WO2017118072A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2017118072A1
WO2017118072A1 PCT/CN2016/098496 CN2016098496W WO2017118072A1 WO 2017118072 A1 WO2017118072 A1 WO 2017118072A1 CN 2016098496 W CN2016098496 W CN 2016098496W WO 2017118072 A1 WO2017118072 A1 WO 2017118072A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
liquid crystal
distance
crystal display
light
Prior art date
Application number
PCT/CN2016/098496
Other languages
English (en)
French (fr)
Inventor
卢鹏程
董学
陈小川
赵文卿
高健
王倩
杨明
王磊
许睿
牛小辰
王海生
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/525,859 priority Critical patent/US10345645B2/en
Publication of WO2017118072A1 publication Critical patent/WO2017118072A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device.
  • OLEDs Organic Light Emitting Diodes
  • LCD Liquid Crystal Display
  • LED Light Emitting Diode
  • plasma display panels Flat panel display panels such as Plasma Display Panel (PDP) are developing rapidly.
  • an existing LCD mainly consists of an array substrate, a color filter substrate, and liquid crystal molecules located between the two substrates.
  • a gate line, a data line, a thin film transistor (TFT), and a pixel electrode are disposed on the array substrate.
  • a black matrix, a color resist layer, and a common electrode are disposed on the color filter substrate.
  • the liquid crystal molecules modulate the light emitted by the passing backlight to be irradiated onto the color resist layer of the color filter substrate with different light intensities.
  • the color resist layer uses the color filter filter principle to divide white light into three primary colors of red, green and blue for color display. Since the color transmittance of the color resist material of the color resist layer is low, the light loss of the LCD is large and the light transmittance is low.
  • an embodiment of the present invention provides a display device including: a white-lighted backlight panel, a black-and-white liquid crystal display panel on the light-emitting side of the backlight panel, and between the liquid crystal layer and the backlight panel The split film.
  • the liquid crystal display panel includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer between the first substrate and the second substrate.
  • the liquid crystal display panel has a plurality of pixels arranged in a matrix, each pixel including N sub-pixels arranged in a row direction, and N is an integer greater than or equal to 3.
  • the light emitted by the backlight panel is divided into N colors of light after passing through the beam splitting film. And light of each color is projected onto a corresponding sub-pixel of the liquid crystal display panel.
  • the backlight panel may be an organic electroluminescence display panel.
  • the organic electroluminescent display panel has a plurality of illuminating pixels arranged in a matrix, and at least one column of adjacent illuminating pixels corresponds to a column region.
  • the light-emitting column region and the light-shielding column region are alternately arranged in the organic electroluminescence display panel.
  • the illuminating pixels in the illuminating column region emit light
  • the illuminating pixels in the shading column region do not emit light.
  • at least one column of pixels corresponds to a monocular pixel region, and the left-eye pixel region and the right-eye pixel region are alternately arranged.
  • the pixels corresponding to the left-eye pixel region and the pixels corresponding to the adjacent right-eye pixel regions display the same image information.
  • the pixels corresponding to the left-eye pixel region display left-eye image information
  • the pixels corresponding to the right-eye pixel region display right-eye image information.
  • the light emitted by each of the light-emitting column regions in the organic electroluminescent display panel is directed to the left eye of the corresponding person through the left-eye pixel region in the liquid crystal display panel, and passes through the right-eye pixel in the liquid crystal display panel.
  • the area is directed toward the direction of the right eye of the person.
  • the display device may further include: a human eye tracking control module.
  • the human eye tracking control module is configured to control the monocular pixel region of the liquid crystal display panel to translate in a row direction according to a left and right translation distance of the target human eye, or to control a column region of the organic electroluminescent display panel to translate in a row direction.
  • the human eye tracking control module may include: a human eye tracking unit configured to translate the distance ⁇ P to the left or right according to the target human eye, according to Determining a calculated translation distance ⁇ S of the monocular pixel region in the liquid crystal display panel.
  • L is a distance between the target human eye and the organic electroluminescence display panel
  • H is a distance between a liquid crystal layer of the liquid crystal display panel and the organic electroluminescence display panel;
  • a control unit is configured to determine The calculating the translation distance ⁇ S controls the distance of the monocular pixel region of the liquid crystal display panel to translate an integer number of sub-pixels in a row direction consistent with the moving direction of the human eye.
  • control unit is further configured to: calculate the translation distance ⁇ S according to the determined Calculate the translation magnification m.
  • ⁇ X is the width of a column of sub-pixels in the liquid crystal display panel. If the translation multiplier m is an integer, the monocular pixel region of the liquid crystal display panel is controlled to shift the distance of m sub-pixels in the row direction. If the translation multiplier m is not an integer, the translation multiplier m is rounded off to obtain m′, and the monocular pixel region of the liquid crystal display panel is controlled to translate the distance of the m′ sub-pixels in the row direction.
  • the human eye tracking control module may comprise: a human eye tracking unit configured to translate the distance ⁇ P to the left or right according to the target human eye according to: A calculated translation distance ⁇ S' of the column region of the organic electroluminescent display panel is determined.
  • L is a distance between the target human eye and the organic electroluminescence display panel
  • H is a distance between a liquid crystal layer of the liquid crystal display panel and the organic electroluminescence display panel; and a control unit is configured to determine The calculating the translation distance ⁇ S', controlling the column region of the organic electroluminescent display panel to translate the distance of an integer number of illuminating pixels in a row direction opposite to the moving direction of the human eye.
  • control unit is further configured to: calculate the translation distance ⁇ S' according to the determined Calculate the translation magnification m.
  • ⁇ X' is the width of one column of luminescent pixels in the organic electroluminescent display panel. If the translation magnification m is an integer, the column area of the organic electroluminescence display panel is controlled to shift the distance of the m luminescent pixels in the row direction. If the translational multiple m is not an integer, the translation multiple m is rounded off to obtain m', and the column area of the organic electroluminescent display panel is controlled to translate the distance of the m luminescent pixels in the row direction.
  • the light-splitting film may be located on a side of the backlight panel facing the liquid crystal display panel.
  • the first substrate is closer to the backlight panel than the second substrate, and the light splitting film is located on a side of the first substrate facing the liquid crystal layer.
  • the first substrate is closer to the backlight panel than the second substrate, and the light splitting film is located on a side of the first substrate facing the backlight panel.
  • the first substrate is closer to the backlight panel than the second substrate, and a polarizer is further disposed on a side of the first substrate facing away from the liquid crystal layer.
  • the light splitting film is located on a side of the polarizer facing the backlight panel, or the light splitting film is located between the first substrate and the polarizer.
  • the display device provided by the embodiment of the invention adopts a black and white liquid crystal display panel, that is, a color color resist layer formed of a color resist material is not disposed in the liquid crystal display panel, and a light splitting film is disposed between the backlight panel and the liquid crystal layer.
  • the light splitting film divides the light emitted by the backlight panel into light of N colors, and the light of each color is projected onto corresponding sub-pixels of the liquid crystal display panel.
  • the color light-resistant layer in the conventional liquid crystal display device is replaced by a light-splitting film, and the white light of the backlight panel is divided into light of different colors to realize color display.
  • the use of the spectroscopic film can reduce the light loss of the display device and improve the display device. Light transmittance, thereby reducing the power consumption of the display device.
  • FIG. 1a to 1d are respectively schematic structural views of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a splitting principle of a light splitting film according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a principle of a display device according to an embodiment of the present invention when performing 3D display;
  • FIG. 4 is a schematic diagram showing the principle of controlling the movement of a monocular pixel region in a liquid crystal display panel when displaying a 3D display according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a principle of controlling movement of a column region in an organic electroluminescence display panel when performing 3D display according to an embodiment of the present invention.
  • Embodiments of the present invention provide a display device.
  • the display device includes a white light-emitting backlight panel 1, a black-and-white liquid crystal display panel 2 on the light-emitting side of the backlight panel 1, and a light-splitting film between the liquid crystal layer 23 and the backlight panel 1.
  • the liquid crystal display panel 2 includes a first substrate 21 and a second substrate 22 disposed opposite to each other, and a liquid crystal layer 23 between the first substrate 21 and the second substrate 22.
  • the liquid crystal display panel 2 has a plurality of pixels arranged in a matrix. Each pixel includes N sub-pixels arranged in a row direction, and N is an integer greater than or equal to 3.
  • the light emitted from the backlight panel 1 is split into light of N colors after passing through the prism film 3, and light of each color is projected onto corresponding sub-pixels of the liquid crystal display panel 2.
  • the black-and-white type liquid crystal display panel refers to a liquid crystal display panel in which a color resist layer formed of a color resist material is not provided.
  • the display device provided by the embodiment of the invention adopts a black and white liquid crystal display panel, that is, a color color resist layer formed of a color resist material is not disposed in the liquid crystal display panel, and a light splitting film is disposed between the backlight panel and the liquid crystal layer.
  • the light splitting film divides the light emitted by the backlight panel into light of N colors, and the light of each color is projected onto corresponding sub-pixels of the liquid crystal display panel.
  • the color light-resistant layer in the conventional liquid crystal display device is replaced by a light-splitting film, and the white light of the backlight panel is divided into light of different colors to realize color display.
  • the use of the spectroscopic film can reduce the light loss of the display device and improve the light transmittance of the display device, thereby reducing Display device power consumption.
  • the first substrate may be an array substrate, and the second substrate may be an opposite substrate.
  • the first substrate may be an opposite substrate, and the second substrate may be an array substrate, which is not limited herein.
  • N may be equal to 3.
  • the three colors of light may be red light, green light, and blue light, respectively.
  • the spectroscopic film 3 may be composed of a plurality of spectroscopic microstructures 31 which are periodically distributed.
  • the spectroscopic microstructure 31 can be, for example, a stepped structure.
  • the white light passes through the spectroscopic microstructure 31, since the refraction angles of the different wavelengths of white light passing through the spectroscopic microstructure 31 are different, the white light is split into light of different colors. Light of each color is projected on the corresponding sub-pixel 20 in the liquid crystal display panel 2, so that color display can be realized. Since the specific structure and principle of the spectroscopic film are the same as those of the existing spectroscopic film, they will not be described in detail herein.
  • the first substrate 21 is closer to the backlight panel 1 than the second substrate 22.
  • a polarizer 24 may be further disposed on a side of the first substrate 21 facing away from the liquid crystal layer 23 and on a side of the second substrate 22 facing away from the liquid crystal layer 23.
  • the light-splitting film 3 may be located on the side of the backlight panel 1 facing the liquid crystal display panel 2.
  • the light-splitting film 3 may be located on the side of the first substrate 21 facing the liquid crystal layer 23.
  • the light-splitting film 3 may be located on a side of the first substrate 21 facing the backlight panel 1.
  • the light-splitting film 3 may be located on the side of the polarizing plate 24 facing the backlight panel 1.
  • the spectroscopic film 3 may be located between the first substrate 21 and the polarizer 24.
  • the liquid crystal display panel 2 and the backlight panel 1 can be fixed by, for example, a sealant 4 .
  • the backlight panel 1 may be an organic electroluminescence display panel.
  • the organic electroluminescence display panel has a plurality of luminescent pixels arranged in a matrix.
  • the area corresponding to at least one column of adjacent illuminating pixels is a column area (shown as reference numerals 11 and 12 in FIG. 3).
  • the light-emitting column region 11 and the light-shielding column region 12 are alternately arranged in the organic electroluminescence display panel.
  • the illuminating pixels in the illuminating column region 11 emit light
  • the illuminating pixels in the shading column region 12 do not emit light.
  • At least one column of pixels corresponds to a single-eye pixel region (shown as reference numerals 01 and 02 in FIG. 3). And the left-eye pixel area 01 and the right-eye pixel area 02 are alternately arranged.
  • the pixel corresponding to the left-eye pixel area 01 and the pixel corresponding to the adjacent right-eye pixel area 02 display the same image information.
  • the pixels corresponding to the left-eye pixel area 01 display left-eye image information
  • the pixels corresponding to the right-eye pixel area 02 display right-eye image information.
  • the light emitted from the light-emitting column region 11 in the organic electroluminescence display panel is directed to the left eye of the corresponding person through the left-eye pixel region 01 in the liquid crystal display panel, and is directed to the corresponding right-eye pixel region 02 in the liquid crystal display panel.
  • the direction of the right eye of the person is directed to the left eye of the corresponding person through the left-eye pixel region 01 in the liquid crystal display panel, and is directed to the corresponding right-eye pixel region 02 in the liquid crystal display panel. The direction of the right eye of the person.
  • the light emitted from the light-emitting column region in the organic electroluminescent display panel can be directed to the left-eye pixel region in the liquid crystal display panel by adjusting the distance between the liquid crystal display panel and the organic electroluminescent display panel. Corresponding to the direction of the left eye of the person, and passing through the right-eye pixel area in the liquid crystal display panel to the direction of the right eye of the corresponding person.
  • the specific principle is the same as that of the existing 3D display device, and will not be described in detail herein.
  • the organic electroluminescent display panel controls the brightness of the display
  • the spectroscopic film controls the chromaticity of the display
  • the liquid crystal display panel controls the organic electroluminescent display panel by controlling the rotation of the liquid crystal molecules in the liquid crystal layer.
  • the extent to which the light exits after passing through the light-splitting film and the liquid crystal layer controls the gray scale of the display.
  • the display device may further include a human eye tracking control module.
  • the human eye tracking control module is configured to control the monocular pixel area of the liquid crystal display panel to translate in the row direction according to the left and right translation distance of the target human eye, or to control the column area of the organic electroluminescent display panel to translate in the row direction.
  • the human eye tracking control module is configured to control the monocular pixel area of the liquid crystal display panel to translate in the row direction according to the left and right translation distance of the target human eye.
  • the human eye tracking control module may include:
  • a human eye tracking unit configured to translate the distance ⁇ P to the left or right according to the target human eye, according to Determining a calculated translation distance ⁇ S of the monocular pixel region in the liquid crystal display panel, L is a distance between the target human eye and the organic electroluminescence display panel, and H is a distance between the liquid crystal layer of the liquid crystal display panel and the organic electroluminescence display panel;
  • the control unit is configured to control the distance of the single-eye pixel region of the liquid crystal display panel to translate an integer number of sub-pixels in a row direction consistent with the moving direction of the human eye according to the determined calculated translation distance ⁇ S. That is, when the human eye is shifted to the left, the monocular pixel area of the liquid crystal display panel is shifted to the left in the row direction. When the human eye is shifted to the right, the monocular pixel area of the liquid crystal display panel is shifted to the right in the row direction.
  • the control unit may be further configured to: calculate the translation distance ⁇ S according to the determined, according to Calculating a translation magnification m, ⁇ X is a width of a column of sub-pixels in the liquid crystal display panel;
  • the translation multiplier m is an integer, controlling a distance of the m-pixel sub-pixels of the monocular pixel region of the liquid crystal display panel in the row direction;
  • the translation magnification m is not an integer
  • the translation multiple m is rounded off to obtain m', and the distance of the monocular pixel region of the liquid crystal display panel in the row direction by m' sub-pixels is controlled.
  • the calculated translation distance ⁇ S of the human eye to the right translation distance ⁇ P and the monocular pixel regions (01 and 02) satisfies the formula. Therefore, the calculated translation distance ⁇ S of the monocular pixel regions (01 and 02) can be calculated. Since each of the monocular pixel regions (01 and 02) in the liquid crystal display panel is an area corresponding to at least one column of pixels, when the monocular pixel regions (01 and 02) in the liquid crystal display panel are controlled to be translated, only the sub-pixels can be used. Pan for the smallest unit.
  • the translation distance ⁇ S is equal to an integral multiple of the width ⁇ X of a column of sub-pixels in the liquid crystal display panel, that is, When the translational magnification m is an integer, the monocular pixel regions (01 and 02) of the liquid crystal display panel are controlled to shift the distance of m sub-pixels to the right in the row direction, that is, the translation ⁇ S.
  • the translational multiple m is not an integer, the distance that the monocular pixel regions (01 and 02) are translated as far as possible is equal to an integer multiple of the sub-pixel width, and is closest to the calculated calculated translation distance ⁇ S.
  • the translation multiplier m is rounded off to obtain m′, and then the monocular pixel region of the liquid crystal display panel is controlled to shift the distance of the m′ sub-pixels to the right in the row direction.
  • the monocular pixel regions (01 and 02) of the liquid crystal display panel are shifted to the right by the width of one sub-pixel.
  • the human eye tracking control module is configured to control the column area of the organic electroluminescent display panel to translate in the row direction according to the left and right translation distance of the target human eye.
  • the human eye tracking control module can include:
  • a human eye tracking unit configured to translate the distance ⁇ P to the left or right according to the target human eye, according to Determining a calculated translation distance ⁇ S′ of the column region of the organic electroluminescence display panel, L is a distance between the target human eye and the organic electroluminescence display panel, and H is a distance between the liquid crystal layer of the liquid crystal display panel and the organic electroluminescence display panel; as well as
  • the control unit is configured to control the distance of the column regions of the organic electroluminescent display panel to translate an integer number of illuminating pixels in a row direction opposite to the moving direction of the human eye according to the determined calculated translation distance ⁇ S′. That is, when the human eye is shifted to the left, the column region of the organic electroluminescence display panel is shifted to the right in the row direction. When the human eye is translated to the right, the column area of the organic electroluminescent display panel is shifted to the left in the row direction.
  • the control unit may be further configured to: calculate the translation distance ⁇ S' according to the determined, according to Calculating a translational magnification m, ⁇ X' is a width of a column of luminescent pixels in the organic electroluminescent display panel;
  • the translation magnification m is an integer, controlling a column region of the organic electroluminescence display panel to shift the distance of the m luminescent pixels in the row direction;
  • the translational multiple m is not an integer, the translational multiple m is rounded off to obtain m', and the column area of the organic electroluminescent display panel is controlled to shift the distance of the m'th of the luminescent pixels in the row direction.
  • each of the column regions (11 and 12) in the organic electroluminescent display panel is an area corresponding to at least one column of the illuminating pixels, when the column regions (11 and 12) in the organic electroluminescent display panel are controlled to be shifted, only The translation can be performed in a minimum unit of illuminating pixels.
  • the translation distance ⁇ S' is equal to an integral multiple of the width ⁇ X' of one column of the luminescent pixels in the organic electroluminescent display panel, that is, When the translational magnification m in the integer is an integer, the column regions (11 and 12) in the organic electroluminescence display panel are controlled to shift the distance of the m luminescent pixels to the left in the row direction, that is, the translation ⁇ S'.
  • the translational multiple m is not an integer, the distance between the column regions (11 and 12) is shifted as much as possible to satisfy an integer multiple of the width of the illuminating pixel, and is closest to the calculated calculated translation distance ⁇ S'. Therefore, the translation multiplier m is rounded off to obtain m', and then the column regions (11 and 12) in the organic electroluminescence display panel are controlled to shift the distance of the m' luminescence pixels to the left in the row direction.
  • the human eye tracking unit in the human eye tracking control module may be disposed on the light exiting side of the liquid crystal display panel.
  • the control unit may be integrated on the driving chip in the liquid crystal display panel.
  • the control unit may be integrated on the driving chip in the organic electroluminescent display panel, This is not limited.
  • the display device provided by the embodiment of the invention adopts a black and white liquid crystal display panel, that is, a color color resist layer formed of a color resist material is not disposed in the liquid crystal display panel, and a light splitting film is disposed between the backlight panel and the liquid crystal layer.
  • the light splitting film divides the light emitted by the backlight panel into light of N colors, and the light of each color is projected onto corresponding sub-pixels of the liquid crystal display panel.
  • the white light of the backlight panel is divided into light of different colors by a spectroscopic film instead of the color resist layer in the conventional display device to realize color display.
  • the use of the spectroscopic film can reduce the light loss of the display device and improve the light transmittance of the display device, thereby reducing Display device power consumption.

Abstract

一种显示装置,采用黑白型的液晶显示面板(2),即在液晶显示面板(2)中不设置由色阻材料形成的彩色色阻层,并且在背光面板(1)与液晶层(23)之间设置有分光膜(3)。该分光膜(3)使背光面板(1)发出的光分为N种颜色的光,且每一种颜色的光投射至液晶显示面板(2)的对应的子像素上。这样,利用分光膜(3)代替现有液晶显示装置中的彩色色阻层,将背光面板(1)的白光分为不同颜色的光以实现彩色显示。由于分光膜(3)的分光效率一般可以超过30%,而彩色色阻层的分光效率一般在10%左右,因此,采用分光膜(3)可以降低显示装置的光损失,提高显示装置的光透过率,从而降低显示装置的功耗。

Description

显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种显示装置。
背景技术
随着显示技术的不断发展,有机电致发光显示面板(Organic Light Emitting Diode,OLED)、液晶显示面板(Liquid Crystal Display,LCD)、发光二极管(Light Emitting Diode,LED)显示面板及等离子显示面板(Plasma Display Panel,PDP)等平板显示面板发展迅速。
以现有的LCD为例,其主要由阵列基板、彩膜基板以及位于这两个基板之间的液晶分子组成。具体地,在阵列基板上设置有栅线、数据线、薄膜晶体管(TFT)以及像素电极。在彩膜基板上设置有黑矩阵、彩色色阻层以及公共电极。在栅线输入高电位的扫描信号时,与栅线连接的TFT处于开启状态。数据线加载的灰阶信号通过TFT施加到像素电极上,从而使像素电极与公共电极之间形成的电场控制液晶分子翻转。液晶分子对通过的背光源发出的光进行调制,使其以不同光强照射到彩膜基板的彩色色阻层上。彩色色阻层利用色阻滤光原理将白光分为红、绿、蓝三基色以实现彩色显示。由于彩色色阻层的色阻材料的光透过率较低,导致LCD的光损失较大,光透过率较低。
因此,如何降低平板显示面板的光损失以提高其光透过率,是本领域技术人员亟需解决的技术问题。
发明内容
因此,所期望的是提供降低光损失以提高光透过率的显示装置。
根据一个方面,本发明实施例提供了一种显示装置,包括:发白光的背光面板,位于所述背光面板出光侧的黑白型的液晶显示面板以及位于所述液晶层与所述背光面板之间的分光膜。所述液晶显示面板包括相对设置的第一基板与第二基板,以及位于所述第一基板与所述第二基板之间的液晶层。所述液晶显示面板具有呈矩阵排列的多个像素,每一像素包括N个沿行方向排列的子像素,N为大于或等于3的整数。所述背光面板发出的光经过所述分光膜后分为N种颜色的光, 且每一种颜色的光投射至所述液晶显示面板的对应的子像素上。
根据本发明的实施例,所述背光面板可以为有机电致发光显示面板。所述有机电致发光显示面板具有呈矩阵排列的多个发光像素,至少一列相邻的发光像素对应的区域为列区域。所述有机电致发光显示面板中发光列区域与遮光列区域交替排列。并且,在进行显示时,所述发光列区域中的发光像素发光,所述遮光列区域中的发光像素不发光。在所述液晶显示面板中,至少一列像素对应的区域为单眼像素区域,且左眼像素区域与右眼像素区域交替排列。在进行2D显示时,所述左眼像素区域对应的像素与相邻的所述右眼像素区域对应的像素显示相同的图像信息。并且在进行3D显示时,所述左眼像素区域对应的像素显示左眼图像信息,所述右眼像素区域对应的像素显示右眼图像信息。所述有机电致发光显示面板中的各发光列区域发出的光经过所述液晶显示面板中的左眼像素区域射向对应人左眼的方向,且经过所述液晶显示面板中的右眼像素区域射向对应人右眼的方向。
根据本发明的实施例,显示装置还可以包括:人眼追踪控制模块。所述人眼追踪控制模块配置为根据目标人眼的左右平移距离控制所述液晶显示面板的单眼像素区域沿行方向平移,或控制所述有机电致发光显示面板的列区域沿行方向平移。
根据本发明的实施例,所述人眼追踪控制模块可以包括:人眼追踪单元,配置为根据目标人眼向左或向右的平移距离ΔP,按照
Figure PCTCN2016098496-appb-000001
确定所述液晶显示面板中单眼像素区域的计算平移距离ΔS。L为所述目标人眼与所述有机电致发光显示面板的距离,H为所述液晶显示面板的液晶层与所述有机电致发光显示面板的距离;以及,控制单元,配置为根据确定的所述计算平移距离ΔS控制所述液晶显示面板的单眼像素区域沿与所述人眼移动方向一致的行方向平移整数个子像素的距离。
根据本发明的实施例,所述控制单元进一步配置为:根据确定的所述计算平移距离ΔS,按照
Figure PCTCN2016098496-appb-000002
计算平移倍数m。ΔX为液晶显示面板中一列子像素的宽度。若所述平移倍数m为整数,则控制所述液晶显示面板的单眼像素区域沿行方向平移m个子像素的距离。若所述平移倍数m不为整数,则将所述平移倍数m四舍五入后得到m′,并控制所述液晶显示面板的单眼像素区域沿行方向平移m′个子像素的距离。
根据本发明的实施例,所述人眼追踪控制模块可以包括:人眼追踪单元,配置为根据目标人眼向左或向右的平移距离ΔP,按照:
Figure PCTCN2016098496-appb-000003
确定所述有机电致发光显示面板的列区域的计算平移距离ΔS′。L为所述目标人眼与所述有机电致发光显示面板的距离,H为所述液晶显示面板的液晶层与所述有机电致发光显示面板的距离;以及,控制单元,配置为根据确定的所述计算平移距离ΔS′,控制所述有机电致发光显示面板的列区域沿与所述人眼移动方向相反的行方向平移整数个发光像素的距离。
根据本发明的实施例,所述控制单元进一步配置为:根据确定的所述计算平移距离ΔS′,按照
Figure PCTCN2016098496-appb-000004
计算平移倍数m。ΔX′为所述有机电致发光显示面板中一列发光像素的宽度。若所述平移倍数m为整数,则控制所述有机电致发光显示面板的列区域沿行方向平移m个发光像素的距离。若所述平移倍数m不为整数,则将所述平移倍数m四舍五入后得到m′,并控制所述有机电致发光显示面板的列区域沿行方向平移m′个发光像素的距离。
根据本发明的实施例,所述分光膜可以位于所述背光面板面向所述液晶显示面板的一侧。
根据本发明的实施例,所述第一基板比所述第二基板更靠近所述背光面板,所述分光膜位于所述第一基板面向所述液晶层的一侧。
根据本发明的实施例,所述第一基板比所述第二基板更靠近所述背光面板,所述分光膜位于所述第一基板面向所述背光面板的一侧。
根据本发明的实施例,所述第一基板比所述第二基板更靠近所述背光面板,在所述第一基板背向所述液晶层的一侧还设置有偏光片。所述分光膜位于所述偏光片面向所述背光面板的一侧,或者所述分光膜位于所述第一基板与所述偏光片之间。
本发明实施例提供的上述显示装置采用黑白型的液晶显示面板,即在液晶显示面板中不设置由色阻材料形成的彩色色阻层,并且在背光面板与液晶层之间设置有分光膜。该分光膜使背光面板发出的光分为N种颜色的光,且每一种颜色的光投射至液晶显示面板的对应的子像素上。这样,利用分光膜代替现有液晶显示装置中的彩色色阻层,将背光面板的白光分为不同颜色的光以实现彩色显示。由于分光膜的分光效率一般可以超过30%,而彩色色阻层的分光效率一般在10%左右,因此,采用分光膜可以降低显示装置的光损失,提高显示装置的 光透过率,从而降低显示装置的功耗。
附图说明
图1a至图1d分别为本发明实施例提供的显示装置的结构示意图;
图2为本发明实施例提供的分光膜的分光原理示意图;
图3为本发明实施例提供的显示装置在进行3D显示时的原理示意图;
图4为本发明实施例提供的显示装置在进行3D显示时控制液晶显示面板中的单眼像素区域移动的原理示意图;
图5为本发明实施例提供的显示装置在进行3D显示时控制有机电致发光显示面板中的列区域移动的原理示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例作进一步的详细描述。显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各部件的形状和大小不反映显示装置的真实比例,目的只是示意说明本发明内容。
本发明实施例提供了一种显示装置。如图1a至图1d所示,该显示装置包括:发白光的背光面板1,位于背光面板1出光侧的黑白型的液晶显示面板2,以及位于液晶层23与背光面板1之间的分光膜3。液晶显示面板2包括相对设置的第一基板21与第二基板22,以及位于第一基板21与第二基板22之间的液晶层23。液晶显示面板2具有呈矩阵排列的多个像素。每一像素包括N个沿行方向排列的子像素,N为大于或等于3的整数。背光面板1发出的光经过分光膜3后分为N种颜色的光,且每一种颜色的光投射至液晶显示面板2的对应的子像素上。
需要说明的是,在本发明实施例提供的上述显示装置中,黑白型的液晶显示面板是指不设置由色阻材料形成的彩色色阻层的液晶显示面板。
本发明实施例提供的上述显示装置采用黑白型的液晶显示面板,即在液晶显示面板中不设置由色阻材料形成的彩色色阻层,并且在背光面板与液晶层之间设置有分光膜。该分光膜使背光面板发出的光分为N种颜色的光,且每一种颜色的光投射至液晶显示面板的对应的子像素上。这样,利用分光膜代替现有液晶显示装置中的彩色色阻层,将背光面板的白光分为不同颜色的光以实现彩色显示。由于分光膜的分光效率一般可以超过30%,而彩色色阻层的分光效率一般在10%左右,因此,采用分光膜可以降低显示装置的光损失,提高显示装置的光透过率,从而降低显示装置的功耗。
第一基板可以为阵列基板,第二基板可以为对置基板。当然第一基板也可以为对置基板,第二基板可以为阵列基板,在此不作限定。
根据一个实施例,N可以等于3。3种颜色的光可以分别为红色光、绿色光和蓝色光。
在具体实施时,如图2所示,分光膜3可以由若干呈周期分布的分光微结构31组成。分光微结构31例如可以为阶梯结构。当白光通过分光微结构31时,由于白光中不同波长的光通过该分光微结构31后的折射角不同,因此白光会分成不同颜色的光。每一颜色的光投射在液晶显示面板2中的对应的子像素20上,从而可以实现彩色显示。由于分光膜的具体结构和原理均与现有的分光膜的结构和原理相同,在此不作详述。
根据本发明的一个实施例,如图1a至图1d所示,第一基板21比第二基板22更靠近背光面板1。
如图1a至图1d所示,在第一基板21背向液晶层23的一侧以及在第二基板22背向液晶层23的一侧还可以设置有偏光片24。
如图1a所示,分光膜3可以位于背光面板1面向液晶显示面板2的一侧。
或者,如图1b所示,分光膜3可以位于第一基板21面向液晶层23的一侧。
或者,如图1c和图1d所示,分光膜3可以位于第一基板21面向背光面板1的一侧。
在第一基板21背向液晶层23的一侧还设置有偏光片24的情况下,如图1c所示,分光膜3可以位于偏光片24面向背光面板1的一侧。 或者,如图1d所示,分光膜3也可以位于第一基板21与偏光片24之间。
如图1a至图1d所示,液晶显示面板2与背光面板1例如可以通过封框胶4进行固定。
根据本发明的实施例,如图3所示,背光面板1可以为有机电致发光显示面板。有机电致发光显示面板具有呈矩阵排列的多个发光像素。至少一列相邻的发光像素对应的区域为列区域(图3中如附图标记11和12所示)。有机电致发光显示面板中发光列区域11与遮光列区域12交替排列。在进行显示时,发光列区域11中的发光像素发光,遮光列区域12中的发光像素不发光。
在液晶显示面板2中,至少一列像素对应的区域为单眼像素区域(图3中如附图标记01和02所示)。且左眼像素区域01与右眼像素区域02交替排列。在进行2D显示时,左眼像素区域01对应的像素与相邻的右眼像素区域02对应的像素显示相同的图像信息。在进行3D显示时,左眼像素区域01对应的像素显示左眼图像信息,右眼像素区域02对应的像素显示右眼图像信息。
有机电致发光显示面板中的发光列区域11发出的光经过液晶显示面板中的左眼像素区域01射向对应人左眼的方向,且经过液晶显示面板中的右眼像素区域02射向对应人右眼的方向。
在具体实施时,可以通过调整液晶显示面板与有机电致发光显示面板之间的距离,使有机电致发光显示面板中的发光列区域发出的光经过液晶显示面板中的左眼像素区域射向对应人左眼的方向,且经过液晶显示面板中的右眼像素区域射向对应人右眼的方向。具体原理与现有的3D显示装置的原理相同,在此不作详述。
在本发明实施例提供的显示装置中,有机电致发光显示面板控制显示的亮度,分光膜控制显示的色度,液晶显示面板通过控制液晶层中液晶分子的旋转控制有机电致发光显示面板的光经过分光膜和液晶层后出光的程度,即,液晶显示面板控制显示的灰度。通过控制有机电致发光显示面板的发光列区域以及控制液晶显示面板的显示内容,可以实现2D显示和3D显示的切换。但是在上述显示装置中,在进行3D显示时,只能在固定位置处才能看到较好的3D效果。只要人眼移动,就会出现串扰现象,从而使3D效果降低,甚至是没有3D效果。
因此,根据本发明的另一实施例,为了减轻或避免由于人眼移动导致的3D串扰问题,显示装置还可以包括人眼追踪控制模块。该人眼追踪控制模块配置为根据目标人眼的左右平移距离控制液晶显示面板的单眼像素区域沿行方向平移,或控制有机电致发光显示面板的列区域沿行方向平移。
下面通过两个具体的实施例分别进行说明。
实施例一、
人眼追踪控制模块配置为根据目标人眼的左右平移距离控制液晶显示面板的单眼像素区域沿行方向平移。
具体地,人眼追踪控制模块可以包括:
人眼追踪单元,配置为根据目标人眼向左或向右的平移距离ΔP,按照
Figure PCTCN2016098496-appb-000005
确定液晶显示面板中单眼像素区域的计算平移距离ΔS,L为目标人眼与有机电致发光显示面板的距离,H为液晶显示面板的液晶层与有机电致发光显示面板的距离;以及
控制单元,配置为根据确定的计算平移距离ΔS,控制液晶显示面板的单眼像素区域沿与人眼移动方向一致的行方向平移整数个子像素的距离。即,当人眼向左平移时,液晶显示面板的单眼像素区域沿行方向向左平移。当人眼向右平移时,液晶显示面板的单眼像素区域沿行方向向右平移。
控制单元可以进一步配置为:根据确定的计算平移距离ΔS,按照
Figure PCTCN2016098496-appb-000006
计算平移倍数m,ΔX为液晶显示面板中一列子像素的宽度;
若平移倍数m为整数,则控制液晶显示面板的单眼像素区域沿行方向平移m个子像素的距离;
若平移倍数m不为整数,则将平移倍数m四舍五入后得到m′,并控制液晶显示面板的单眼像素区域沿行方向平移m′个子像素的距离。
以目标人眼向右平移为例进行说明。如图4所示,当目标人眼向右平移距离ΔP时,人眼向右平移距离ΔP与单眼像素区域(01和02)的计算平移距离ΔS满足公式
Figure PCTCN2016098496-appb-000007
因此,可以计算出单眼像素区域(01和02)的计算平移距离ΔS。由于液晶显示面板中的每一个单眼像素区域(01和02)是至少一列像素对应的区域,因此,当控制液晶显示面板中的单眼像素区域(01和02)平移时,只能是以子像素为最小单位进行平移。因此,当计算平移距离ΔS等于液晶显示面板中一列子 像素的宽度ΔX的整数倍时,即,
Figure PCTCN2016098496-appb-000008
中的平移倍数m为整数时,控制液晶显示面板的单眼像素区域(01和02)沿行方向向右平移m个子像素的距离,即平移ΔS。而当平移倍数m不为整数时,尽量使单眼像素区域(01和02)平移的距离既满足子像素宽度的整数倍,又与计算出的计算平移距离ΔS最接近。因此,先将平移倍数m四舍五入后得到m′,再控制液晶显示面板的单眼像素区域沿行方向向右平移m′个子像素的距离。例如,在图4中,液晶显示面板的单眼像素区域(01和02)向右平移了一个子像素的宽度。
实施例二、
人眼追踪控制模块配置为根据目标人眼的左右平移距离控制有机电致发光显示面板的列区域沿行方向平移。
例如,人眼追踪控制模块可以包括:
人眼追踪单元,配置为根据目标人眼向左或向右的平移距离ΔP,按照
Figure PCTCN2016098496-appb-000009
确定有机电致发光显示面板的列区域的计算平移距离ΔS′,L为目标人眼与有机电致发光显示面板的距离,H为液晶显示面板的液晶层与有机电致发光显示面板的距离;以及
控制单元,配置为根据确定的计算平移距离ΔS′,控制有机电致发光显示面板的列区域沿与人眼移动方向相反的行方向平移整数个发光像素的距离。即,当人眼向左平移时,有机电致发光显示面板的列区域沿行方向向右平移。当人眼向右平移时,有机电致发光显示面板的列区域沿行方向向左平移。
控制单元可以进一步配置为:根据确定的计算平移距离ΔS′,按照
Figure PCTCN2016098496-appb-000010
计算平移倍数m,ΔX′为有机电致发光显示面板中一列发光像素的宽度;
若平移倍数m为整数,则控制有机电致发光显示面板的列区域沿行方向平移m个发光像素的距离;
若平移倍数m不为整数,则将平移倍数m四舍五入后得到m′,并控制有机电致发光显示面板的列区域沿行方向平移m′个发光像素的距离。
以目标人眼向右平移为例进行说明。如图5所示,当目标人眼向右平移距离ΔP时,人眼向右平移距离ΔP与列区域(11和12)的计算平移距离ΔS′满足公式
Figure PCTCN2016098496-appb-000011
因此,可以计算出列区域(11和12) 的计算平移距离ΔS′。由于有机电致发光显示面板中的每一个列区域(11和12)是至少一列发光像素对应的区域,因此,当控制有机电致发光显示面板中的列区域(11和12)平移时,只能是以发光像素为最小单位进行平移。因此,当计算平移距离ΔS′等于有机电致发光显示面板中一列发光像素的宽度ΔX′的整数倍时,即,
Figure PCTCN2016098496-appb-000012
中的平移倍数m为整数时,控制有机电致发光显示面板中的列区域(11和12)沿行方向向左平移m个发光像素的距离,即平移ΔS′。而当平移倍数m不为整数时,尽量使列区域(11和12)平移的距离既满足发光像素宽度的整数倍,又与计算的计算平移距离ΔS′最接近。因此,先将平移倍数m四舍五入后得到m′,再控制有机电致发光显示面板中的列区域(11和12)沿行方向向左平移m′个发光像素的距离。
在具体实施时,人眼追踪控制模块中的人眼追踪单元可以设置在液晶显示面板的出光侧。当人眼追踪控制模块配置为根据目标人眼的左右平移距离控制液晶显示面板的单眼像素区域沿行方向平移时,控制单元可以集成在液晶显示面板中的驱动芯片上。当人眼追踪控制模块配置为根据目标人眼的左右平移距离控制有机电致发光显示面板的列区域沿行方向平移时,控制单元可以集成在有机电致发光显示面板中的驱动芯片上,在此不作限定。
本发明实施例提供的上述显示装置采用黑白型的液晶显示面板,即在液晶显示面板中不设置由色阻材料形成的彩色色阻层,并且在背光面板与液晶层之间设置有分光膜。该分光膜使背光面板发出的光分为N种颜色的光,且每一种颜色的光投射至液晶显示面板的对应的子像素上。这样,利用分光膜代替现有显示装置中的彩色色阻层,将背光面板的白光分为不同颜色的光以实现彩色显示。由于分光膜的分光效率一般可以超过30%,而彩色色阻层的分光效率一般在10%左右,因此,采用分光膜可以降低显示装置的光损失,提高显示装置的光透过率,从而降低显示装置的功耗。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (11)

  1. 一种显示装置,包括:
    发白光的背光面板;
    位于所述背光面板出光侧的黑白型的液晶显示面板,所述液晶显示面板包括相对设置的第一基板与第二基板以及位于所述第一基板与所述第二基板之间的液晶层,所述液晶显示面板具有呈矩阵排列的多个像素,每一像素包括N个沿行方向排列的子像素,N为大于或等于3的整数;以及
    位于所述液晶层与所述背光面板之间的分光膜,
    其中,所述背光面板发出的光经过所述分光膜后分为N种颜色的光,且每一种颜色的光投射至所述液晶显示面板的对应的子像素上。
  2. 如权利要求1所述的显示装置,其中,所述背光面板为有机电致发光显示面板,
    其中,所述有机电致发光显示面板具有呈矩阵排列的多个发光像素,至少一列相邻的发光像素对应的区域为列区域,所述有机电致发光显示面板中发光列区域与遮光列区域交替排列,并且,在进行显示时,所述发光列区域中的发光像素发光,所述遮光列区域中的发光像素不发光,
    其中,在所述液晶显示面板中,至少一列像素对应的区域为单眼像素区域,且左眼像素区域与右眼像素区域交替排列,在进行2D显示时,所述左眼像素区域对应的像素与相邻的所述右眼像素区域对应的像素显示相同的图像信息,并且,在进行3D显示时,所述左眼像素区域对应的像素显示左眼图像信息,所述右眼像素区域对应的像素显示右眼图像信息,并且
    其中,所述有机电致发光显示面板中所述发光列区域发出的光经过所述液晶显示面板中的左眼像素区域射向对应人左眼的方向,且经过所述液晶显示面板中的右眼像素区域射向对应人右眼的方向。
  3. 如权利要求2所述的显示装置,还包括:人眼追踪控制模块,
    其中,所述人眼追踪控制模块配置为根据目标人眼的左右平移距离控制所述液晶显示面板的单眼像素区域沿行方向平移,或控制所述有机电致发光显示面板的列区域沿行方向平移。
  4. 如权利要求3所述的显示装置,其中,所述人眼追踪控制模块包括:
    人眼追踪单元,配置为根据目标人眼向左或向右的平移距离ΔP,按照
    Figure PCTCN2016098496-appb-100001
    确定所述液晶显示面板中单眼像素区域的计算平移距离ΔS,其中L为所述目标人眼与所述有机电致发光显示面板的距离,H为所述液晶显示面板的液晶层与所述有机电致发光显示面板的距离;以及
    控制单元,配置为根据确定的所述计算平移距离ΔS,控制所述液晶显示面板的单眼像素区域沿与所述人眼移动方向一致的行方向平移整数个子像素的距离。
  5. 如权利要求4所述的显示装置,其中,所述控制单元进一步配置为:
    根据确定的所述计算平移距离ΔS,按照
    Figure PCTCN2016098496-appb-100002
    计算平移倍数m,其中ΔX为液晶显示面板中一列子像素的宽度;
    若所述平移倍数m为整数,则控制所述液晶显示面板的单眼像素区域沿行方向平移m个子像素的距离;
    若所述平移倍数m不为整数,则将所述平移倍数m四舍五入后得到m′,并控制所述液晶显示面板的单眼像素区域沿行方向平移m′个子像素的距离。
  6. 如权利要求3所述的显示装置,其中,所述人眼追踪控制模块包括:
    人眼追踪单元,配置为根据目标人眼向左或向右的平移距离ΔP,按照
    Figure PCTCN2016098496-appb-100003
    确定所述有机电致发光显示面板的列区域的计算平移距离ΔS′,其中L为所述目标人眼与所述有机电致发光显示面板的距离,H为所述液晶显示面板的液晶层与所述有机电致发光显示面板的距离;以及
    控制单元,配置为根据确定的所述计算平移距离ΔS′,控制所述有机电致发光显示面板的列区域沿与所述人眼移动方向相反的行方向平移整数个发光像素的距离。
  7. 如权利要求6所述的显示装置,其中,所述控制单元进一步配置为:
    根据确定的所述计算平移距离ΔS′,按照
    Figure PCTCN2016098496-appb-100004
    计算平移倍数m,其中ΔX′为所述有机电致发光显示面板中一列发光像素的宽度;
    若所述平移倍数m为整数,则控制所述有机电致发光显示面板的列区域沿行方向平移m个发光像素的距离;
    若所述平移倍数m不为整数,则将所述平移倍数m四舍五入后得到m′,并控制所述有机电致发光显示面板的列区域沿行方向平移m′个发光像素的距离。
  8. 如权利要求1-7中任一项所述的显示装置,其中,所述分光膜位于所述背光面板面向所述液晶显示面板的一侧。
  9. 如权利要求1-7中任一项所述的显示装置,其中,所述第一基板比所述第二基板更靠近所述背光面板,所述分光膜位于所述第一基板面向所述液晶层的一侧。
  10. 如权利要求1-7中任一项所述的显示装置,其中,所述第一基板比所述第二基板更靠近所述背光面板,所述分光膜位于所述第一基板面向所述背光面板的一侧。
  11. 如权利要求1-7中任一项所述的显示装置,其中,所述第一基板比所述第二基板更靠近所述背光面板,在所述第一基板背向所述液晶层的一侧还设置有偏光片,并且
    其中,所述分光膜位于所述偏光片面向所述背光面板的一侧,或者所述分光膜位于所述第一基板与所述偏光片之间。
PCT/CN2016/098496 2016-01-08 2016-09-09 显示装置 WO2017118072A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/525,859 US10345645B2 (en) 2016-01-08 2016-09-09 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610012184.2A CN106959543A (zh) 2016-01-08 2016-01-08 一种显示器
CN201610012184.2 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017118072A1 true WO2017118072A1 (zh) 2017-07-13

Family

ID=59273114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098496 WO2017118072A1 (zh) 2016-01-08 2016-09-09 显示装置

Country Status (3)

Country Link
US (1) US10345645B2 (zh)
CN (1) CN106959543A (zh)
WO (1) WO2017118072A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227287B (zh) * 2018-01-26 2019-12-17 京东方科技集团股份有限公司 显示装置、虚拟现实显示设备及其控制方法
CN108833814B (zh) 2018-07-12 2020-09-22 深圳创维-Rgb电子有限公司 多区背光控制系统、方法、电视及可读存储介质
CN110806646B (zh) * 2018-07-20 2021-01-22 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042316A (ja) * 1996-07-19 1998-02-13 Sanyo Electric Co Ltd 立体映像表示装置
CN1576953A (zh) * 2003-07-29 2005-02-09 三星电子株式会社 高分辨率三维图像显示器
CN102681185A (zh) * 2012-05-30 2012-09-19 深圳超多维光电子有限公司 一种立体显示装置及其调整方法
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统
CN103487983A (zh) * 2013-09-17 2014-01-01 京东方科技集团股份有限公司 一种阵列基板、显示面板及其显示装置
CN104297931A (zh) * 2014-10-27 2015-01-21 京东方科技集团股份有限公司 一种裸眼3d显示装置
CN105093553A (zh) * 2015-09-21 2015-11-25 京东方科技集团股份有限公司 一种屏障式裸眼3d显示屏及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973080A (ja) * 1995-09-06 1997-03-18 Canon Inc 液晶表示素子
JP2002237081A (ja) * 2001-02-14 2002-08-23 Sankyo Seiki Mfg Co Ltd 光ヘッド装置
JP2004341395A (ja) * 2003-05-19 2004-12-02 Alps Electric Co Ltd 光学素子
JP2006145884A (ja) * 2004-11-19 2006-06-08 Sony Corp 反射型偏光子及びカラー液晶表示装置
KR100739720B1 (ko) * 2005-08-16 2007-07-13 삼성전자주식회사 컬러필터 불요형 액정 디스플레이 장치
CN102809826B (zh) * 2007-02-13 2016-05-25 三星显示有限公司 用于定向显示器及系统的子像素布局及子像素着色方法
US10321118B2 (en) * 2011-01-04 2019-06-11 Samsung Electronics Co., Ltd. 3D display device and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042316A (ja) * 1996-07-19 1998-02-13 Sanyo Electric Co Ltd 立体映像表示装置
CN1576953A (zh) * 2003-07-29 2005-02-09 三星电子株式会社 高分辨率三维图像显示器
CN102681185A (zh) * 2012-05-30 2012-09-19 深圳超多维光电子有限公司 一种立体显示装置及其调整方法
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统
CN103487983A (zh) * 2013-09-17 2014-01-01 京东方科技集团股份有限公司 一种阵列基板、显示面板及其显示装置
CN104297931A (zh) * 2014-10-27 2015-01-21 京东方科技集团股份有限公司 一种裸眼3d显示装置
CN105093553A (zh) * 2015-09-21 2015-11-25 京东方科技集团股份有限公司 一种屏障式裸眼3d显示屏及显示装置

Also Published As

Publication number Publication date
CN106959543A (zh) 2017-07-18
US20180074374A1 (en) 2018-03-15
US10345645B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
KR101960049B1 (ko) 표시 장치 및 이의 구동 방법
JP7062366B2 (ja) 表示装置、表示方法及び色分離素子
WO2018129950A1 (zh) 液晶显示面板、显示装置及其驱动方法
US20180088344A1 (en) Display Device, Glasses-Free Three-Dimensional (3D) Display System and Virtual Reality (VR) Glasses
KR100750168B1 (ko) 컬러필터 불요형 액정 디스플레이 장치
WO2016192240A1 (zh) 一种场序显示面板、场序显示装置及驱动方法
US9557557B2 (en) Electro-wetting display panel and electro-wetting display apparatus
JP2010020961A (ja) 面状光源及び液晶表示装置
JP2018194592A (ja) 表示装置
WO2017118072A1 (zh) 显示装置
JP6749824B2 (ja) 表示装置及び照明装置
WO2017118047A1 (zh) 2d/3d可切换显示装置
US20190129274A1 (en) Display device and method for controlling a display device
WO2018192298A1 (zh) 显示装置及显示方法
TWI599824B (zh) Display device, display device driving method
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺
USRE45229E1 (en) Backlight for color liquid crystal display apparatus
TWI454795B (zh) 液晶顯示裝置
WO2018170960A1 (zh) 一种裸眼三维显示装置
KR100685433B1 (ko) 액정 표시 장치
JP2016161860A (ja) 表示装置及びカラーフィルタ基板
JP4628043B2 (ja) 液晶表示装置
JP7146584B2 (ja) 表示装置
KR101719815B1 (ko) 액정표시장치의 컬러필터 어레이기판
KR102075696B1 (ko) 표시 장치 및 이의 구동 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15525859

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883202

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883202

Country of ref document: EP

Kind code of ref document: A1