sub-gratings 121 are diffraction gratings having strip-shaped projections and strip-shaped grooves on the surface as shown in FIG.
  • the exit angle of the light emitted from the sub-grating 121 and the intensity of the light are all related to the inclination angle and the width of each of the strip-shaped protrusions or the strip-shaped grooves, and those skilled in the art refer to the correlation in the first design mode. Available, no more details here.
  • the area where one sub-pixel 11 is located includes a plurality of preset areas A, and each sub-pixel 11 corresponds to a plurality of sub-gratings 121 having different structures as an example, and the specific design manner of all sub-gratings 121 is adopted. Detailed instructions are given.
  • the plurality of sub-gratings 121 having different structures corresponding to each of the sub-pixels 11 are slit gratings, and the effective number of the slits included in each sub-grating 121 and the width of the slits are the same.
  • the sub-gratings 121 having different structures include slits having different inclination angles ⁇ such that light rays emitted from the plurality of sub-gratings 121 having different structures corresponding to each sub-pixel 11 cover the entire human eye, wherein the inclination angle ⁇ is each An angle between the extending direction of the slit in the sub-grating 121 and the side of the base substrate 10 close to the light source 2.
  • the plurality of sub-gratings 121 corresponding to each of the sub-pixels 11 are designed as follows: one of the plurality of sub-gratings 121 corresponding to each sub-pixel 11 is designed according to the first embodiment, and each sub-pixel 11 corresponds to a plurality of The other sub-gratings 121 of the sub-gratings 121 are obtained by increasing or decreasing the inclination angle of the slits within a certain range on the basis of the already designed sub-gratings 121.
  • the distance between the human eye and the display device, the length of the human eye, and the content in the first embodiment can be used to obtain the inclination angle ⁇ of the slit included in the plurality of sub-gratings 121 having different structures corresponding to each sub-pixel 11.
  • the maximum difference between them is such that the light emitted from the sub-pixel 11 can cover the human eye without causing a significant decrease in the utilization of light.
  • the distance between the human eye and the display device is typically 5 cm, and the length of the human eye is typically 3.5 cm.
  • the maximum difference between the inclination angles ⁇ of the slits included in the plurality of sub-gratings 121 having different structures corresponding to each sub-pixel 11 is 30° to 40°, so that the light emitted from the sub-pixel 11 can cover the person.
  • the eye does not cause a significant reduction in the utilization of light.
  • each of the sub-pixels 11 includes a plurality of sub-gratings 121 which may also be blazed gratings, and each sub-grating 121 included in each sub-pixel 11 has the same grating constant d and a different blazed angle ⁇ , similarly, the field
  • the technician can combine the distance between the human eye and the display device, the size of the human eye, and the content in the first embodiment to obtain the maximum difference between the blazed angles ⁇ of the plurality of sub-gratings 121 included in each of the sub-pixels 11. .
  • the area where the plurality of sub-pixels 11 are located is a preset area A; the adjacent plurality of sub-pixels 11 located in the same preset area A have a structure corresponding to
  • the specific design of all the sub-gratings 121 those skilled in the art can refer to the description in the first embodiment, and details are not described herein.
  • the display device in the embodiment of the present invention further includes a color filter substrate 3 disposed opposite to the array substrate 1, and a liquid crystal molecular layer 4 disposed between the array substrate 1 and the color filter substrate 3.
  • the upper polarizing plate 31 is disposed on the surface of the color filter substrate 3 facing away from the array substrate 1 to enable the display device to display normally; when the light emitted by the light source 2 is natural light, not only color
  • the upper surface of the film substrate 3 facing away from the array substrate 1 is provided with an upper polarizing plate 31, and the display device further includes a lower polarizing plate 13 disposed between the light source 3 and the substrate 10 of the array substrate 1 or disposed on the grating 12 on.
  • the upper polarizing plate 31 and the lower polarizing plate 13 are Wire Grid Polarizers (WGPs).
  • an embodiment of the present invention further provides a virtual reality glasses including a casing and two display devices as described above located in the casing, wherein a predetermined spatial position of one display device corresponds to a left eye of the user.
  • the predetermined spatial position of the other display device corresponds to the right eye of the user. Since the virtual reality glasses provided by the embodiments of the present invention include the display device as described above, the virtual reality glasses have the display device and the display device The same beneficial effects will not be described here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种显示装置和虚拟现实眼镜。该显示装置包括阵列基板(1)。阵列基板(1)包括衬底基板(10)、设置于衬底基板(10)上的多个子像素(11)以及设置于衬底基板(10)上的光栅(12)。所述光栅(12)包括具有不同结构的多个子光栅(121),每个子光栅(121)包括用以调节光线的传播方向的调节部分,从所述调节部分射出的光线汇聚至预定空间位置。所述阵列基板(1)还包括多个预设区域,所述多个子光栅(121)分别对应于位于不同的预设区域内的子像素(11)。所述显示装置还包括设置于衬底基板(10)旁侧的光源(2);所述光源(2)射出的光线为平行光;除各子光栅(121)中的调节部分所在区域外,光线在阵列基板(1)内全反射。

Description

显示装置和虚拟现实眼镜
相关申请
本申请要求保护在2016年1月8日提交的申请号为201610011823.3的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种显示装置和虚拟现实眼镜。
背景技术
虚拟现实眼镜是一种虚拟现实显示装置;佩戴虚拟现实眼镜可以将用户对外界的视觉封闭,引导用户产生一种身在虚拟环境中的感觉。因此,虚拟现实眼镜能给用户带来全新的体验,其越来越受到重视。
现有技术中,虚拟现实眼镜包括分别对应左眼和右眼设置的两个显示装置,每个显示装置均包括阵列排布的多个子像素。本申请的发明人发现,如图1所示,从各个子像素射出的光线沿各个方向传播,使得从各个子像素射出的光线中只有一小部分光线能够到达用户的眼睛,导致光线的利用率低。
发明内容
本发明实施例提供了一种显示装置和虚拟现实眼镜,用于提高从显示装置中的子像素射入预定空间位置(例如人眼)中的光线的量,提高显示装置的光线利用率。
为此,本发明实施例提供一种显示装置,采用如下技术方案:
该显示装置包括阵列基板,阵列基板包括衬底基板、设置于衬底基板上的多个子像素以及设置于衬底基板上的光栅;所述光栅包括具有不同结构的多个子光栅,每个子光栅包括用以调节光线的传播方向的调节部分,从所述调节部分射出的光线汇聚至预定空间位置;所述阵列基板还包括多个预设区域,所述多个子光栅分别对应于位于不同的预设区域内的子像素。该显示装置还包括设置于衬底基板旁侧的光 源;所述光源射出的光线为平行光;除各子光栅中的调节部分所在区域外,光线在阵列基板内全反射。
本发明实施例提供的显示装置具有如上所述的结构,由于具有不同结构的子光栅与位于不同预设区域内的子像素对应,且从具有不同结构的子光栅的调节部分射出的光线均向位于显示装置前的预定空间位置(例如人眼)汇聚,因此,从各个子像素射出的光线经过各子光栅后均向位于显示装置前的预定空间位置汇聚,有效提高了从子像素射入预定空间位置(例如人眼)中的光线的量,进而能够有效提高显示装置的光线利用率。
可选地,一个子像素所在区域为一个预设区域,一个子像素对应具有一种结构的子光栅。
可选地,所有子光栅均为狭缝光栅,子光栅的调节部分为子光栅包括的狭缝。
可选地,入射至所有子光栅上的光线的入射角为α,α为来自所述光源的光线与衬底基板所在平面之间的夹角;所述子光栅包括对应位于阵列基板的中心的子像素的第一子光栅、以及对应其他子像素的第二子光栅;从第一子光栅射出的光线的出射角为θ1,所述出射角θ1为从第一子光栅射出的光线与光栅所在平面之间的夹角,并且θ1=90°。
可选地,第一子光栅包括的狭缝的延伸方向与衬底基板的靠近光源的侧面平行,第一子光栅的光栅常数为d1
Figure PCTCN2016102865-appb-000001
其中,λ1为第一颜色的光线的波长,第一颜色为第一子光栅对应的子像素用于显示的颜色。
可选地,所有第二子光栅呈中心对称分布,对称中心为阵列基板的中心。
可选地,沿第一子光栅垂直指向衬底基板的靠近光源的侧面的方向为预定方向,从在预定方向上分布的第二子光栅射出的光线的出射角为θ2
Figure PCTCN2016102865-appb-000002
其中,D为所述预定空间位置与第二子光栅所在平面之间的垂直距离,L为在预定方向上,第二子光栅与第一子光栅之间的距离。
可选地,第二子光栅的光栅常数为d2
Figure PCTCN2016102865-appb-000003
其中,λ2为具有第二颜色的光线的波长,第二颜色为第二子光栅对应的子像素用于显示的颜色;当入射至第二子光栅的光线和从第二子光栅出射的光线位于第二子光栅的同侧时,上述等式中取加号;当入射至第二子光栅的光线和从第二子光栅出射的光线位于第二子光栅的异侧时,上述等式中取减号。
可选地,在预定方向上分布的第二子光栅包括的狭缝的有效数目、狭缝的宽度与第一子光栅相同,且第二子光栅包括的狭缝具有倾斜角β,
Figure PCTCN2016102865-appb-000004
可选地,从子光栅射出的光线的光强为I,
Figure PCTCN2016102865-appb-000005
其中,
Figure PCTCN2016102865-appb-000006
λ为子光栅对应的子像素显示的颜色的波长,a为子光栅包括的狭缝的宽度,d为子光栅的光栅常数,N为子光栅包括的狭缝的有效数目,θ为从子光栅射出的光线的出射角,I0为入射至子光栅的波长为λ的光线的强度。
可选地,所述子光栅包括对应位于阵列基板的中心的子像素的第一子光栅、以及对应其他子像素的第二子光栅;所述第一子光栅为狭缝光栅,第一子光栅的调节部分为第一子光栅包括的狭缝;所有第二子光栅均为闪耀光栅,各第二子光栅的调节部分分别为各第二子光栅的槽面。
可选地,第一子光栅包括的狭缝的延伸方向与衬底基板的靠近光源的侧面平行,第一子光栅的光栅常数为d1
Figure PCTCN2016102865-appb-000007
其中,λ1为第一颜色的光线的波长,第一颜色为第一子光栅对应的子像素用于显示的颜色。
可选地,沿第一子光栅垂直指向衬底基板的靠近光源的侧面的方向为预定方向,在预定方向上分布的第二子光栅的闪耀角为γ,
Figure PCTCN2016102865-appb-000008
在预定方向上分布的第二子光栅的光栅常数为d2
Figure PCTCN2016102865-appb-000009
其中,λ2为具有第二颜色的光线的波长,第二颜色为第二子光栅对应的子像素用于显示的颜色,D为所述预定空间位置与光栅所在平面之间的垂直距离,L为在预定方向上,第二子光栅与第一子光栅之间的距离。
可选地,所有子光栅均为表面具有条形凸起和条形凹槽的衍射光栅。
可选地,一个子像素所在区域包括多个预设区域,每个子像素对应具有不同结构的多个子光栅,以使从每个子像素对应的具有不同结构的多个子光栅射出的光线覆盖一定范围。
可选地,每个子像素对应的具有不同结构的多个子光栅均为狭缝光栅,且各子光栅包括的狭缝的有效数目、狭缝的宽度均相同,且具有不同结构的子光栅包括的狭缝的倾斜角β不同,倾斜角β为各子光栅中的狭缝的延伸方向与衬底基板的靠近光源的侧面之间的夹角。
可选地,每个子像素对应的具有不同结构的多个子光栅包括的狭缝的倾斜角β之间的最大差值为30°~40°。
可选地,相邻的多个子像素所在区域为一个预设区域,位于同一预设区域内的相邻的多个子像素对应具有一种结构的子光栅。
可选地,所述显示装置还包括与阵列基板相对设置的彩膜基板,以及设置于阵列基板和彩膜基板之间的液晶分子层,光源发出的光线为线偏振光,仅彩膜基板背向阵列基板的一面上设置有上偏振片,或者,光源发出的光线为自然光,彩膜基板背向阵列基板的一面上设置有上偏振片,且显示装置还包括下偏振片,下偏振片设置于光源与衬底基板的侧面之间或者设置于光栅上。
此外,本发明实施例还提供一种虚拟现实眼镜,采用如下技术方案:
该虚拟现实眼镜包括外壳和位于外壳中的两个如上所述的显示装置,其中一个显示装置的预定空间位置对应于用户的左眼,另一个显示装置的预定空间位置对应于用户的右眼。
由于本发明实施例提供的虚拟现实眼镜包括如上所述的显示装 置,因此,该虚拟现实眼镜具有和上述显示装置相同的有益效果,此处不再进行赘述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的从显示装置中的子像素射出的光线的传播路径图;
图2为本发明实施例中的显示装置的截面图;
图3为本发明实施例中的阵列基板的俯视图一;
图4为本发明实施例中的阵列基板的截面图一;
图5为本发明实施例中的阵列基板的俯视图二;
图6为本发明实施例中从图5中的阵列基板的子像素射出的光线的传播路径图;
图7为本发明实施例中的阵列基板的俯视图三;
图8为本发明实施例中的阵列基板的俯视图四;
图9为本发明实施例中的阵列基板的截面图二;
图10为本发明实施例中的阵列基板的截面图三;以及
图11为本发明实施例中的表面具有条形凸起和条形凹槽的衍射光栅的截面图。
附图标记说明:
1-阵列基板;        10-衬底基板;     11-子像素;
12-光栅;           121-子光栅;      121’-第一子光栅;
121”-第二子光栅;  13-下偏振片;     2-光源;
3-彩膜基板;        31-上偏振片;     4-液晶分子层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实 施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种显示装置,如图2、图3和图4所示,该显示装置包括阵列基板1,阵列基板1包括衬底基板10、设置于衬底基板10上的多个子像素11。阵列基板1还包括设置于衬底基板10上的光栅12,光栅12包括具有不同结构的多个子光栅121,每个子光栅121包括用以调节光线的传播方向的调节部分,从所述调节部分射出的光线汇聚至预定空间位置;阵列基板1还包括多个预设区域A,所述多个子光栅121分别对应于位于不同的预设区域A内的子像素11。所述显示装置还包括设置于衬底基板10旁侧的光源2;光源2射出的光线为平行光;除各子光栅121中的调节部分所在区域外,光线在阵列基板1内全反射。利用上述布置,在各子光栅121中的调节部分所在区域内,从具有不同结构的子光栅121的调节部分射出的光线均向位于显示装置前的预定空间位置(例如人眼)汇聚。上述“具有不同结构的子光栅121”指的是能够使射入到所述子光栅121上的光线以预定的出射角出射的子光栅121。
其中,使除各子光栅121中的调节部分所在区域外,光线在阵列基板1内全反射的实现方式可以有多种,且该实现方式可以随着光栅12包括的子光栅121的结构的不同有所区别。示例性地,当本发明实施例中的光栅12包括的子光栅121均为表面具有条形凸起和条形凹槽的衍射光栅时,光栅12的折射率n1小于衬底基板10的折射率n,且光源2射出的光线的入射角α满足sinα<1/n,使得除各子光栅121中的调节部分所在区域外,光线在阵列基板1内全反射;其中,上述入射角α为光源2射出的光线与衬底基板10所在平面之间的夹角。
另外,将阵列基板1包括多个预设区域A的方式可以有多种;相应地,具有不同结构的子光栅121与子像素11的对应方式也可以有多种。示例性地,如图3所示,一个子像素11所在区域为一个预设区域A,一个子像素11对应具有一种结构的子光栅121;由此,使得从每个子像素11射出的光线经过与其对应的子光栅121后,均沿指向人眼的瞳孔的方向传播,显示装置的光线的利用率最高;或者,如图5所示,一个子像素11所在区域包括多个预设区域A,每个子像素11对 应具有不同结构的多个子光栅121,从而使得从每个子像素11射出的光线的传播方向有轻微的差异;由此,如图6所示,从每个子像素11射出的光线能够覆盖一定范围,例如覆盖整个人眼,以适应人眼的瞳孔的移动以及不同用户的瞳距的差异,使该显示装置应用更灵活;或者,如图7所示,相邻的多个子像素11所在区域为一个预设区域A,此时位于同一预设区域A内的相邻的多个子像素11对应具有一种结构的子光栅121,以使得在提高显示装置的光线利用率的同时,使显示装置的制作方法较为简单。
本发明实施例提供的显示装置具有如上所述的结构,由于具有不同结构的子光栅121与位于不同预设区域A内的子像素11对应,且从具有不同结构的子光栅121的调节部分射出的光线均向位于显示装置前的预定空间位置(例如人眼)汇聚,因此,从各个子像素11射出的光线经过各子光栅121后均向位于显示装置前的预定空间位置汇聚,有效提高了从子像素11射入预定空间位置(人眼)中的光线的量,进而能够有效提高显示装置的光线利用率。另外,由于现有技术中,显示装置包括的背光模组位于阵列基板背向彩膜基板的一面,而在本发明实施例中的显示装置中,如图2所示,光源2位于阵列基板1包括的衬底基板10的一个侧面附近,因此,与现有技术中的显示装置相比,本发明实施例中的显示装置更轻薄。
下面本发明提供两个实施例,以对所有子光栅121的具体结构的设计方式进行描述。
实施例一
本发明实施例以如图3所示,一个子像素11所在区域为一个预设区域A,一个子像素11对应具有一种结构的子光栅121为例,对所有子光栅121的具体结构的三种设计方式进行说明。
第一种设计方式如图3所示,所有子光栅121均为狭缝光栅,子光栅121的调节部分为子光栅121包括的狭缝。由于该显示装置在使用过程中,例如应用于虚拟现实眼镜中时,如图4所示(图中仅以一个狭缝为例),位于阵列基板1的中心的子像素11与人眼正对,从该子像素11对应的子光栅121射出的光线沿垂直于阵列基板1的方向射出;从其他子像素11对应的子光栅121射出的光线均与垂直于阵列基板1的方向有一定夹角。因此,位于阵列基板1的中心的子像素11对 应的子光栅121的具体结构与其他子光栅121的具体结构具有一定的差别。为了便于描述,本发明实施例中将位于阵列基板1的中心的子像素11对应的子光栅121定义为第一子光栅121’,将除第一子光栅121’外的子光栅121定义为第二子光栅121”。
首先,对第一子光栅121’的具体结构进行描述。由以上描述内容可知,从位于阵列基板1的中心的子像素11射出的光线的传播方向应沿垂直于阵列基板1的方向射出。因此,如图4所示,从第一子光栅121’射出的光线的出射角θ1满足θ1=90°,其中,出射角θ1为从第一子光栅121’射出的光线与光栅12所在平面之间的夹角。
具体地,当第一子光栅121’包括的狭缝的延伸方向与衬底基板10的靠近光源2的侧面(即,衬底基板的入光面)平行时,第一子光栅121’的光栅常数d1应满足狭缝光栅的衍射方程:d1(sinΦ1±sinΨ1)=kλ1,其中,Φ1为入射至第一子光栅121’的光线与第一子光栅121’的法线之间的夹角,Ψ1为从第一子光栅121’出射的光线与第一子光栅121’的法线之间的夹角,λ1为第一颜色的光线的波长,该第一颜色为第一子光栅121’对应的子像素11用于显示的颜色(例如,该子像素11用于显示红色时,λ1为红光波长),k为衍射级数,k=0,1,2,……。由图4可知,Φ1=90°-α,Ψ1=90°-θ1,并将θ1=90°,cosθ1=0代入上述衍射方程可得,d1cosα=kλ1,如无特殊说明在本发明实施例中均以k=1为例,将k=1代入d1cosα=kλ1可得
Figure PCTCN2016102865-appb-000010
接着,对第二子光栅121”的具体结构进行描述。
由以上所述可知,从第一子光栅121’射出的光线沿垂直于阵列基板1的方向射出。基于此情况,在一些实施例中,所有第二子光栅121”呈中心对称分布,对称中心为阵列基板1的中心,从而使得在对所有第二子光栅121”的具体结构进行设计的过程中,只要对由阵列基板1的中心的子像素11向外的预定方向上分布的第二子光栅121”的具体结构进行设计,阵列基板1上的其他位置处的第二子光栅121”的具体结构在该预定方向上的第二子光栅121”的具体结构的基础上进行简单的改变(例如旋转或者镜面对称等)即可,使得显示装置的制作方法较为简单。
示例性地,以上述预定方向为沿第一子光栅121’垂直指向衬底基板10的靠近光源2的侧面的方向为例,如图4所示,从预定方向上分布的第二子光栅121”射出的光线的出射角θ2满足,
Figure PCTCN2016102865-appb-000011
其中,出射角θ2为从第二子光栅121”射出的光线与第二子光栅121”所在平面之间的夹角,D为所述预定空间位置(例如人眼)与第二子光栅121”所在平面之间的垂直距离,L为在预定方向上,第二子光栅121”与第一子光栅121’之间的距离,即在预定方向上,第二子光栅121”的中心与第一子光栅121’的中心之间的距离。
具体地,第二子光栅121”的光栅常数d2也应满足狭缝光栅的衍射方程:d2(sinΦ2±sinΨ2)=kλ2,其中,Φ2为入射至第二子光栅121”的光线与第二子光栅121”的法线之间的夹角,Ψ2为从第二子光栅121”出射的光线与第二子光栅121”的法线之间的夹角,λ2为具有第二颜色的光线的波长,该第二颜色为该第二子光栅121”对应的子像素11用于显示的颜色(例如,该子像素11用于显示红色时,λ2为红光波长),k为衍射级数,k=0,1,2,……。由图4可知,Φ2=90°-α,Ψ2=90°-θ2,并将
Figure PCTCN2016102865-appb-000012
k=1代入上述衍射方程后计算可得,
Figure PCTCN2016102865-appb-000013
其中,当入射至第二子光栅121”的光线和从第二子光栅121”出射的光线位于第二子光栅121”的法线的同侧时,上述等式中取加号,当入射至第二子光栅121”的光线和从第二子光栅121”出射的光线位于第二子光栅121”的法线的异侧时,上述等式中取减号。
为了降低第二子光栅121”的设计难度,在一些实施例中,在预定方向上分布的第二子光栅121”包括的狭缝的有效数目、狭缝的宽度与第一子光栅121’相同。此时,只要使第二子光栅121”包括的狭缝具有倾斜角β,倾斜角β为第二子光栅121”中的狭缝的延伸方向与衬底基板10的靠近光源2的侧面之间的夹角,也就是使第二子光栅121”包括的狭缝的延伸方向与第一子光栅121’包括的狭缝的延伸方向之间具有夹角β,如图8所示,倾斜角β满足
Figure PCTCN2016102865-appb-000014
即可使第二子光栅121” 的光栅常数d2满足以上条件。由以上所述可知,
Figure PCTCN2016102865-appb-000015
Figure PCTCN2016102865-appb-000016
因此,
Figure PCTCN2016102865-appb-000017
进而计算可得,
Figure PCTCN2016102865-appb-000018
其中,以上各公式中的各参数的含义与以上提及的含义相同,此处不再进行赘述。
另外,由于阵列基板1上设置的子像素11通常包括用于显示红色的子像素11、用于显示绿色的子像素11和用于显示蓝色的子像素11,因此,本发明实施例中还提供一种对从各子光栅121射出的光线的强度进行调节的方式,使从各子像素12射出的光线的光强一致,从而使得从各子像素11射出的光线能够混成均匀的白光,有利于提升显示画面的均匀性,并使显示画面的色彩更真实。
示例性地,狭缝光栅的光强公式为
Figure PCTCN2016102865-appb-000019
其中,
Figure PCTCN2016102865-appb-000020
当该子光栅121为第一子光栅121’时,λ为上述λ1;当该子光栅121为第二子光栅121”时,λ为上述λ2。a为子光栅121包括的狭缝的宽度,d为子光栅121的光栅常数,N为子光栅121包括的狭缝的有效数目,θ为从子光栅121射出的光线的出射角,即从子光栅121射出的光线与子光栅121所在平面之间的夹角。类似地,当该子光栅121为第一子光栅121’时,θ为上述θ1;当该子光栅121为第二子光栅121”时,θ为上述θ2。I0为入射至子光栅121的波长为λ的光线的强度。类似地,当该子光栅121为第一子光栅121’时,λ对应第一颜色;当该子光栅121为第二子光栅121”时,λ对应第二颜色。因此,本发明实施例中可以通过调节子光栅121包括的狭缝的宽度a、子光栅121的光栅常数d和子光栅121包括的狭缝的有效数目N的方式调节从子光栅121射出的光线的强度。本领域技术人员结合以上公式即可得出通过以上各参数调节光强的具体方式,此处不再进行赘述。当然,对从各子光栅121射出的光线的强度进行调节的方式不 局限于以上所述,且对光线的强度进行调节后的有益效果也不局限于以上所述。
由第一种设计方式中描述可知,位于阵列基板1的中心的子像素11对应的子光栅121的具体结构与其他子光栅121的具体结构具有一定的差别。因此,为了便于描述,第二种设计方式中也定义位于阵列基板1的中心的子像素11对应的子光栅121为第一子光栅121’,定义除第一子光栅121’外的子光栅121为第二子光栅121”。
第二种设计方式中如图9所示,第一子光栅121’为狭缝光栅,第一子光栅121’的调节部分为第一子光栅121’包括的狭缝。所有第二子光栅121”均为闪耀光栅;闪耀光栅包括光栅面和槽面,各第二子光栅121”的调节部分分别为各第二子光栅121”的槽面。
具体地,当第一子光栅121’包括的狭缝的延伸方向与衬底基板10的靠近光源2的侧面平行时,第一子光栅121’的光栅常数d1应满足狭缝光栅的衍射方程:d1(sinΦ1±sinΨ1)=kλ1,其中,Φ1为入射至第一子光栅121’的光线与第一子光栅121’的法线之间的夹角,Ψ1为从第一子光栅121’出射的光线与第一子光栅121’的法线之间的夹角,λ1为第一颜色的光线的波长,该第一颜色为第一子光栅121’对应的子像素11用于显示的颜色(例如,该子像素11用于显示红色时,λ1为红光波长),k为衍射级数,k=0,1,2,……。由图4可知,Φ1=90°-α,Ψ1=90°-θ1,并将θ1=90°,cosθ1=0,k=1代入上述衍射方程可得,d1cosα=λ1,进而可得
Figure PCTCN2016102865-appb-000021
与第一种设计方式相类似,在一些实施例中,所有第二子光栅121”呈中心对称分布,对称中心为阵列基板1的中心,此方式的有益效果可以参见第一种设计方式中相关描述,此处不再进行赘述。
示例性地,仍以预定方向为沿第一子光栅121’垂直指向衬底基板10的靠近光源2的侧面的方向为例,在预定方向上分布的第二子光栅121”的闪耀角为γ,如图10所示。该闪耀角γ与从第二子光栅121”射出的光线与垂直于阵列基板1的方向之间的夹角η相等,由于
Figure PCTCN2016102865-appb-000022
所以
Figure PCTCN2016102865-appb-000023
在预定方向上分布的第二子光栅121”的光 栅常数为d2,由闪耀光栅的衍射公式2d2sinγ=λ2以及
Figure PCTCN2016102865-appb-000024
计算可得,
Figure PCTCN2016102865-appb-000025
其中,λ2为具有第二颜色的光线的波长,第二颜色为第二子光栅121”对应的子像素11用于显示的颜色,D为所述预定空间位置(例如人眼)与第二子光栅121”所在平面之间的垂直距离,L为在预定方向上,第二子光栅121”与第一子光栅121’之间的距离,即在预定方向上,第二子光栅121”的中心与第一子光栅121’的中心之间的距离。
另外,在第二种设计方式中,也可以对从每个子光栅121射出的光线的强度进行调节,其调节的方式与有益效果均与第一种设计方式类似,此处不再进行赘述。
在第三种设计方式中,所有子光栅121均为如图11所示的表面具有条形凸起和条形凹槽的衍射光栅。此时,从子光栅121射出的光线的出射角和光线的强度均与各条形凸起或者条形凹槽的倾斜角以及宽度有关,本领域技术人员参照第一种设计方式中的相关关系可以获得,此处不再进行赘述。
实施例二
本发明实施例以如图5所示,一个子像素11所在区域包括多个预设区域A,每个子像素11对应具有不同结构的多个子光栅121为例,对所有子光栅121的具体设计方式进行详细说明。
可选地,如图5所示,每个子像素11对应的具有不同结构的多个子光栅121均为狭缝光栅,且各子光栅121包括的狭缝的有效数目、狭缝的宽度均相同,且具有不同结构的子光栅121包括的狭缝的倾斜角β不同,以使从每个子像素11对应的具有不同结构的多个子光栅121射出的光线覆盖整个人眼,其中,倾斜角β为各子光栅121中的狭缝的延伸方向与衬底基板10的靠近光源2的侧面之间的夹角。
示例性地,每个子像素11对应的多个子光栅121的设计方式如下:每个子像素11对应的多个子光栅121中的一个子光栅121按照实施例一中进行设计,每个子像素11对应的多个子光栅121中的其他子光栅121在该已经设计好的子光栅121的基础上,通过在一定范围内增加或者减小狭缝的倾斜角获得。本领域技术人员结合该显示装置在使用过 程中,人眼与显示装置之间的距离、人眼的长度和实施例一中的内容即可得出每个子像素11对应的具有不同结构的多个子光栅121包括的狭缝的倾斜角β之间的最大差值,以使从该子像素11射出的光线能够覆盖人眼且不会造成光线的利用率的大幅降低。示例性地,当该显示装置应用于虚拟现实眼镜中时,人眼与显示装置之间的距离通常为5cm,且人眼的长度通常为3.5cm。因此,每个子像素11对应的具有不同结构的多个子光栅121包括的狭缝的倾斜角β之间的最大差值为30°~40°,以使从该子像素11射出的光线能够覆盖人眼且不会造成光线的利用率的大幅降低。
可选地,每个子像素11包括的多个子光栅121也可以均为闪耀光栅,且每个子像素11包括的各子光栅121具有相同的光栅常数d和不同的闪耀角γ,类似地,本领域技术人员结合人眼与显示装置之间的距离、人眼的尺寸和实施例一中的内容,即可得出和每个子像素11包括的多个子光栅121的闪耀角γ之间的最大差值。
需要说明的是,在如图7所示的实施例中,多个子像素11所在区域为一个预设区域A;位于同一预设区域A内的相邻的多个子像素11对应具有一种结构的子光栅121时,所有子光栅121的具体设计方式,本领域技术人员可以参照实施例一中描述,此处不再进行赘述。
此外,如图2所示,本发明实施例中的显示装置还包括与阵列基板1相对设置的彩膜基板3,以及设置于阵列基板1和彩膜基板3之间的液晶分子层4,当光源2发出的光线为线偏振光时,仅彩膜基板3背向阵列基板1的一面上设置有上偏振片31即可使显示装置正常显示;当光源2发出的光线为自然光时,不仅彩膜基板3背向阵列基板1的一面上设置有上偏振片31,显示装置还包括下偏振片13,下偏振片13设置于光源3与阵列基板1的衬底基板10之间或者设置于光栅12上。示例性地,该上偏振片31和下偏振片13为线栅式偏振片(Wire Grid Polarizer,简称WGP)。
此外,本发明实施例还提供了一种虚拟现实眼镜,该虚拟现实眼镜包括外壳以及位于外壳中的两个如上所述的显示装置,其中一个显示装置的预定空间位置对应于用户的左眼,另一个显示装置的预定空间位置对应于用户的右眼。由于本发明实施例提供的虚拟现实眼镜包括如上所述的显示装置,因此,该虚拟现实眼镜具有和上述显示装置 相同的有益效果,此处不再进行赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种显示装置,包括:
    阵列基板,阵列基板包括衬底基板、设置于衬底基板上的多个子像素以及设置于衬底基板上的光栅;所述光栅包括具有不同结构的多个子光栅,每个子光栅包括用以调节光线的传播方向的调节部分,从所述调节部分射出的光线汇聚至预定空间位置;所述阵列基板还包括多个预设区域,所述多个子光栅分别对应于位于不同的预设区域内的子像素;以及
    设置于衬底基板旁侧的光源;所述光源射出的光线为平行光;除各子光栅中的调节部分所在区域外,光线在阵列基板内全反射。
  2. 根据权利要求1所述的显示装置,其中,一个子像素所在区域为一个预设区域,一个子像素对应具有一种结构的子光栅。
  3. 根据权利要求2所述的显示装置,其中,所有子光栅均为狭缝光栅,子光栅的调节部分为子光栅包括的狭缝。
  4. 根据权利要求3所述的显示装置,其中,入射至所有子光栅上的光线的入射角为α,α为来自所述光源的光线与衬底基板所在平面之间的夹角;所述子光栅包括对应位于阵列基板的中心的子像素的第一子光栅、以及对应其他子像素的第二子光栅;从第一子光栅射出的光线的出射角为θ1,所述出射角θ1为从第一子光栅射出的光线与光栅所在平面之间的夹角,并且θ1=90°。
  5. 根据权利要求4所述的显示装置,其中,第一子光栅包括的狭缝的延伸方向与衬底基板的靠近光源的侧面平行,第一子光栅的光栅常数为d1
    Figure PCTCN2016102865-appb-100001
    其中,λ1为第一颜色的光线的波长,第一颜色为第一子光栅对应的子像素用于显示的颜色。
  6. 根据权利要求5所述的显示装置,其中,所有第二子光栅呈中心对称分布,对称中心为阵列基板的中心。
  7. 根据权利要求6所述的显示装置,其中,沿第一子光栅垂直指向衬底基板的靠近光源的侧面的方向为预定方向,从在预定方向上分布的第二子光栅射出的光线的出射角为θ2
    Figure PCTCN2016102865-appb-100002
    其中,D为所 述预定空间位置与第二子光栅所在平面之间的垂直距离,L为在预定方向上,第二子光栅与第一子光栅之间的距离。
  8. 根据权利要求7所述的显示装置,其中,第二子光栅的光栅常数为d2
    Figure PCTCN2016102865-appb-100003
    其中,λ2为具有第二颜色的光线的波长,第二颜色为第二子光栅对应的子像素用于显示的颜色;当入射至第二子光栅的光线和从第二子光栅出射的光线位于第二子光栅的同侧时,上述等式中取加号;当入射至第二子光栅的光线和从第二子光栅出射的光线位于第二子光栅的异侧时,上述等式中取减号。
  9. 根据权利要求8所述的显示装置,其中,在预定方向上分布的第二子光栅包括的狭缝的有效数目、狭缝的宽度与第一子光栅相同,且第二子光栅包括的狭缝具有倾斜角β,
    Figure PCTCN2016102865-appb-100004
  10. 根据权利要求3所述的显示装置,其中,从子光栅射出的光线的光强为I,
    Figure PCTCN2016102865-appb-100005
    其中,
    Figure PCTCN2016102865-appb-100006
    λ为子光栅对应的子像素显示的颜色的波长,a为子光栅包括的狭缝的宽度,d为子光栅的光栅常数,N为子光栅包括的狭缝的有效数目,θ为从子光栅射出的光线的出射角,I0为入射至子光栅的波长为λ的光线的强度。
  11. 根据权利要求2所述的显示装置,其中,所述子光栅包括对应位于阵列基板的中心的子像素的第一子光栅、以及对应其他子像素的第二子光栅;所述第一子光栅为狭缝光栅,第一子光栅的调节部分为第一子光栅包括的狭缝;所有第二子光栅均为闪耀光栅,各第二子光栅的调节部分分别为各第二子光栅的槽面。
  12. 根据权利要求11所述的显示装置,其中,第一子光栅包括的狭缝的延伸方向与衬底基板的靠近光源的侧面平行,第一子光栅的光栅常数为d1
    Figure PCTCN2016102865-appb-100007
    其中,λ1为第一颜色的光线的波长,第一颜色为第一子光栅对应的子像素用于显示的颜色。
  13. 根据权利要求11或12所述的显示装置,其中,所有第二子光栅呈中心对称分布,对称中心为阵列基板的中心。
  14. 根据权利要求13所述的显示装置,其中,沿第一子光栅垂直指向衬底基板的靠近光源的侧面的方向为预定方向,在预定方向上分布的第二子光栅的闪耀角为γ,
    Figure PCTCN2016102865-appb-100008
    在预定方向上分布的第二子光栅的光栅常数为d2
    Figure PCTCN2016102865-appb-100009
    其中,λ2为具有第二颜色的光线的波长,第二颜色为第二子光栅对应的子像素用于显示的颜色,D为所述预定空间位置与光栅所在平面之间的垂直距离,L为在预定方向上,第二子光栅与第一子光栅之间的距离。
  15. 根据权利要求2所述的显示装置,其中,所有子光栅均为表面具有条形凸起和条形凹槽的衍射光栅。
  16. 根据权利要求1所述的显示装置,其中,一个子像素所在区域包括多个预设区域,每个子像素对应具有不同结构的多个子光栅,以使从每个子像素对应的具有不同结构的多个子光栅射出的光线覆盖一定范围。
  17. 根据权利要求16所述的显示装置,其中,每个子像素对应的具有不同结构的多个子光栅均为狭缝光栅,且各子光栅包括的狭缝的有效数目、狭缝的宽度均相同,且具有不同结构的子光栅包括的狭缝的倾斜角β不同,倾斜角β为各子光栅中的狭缝的延伸方向与衬底基板的靠近光源的侧面之间的夹角。
  18. 根据权利要求17所述的显示装置,其中,每个子像素对应的具有不同结构的多个子光栅包括的狭缝的倾斜角β之间的最大差值为30°~40°。
  19. 根据权利要求1所述的显示装置,其中,相邻的多个子像素所在区域为一个预设区域,位于同一预设区域内的相邻的多个子像素对应具有一种结构的子光栅。
  20. 根据权利要求1所述的显示装置,其中,还包括与阵列基板相对设置的彩膜基板,以及设置于阵列基板和彩膜基板之间的液晶分子层,光源发出的光线为线偏振光,仅彩膜基板背向阵列基板的一面上设置有上偏振片,或者,光源发出的光线为自然光,彩膜基板背向阵列基板的一面上设置有上偏振片,且显示装置还包括下偏振片,下偏振片设置于光源与衬底基板的侧面之间或者设置于光栅上。
  21. 一种虚拟现实眼镜,包括外壳,其中,虚拟现实眼镜还包括位于外壳中的两个如权利要求1~20任一项所述的显示装置,其中一个显示装置的预定空间位置对应于用户的左眼,另一个显示装置的预定空间位置对应于用户的右眼。
PCT/CN2016/102865 2016-01-08 2016-10-21 显示装置和虚拟现实眼镜 WO2017118157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/525,931 US10234718B2 (en) 2016-01-08 2016-10-21 Display device and virtual reality glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610011823.3A CN106959510A (zh) 2016-01-08 2016-01-08 一种显示装置和虚拟现实眼镜
CN201610011823.3 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017118157A1 true WO2017118157A1 (zh) 2017-07-13

Family

ID=59273220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102865 WO2017118157A1 (zh) 2016-01-08 2016-10-21 显示装置和虚拟现实眼镜

Country Status (3)

Country Link
US (1) US10234718B2 (zh)
CN (1) CN106959510A (zh)
WO (1) WO2017118157A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479128A (zh) * 2017-09-21 2017-12-15 京东方科技集团股份有限公司 背光模组和显示装置
JP7368192B2 (ja) * 2019-11-15 2023-10-24 ファナック株式会社 加工方法及び物品
CN111077678A (zh) * 2020-01-13 2020-04-28 京东方科技集团股份有限公司 一种显示面板及显示装置
CN114755841B (zh) * 2022-03-25 2023-07-14 北京京东方技术开发有限公司 一种眼镜及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125337A2 (en) * 2009-04-27 2010-11-04 Milan Momcilo Popovich Compact holographic edge illuminated wearable display
CN103348278A (zh) * 2010-12-16 2013-10-09 洛克希德马丁公司 具有像素透镜的准直的显示器
US20140043320A1 (en) * 2012-08-08 2014-02-13 Carol Ann Tosaya Beamed-Pixel Retinal Displays
CN103885582A (zh) * 2012-12-19 2014-06-25 辉达公司 近眼微透镜阵列显示器
CN104246578A (zh) * 2012-04-25 2014-12-24 微软公司 用于头戴式光场显示器的基于可移动led阵列和微透镜阵列的光场投影仪
CN105093532A (zh) * 2015-08-03 2015-11-25 京东方科技集团股份有限公司 虚拟现实眼镜及显示方法
CN205281025U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置和虚拟现实眼镜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046827C1 (en) * 1989-07-20 2001-08-07 Honeywell Inc Optical reconstruction filter for color mosaic displays
JP4550008B2 (ja) * 2005-06-15 2010-09-22 富士フイルム株式会社 表示デバイス
WO2013167864A1 (en) * 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
PL2859402T3 (pl) * 2012-06-01 2018-08-31 Leia Inc. Podświetlenie kierunkowe z warstwą modulacji
CN202771132U (zh) * 2012-06-01 2013-03-06 京东方科技集团股份有限公司 一种液晶显示设备
US20140154920A1 (en) * 2012-12-03 2014-06-05 Pulse Electronics, Inc. Choke coil devices and methods of making and using the same
US10025170B2 (en) * 2016-06-13 2018-07-17 Microsoft Technology Licensing, Llc Avoiding interference by reducing spatial coherence in a near-eye display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125337A2 (en) * 2009-04-27 2010-11-04 Milan Momcilo Popovich Compact holographic edge illuminated wearable display
CN103348278A (zh) * 2010-12-16 2013-10-09 洛克希德马丁公司 具有像素透镜的准直的显示器
CN104246578A (zh) * 2012-04-25 2014-12-24 微软公司 用于头戴式光场显示器的基于可移动led阵列和微透镜阵列的光场投影仪
US20140043320A1 (en) * 2012-08-08 2014-02-13 Carol Ann Tosaya Beamed-Pixel Retinal Displays
CN103885582A (zh) * 2012-12-19 2014-06-25 辉达公司 近眼微透镜阵列显示器
CN105093532A (zh) * 2015-08-03 2015-11-25 京东方科技集团股份有限公司 虚拟现实眼镜及显示方法
CN205281025U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置和虚拟现实眼镜

Also Published As

Publication number Publication date
US10234718B2 (en) 2019-03-19
CN106959510A (zh) 2017-07-18
US20180081239A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
US10698217B2 (en) Diffractive backlight display and system
JP7495027B2 (ja) 光導波路、バックライト装置およびディスプレイ装置
TWI653478B (zh) 使用矩形波導的孔徑倍增器
WO2018072514A1 (zh) 显示装置及图像显示方法
WO2017118157A1 (zh) 显示装置和虚拟现实眼镜
JP5964500B2 (ja) 変調層を有する指向性バックライト
US9535253B2 (en) Display system
CN205281025U (zh) 一种显示装置和虚拟现实眼镜
JP6073470B2 (ja) 指向性バックライト
JP6403216B2 (ja) 指向性バックライトにおけるクロストークの抑制
WO2017117907A1 (zh) 一种3d显示装置
CN114207502A (zh) 具有全息漫射器显示器和透视透镜组件的显示设备
WO2018072508A1 (zh) 显示装置及其显示方法
CN109799568B (zh) 一种背光模组及显示装置
TW201610518A (zh) 液晶顯示器
CN110908134A (zh) 一种显示装置及显示系统
WO2017118007A1 (zh) 一种双视裸眼3d显示器件及其制作方法、液晶显示装置
WO2019210785A1 (zh) 液晶显示装置以及显示方法
WO2018227936A1 (zh) 一种液晶显示装置
WO2017177654A1 (zh) 一种显示装置
WO2017118048A1 (zh) 显示装置及其驱动方法
WO2017177671A1 (zh) 显示装置
US10859870B2 (en) 3D displays
US10365438B2 (en) Backlight unit, liquid crystal display and method of making the same
US20210341790A1 (en) Liquid crystal display apparatus and fabricating method thereof, back light and fabricating method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15525931

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883285

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883285

Country of ref document: EP

Kind code of ref document: A1