WO2017118091A1 - 偏光片及其制备方法、显示面板和显示装置 - Google Patents

偏光片及其制备方法、显示面板和显示装置 Download PDF

Info

Publication number
WO2017118091A1
WO2017118091A1 PCT/CN2016/099284 CN2016099284W WO2017118091A1 WO 2017118091 A1 WO2017118091 A1 WO 2017118091A1 CN 2016099284 W CN2016099284 W CN 2016099284W WO 2017118091 A1 WO2017118091 A1 WO 2017118091A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
polarizer
liquid metal
orientation
layer
Prior art date
Application number
PCT/CN2016/099284
Other languages
English (en)
French (fr)
Inventor
杨久霞
白峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/513,550 priority Critical patent/US10503003B2/en
Publication of WO2017118091A1 publication Critical patent/WO2017118091A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a polarizer and a method for fabricating the same, a display panel including the polarizer, and a display device including the display panel.
  • Liquid crystal display usually uses liquid crystal molecules with polarizers to achieve image display.
  • the LCD generally includes an array substrate and a color filter substrate disposed on the cartridge, and a liquid crystal layer, a polarizer, and a backlight filled between the array substrate and the color filter substrate.
  • the liquid crystal layer includes a plurality of liquid crystal molecules
  • the polarizer has a certain polarization direction, and the light having the same vibration direction and the polarization direction of the polarizer can pass through the polarizer.
  • the polarizer in the LCD generally includes an upper polarizer disposed on a backlight side of the array substrate and a lower polarizer disposed on a light exit side of the color filter substrate.
  • the inventors have found that at least the prior art has problems in that the conventional polarizer is generally formed of an organic material such as polyvinyl alcohol or cellulose triacetate, and the polarizer formed of these materials has poor weather resistance and cannot be used for projection display.
  • the display device of the energy excitation light source is generally formed of an organic material such as polyvinyl alcohol or cellulose triacetate, and the polarizer formed of these materials has poor weather resistance and cannot be used for projection display.
  • the present invention is directed to a problem that the conventional polarizer has poor weather resistance and cannot be used in a display device of a high-energy excitation light source such as a projection display, and provides a polarizer, a method for preparing the same, a display panel, and a display device.
  • a polarizer comprising:
  • the alignment layer is provided with a trench, and the extending direction of the trench is consistent with the orientation direction of the alignment layer;
  • a plurality of orientation structures formed in the trench, and a length direction of each of the alignment structures is parallel to an extending direction of the trench.
  • the surface of the alignment layer provided with the trench is provided with a cover layer, the trench
  • the alignment structure in the middle is sandwiched between the alignment layer and the cover layer; both ends of the groove are connected to the edge of the polarizer and open.
  • the cover layer is composed of a polyester film;
  • the alignment layer is composed of a polyimide material or an inorganic material.
  • a protective layer is disposed on the surface of the cover layer and/or the alignment layer opposite to the surface on which the groove is formed.
  • the cover layer or the surface of the alignment layer not formed with the trench is provided with an insulating layer.
  • the orientation result is a liquid metal structure formed by curing of the curable material within the trench.
  • the liquid metal structure is an alloy composed of at least two of lanthanum, gallium, lanthanum, potassium, sodium, indium, lithium, tin, antimony, zinc, antimony, magnesium, and aluminum.
  • the oriented liquid metal structure has a rod shape, and a long axis direction of the rod-shaped liquid metal structure is parallel to an extending direction of the groove.
  • a method of preparing a polarizer comprising the steps of:
  • Forming a trench on the alignment layer, and the extending direction of the trench is consistent with the orientation direction of the alignment layer;
  • a plurality of orientation structures are formed in the trench, and a length direction of each of the alignment structures is parallel to an extending direction of the trench.
  • forming a plurality of orientation structures in the trench comprises the steps of:
  • a mixture of a liquid metal and a curable material is poured into the trench, wherein a mass mixing ratio of the liquid metal to the curable material in the mixture is greater than or equal to 9:1;
  • the curable material is cured.
  • the step of applying an electric field parallel to the extending direction of the trench to the liquid metal, and stretching the liquid metal in an extending direction of the trench to form an orientation structure comprises: to the liquid state The metal applies an electric field parallel to the extending direction of the groove, and the liquid metal is stretched in the extending direction of the groove to form a rod shape A liquid metal structure, and a long axis direction of the rod-shaped liquid metal structure is parallel to an extending direction of the groove.
  • the curable material comprises an ultraviolet curable material or a thermosetting material.
  • the forming the plurality of orientation structures in the trench comprises the following steps:
  • the orientation structure is added to the trench.
  • forming a trench on the alignment layer and forming a plurality of alignment structures in the trench further comprising the step of forming a cap layer on the trench of the alignment layer, the trench is connected at both ends To the edge of the polarizer and open.
  • a protective layer on the surface of the cover layer and/or the alignment layer opposite to the surface on which the trench is formed.
  • a display panel includes a first substrate, a second substrate, and at least one of the above-mentioned polarizers disposed oppositely; each of the polarizers and the first substrate or the second substrate An adjacent setting.
  • a display device includes a display panel and a backlight, wherein the display panel is the display panel described above, and the backlight is a laser light source.
  • another display panel comprising a cover substrate and a polarizer, wherein the cover substrate and the polarizer are disposed adjacent to each other, and the polarizer is the polarizer described above.
  • another display device comprising a display panel, wherein the display panel is the display panel described above.
  • the orientation structure can exhibit large-scale deformation, directional motion, and self-rotation under a certain external electric field, thereby realizing the polarization of light.
  • the polarizer of the invention has high integration degree, simple process and low cost.
  • the polarizer of the present invention is suitable for use in various display devices, and since the polarizer of the present invention uses a material excellent in weather resistance as a base material, it can be used for laser light. In a display device such as a source of high energy light source.
  • FIG. 1 is a schematic structural view of a polarizer according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of another polarizer according to an embodiment of the present invention.
  • Figure 3 is a partial schematic view of the polarizer shown in Figure 2;
  • Figure 4 is a schematic view showing the state of use of the polarizer shown in Figure 2;
  • FIG. 5 is a flow chart of a method of preparing a polarizer according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a display panel according to an embodiment of the present invention.
  • the embodiment of the present invention provides a polarizer 1 , as shown in FIG. 1 to FIG. 4 , comprising: an alignment layer 11 , wherein the alignment layer 11 is provided with a trench 10 , and the extending direction of the trench 10 Consistent with the orientation direction of the alignment layer 11; and a plurality of alignment structures 12 formed in the trench 10, wherein the length direction of each of the alignment structures 12 is parallel to the extending direction of the trench 10.
  • the orientation structure 12 may be formed by curing of a curable material, and may have a shape such as a rod shape or an elliptical shape.
  • the direction perpendicular to the long axis direction of the orientation structure 12 is the polarization direction of the polarizer 1.
  • the shape of 12 may be elliptical.
  • the longitudinal direction of the orientation structure 12 is the long axis direction of the ellipse (ie, the horizontal direction in FIG. 3), and the short axis direction of the elliptical shape (ie, the vertical direction in FIG. 3) is the polarizer 1
  • the direction of polarization is the long axis direction of the ellipse (ie, the horizontal direction in FIG. 3)
  • the short axis direction of the elliptical shape ie, the vertical direction in FIG. 3
  • the orientation structure 12 can exhibit large-scale deformation, directional motion, and self-rotation under a certain external electric field, thereby realizing the polarization of the light.
  • the orientation structure 12 may include a material having high weather resistance (for example, liquid metal) to provide weather resistance of the polarizer 1.
  • the present invention preferably employs a liquid metal.
  • Liquid metal refers to an amorphous metal that can be thought of as a mixture of positive ion fluids and free electrons. Liquid metal has a universal deformation ability to switch between different forms and modes of motion at room temperature (20 ° C ⁇ 25 ° C).
  • a liquid metal structure of a liquid metal immersed in water exhibits large-scale deformation capability, spin, directional motion, and self-rotation under a certain voltage, and liquid metal structures can be fused, fractured, refused, etc.
  • the liquid metal can be used to form a liquid metal pattern, etc.; rather, a large liquid metal film can be shrunk into a single liquid metal ball in a few seconds, and the deformation process is very fast; Under the action of electric field, a large number of liquid metal spheres separated from each other can adhere to each other and merge until they are fused into a single liquid metal sphere; under the action of a predetermined electric field, the liquid metal structure can easily realize high-speed spin motion and induce surrounding The liquid metal structure rapidly spins to form a vortex pair in a fast spin state; if the electric field is properly adjusted, the liquid metal structure can also move rapidly in a predetermined direction.
  • the orientation structure 12 may be an alloy composed of at least two of lanthanum, gallium, germanium, potassium, sodium, indium, lithium, tin, antimony, zinc, antimony, magnesium, and aluminum.
  • the trench 10 shown in FIG. 1 is only schematic and cannot be used to limit the trench 10 in the practical application of the present invention.
  • the structure of the trench 10 may be a microstructure, and the width of the trench 10 may be on the order of It is in the order of nanometers.
  • the surface of the alignment layer 11 provided with the trench 10 may further be provided with a cover layer 13 in which the alignment structure 12 is sandwiched between the alignment layer 11 and the cover layer 13; Both ends of the trench 10 communicate with the edge of the polarizer 1 and form an opening. That is, as shown in FIG. 2, the orientation structure 12 is sandwiched between the alignment layer 11 and the cover layer 13.
  • the grooves 10 are arranged in parallel in a row, and can be adjusted according to the angle requirement of the polarizer 1 in a specific application.
  • the cover layer 13 may be composed of a polyester film (Polyester Film, abbreviated as PET).
  • PET Polyester Film
  • the cover layer 13 may be pasted on the face of the alignment layer 11 on which the groove 10 is formed by a patch process.
  • the cover layer 13 may be formed of other materials, that is, the material of the cover layer 13 is not Limited to PET diaphragms.
  • the alignment layer 11 may be composed of polyimide (Polyimide, PI for short) or inorganic material.
  • the specific formation process may be: coating, magnetron sputtering, thermal evaporation or plasma enhanced chemical vapor deposition (English: Plasma Enhanced Chemical Vapor Deposition, PECVD).
  • a PI material having a certain thickness is deposited on the carrier substrate, and the PI material is cured to obtain an alignment layer 11, and then the alignment layer 11 is oriented by a rubbing process or a photo-alignment process to form a trench on the alignment layer 11.
  • Slot 10 10.
  • the specific formation process may be: depositing a layer of inorganic material having a certain thickness on the carrier substrate by coating, magnetron sputtering, thermal evaporation or PECVD, and the inorganic material. Curing is performed to obtain the alignment layer 11, and then the alignment layer 11 is oriented by a micromachining process to form the trenches 10 on the alignment layer 11.
  • the micromachining process is a process such as a nanoimprinting process or a microelectromechanical system (MEMS). It should be noted that although the present embodiment is described by taking the alignment layer 11 from a PI material or an inorganic material as an example, the material of the alignment layer 11 may be other materials in practical applications.
  • the cover layer 13 and/or the surface of the alignment layer 11 opposite to the surface on which the trench 10 is formed may be provided with a protective layer 14.
  • the protective layer 14 may be formed of a silicide, and may be coated, magnetron sputtering, thermal evaporation, or PECVD on the surface of the cover layer 13 and/or the alignment layer 11 opposite to the surface on which the trench 10 is formed.
  • a silicide of a certain thickness is deposited as the protective layer 14.
  • the protective layer 14 may be formed by chemical reaction using an oxide, a nitride or an oxynitride compound, and the corresponding reaction gas may be a mixed gas of SiH 4 , NH 3 , N 2 or a mixture of SiH 2 Cl 2 , NH 3 , N 2 . gas. It should be noted that although the present embodiment is described by taking the silicide formation of the protective layer 14 as an example, the protective layer 14 may be formed of other materials in practical applications.
  • the cover layer 13 or the surface of the alignment layer 11 on which the trench 10 is not formed may be provided with an insulating layer 15. That is to say, an insulating layer 15 can be selectively disposed on the polarizer 1 of the embodiment.
  • an insulating layer 15 can be selectively disposed on the polarizer 1 of the embodiment.
  • the polarizer 1 of the present embodiment when the upper polarizer 1 disposed on the backlight side of the array substrate and the lower polarizer 1 disposed on the light exit side of the color filter substrate are both When the polarizer 1 of the present embodiment is employed, at least one of the upper polarizer 1 or the lower polarizer 1 may be provided with an insulating layer 15 for functioning the orientation structure 12 in the upper polarizer 1 and the lower polarizer 1. Insulate each other.
  • the polarizer 1 provided in this embodiment realizes the polarization function of the polarizer 1 by using the alignment structure 12, so that the polarization direction of the polarizer 1 is easily controlled, and the yield of the polarizer 1 is high.
  • the polarizer 1 of the invention has high design integration, simple process and low cost.
  • the polarizer 1 of the present invention is suitable for use in various display devices. Further, since the polarizer 1 of the present invention can use a material having excellent weather resistance (for example, liquid metal) as a base material, it can be used for a high-energy light source such as a laser light source. In the display device.
  • the embodiment of the present invention further provides a method for preparing the polarizer 1, as shown in FIG. 1-5, including steps S01 to S09.
  • step S01 an alignment layer 11 is formed on the carrier substrate.
  • polyimide Polyimide, abbreviated as: PI
  • PI polyimide
  • the carrier substrate may be a glass substrate such as a TFT glass substrate, a color film glass substrate, or a cover glass substrate of an OLED, and the like; and the coating may be any surface coated to the above substrate.
  • step S02 the alignment layer 11 is subjected to an alignment treatment to form a trench 10 whose extending direction coincides with the alignment direction of the alignment layer 11.
  • the orientation treatment process of this embodiment may employ a rubbing process or a photo-alignment process.
  • the photo-alignment process is performed on the orientation of the polarization direction of the polarizer 1, because the photo-alignment process has a high degree of consistency and no particle problem.
  • the purpose of the alignment treatment of the alignment layer 11 is to form the trench 10 so as to inject the alignment structure 12 into the trench 10, and the length direction of the alignment structure 12 is arranged along the extending direction of the trench 10.
  • the structure of the trench 10 can be a microstructure, and the width of the trench 10 can be on the order of nanometers.
  • the grooves 10 indicating the polarization direction of the light are arranged in parallel in a row, and in specific applications, the cutting can be performed according to the angular requirement of the polarizing plate 1.
  • step S03 a cover layer 13 is formed on the face of the alignment layer 11 having the groove 10, and both ends of the groove 10 communicate with the edge of the polarizer and form an opening.
  • an OCA (Optically Clear Adhesive) adhesive material is coated on a PET film, and then the OCA-coated side of the PET film is aligned with the formation of the alignment layer 11.
  • a pressure of, for example, 5 Pa is applied to the PET film to adhere it to the face on which the alignment layer 11 is formed with the groove 10
  • the PET film is baked, for example, at a temperature of 90 ° C for a while, for example At 10 min, the PET film was cured to be fixed on the face of the alignment layer 11 on which the grooves 10 were formed.
  • a cover layer 13 covering the trench 10 is formed on the surface of the trench 10.
  • the cover layer 13 covering the trench 10 may be formed by a PET film material and by a patch process and applying pressure.
  • step S04 an electrode is formed on the carrier substrate on which the above steps are completed for applying an electric field to the alignment structure 12.
  • a voltage is applied to the alignment structure 12 by the electrodes in order to achieve the orientation of the alignment structure 12 by applying an electric field such that the length direction of the alignment structure 12 is aligned along the extending direction of the trench 10.
  • the electrode may be a transparent electrode, and for example, an electrode may be fabricated using ITO.
  • the electrodes may be formed after the steps S01, S02, and S03 are completed, or the electrodes may be formed directly on the carrier substrate, and then the above steps S01, S02, and 03 are performed.
  • the electrode is preferably formed on the edge of the carrier substrate such that after the prepared polarizer is peeled off in a subsequent step, the electrode can be reused.
  • step S05 the material of the orientation structure 12 to be formed (for example, a mixture of liquid metal and curable material in this embodiment) is poured into the trench 10, wherein the mass ratio of the liquid metal to the curable material in the mixture is mixed. Can be greater than or equal to 9:1.
  • an ODF One Drop Fill
  • a mixture of the liquid metal and the curable material is dropped into the groove 10 from the opening at the other end, and after completion, the drip port (ie, the other end)
  • the sealing process may be performed by coating the OCA material on the PET film, then applying a pressure of, for example, about 5 Pa to cover the groove 10, and then curing it to complete the process.
  • CCD Charge-coupled Device, CCD for short
  • CCD Charge-coupled Device, CCD for short
  • the principle is similar to the principle of injecting liquid crystal in the liquid crystal cell of the display panel in the conventional liquid crystal display device.
  • the mixture of liquid metal and curable material can be filled into the trench by evacuating the trench.
  • step S6 an electric field or a magnetic field is applied to the carrier substrate on which the above steps are completed, and an alignment material (for example, a liquid metal in this embodiment) is subjected to orientation treatment to form the alignment structure 12.
  • an alignment material for example, a liquid metal in this embodiment
  • a voltage of 2-10 V is applied to the electrode for 10-30 s (seconds) to cause the electrode to apply an electric field of a predetermined intensity of 10-30 s to the alignment material, thereby causing each of the alignment materials to act along the electric field applied by the electrode.
  • the groove 10 is stretched in the extending direction to form a stretched shape (for example, a rod shape or an elliptical shape), and finally the longitudinal direction of each of the stretched orientation materials (ie, the stretching direction) and the extending direction of the groove 10. parallel.
  • the orientation structure 12 is a three-dimensional structure having a length and a thickness
  • the orientation direction is such that the thickness direction thereof is the positive direction of the polarizer 1, and the length direction thereof is perpendicular to the polarization direction, such a design realizes polarization of light. That is, when light is incident, only linearly polarized light can be passed, and other rays are blocked.
  • the curable material is cured to form a stable array of oriented structures 12.
  • the curing method of the curable material may be UV curing or thermal curing; the specific curing method depends on the composition of the curable material, if the curable material includes an unsaturated resin (such as polyurethane acrylic resin). And monomer materials (such as ethylenically unsaturated monomers) are cured by UV curing; if the curable materials include thermosetting resins, they are cured by heat curing.
  • unsaturated resin such as polyurethane acrylic resin
  • monomer materials such as ethylenically unsaturated monomers
  • the liquid metal has a high fluidity and exists in an arbitrary form under the action of an electric field and a magnetic field. This characteristic is advantageous for the polarizing plate used in the present invention, and therefore it is preferable to use a liquid metal as an orientation material.
  • the stable array of the present invention is such that the lengthwise directions of the respective alignment structures 12 are arranged in the same direction and are arranged in the designed trenches 10, so that the transmission of light can be controlled.
  • step S08 on the cover layer 13 or the orientation layer
  • the insulating layer 15 is formed on the surface on which the trench 10 is not formed.
  • the upper polarizer 1 and the lower polarizer 1 are used. At least one of them is required to be provided with an insulating layer 15 which is equivalent between the alignment structures 12 in the upper polarizer 1 and the lower polarizer 1, and functions to make the alignment structures in the upper polarizer 1 and the lower polarizer 1. 12 are insulated from each other.
  • the protective layer 14 may be formed on the surface of the cover layer 13 and/or the alignment layer 11 opposite to the surface on which the trench 10 is formed.
  • the protective layer 14 may be formed of a silicide, and a certain thickness is deposited on the surface of the cover layer 13 and/or the alignment layer 11 opposite to the surface on which the trench 10 is formed by coating, magnetron sputtering, thermal evaporation or PECVD.
  • the silicide is used as the protective layer 14, wherein the protective layer 14 can be formed by chemical reaction using an oxide, a nitride or an oxynitride compound, and the corresponding reaction gas may be a mixed gas of SiH 4 , NH 3 , N 2 or SiH 2 . a mixed gas of Cl 2 , NH 3 , and N 2 .
  • the step of forming the insulating layer 15 or the protective layer 14 on the surface of the alignment layer 11 where the trench 10 is not formed may be performed after the polarizer 1 is peeled off from the carrier substrate, or the insulating layer 15 may be formed on the carrier substrate in advance. Or after the protective layer 14, the steps S01, S02, and the like are performed.
  • a functional layer may be formed on the surface of the carrier substrate on which the above steps are completed, that is, the surface layer may be treated by a process of attaching or coating a film.
  • the surface layer may be treated by a process of attaching or coating a film.
  • an anti-reflection film can be formed on the basis of the above steps; or other surface treatments can be used to make anti-reflection, scratch-resistant, brightening, etc.
  • step S09 the completed polarizer 1 is peeled off from the carrier substrate, and the polarizer 1 is completed.
  • the embodiment of the present invention further provides another method for preparing a polarizer, which is similar to the preparation method provided by the above embodiment, except that in the embodiment, the plurality of orientation structures formed in the trench is an orientation material first. An oriented structure is formed and then the oriented structure is added to the trench.
  • the orientation material is prepared into an oriented structure before being poured into the trench.
  • the oriented structure is then directly poured into the trench.
  • Step S1 forming an alignment layer on the carrier substrate
  • Step S2 performing alignment treatment on the alignment layer to form a trench, and the extending direction of the trench is consistent with the orientation direction of the alignment layer;
  • Step S3 forming an orientation structure with an alignment material, then adding the orientation structure into the trench, and curing the alignment structure;
  • Step S4 forming a cover layer
  • Step S5 forming an insulating layer or a protective layer
  • step S6 the completed polarizer is peeled off from the carrier substrate to complete the preparation of the polarizer.
  • an embodiment of the present invention further provides a display panel including a first substrate 4, a second substrate 5, and at least one polarizer 1 of Embodiment 1. As shown in FIG. 6, the polarizer 1 It is disposed adjacent to either of the first substrate 4 or the second substrate 5.
  • the first substrate 4 may be a color filter substrate
  • the second substrate 5 may be an array substrate
  • the first substrate 4 may be an array substrate
  • the second substrate 5 may be a color filter substrate.
  • an embodiment of the present invention further provides a display panel comprising a cover substrate and a polarizer, wherein the cover substrate and the polarizer are disposed adjacent to each other, and the polarizer is the polarizer provided in the above embodiment.
  • the specific embodiments of the above embodiments may also be subjected to many changes; for example, the specific formation manner of the alignment layer may be selected according to actual conditions, or a corresponding functional layer may be added on the polarizer, for example, corresponding surface treatment, so that Anti-reflection, scratch resistance, brightening and other functions.
  • an embodiment of the invention further provides a display device comprising any of the above display panels.
  • the display device may be: a liquid crystal display panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, and a note Any product or component with display function, such as this computer, digital photo frame, and navigator.
  • the display device may include a display panel and a backlight, and the backlight is a laser light source.
  • the polarizer of the present invention uses a material excellent in weather resistance as a base material, it can be used in a display device of a high-energy light source such as a laser light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种偏光片及其制备方法、显示面板和显示装置,属于显示技术领域,其可解决现有的偏光片的耐候性不佳,无法用于投影显示等高能量激发光源的显示装置中的问题。偏光片(1)包括取向层(11),以及在取向层(11)的沟槽(10)内形成的多个取向结构(12),且每个取向结构(12)的长轴方向与沟槽(10)的长度方向平行。其中,取向结构(12)在一定的外部电场作用下能够呈现出大尺度变形能力、定向运动及自行旋转,从而实现对光的偏振取向。偏光片(1)设计集成度高、工艺简单,成本低。偏光片(1)适用于各种显示装置,另外,由于偏光片(1)采用耐候性优异的液态金属作为基础材料,因此其可以用于激光光源等光能量光源的显示装置中。

Description

偏光片及其制备方法、显示面板和显示装置 技术领域
本发明属于显示技术领域,具体涉及一种偏光片及其制备方法、包括该偏光片的显示面板和包括该显示面板的显示装置。
背景技术
液晶显示器(Liquid Crystal Display,简称:LCD)通常采用液晶分子配合偏光片实现图像的显示。具体地,LCD通常包括对盒设置的阵列基板和彩膜基板,以及填充在阵列基板和彩膜基板之间的液晶层、偏光片、背光源。其中,液晶层中包括多个液晶分子,偏光片具有一定的偏振方向,振动方向与偏光片的偏振方向相同的光线能够通过偏光片。LCD中的偏光片通常包括:上偏光片和下偏光片,上偏光片设置在阵列基板的背光侧,下偏光片设置在彩膜基板的出光侧。
发明人发现现有技术中至少存在如下问题:现有的偏光片一般由聚乙烯醇和三醋酸纤维素等有机材料形成,这些材料形成的偏光片的耐候性不佳,无法用于投影显示等高能量激发光源的显示装置中。
发明内容
本发明针对现有的偏光片的耐候性不佳,无法用于投影显示等高能量激发光源的显示装置中的问题,提供一种偏光片及其制备方法、显示面板、显示装置。
根据本发明的一方面,提供一种偏光片,包括:
取向层,所述取向层上设有沟槽,且所述沟槽的延伸方向与取向层的取向方向一致;
形成于所述沟槽内的多个取向结构,且每个所述取向结构的长度方向与所述沟槽的延伸方向平行。
可选地,所述取向层设有沟槽的面上设有覆盖层,所述沟槽 中的取向结构被夹在取向层和覆盖层之间;所述沟槽两端连通至偏光片边缘并开口。
可选地,所述覆盖层由聚酯薄膜构成;所述取向层由聚酰亚胺材料或者无机材料构成。
可选地,所述覆盖层和/或所述取向层与形成有沟槽的面相对的面上设有保护层。
可选地,所述覆盖层或所述取向层未形成有沟槽的面上设有绝缘层。
可选地,所述取向结果是液态金属结构,其由可固化材料固化形成在所述沟槽内。
可选地,所述液态金属结构是由铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种构成的合金。
可选地,所述取向液态金属结构呈棒状,并且所述棒状液态金属结构的长轴方向与所述沟槽的延伸方向平行。
根据本发明的另一方面,提供一种偏光片的制备方法,包括以下步骤:
在取向层上形成沟槽,且所述沟槽的延伸方向与取向层的取向方向一致;
在所述沟槽内形成多个取向结构,且每个所述取向结构的长度方向与所述沟槽的延伸方向平行。
可选地,在所述沟槽内形成多个取向结构包括以下步骤:
将液态金属与可固化材料的混合物灌注于沟槽内,其中,混合物中液态金属与可固化材料的质量混合比例大于或等于9:1;
向所述液态金属施加平行于所述沟槽的延伸方向的电场,将所述液态金属沿所述沟槽的延伸方向拉伸形成取向结构;
对所述可固化材料进行固化。
可选地,所述向所述液态金属施加平行于所述沟槽的延伸方向的电场,将所述液态金属沿所述沟槽的延伸方向拉伸形成取向结构的步骤包括:向所述液态金属施加平行于所述沟槽的延伸方向的电场,将所述液态金属沿所述沟槽的延伸方向拉伸形成棒状 液态金属结构,并且所述棒状液态金属结构的长轴方向与所述沟槽的延伸方向平行。
可选地,所述可固化材料包括紫外固化材料或热固化材料。
可选地,所述在所述沟槽内形成多个取向结构包括以下步骤:
用液态金属形成取向结构;
将取向结构加入沟槽内。
可选地,在所述取向层上形成沟槽与在所述沟槽内形成多个取向结构之间,还包括在取向层的沟槽上形成覆盖层的步骤,所述沟槽两端连通至偏光片边缘并开口。
可选地,在所述沟槽内形成多个取向结构后,还包括在所述覆盖层和/或所述取向层与形成有沟槽的面相对的面上形成保护层的步骤。
可选地,在所述沟槽内形成多个取向结构后,还包括在所述覆盖层或所述取向层未形成有沟槽的面上形成绝缘层的步骤。
根据本发明的另一方面,提供一种显示面板,包括相对设置的第一基板、第二基板和至少一片上述的偏光片;每一片所述偏光片与第一基板或第二基板中的任一个相邻设置。
根据本发明的另一方面,提供一种显示装置,包括显示面板和背光源,其特征在于,所述显示面板为上述的显示面板,所述背光源为激光光源。
根据本发明的另一方面,提供另一种显示面板,包括盖板基板和偏光片,其特征在于,所述盖板基板和偏光片相邻设置,所述偏光片为上述的偏光片。
根据本发明的另一方面,提供另一种显示装置,包括显示面板,其特征在于,所述显示面板为上述的显示面板。
本发明的偏光片中,取向结构在一定的外部电场作用下能够呈现出大尺度变形、定向运动及自行旋转,从而实现对光的偏振进行取向。本发明的偏光片设计集成度高、工艺简单,成本低。本发明的偏光片适用于各种显示装置,另外,由于本发明的偏光片采用耐候性优异的材料作为基础材料,因此其可以用于激光光 源等高能量光源的显示装置中。
附图说明
图1为根据本发明的实施例的偏光片的结构示意图;
图2为根据本发明的实施例的另一偏光片的结构示意图;
图3为图2所示偏光片的局部示意图;
图4为图2所示偏光片的使用状态的示意图;
图5为根据本发明的实施例的偏光片的制备方法的流程图;
图6为根据本发明的实施例的显示面板的结构示意图。
取向
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
一方面,本发明实施例提供一种偏光片1,如图1至图4所示,包括:取向层11,所述取向层11上设有沟槽10,且所述沟槽10的延伸方向与取向层11的取向方向一致;以及形成在所述沟槽10内的多个取向结构12,其中每个所述取向结构12的长度方向与所述沟槽10的延伸方向平行。
取向结构12可由可固化材料固化形成,并且可具有棒状或椭圆形等形状。与取向结构12的长轴方向垂直的方向即是偏光片1的偏振方向。例如,12的形状可为椭圆形。在这种情况下,取向结构12的长度方向为椭圆的长轴方向(即,图3中的水平方向),椭圆形的短轴方向(即,图3中的竖直方向)为偏光片1的偏振方向。
取向结构12在一定的外部电场作用下能够呈现出大尺度变形、定向运动及自行旋转,从而实现对光的偏振进行取向。另外,取向结构12可包括耐候性高的材料(例如,液态金属),以提供偏光片1的耐候性。
作为形成取向结构12的材料,本发明优选采用液态金属。液态金属是指一种不定型金属,其可看作是由正离子流体和自由电子组成的混合物。液态金属在室温(20℃~25℃)下具有在不同形态和运动模式之间转换的普适变形能力。例如,浸没于水中的液态金属的液态金属结构可在一定电压作用下呈现出大尺度变形能力、自旋、定向运动及自行旋转,且液态金属结构之间可以融合、断裂、再融合等,因此,可利用液态金属的这种性质形成液态金属图案(pattern)等;较为独特的是,一片很大的液态金属薄膜可在数秒内收缩为单颗液态金属球,其变形过程十分快速;此外,在电场作用下,大量彼此分离的液态金属球可发生相互粘连及合并,直至融合成单一的液态金属球;在预定电场的作用下,液态金属结构极易实现高速的自旋运动,并诱发周围的液态金属结构快速自旋,形成处于快速自旋状态下的漩涡对;若适当调整电场,液态金属结构还可以按照预定方向快速移动。
优选的,所述取向结构12可以是由铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种构成的合金。
图1所示的沟槽10只是示意性的,并不能用以限制本发明实际应用中的沟槽10,实际应用中,沟槽10的结构可为微结构,沟槽10的宽度的数量级可为纳米量级。
优选的,所述取向层11的设有沟槽10的面上还可设有覆盖层13,所述沟槽10中的取向结构12被夹在取向层11和覆盖层13之间;所述沟槽10两端连通至偏光片1边缘并形成开口。也就是说,如图2所示,取向结构12被夹在取向层11和覆盖层13之间。沟槽10成行平行排布,具体应用时可以根据偏光片1的角度需求进行调整。
优选的,所述覆盖层13可由聚酯薄膜(英文:Polyester Film,简称:PET)构成。在这种情况下,覆盖层13可以采用贴片工艺粘贴在取向层11形成有沟槽10的面上。需要说明的是,虽然本实施例以覆盖层13由PET膜形成为例进行说明,但是实际应用中,覆盖层13还可以由其他的材料形成,即,覆盖层13的材料并不 局限于PET膜片。
优选地,所述取向层11可由聚酰亚胺(英文:Polyimide,简称:PI)或者无机材料构成。当取向层11由PI材料形成时,其具体形成过程可以为:采用涂覆、磁控溅射、热蒸发或者等离子体增强化学气相沉积法(英文:Plasma Enhanced Chemical VaporDeposition,简称:PECVD)等方法在载体基板上沉积一层具有一定厚度的PI材料,并对PI材料进行固化得到取向层11,之后采用摩擦(Rubbing)工艺或者光取向工艺对取向层11进行取向,使取向层11上形成沟槽10。当取向层11由无机材料形成时,其具体形成过程可以为:采用涂覆、磁控溅射、热蒸发或者PECVD等方法在载体基板上沉积一层具有一定厚度的无机材料,并对无机材料进行固化得到取向层11,之后采用微加工工艺对取向层11进行取向,使取向层11上形成沟槽10。微加工工艺为如纳米压印工艺、微机电系统(英文:Microelectromechanical Systems,简称:MEMS)等工艺。需要说明的是,虽然本实施例以取向层11由PI材料或无机材料形成为例进行说明,但是实际应用中,取向层11的材料还可以为其他材料。
优选的,所述覆盖层13和/或所述取向层11的与形成有沟槽10的面相对的面上可设有保护层14。保护层14可以由硅化物形成,可采用涂覆、磁控溅射、热蒸发或者PECVD的方法在覆盖层13和/或所述取向层11的与形成有沟槽10的面相对的面上沉积一定厚度的硅化物作为保护层14。保护层14可以选用氧化物、氮化物或氧氮化合物进行化学反应来生成,对应的反应气体可以为SiH4、NH3、N2的混合气体或SiH2Cl2、NH3、N2的混合气体。需要说明的是,虽然本实施例以保护层14由硅化物形成为例进行说明,但是实际应用中,保护层14还可以由其他的材料形成。
优选的,所述覆盖层13或所述取向层11未形成有沟槽10的面上可设有绝缘层15。也就是说,本实施例的偏光片1上还可以选择性的设置一层绝缘层15。如图4所示,当设置在阵列基板的背光侧的上偏光片1和设置在彩膜基板的出光侧的下偏光片1均 采用本实施例的偏光片1时,则在上偏光片1或下偏光片1中的至少一个可设有绝缘层15,其作用是使得上偏光片1和下偏光片1中的取向结构12相互绝缘。
综上所述,本实施例提供的偏光片1,采用取向结构12实现偏光片1的偏振功能,使得偏光片1的偏振方向容易控制,偏光片1的良率较高。本发明的偏光片1设计集成度高、工艺简单,成本低。本发明的偏光片1适用于各种显示装置,另外,由于本发明的偏光片1可采用耐候性优异的材料(例如,液态金属)作为基础材料,因此其可以用于激光光源等高能量光源的显示装置中。
另一方面,本发明实施例还提供一种偏光片1的制备方法,如图1-5所示,包括步骤S01至步骤S09。
在步骤S01,在载体基板上形成取向层11。
例如,将聚酰亚胺(Polyimide,简称:PI)涂布至载体基板上,然后对涂布在载体基板上的聚酰亚胺进行固化,得到取向层11。所述载体基板可以是玻璃基板,例如:TFT玻璃基板、彩膜玻璃基板、或OLED的盖板玻璃基板等;并且所述涂布可以是涂布至上述基板的任意表面。
在步骤S02,对取向层11进行取向处理,形成沟槽10,所述沟槽10的延伸方向与取向层11的取向方向一致。
本实施例的取向处理工艺可以采用摩擦工艺,也可以采用光取向工艺。本实施例优选光取向工艺进行对偏光片1偏振方向的取向设计,这是由于光取向工艺一致性程度高且没有粒子问题。
也就是说,对取向层11进行取向处理的目的是为了形成沟槽10,以便将取向结构12灌注在此沟槽10内,且取向结构12的长度方向沿着沟槽10延伸方向排列。沟槽10的结构可为微结构,沟槽10的宽度的数量级可为纳米量级。指示光偏振方向的沟槽10是成行平行排布,具体应用时,可以根据偏光片1的角度需求进行裁切。
在步骤S03,在取向层11具有沟槽10的面上形成覆盖层13,所述沟槽10两端连通至偏光片边缘并形成开口。
例如,将OCA(Optically Clear Adhesive,用于胶结透明光学元件的粘胶剂)材料涂布在PET膜片上,然后,将PET膜片的涂覆有OCA的一面对准取向层11的形成有沟槽10的面之后,向PET膜片施加例如5Pa的压力使其粘贴在取向层11形成有沟槽10的面上,然后例如在90℃的温度下烘烤PET膜片一段时间,例如10min,对PET膜片进行固化,使其固定在取向层11形成有沟槽10的面上。
也就是说,在沟槽10表面上形成覆盖沟槽10的覆盖层13。可采用PET膜片材料并采用贴片工艺、施加压力的方式形成将沟槽10覆盖的覆盖层13。
在步骤S04,在完成上述步骤的载体基板上制作电极,用于对取向结构12施加电场。
通过电极对取向结构12施加电压,目的是通过施加电场使得取向结构12的长度方向沿着沟槽10的延伸方向排列,实现取向结构12的取向。需要说明的是,电极可为透明电极,例如可采用ITO制作电极。此外,可以在完成步骤S01、S02、S03后制作电极,也可以先直接在载体基板上形成电极,然后再进行上述的步骤S01、S02、03。电极优选形成在载体基板边缘,这样在后续步骤中剥离制备好的偏光片后,电极可重复利用。
在步骤S05,将待形成取向结构12的材料(例如,本实施例中为液态金属与可固化材料的混合物)灌注于沟槽10内,其中,混合物中液态金属与可固化材料的质量混合比例可大于或等于9:1。
例如,采用ODF(One Drop Fill)工艺将沟槽的一端开口密封,将液态金属与可固化材料的混合物从另一端的开口滴入沟槽10内,完成后对滴注口(即,另一端开口)进行密封;密封工艺可以是将OCA材料涂布在PET膜材上,然后施加例如5Pa左右的压力将沟槽10覆盖,然后将其固化,完成此工艺。可通过CCD (Charge-coupled Device,简称:CCD)检查,保证填充的均匀性。其原理类似于现有的液晶显示装置中在显示面板的液晶盒内灌注液晶的原理。也可以不采用ODF,而是通过将沟槽抽真空,将液态金属与可固化材料的混合物填充至沟槽。
在步骤S6,向完成上述步骤的载体基板上施加电场或磁场,对取向材料(例如,本实施例中为液态金属)进行定向处理使之形成取向结构12。
例如,向电极施加2-10V的电压10-30s(秒),以使得电极向取向材料施加10-30s的预定强度的电场,从而使每个取向材料在电极施加的电场的作用下,沿自身所在沟槽10的延伸方向拉伸,形成拉伸的形状(例如,棒状或椭圆形),最终每个拉伸后的取向材料的长度方向(即,拉伸方向)与沟槽10的延伸方向平行。
由于取向结构12是具有长度和厚度的三维立体结构,通过定向处理使得其厚度方向作为偏光片1的偏正方向,而其长度方向则垂直于该偏振方向,这样的设计就实现了光的偏振,即,当光线入射时,只能通过线性的偏振光,其他光线被阻挡。
在步骤S7,对可固化材料进行固化处理,使取向结构12形成稳定的阵列。
例如,可固化材料的固化方式可以采用紫外光固化方式,也可以采用热固化的方式;具体的固化方式取决于可固化材料的构成,如果可固化材料包括不饱和树脂(如聚氨酯类丙烯酸树脂)和单体材料(如乙烯性不饱和单体),则采用紫外光固化的方式进行固化;如果可固化材料包括热固化树脂,则采用热固化的方式进行固化。
液态金属具有很高的流动性,并且在电场和磁场作用下会以任意形态存在,这一特性对应用于本发明的偏振片是有利的,因此优选利用液态金属作为取向材料。本发明的稳定阵列就是各个取向结构12的长度方向沿着同一方向排列,并且是排列在所设计的沟槽10内,如此可以控制光线的透过与否。
在步骤S08(可选工艺),可以在覆盖层13上或所述取向层 11未形成有沟槽10的面上形成绝缘层15。当设置在阵列基板的背光侧的上偏光片1和设置在彩膜基板的出光侧的下偏光片1均采用本实施例的偏光片1时,则在上偏光片1和下偏光片1中的至少一个需要设有绝缘层15,绝缘层15相当于处于上偏光片1与下偏光片1中的取向结构12之间,其作用是使得上偏光片1和下偏光片1中的取向结构12相互绝缘。
或者,可以在覆盖层13和/或取向层11的与形成有沟槽10的面相对的面上形成保护层14。保护层14可以由硅化物形成,采用涂覆、磁控溅射、热蒸发或者PECVD的方法在覆盖层13和/或取向层11的与形成有沟槽10的面相对的面上沉积一定厚度的硅化物作为保护层14,其中,保护层14可以选用氧化物、氮化物或氧氮化合物进行化学反应来生成,对应的反应气体可以为SiH4、NH3、N2的混合气体或SiH2Cl2、NH3、N2的混合气体。
上述的在取向层11未形成有沟槽10的面上形成绝缘层15或保护层14的步骤可以在将偏光片1从载体基板上剥离后进行,也可以事先在载体基板上形成绝缘层15或保护层14后再进行步骤S01、S02等。
可选的,可以在完成上述步骤的载体基板表面形成功能层,也就是说,可以采用贴附或者涂膜的工艺对其表层进行处理。例如:若需要偏光片1具有一定的防反射能力,那就在上述步骤基础上做一层防反射的膜即可;或者做其它表面处理,使其具有抗反射、耐刮伤、增亮等功能。
在步骤S09,将制作完成的偏光片1从载体基板上剥离,完成制作偏光片1。
本发明实施例还提供了另一种偏光片的制备方法,其与上述实施例提供的制备方法类似,区别仅在于,本实施例中,在沟槽内形成多个取向结构是先用取向材料形成取向结构,然后将取向结构加入沟槽内。
也就是说,在向沟槽灌注前,先将取向材料制备成取向结构, 然后直接将取向结构灌注至沟槽内。
具体的步骤如下:
步骤S1、在载体基板上形成取向层;
步骤S2、对取向层料进行取向处理,形成沟槽,且所述沟槽的延伸方向与取向层的取向方向一致;
步骤S3、用取向材料形成取向结构,然后将取向结构加入沟槽内,并将取向结构固化;
步骤S4、形成覆盖层;
步骤S5、形成绝缘层或保护层;
步骤S6、将制作完成的偏光片从载体基板上剥离,完成制作偏光片。
又一方面,本发明实施例还提供一种显示面板,包括相对设置的第一基板4、第二基板5和至少一片实施例1的偏光片1,如图6所示,所述偏光片1与第一基板4或第二基板5中的任一个相邻设置。其中,所述第一基板4可为彩膜基板,所述第二基板5可为阵列基板;或者第一基板4可为阵列基板,所述第二基板5可为彩膜基板。
在另一方面,本发明实施例还提供一种显示面板,包括盖板基板和偏光片,所述盖板基板和偏光片相邻设置,所述偏光片为上述实施例提供的的偏光片。
显然,上述各实施例的具体实施方式还可进行许多变化;例如:取向层的具体形成方式可以根据实际情况进行选择,或者在偏光片上增加相应的功能层,例如相应的表面处理,使其具有抗反射、耐刮伤、增亮等功能。
在另一发明,本发明实施例还提供了一种显示装置,其包括上述任意一种显示面板。所述显示装置可以为:液晶显示面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记 本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
优选的,所述显示装置可包括显示面板和背光源,所述背光源为激光光源。由于本发明的偏光片采用耐候性优异的材料作为基础材料,因此其可以用于激光光源等高能量光源的显示装置中。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (18)

  1. 一种偏光片,其特征在于,包括:
    取向层,所述取向层上设有沟槽,且所述沟槽的延伸方向与取向层的取向方向一致;
    形成于所述沟槽内的多个取向结构,且每个所述取向结构的长度方向与所述沟槽的延伸方向平行。
  2. 根据权利要求1所述的偏光片,其特征在于,所述取向层设有沟槽的面上设有覆盖层,所述沟槽中的取向结构被夹在取向层和覆盖层之间;所述沟槽两端连通至偏光片边缘并开口。
  3. 根据权利要求2所述的偏光片,其特征在于,所述覆盖层由聚酯薄膜构成;所述取向层由聚酰亚胺材料或者无机材料构成。
  4. 根据权利要求2所述的偏光片,其特征在于,所述覆盖层和/或所述取向层与形成有沟槽的面相对的面上设有保护层。
  5. 根据权利要求2所述的偏光片,其特征在于,所述覆盖层或所述取向层未形成有沟槽的面上设有绝缘层。
  6. 根据权利要求1所述的偏光片,其特征在于,所述取向结果是液态金属结构,其由可固化材料固化形成在所述沟槽内。
  7. 根据权利要求6所述的偏光片,其特征在于,所述液态金属结构是由铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种构成的合金。
  8. 根据权利要求6所述的偏光片,其特征在于,所述取向液态金属结构呈棒状,并且所述棒状液态金属结构的长轴方向与所 述沟槽的延伸方向平行。
  9. 一种偏光片的制备方法,其特征在于,包括以下步骤:
    在取向层上形成沟槽,且所述沟槽的延伸方向与取向层的取向方向一致;
    在所述沟槽内形成多个取向结构,且每个所述取向结构的长度方向与所述沟槽的延伸方向平行。
  10. 根据权利要求9所述偏光片的制备方法,其特征在于,在所述沟槽内形成多个取向结构包括以下步骤:
    将液态金属与可固化材料的混合物灌注于沟槽内,其中,混合物中液态金属与可固化材料的质量混合比例大于或等于9:1;
    向所述液态金属施加平行于所述沟槽的延伸方向的电场,将所述液态金属沿所述沟槽的延伸方向拉伸形成取向结构;
    对所述可固化材料进行固化。
  11. 根据权利要求10所述偏光片的制备方法,其特征在于,所述向所述液态金属施加平行于所述沟槽的延伸方向的电场,将所述液态金属沿所述沟槽的延伸方向拉伸形成取向结构的步骤包括:向所述液态金属施加平行于所述沟槽的延伸方向的电场,将所述液态金属沿所述沟槽的延伸方向拉伸形成棒状液态金属结构,并且所述棒状液态金属结构的长轴方向与所述沟槽的延伸方向平行。
  12. 根据权利要求10所述偏光片的制备方法,其特征在于,所述可固化材料包括紫外固化材料或热固化材料。
  13. 根据权利要求9所述偏光片的制备方法,其特征在于,所述在所述沟槽内形成多个取向结构包括以下步骤:
    用液态金属形成取向结构;
    将取向结构加入沟槽内。
  14. 根据权利要求9所述偏光片的制备方法,其特征在于,在所述取向层上形成沟槽与在所述沟槽内形成多个取向结构之间,还包括在取向层的沟槽上形成覆盖层的步骤,所述沟槽两端连通至偏光片边缘并开口。
  15. 根据权利要求14所述偏光片的制备方法,其特征在于,在所述沟槽内形成多个取向结构后,还包括在所述覆盖层和/或所述取向层与形成有沟槽的面相对的面上形成保护层的步骤。
  16. 根据权利要求13所述偏光片的制备方法,其特征在于,在所述沟槽内形成多个取向结构后,还包括在所述覆盖层或所述取向层未形成有沟槽的面上形成绝缘层的步骤。
  17. 一种显示面板,包括相对设置的第一基板、第二基板,其特征在于,所述第一基板、第二基板中的至少一个基板上设有权利要求1-7中任一项所述的偏光片。
  18. 一种显示装置,其特征在于,包括权利要求17所述的显示面板。
PCT/CN2016/099284 2016-01-04 2016-09-19 偏光片及其制备方法、显示面板和显示装置 WO2017118091A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/513,550 US10503003B2 (en) 2016-01-04 2016-09-19 Polarizer and method for producing the same, display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610006848.4 2016-01-04
CN201610006848.4A CN105425329B (zh) 2016-01-04 2016-01-04 一种偏光片及其制备方法、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2017118091A1 true WO2017118091A1 (zh) 2017-07-13

Family

ID=55503652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099284 WO2017118091A1 (zh) 2016-01-04 2016-09-19 偏光片及其制备方法、显示面板和显示装置

Country Status (3)

Country Link
US (1) US10503003B2 (zh)
CN (1) CN105425329B (zh)
WO (1) WO2017118091A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425329B (zh) * 2016-01-04 2019-01-22 京东方科技集团股份有限公司 一种偏光片及其制备方法、显示面板和显示装置
CN106019449A (zh) * 2016-05-27 2016-10-12 京东方科技集团股份有限公司 偏光膜层、显示装置及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049766A (ko) * 2008-11-04 2010-05-13 (주)세현 편광 소자의 제조 방법
JP2012073515A (ja) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd 位相差フィルム、偏光子付き位相差フィルム、および液晶表示装置
JP2013003345A (ja) * 2011-06-16 2013-01-07 Dainippon Printing Co Ltd 位相差フィルム、偏光子付き位相差フィルム、および液晶表示装置
CN104316990A (zh) * 2014-11-24 2015-01-28 京东方科技集团股份有限公司 导光板及其制作方法、背光模组和液晶显示装置
CN104849906A (zh) * 2015-06-11 2015-08-19 京东方科技集团股份有限公司 偏光片及其制造方法、显示装置
CN105093568A (zh) * 2015-08-10 2015-11-25 京东方科技集团股份有限公司 显示器件及装置、液态金属材料及制备模具、方法和装置
CN105425329A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种偏光片及其制备方法、显示面板和显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096735B2 (ja) * 2006-12-05 2012-12-12 Jx日鉱日石エネルギー株式会社 ワイヤグリッド型偏光子及びその製造方法、並びにそれを用いた位相差フィルム及び液晶表示素子
JP2012141533A (ja) * 2011-01-06 2012-07-26 Canon Inc ワイヤーグリッド偏光板の製造方法およびワイヤーグリッド偏光板
KR101771138B1 (ko) * 2011-05-13 2017-08-25 삼성전자주식회사 와이어 그리드 편광자, 상기 와이어 그리드 편광자의 제조 방법 및 상기 와이어 그리드 편광자를 포함하는 디스플레이 패널

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049766A (ko) * 2008-11-04 2010-05-13 (주)세현 편광 소자의 제조 방법
JP2012073515A (ja) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd 位相差フィルム、偏光子付き位相差フィルム、および液晶表示装置
JP2013003345A (ja) * 2011-06-16 2013-01-07 Dainippon Printing Co Ltd 位相差フィルム、偏光子付き位相差フィルム、および液晶表示装置
CN104316990A (zh) * 2014-11-24 2015-01-28 京东方科技集团股份有限公司 导光板及其制作方法、背光模组和液晶显示装置
CN104849906A (zh) * 2015-06-11 2015-08-19 京东方科技集团股份有限公司 偏光片及其制造方法、显示装置
CN105093568A (zh) * 2015-08-10 2015-11-25 京东方科技集团股份有限公司 显示器件及装置、液态金属材料及制备模具、方法和装置
CN105425329A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种偏光片及其制备方法、显示面板和显示装置

Also Published As

Publication number Publication date
US20180231833A1 (en) 2018-08-16
US10503003B2 (en) 2019-12-10
CN105425329A (zh) 2016-03-23
CN105425329B (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2016197493A1 (zh) 偏光片及其制造方法、显示装置
CN102645790B (zh) 液晶光学元件及液晶光学元件的制造方法
US10429692B2 (en) Liquid crystal display panel and fabrication method
KR20080073252A (ko) 플렉서블 액정 디스플레이
US20070268446A1 (en) Liquid crystal device and method for forming the same
US9366904B2 (en) Liquid crystal display panel with multi-domain horizontally aligned liquid crystal layer and manufacture method thereof and liquid crystal display device
WO2017118091A1 (zh) 偏光片及其制备方法、显示面板和显示装置
US20170003534A1 (en) Display panel and display device
JP2009037175A (ja) 液晶表示装置
US11604373B2 (en) Electrically controllable viewing angle switch device and display apparatus
US10082703B2 (en) Composite substrate and methods for fabricating the same, and liquid crystal display panel
KR102162886B1 (ko) 나노캡슐 액정층을 포함하는 액정표시장치
KR102009821B1 (ko) 편광판과 그 제조 방법 및 이를 포함하는 액정표시장치
WO2018113061A1 (zh) 阵列基板、彩膜基板及液晶面板
US20140024280A1 (en) Method for making liquid crystal display module
US9709846B2 (en) Liquid crystal display (LCD) panel, LCD and manufacturing method thereof
KR20170104079A (ko) 액정표시장치 및 이의 제조방법
JP2017062362A (ja) 調光フィルム
WO2015137396A1 (ja) 光拡散部材、光拡散部材作製用母材、これを用いた表示装置、および光拡散部材の製造方法
KR102052175B1 (ko) 액정표시장치 및 그 제조방법
KR20060116005A (ko) 광학 적분기
JP6304952B2 (ja) 液晶ディスプレイパネル及びその製造方法、並びに液晶表示装置
TWI564637B (zh) 液晶顯示面板及其製造方法
WO2021088152A1 (zh) 显示面板及其制备方法、显示装置
JP2003004917A (ja) 防眩フィルム、防眩層付偏光板、防眩層付タッチパネル、及びこれを用いた防眩層付表示装置、並びにその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15513550

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883221

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883221

Country of ref document: EP

Kind code of ref document: A1