WO2018129950A1 - 液晶显示面板、显示装置及其驱动方法 - Google Patents

液晶显示面板、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2018129950A1
WO2018129950A1 PCT/CN2017/102560 CN2017102560W WO2018129950A1 WO 2018129950 A1 WO2018129950 A1 WO 2018129950A1 CN 2017102560 W CN2017102560 W CN 2017102560W WO 2018129950 A1 WO2018129950 A1 WO 2018129950A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
liquid crystal
pixel
sub
layer
Prior art date
Application number
PCT/CN2017/102560
Other languages
English (en)
French (fr)
Inventor
李忠孝
陈小川
赵文卿
王维
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/759,493 priority Critical patent/US10690832B2/en
Publication of WO2018129950A1 publication Critical patent/WO2018129950A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/302Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating grating coupler
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a liquid crystal display panel, a display device, and a driving method thereof.
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diode
  • waveguide gratings have higher resolution, higher light utilization rate, faster corresponding speed and good display.
  • the advantages such as effects have become a hot spot in the display field in recent years.
  • Embodiments of the present disclosure provide a liquid crystal display panel, a display device, and a method of driving the same, in order to eliminate or at least alleviate one or more of the existing disadvantages.
  • a liquid crystal display panel includes an array of pixel cells, wherein each pixel cell includes a plurality of sub-pixel cells. Further, the liquid crystal display panel further includes: a first substrate and a second substrate that are oppositely disposed; a liquid crystal layer between the first substrate and the second substrate; and a pixel for driving the liquid crystal layer An electrode layer and a common electrode layer; and a waveguide grating between the liquid crystal layer and the first substrate.
  • the waveguide grating includes a waveguide layer and a grating layer on the surface of the waveguide layer facing the liquid crystal layer, wherein the grating layer is in contact with the liquid crystal layer.
  • the pixel electrode layer further includes: an array of mutually insulated pixel sub-electrodes, wherein each sub-pixel unit corresponds to a plurality of pixel sub-electrodes; and, the grating layer Also included is an array of grating elements, wherein each of the grating elements includes a plurality of grating sub-units, and each of the grating sub-units corresponds to one of the pixel sub-electrodes.
  • each of the grating subunits is further configured such that light is not allowed to pass through the respective liquid crystal portions when the first voltage is applied to the corresponding pixel sub-electrodes, and light is allowed when the second voltage is applied to the corresponding pixel sub-electrodes Transmitting through the respective liquid crystal portions with a predetermined gray scale value, wherein the second voltage is different from the first voltage.
  • the sub-pixel unit further includes a first primary color sub-pixel, a second primary color sub-pixel, and a third primary color sub-pixel.
  • the grating unit further includes a first grating unit corresponding to the first primary color sub-pixel, a second grating unit corresponding to the second primary color sub-pixel, and a third grating unit corresponding to the third primary color sub-pixel.
  • the plurality of grating subunits are different from each other at least in one or more of the following: a duty ratio, a direction of the grid perpendicular to the display panel The height above, the shape of the cross section of the grid in a plane parallel to the display panel, the length and width of the grating area in a direction parallel to the sides of the display panel.
  • each of the grating units includes eight grating sub-units respectively corresponding to eight pixel sub-electrodes.
  • the refractive indices of the eight grating subunits are respectively configured such that the light is allowed to be 1st order, 2nd order, 4th order, 8th order, 16th order, 32th order, 64 when the second voltage is applied to the corresponding pixel sub-electrode
  • the order and 128 order gray scale values are transmitted through the respective liquid crystal portions.
  • the above eight raster subunits are arranged in the form of one row of eight columns, eight rows and one column, four rows and two columns, or two rows and four columns.
  • the refractive index of each of the grating subunits is configured to be the same as the refractive index of the corresponding liquid crystal portion when the first voltage or the second voltage is applied to the corresponding pixel sub-electrode.
  • the first voltage or the second voltage is set to a zero voltage. This means that when a zero voltage is applied to the corresponding pixel sub-electrode, the corresponding liquid crystal portion will have an initial refractive index.
  • the liquid crystal display panel further includes a color film layer between the liquid crystal layer and the second substrate, wherein the color film layer includes an array of color film patterns, and each color film pattern corresponds to each In a sub-pixel unit.
  • the color film layer includes a first primary color pattern, a second primary color pattern, and a third primary color pattern, wherein the first primary color pattern corresponds to the first primary color sub-pixel, the second primary color pattern corresponds to the second primary color sub-pixel, and the third primary color The pattern corresponds to a third primary color sub-pixel.
  • the grating unit includes: a first grating unit for outputting light of the first primary color, a second grating unit for outputting light of the second primary color, and a third for outputting light of the third primary color Raster unit.
  • the first grating unit is for emitting a first primary ray toward the viewing position
  • the second grating unit is for emitting a second primary ray toward the viewing position
  • the third grating unit is for emitting A third primary ray of light towards the viewing position.
  • the display device includes: the liquid crystal display panel described in any of the above embodiments; and a collimated light source, wherein the collimated light source is disposed on a light incident side of the waveguide layer of the liquid crystal display panel, in particular, disposed at a side of the waveguide layer.
  • the driving method includes: progressively scanning sub-pixels in the display device; and inputting a first voltage or a second voltage to the corresponding plurality of pixel sub-electrodes according to the grayscale value required by each sub-pixel unit, The sub-pixel unit is displayed in accordance with the required gray value.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a distribution of grating subunits in each of the grating units of the liquid crystal display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a liquid crystal display panel according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display device including a liquid crystal display panel according to an embodiment of the present disclosure
  • FIG. 5 is a flow chart showing a driving method for a display device according to an embodiment of the present disclosure.
  • the following reference numerals are used to indicate various components: 10-first substrate; 100-pixel unit; 101-first primary color sub-pixel; 102-second primary color sub-pixel; 103-third primary color sub- Pixel; 20-second substrate; 30-liquid crystal layer; 31-pixel electrode layer; 311-pixel sub-electrode; 32-common electrode layer; 33-orientation layer; 40-waveguide grating; 401-waveguide layer; a grating layer; 4021-first grating unit; 4022-second grating unit; 4023-third grating unit; 411-grating sub-unit; 50-color film layer; 501-first primary color pattern; 502-second primary color pattern; 503 - a third primary color pattern; and a 60-collimated light source.
  • Embodiments of the present disclosure provide a liquid crystal display panel.
  • the liquid crystal display panel includes: a first substrate substrate 10 and a second substrate substrate 20 disposed opposite each other; and a liquid crystal layer 30 between the first substrate substrate 10 and the second substrate substrate 20. And a pixel electrode layer 31 and a common electrode layer 32 for driving the liquid crystal layer 30.
  • the liquid crystal display panel further includes an array of pixel units, specifically, a plurality of pixel units 100, wherein each of the pixel units includes a plurality of sub-pixel units.
  • each pixel unit 100 includes a first primary color sub-pixel 101, a second primary color sub-pixel 102, and a third primary color sub-pixel 103, for example, a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the liquid crystal display panel further includes a waveguide grating 40 located between the liquid crystal layer 30 and the first substrate 10.
  • the waveguide grating 40 includes a waveguide layer 401 and a grating layer 402 on the surface of the waveguide layer 401 facing the liquid crystal layer 30, wherein the grating layer 402 is in contact with the liquid crystal layer 30.
  • the liquid crystal molecules in the liquid crystal layer 30 can be deflected to cause the refractive index of the liquid crystal layer 30 to change.
  • the refractive index of the liquid crystal layer 30 can be controlled.
  • the difference between the refractive index of the liquid crystal layer 30 and the refractive index of the grating layer 402 and the specific size of such a difference can be controlled.
  • the pixel electrode layer further includes: an array of mutually insulated pixel sub-electrodes 311, wherein each sub-pixel unit corresponds to a plurality of pixel sub-electrics Pole 311.
  • the grating layer 402 further comprises an array of grating elements, wherein each of the grating elements comprises a plurality of grating sub-units, and each of the grating sub-units corresponds to one pixel sub-electrode.
  • the grating unit comprises: a first grating unit 4021 corresponding to the first primary color sub-pixel 101, a second grating unit 4022 corresponding to the second primary color sub-pixel 102, and a third grating corresponding to the third primary color sub-pixel 103.
  • Unit 4023 the refractive index of each of the grating subunits is configured such that light is not allowed to pass through the respective liquid crystal portions when the first voltage is applied to the corresponding pixel sub-electrodes, and light is allowed to be applied when the second voltage is applied to the corresponding pixel sub-electrodes
  • the predetermined gray scale value is transmitted through the respective liquid crystal portion, wherein the second voltage is different from the first voltage.
  • the grating layer 402 located on the surface of the waveguide layer 401 facing the liquid crystal layer 30 may be a scoring structure disposed on the upper surface of the waveguide layer 401, that is, the waveguide layer 401 and the grating layer 402 are integrated.
  • the grating layer 402 located on the surface of the waveguide layer 401 facing the liquid crystal layer 30 may also be independent of the waveguide layer 401, as long as the gap between the grating strips of the grating layer 402 and the grating strips can be ensured. It has a different refractive index.
  • the liquid crystal layer 30 may be selected from a blue phase liquid crystal, or a phase alignment liquid crystal, that is, a rod-like liquid crystal molecular structure may be selected.
  • a phase alignment liquid crystal that is, a rod-like liquid crystal molecular structure may be selected.
  • the pixel electrode layer 31 and the common electrode layer 32 for driving the liquid crystal layer 30 may be located on both sides of the liquid crystal layer 30, as shown in FIG. Of course, this may not be the case.
  • the pixel electrode layer 31 and the common electrode layer 32 for driving the liquid crystal layer 30 may also be located on the same side of the liquid crystal layer 30.
  • the pixel electrode layer 31 is a strip electrode
  • the common electrode 32 is a planar electrode
  • the pixel electrode layer 31 is closer to the liquid crystal layer 30 with respect to the common electrode 32.
  • the pixel electrode layer 31 and the common electrode layer 32 may also be strip electrodes spaced apart in the same layer.
  • the present disclosure is not limited in this respect as long as it is possible to ensure that the liquid crystal molecules of the liquid crystal layer 30 are deflected by the driving of the pixel electrode layer 31 and the common electrode layer 32, thereby adjusting the refractive index of the liquid crystal layer 30. It should be noted that the following embodiments are based on the case where the pixel electrode layer 31 and the common electrode layer 32 are located on both sides of the liquid crystal layer 30, and the present disclosure will be further described.
  • the thickness of the liquid crystal layer 30 is relatively low.
  • the grating layer 402 in the waveguide grating 40 can be nanometer-scale, thereby making the liquid crystal display panel easy to realize high-resolution picture display.
  • each sub-pixel corresponds to a plurality of mutually insulated pixel sub-electrodes
  • the grating unit corresponding to the sub-pixel also includes a plurality of grating sub-units, wherein each of the grating sub-units is insulated from the plurality of The pixel sub-electrodes correspond one-to-one.
  • the refractive index change of the liquid crystal layer at the position corresponding to each pixel sub-electrode can be adjusted.
  • the transmittance of the light emitted by the grating sub-unit corresponding to each pixel sub-electrode at the liquid crystal layer at the position can be controlled by means of the difference in refractive index of the liquid crystal layer, thereby realizing the gray scale display of the sub-pixel.
  • the refractive index of the liquid crystal layer 30 and the grating layer 402 are The refractive index is the same.
  • the waveguide layer 401 is a uniform whole refractive index including the grating layer 402 and the liquid crystal layer 30 having the same refractive index. Thereby, no light is emitted from the waveguide layer 401 and transmitted through the grating layer 402 and the liquid crystal layer 30.
  • the refractive index of the liquid crystal layer 30 is different from the refractive index of the grating layer 402.
  • the refractive index of the liquid crystal layer 30 is the same as the refractive index of the grating layer 402. At this time, no light is emitted from the waveguide layer 401 and transmitted through the grating layer 402 and the liquid crystal layer 30.
  • the voltage applied to the pixel sub-electrode 311 corresponding to the grating sub-unit 411 is adjusted to the second voltage, and the difference between the refractive index of the liquid crystal layer 30 and the refractive index of the grating layer 402 is made large.
  • the voltage applied to the pixel sub-electrode 311 corresponding to the grating sub-unit 411 is adjusted to be located at the first voltage and the second electric Between the pressures, and adjusting the difference between the refractive index of the liquid crystal layer 30 and the refractive index of the grating layer 402. Thereby, it is possible to control the amount of light emitted from the grating sub-unit 411 and transmitted through the liquid crystal layer 30, that is, the magnitude of the transmittance.
  • the plurality of raster subunits 411 in each of the raster units may be identical or different.
  • the plurality of grating sub-units 411 in each of the grating units may have different grating structures such that the plurality of grating sub-units 411 have different light-emitting luminances or different light-emitting areas.
  • the present disclosure is not limited in this respect.
  • one or more of the following may be selected: the duty ratio, the height of the grid in a direction perpendicular to the display panel The shape of the cross section of the grid in a plane parallel to the display panel, the length and width of the grating region in a direction parallel to the sides of the display panel.
  • a plurality of gratings may be made only by setting one of the duty ratio, the height of the grating strip, or the shape of the cross-section of the grating to be different.
  • the light-emitting luminance of the unit 411 is different, thereby ensuring that the light-emitting amounts of the plurality of grating sub-units 411 are different.
  • the light-emitting areas of the plurality of grating sub-units 411 different by merely setting one of the lengths of the grating regions and the widths of the grating regions to be different, thereby ensuring the plurality of grating sub-units 411.
  • the amount of light is different.
  • at least two parameters of the duty ratio, the height of the grid, the shape of the cross section of the grid, the length of the grating region, and the width of the grating region can be set differently at the same time.
  • the amount of light emitted by the plurality of grating sub-units 411 is different.
  • the above-described grid cross section is a section in a plane parallel to the display panel.
  • the cross-section of the grid strip may be selected to have a trapezoidal shape, a rectangular shape, a semi-circular arc shape, or the like.
  • the cross-section of the grid strips may be selected to have a circular arc shape having a different arc such that the light-emitting luminances of the plurality of grating sub-units 411 are different.
  • the grating regions of different lengths and/or widths are directly produced during the process.
  • the portion covered by the black matrix cannot transmit light, and the position not covered with the black matrix can ensure normal light transmission.
  • grating regions of different lengths and grating regions of different widths can be obtained.
  • each of the grating units includes eight grating sub-units 411 respectively corresponding to the eight pixel sub-electrodes 311.
  • the refractive indices of the eight grating sub-units 411 are respectively configured such that the light is allowed to be 1st order, 2nd order, 4th order, 8th order, 16th order, 32th order when the second voltage is applied to the corresponding pixel sub-electrode 311.
  • the 64th order and the 128th order gray scale values are transmitted through the corresponding liquid crystal portions.
  • the distribution of the eight grating sub-units 411 corresponding to the eight pixel sub-electrodes 311, respectively, may be in the form of four rows and two columns, as shown in FIG.
  • the eight raster sub-units 411 can also be in the form of two rows and four columns, eight rows and one column, or one row and eight columns.
  • suitable different designs can be selected according to actual needs, and the disclosure is not limited in this respect.
  • the refractive indices of the liquid crystal layer 30 may be expressed as the first working refractive index N1 and the second operation, respectively.
  • the second working refractive index N2 is different from the refractive index of the grating layer 402, that is, N1 ⁇ N2.
  • the refractive index of the liquid crystal layer 30 corresponding to the pixel sub-electrode 311 is the first working refractive index N1
  • light will not be able to be emitted from the grating sub-unit 411 corresponding to the pixel sub-electrode 311 and transmitted through the Liquid crystal layer 30.
  • the refractive index of the liquid crystal layer 30 is the second working refractive index N2
  • light can be emitted from the grating sub-unit 411 corresponding to the pixel sub-electrode 311 and transmitted through the liquid crystal layer 30 for normal display.
  • the liquid crystal layer 30 corresponding to each of the pixel sub-electrodes 311 to have the first working refractive index N1 or the second working refractive index N2, it is possible to control whether the light can be extracted from each of the grating sub-units 411 in the grating unit. It is emitted and normally passes through the liquid crystal layer.
  • each of the grating units includes a pair of eight pixel sub-electrodes 311, respectively.
  • the 16th order, 32th order, 64th order, and 128th order gray scale values are transmitted through the corresponding liquid crystal portions.
  • eight raster sub-units 411 that allow light to be transmitted in 1st order, 2nd order, 4th order, 8th order, 16th order, 32th order, 64th order, and 128th order gray scale values are respectively represented as first grating subunits.
  • the first grating sub-unit, the second grating sub-unit, the third grating sub-unit, the fourth grating sub-unit, and the fifth grating may be simultaneously driven.
  • the display of the order value (1+2+4+8+16+32+64+128 255).
  • the third raster subunit (corresponding to the 4th order gray scale value) and the fifth raster subunit (corresponding to the 16th order gray scale) may be simultaneously driven
  • the value is such that the refractive index of the corresponding liquid crystal layer 30 is the above-described second refractive index N2, so that the display of the 20th order gray scale value can be satisfied.
  • the pixel sub-electrode 311 corresponding to the grating sub-unit may be simultaneously driven so that the refractive index of the corresponding liquid crystal layer 30 is the first refractive index N1 described above. .
  • the above description is only for the case where the first working refractive index N1 is the same as the refractive index of the grating layer 402 and the second working refractive index N2 is different from the refractive index of the grating layer 402.
  • the same analysis is also performed for the case where the second working refractive index N2 is the same as the refractive index of the grating layer 402 and the first working refractive index N1 is different from the refractive index of the grating layer 402. Will apply, and the disclosure will not be repeated here.
  • each of the grating units may further include nine grating sub-units 411 corresponding to the nine pixel sub-electrodes 311, respectively, wherein the refractive indices of the eight grating sub-units are respectively configured such that the corresponding
  • the application of the second voltage by the pixel sub-electrode allows the light to be displayed in 1st order, 2nd order, 4th order, 8th order, 16th order, 32th order, 64th order, 128th order, and 256th order gray scale values.
  • display of any of the grayscale values of the 0 to 511th grayscale values can be realized.
  • the display principle of the specific gray scale is the same as the display principle of the gray scale values of 0 to 255, and will not be described here.
  • the raster elements can be further subdivided to meet finer grayscale adjustments.
  • the first working refractive index N1 or the second working refractive index N2 is an initial refractive index of the liquid crystal layer 30.
  • the initial refractive index of the liquid crystal layer 30 is the refractive index when the liquid crystal layer 30 is not driven by the electric field between the pixel electrode layer 31 and the common electrode layer 32, that is, the liquid crystal layer 30 is not applied with an electric field.
  • Refractive index This means that if the first working refractive index N1 is selected to be the initial refractive index, then the first voltage is zero voltage. Similarly, if the second working refractive index N2 is selected to be the initial refractive index, then the second voltage is zero voltage.
  • the refractive index of the waveguide layer 401 can be selected to be 2.0, and the refractive index of the grating layer 402 is 1.5.
  • the liquid crystal layer 30 at the position can be driven by applying an electric signal to the pixel sub-electrode 311.
  • the refractive index of the second working refractive index N2 may be.
  • the refractive index is the same as the refractive index of the grating layer 402. Thereby, the light does not normally pass through the liquid crystal layer 30 at the corresponding position.
  • the description will be made only by taking an example in which the refractive index of the liquid crystal layer 30 is increased by the electric field drive.
  • the type of liquid crystal whose refractive index is reduced under electric field driving can also be selected, and the present disclosure is not limited in this respect.
  • the above description is based only on the case where the initial refractive index is the same as the refractive index of the grating layer 402.
  • the initial refractive index of the liquid crystal layer 30 may be different from the refractive index of the grating layer 402, that is, the first working refractive index N1 is different from the refractive index of the grating layer 402, and the second working refractive index N2 is different from the grating layer.
  • the refractive index of 402 is the same.
  • the refractive index of the liquid crystal layer 30 in the case where no electric field is applied is different from the refractive index of the grating layer 402, and the refractive index of the liquid crystal layer 30 after driving by the application of the electric field is the same as the refractive index of the grating layer 402.
  • the above examples are merely illustrative of the initial refractive index of the liquid crystal layer 30 at the first working refractive index N1.
  • the second working refractive index N2 is the initial refractive index of the liquid crystal layer 30. The principle is the same as above and will not be described here.
  • the liquid crystal display panel in the present disclosure realizes color display, wherein the liquid crystal display panel is divided into a plurality of pixel units, and each of the pixel units includes a first primary color sub-pixel, a second primary color sub-pixel, and a third primary color sub-region. Pixel.
  • the liquid crystal display panel also needs to be in the liquid crystal layer 30 and A color film layer 50 is disposed between the two base substrates 20.
  • the color film layer 50 includes a color film pattern, in particular, a first primary color pattern 501, a second primary color pattern 502, and a third primary color pattern 503.
  • the color film layer 50 includes a red color film pattern, a green color film pattern, and a blue color film pattern.
  • the first primary color pattern 501 corresponds to the first primary color sub-pixel 101
  • the second primary color pattern 502 corresponds to the second primary color sub-pixel 102
  • the third primary color pattern 503 corresponds to the third primary color sub-pixel 103.
  • the mixed color light emitted by the first grating unit 4021 corresponding to the first primary color sub-pixel 101 becomes the first primary color light after passing through the first primary color pattern 501, and the second grating corresponding to the second primary color sub-pixel 102.
  • the mixed color light emitted by the unit 4022 becomes the second primary color light after passing through the second primary color pattern 502, and the mixed color light emitted by the third grating unit 4023 corresponding to the third primary color sub-pixel 103 becomes after passing through the third primary color pattern 502.
  • the third primary color light In this way, display of different colors can be achieved.
  • the exit of light of a given wavelength in a given direction can be achieved by setting a grating period.
  • the first grating unit 4021, the second grating unit 4022, and the third grating unit 4023 the light of a given color can be emitted in a given direction by the setting of the grating period, the specific operation The principle is described in detail below.
  • the angle ⁇ corresponding to the wavelength of the light, the direction of the light output of the output light, and the normal to the plane of the panel plane satisfy the following relationship:
  • is the grating period
  • n c is the refractive index of the dielectric layer above the waveguide
  • q and N m are known parameters.
  • the first primary color sub-pixel 101 can be allowed to emit the first primary color ray, and the second primary color sub-pixel
  • the second primary color light is emitted from the second primary color sub-pixel 103, and the color film layer is not required to be disposed at the same time.
  • FIG. 1 is an example in which the angle ⁇ between the light outgoing direction of the output light and the normal to the panel plane is 90°.
  • can also be set to other angles, such as 60°, depending on the particular embodiment.
  • the inter-layer correspondence in each sub-pixel is also in a 60° tilt relationship.
  • the first grating unit 4021 can be used to emit the first primary ray toward the viewing position
  • the second grating unit 4022 is used for A second primary color ray that is directed toward the viewing position is emitted
  • the third grating unit 4023 is configured to emit a third primary ray of light toward the viewing position.
  • Embodiments of the present disclosure also provide a display device.
  • the display device includes the liquid crystal display panel described in any one of the above embodiments, and the collimated light source 60, wherein the collimated light source 60 is located on the light incident side of the waveguide layer 401 in the liquid crystal display panel, in particular, The side of the waveguide layer 401.
  • Such a display device has the same structure and advantageous effects as the liquid crystal display panel provided by the foregoing embodiments.
  • the structure and beneficial effects of the liquid crystal display panel have been described in detail since the foregoing embodiments, and are not described herein again.
  • the above-mentioned collimated light source 60 can be made of semiconductor laser chips of three colors of red, green and blue.
  • the light-emitting diodes (LEDs) of red, green, and blue colors may be collimated and expanded to form the collimated light source 60.
  • the collimated light source 60 can also be fabricated by collimating and expanding the white LED chip.
  • a collimated light source 60 may be formed by a strip-shaped cold cathode fluorescent lamp (CCFL) plus some light collimating structures.
  • CCFL cold cathode fluorescent lamp
  • non-collimated light sources can also be used.
  • a collimated light source is optionally employed.
  • An embodiment of the present disclosure also provides a driving method for the above display device.
  • the driving method includes: step S101, scanning sub-pixels in the display device line by line; and step S102, respectively, according to gray scale values required by each sub-pixel unit, respectively, to corresponding pixels
  • the electrode inputs a first voltage or a second voltage such that the sub-pixel unit displays in accordance with the grayscale value.
  • the refractive index change of the liquid crystal layer corresponding to each pixel sub-electrode can be adjusted. Therefore, by the difference in the refractive index of the liquid crystal layer, the transmittance of the light emitted from the grating sub-unit corresponding to each pixel sub-electrode at the liquid crystal layer at the position can be controlled, thereby realizing the sub-pixel according to the preset gray value.
  • the refractive indices of the liquid crystal layer 30 may be expressed as a first working refractive index N1 and a second working refractive index N2, respectively.
  • a working refractive index N1 or a second working refractive index N2 is the same as the refractive index of the grating layer 402.
  • the first voltage or the second voltage may be input to each of the pixel sub-electrodes 311 in the sub-pixel
  • the refractive index of the liquid crystal layer 30 corresponding to each of the pixel sub-electrodes 311 is the first working refractive index N1 under the driving of the first voltage, or the refractive index is the second working refractive index N2 under the driving of the second voltage.
  • the refractive index of the liquid crystal layer 30 corresponding to each of the pixel sub-electrodes 311 it is possible to control whether the light can be extracted from the respective grating subunits in the grating unit.
  • the 411 is emitted and normally passes through the liquid crystal layer, thereby achieving the purpose of normal display of each sub-pixel according to a preset gray value.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种液晶显示面板、显示装置及其驱动方法。该液晶显示面板包括像素单元(100)的阵列,其中每一个像素单元(100)包括多个亚像素单元(101,102,103)。该液晶显示面板还包括:层叠设置的第一衬底基板(10)、第二衬底基板(20)、液晶层(30)、像素电极层(31)、公共电极层(32)和波导光栅(40)。具体地,波导光栅(40)位于液晶层(30)与第一衬底基板(10)之间,并且包括波导层(401)和位于波导层(401)朝向液晶层(30)的表面上的光栅层(402),其中光栅层(402)与液晶层(30)接触。此外,在上述液晶显示面板中,像素电极层(31)还包括相互绝缘的像素子电极(311)的阵列,其中每一个亚像素单元(101,102,103)对应于多个像素子电极(311)。而且,光栅层(402)还包括光栅单元(4021,4022,4023)的阵列,其中每一个光栅单元(4021,4022,4023)包括多个光栅子单元(411),并且每一个光栅子单元(411)对应于一个像素子电极(311)。进一步地,每一个光栅子单元(411)的折射率配置成使得在向对应的像素子电极(311)应用第一电压时不允许光透射通过相应液晶部分,并且在向对应的像素子电极(311)应用与第一电压不同的第二电压时允许光以预确定的灰阶值透射通过相应液晶部分。

Description

液晶显示面板、显示装置及其驱动方法
相关申请的交叉引用
本申请要求于2017年1月12日提交的中国专利申请号201710023213.X的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及液晶显示面板、显示装置及其驱动方法。
背景技术
在现今显示市场中,LCD(Liquid Crystal Display,液晶显示装置)和OLED(Organic Light Emitting Diode,有机发光二极管)显示装置占据着主导地位。
随着显示技术的不断进步,以及用户对显示需求的不断提升,作为一种新型显示技术,波导光栅以其较高的分辨率、较高的光利用率、较快的相应速度和良好的显示效果等优点,成为近年来显示领域的关注热点。
发明内容
本公开的实施例提供了液晶显示面板、显示装置及其驱动方法,以便消除或者至少缓解现有缺点中的一个或多个。
根据本公开的实施例,提供了一种液晶显示面板。该液晶显示面板包括像素单元的阵列,其中每一个像素单元包括多个亚像素单元。进一步地,该液晶显示面板还包括:相对设置的第一衬底基板和第二衬底基板;位于第一衬底基板和第二衬底基板之间的液晶层和用于驱动液晶层的像素电极层和公共电极层;以及位于液晶层与第一衬底基板之间的波导光栅。具体地,波导光栅包括波导层和位于波导层朝向液晶层的表面上的光栅层,其中光栅层与液晶层接触。进一步地,在上述液晶显示面板中,像素电极层还包括:相互绝缘的像素子电极的阵列,其中每一个亚像素单元对应于多个像素子电极;而且,光栅层 还包括:光栅单元的阵列,其中每一个光栅单元包括多个光栅子单元,并且每一个光栅子单元对应于一个像素子电极。此外,每一个光栅子单元的折射率还配置成使得在向对应的像素子电极应用第一电压时不允许光透射通过相应液晶部分,并且在向对应的像素子电极应用第二电压时允许光以预确定的灰阶值透射通过相应液晶部分,其中所述第二电压不同于所述第一电压。
进一步地,在上述液晶显示面板的具体实施例中,亚像素单元还包括第一原色亚像素、第二原色亚像素和第三原色亚像素。在这样的情况下,光栅单元还包括与第一原色亚像素对应的第一光栅单元、与第二原色亚像素对应的第二光栅单元、以及与第三原色亚像素对应的第三光栅单元。
进一步地,在上述液晶显示面板的每一个光栅单元中,所述多个光栅子单元至少在以下各项中的一个或多个中彼此不同:占空比、栅条在垂直于显示面板的方向上的高度、栅条在平行于显示面板的平面中的横截面的形状、光栅区域在平行于显示面板的侧边的方向上的长度和宽度。
进一步地,在上述液晶显示面板的具体实施例中,每一个光栅单元包括分别与八个像素子电极对应的八个光栅子单元。进一步地,这八个光栅子单元的折射率分别配置成使得在向对应的像素子电极应用第二电压时允许光以1阶、2阶、4阶、8阶、16阶、32阶、64阶和128阶灰阶值透射通过相应液晶部分。
进一步地,在实施例中,上述八个光栅子单元布置为一行八列、八行一列、四行两列或者两行四列的形式。
进一步地,在上述液晶显示面板的具体实施例中,每一个光栅子单元的折射率配置成与在向对应的像素子电极应用第一电压或第二电压时相应液晶部分的折射率相同。
进一步地,在上述液晶显示面板的具体实施例中,第一电压或第二电压设置为零电压。这意味着,在向对应像素子电极应用零电压时,相应的液晶部分将具有初始折射率。
进一步地,根据本公开的实施例,液晶显示面板还包括位于液晶层和第二衬底基板之间的彩膜层,其中彩膜层包括彩膜图案的阵列,并且每一个彩膜图案分别对应于一个亚像素单元。特别地,在可选实 施例中,彩膜层包括第一原色图案、第二原色图案和第三原色图案,其中第一原色图案对应于第一原色亚像素,第二原色图案对应于第二原色亚像素,并且第三原色图案对应于第三原色亚像素。
进一步地,根据本公开的实施例,光栅单元包括:用于输出第一原色光线的第一光栅单元、用于输出第二原色光线的第二光栅单元、以及用于输出第三原色光线的第三光栅单元。
进一步地,在可选实施例中,第一光栅单元用于出射朝向观看位置的第一原色光线,第二光栅单元用于出射朝向观看位置的第二原色光线,并且第三光栅单元用于出射朝向观看位置的第三原色光线。
根据本公开的实施例,还提供一种显示装置。该显示装置包括:在上述任一个实施例中描述的液晶显示面板;以及准直光源,其中准直光源设置在液晶显示面板的波导层的入光侧,特别地,设置在波导层的侧面。
根据本公开的实施例,还提供一种用于上述显示装置的驱动方法。具体地,该驱动方法包括:逐行扫描显示装置中的亚像素;以及根据每一个亚像素单元所要求的灰阶值,分别向对应的多个像素子电极输入第一电压或第二电压,以使得该亚像素单元按照所要求的灰度值进行显示。
附图说明
为了更清楚地说明本公开的实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的实施例。
图1为根据本公开的一个实施例的液晶显示面板的结构示意图;
图2为根据本公开的一个实施例的液晶显示面板的每一个光栅单元中的光栅子单元的分布示意图;
图3为根据本公开的另一个实施例的液晶显示面板的结构示意图;
图4为根据本公开的一个实施例的包括液晶显示面板的显示装置的结构示意图;以及
图5为根据本公开的一个实施例的用于显示装置的驱动方法的流程示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在附图中,使用以下附图标记来表示各种组件:10-第一衬底基板;100-像素单元;101-第一原色亚像素;102-第二原色亚像素;103-第三原色亚像素;20-第二衬底基板;30-液晶层;31-像素电极层;311-像素子电极;32-公共电极层;33-取向层;40-波导光栅;401-波导层;402-光栅层;4021-第一光栅单元;4022-第二光栅单元;4023-第三光栅单元;411-光栅子单元;50-彩膜层;501-第一原色图案;502-第二原色图案;503-第三原色图案;以及60-准直光源。
本公开的实施例提供了一种液晶显示面板。如图1所示,该液晶显示面板包括:相对设置的第一衬底基板10和第二衬底基板20;以及位于第一衬底基板10和第二衬底基板20之间的液晶层30和用于驱动液晶层30的像素电极层31和公共电极层32。该液晶显示面板还包括像素单元的阵列,具体地,划分为多个像素单元100,其中每一个像素单元包括多个亚像素单元。可选地,每一个像素单元100包括第一原色亚像素101、第二原色亚像素102和第三原色亚像素103,例如,红色亚像素、绿色亚像素和蓝色亚像素。
另外,如图1所示,上述液晶显示面板还包括:位于液晶层30与第一衬底基板10之间的波导光栅40。具体地,该波导光栅40包括波导层401和位于波导层401朝向液晶层30的表面上的光栅层402,其中该光栅层402与液晶层30接触。以这样的方式,当调整施加在像素电极层31和公共电极层32上的电信号时,液晶层30中的液晶分子能够发生偏转,以使得液晶层30的折射率发生变化。由此,可以控制该液晶层30的折射率。进一步地,能够控制该液晶层30的折射率与光栅层402的折射率的差异以及这种差异的具体大小。
在此基础上,如图1所示,上述像素电极层还包括:相互绝缘的像素子电极311的阵列,其中每一个亚像素单元对应于多个像素子电 极311。此外,上述光栅层402还包括:光栅单元的阵列,其中每一个光栅单元包括多个光栅子单元,并且每一个光栅子单元对应于一个像素子电极。可选地,光栅单元包括:与第一原色亚像素101对应的第一光栅单元4021、与第二原色亚像素102对应的第二光栅单元4022、以及与第三原色亚像素103对应的第三光栅单元4023。此外,每一个光栅子单元的折射率配置成使得在向对应的像素子电极应用第一电压时不允许光透射通过相应液晶部分,并且在向对应的像素子电极应用第二电压时允许光以预确定的灰阶值透射通过相应液晶部分,其中所述第二电压不同于所述第一电压。
需要说明的是,位于波导层401朝向液晶层30的表面上的上述光栅层402,可以是设置于波导层401的上表面上的刻痕结构,即,波导层401与光栅层402为一体结构。当然,位于波导层401朝向液晶层30的表面上的上述光栅层402,也可以是与波导层401相互独立的结构,只要能够保证光栅层402的栅条与各栅条之间的缝隙对光具有不同的折射率即可。
另外还要说明的是,在本公开中,液晶层30可以选用蓝相液晶,也可以选用相列向液晶,即,棒状液晶分子结构。当选用相列向液晶时,如图1所示,一般还需要在液晶层30靠近第二衬底基板20的一侧上设置取向层33,以保证液晶层分子具有初始配向。需要注意的是,以下实施例均是以相列向液晶为例对本公开做进一步的说明。
进一步地,还要指出的是,用于驱动液晶层30的像素电极层31和公共电极层32可以位于液晶层30的两侧,如图1所示。当然,情况可以并非如此。示例性地,用于驱动液晶层30的像素电极层31和公共电极层32也可以均位于液晶层30的同一侧。可选地,像素电极层31为条状电极,公共电极32为面状电极,并且像素电极层31相对于公共电极32更靠近液晶层30。可替换地,像素电极层31和公共电极层32还可以是同层间隔设置的条状电极。本公开在这一方面不受限制,只要能够保证液晶层30的液晶分子由于像素电极层31和公共电极层32的驱动而发生偏转,从而调整液晶层30的折射率即可。需要指出的是,以下实施例均是以像素电极层31和公共电极层32位于液晶层30的两侧为例,对本公开做进一步的说明。
另外,在本公开中,液晶层30的厚度相对较低。这样一来,通过 像素电极层31和公共电极层32驱动液晶层30的响应速度相对较快,从而有利于画面的显示。同时,波导光栅40中的光栅层402可以做到纳米量级,从而使得该液晶显示面板易于实现高分辨率的画面显示。
综上所述,由于每一个亚像素对应于多个相互绝缘的像素子电极,并且与该亚像素对应的光栅单元也包括多个光栅子单元,其中每一个光栅子单元与多个相互绝缘的像素子电极一一对应。这样一来,对于每一个亚像素而言,通过控制不同像素子电极与公共电极层之间的电场强度,能够调整与各个像素子电极对应的位置处的液晶层的折射率变化。由此,可以借助于液晶层折射率的不同来控制与各个像素子电极对应的光栅子单元发出的光线在该位置的液晶层处的透过率,从而实现该亚像素的灰阶显示。
以下对实现亚像素的灰阶显示的上述具体方式做进一步的说明。
例如,当将施加给与光栅子单元411对应的像素子电极311的电压调整为第一电压时(其中,公共电极32一般施以恒定电压),该液晶层30的折射率与光栅层402的折射率相同。此时,波导层401上方将出现的是一个均匀折射率的整体,包括具有相同折射率的光栅层402和液晶层30。由此,将没有光线从波导层401出射并且透过光栅层402和液晶层30。另一方面,当将施加给与光栅子单元411对应的像素子电极311的电压调整为第二电压时,该液晶层30的折射率与光栅层402的折射率不相同。由此,光线能够从该光栅子单元411出射并且透过液晶层30。
这样一来,通过控制光线能够透过与亚像素对应的每个光栅子单元以及进一步地液晶层,可以控制能够透射光的光栅子单元的个数。由此,可以实现该亚像素的不同亮度显示,即,不同灰阶显示。
又例如,当将施加给与光栅子单元411对应的像素子电极311的电压调整为第一电压时,该液晶层30的折射率与光栅层402的折射率相同。此时,将没有光线从波导层401出射并且透过光栅层402和液晶层30。与此相反,将施加给与光栅子单元411对应的像素子电极311的电压调整为第二电压,并且使该液晶层30的折射率与光栅层402的折射率的差异较大。以这样的方式,光将以较高的透射率从该光栅子单元411出射并且透射通过液晶层30。进一步地,将施加给与光栅子单元411对应的像素子电极311的电压调整为位于第一电压和第二电 压之间,并且调整液晶层30的折射率与光栅层402的折射率的差异。由此,可以控制从该光栅子单元411出射并且透射通过液晶层30的光的多少,即,透过率的大小。
这样一来,结合液晶层的折射率与光栅层的折射率的差异大小,通过控制光是否能够从每个光栅子单元出射并且正常透过液晶层,还可以控制从每个光栅子单元出射的光线穿过液晶层的透过率。由此,可以实现该亚像素的不同亮度显示,即,不同灰阶显示。
另外,对于上述两种灰阶显示方式,每一个光栅单元中的多个光栅子单元411可以完全相同,也可以不同。例如,每一个光栅单元中的多个光栅子单元411可以具有不同的光栅结构,以使得多个光栅子单元411的出光亮度不同或者出光面积不同。本公开在这一方面不受限制。
进一步地,对于上述光栅单元中的多个光栅子单元411的不同光栅结构,具体地,可以选择为以下中的一个或多个:占空比、栅条在垂直于显示面板的方向上的高度、栅条在平行于显示面板的平面中的横截面的形状、光栅区域在平行于显示面板的侧边的方向上的长度和宽度。
需要说明的是,对于上述光栅单元中的多个光栅子单元411,可以仅通过将占空比、栅条高度或者栅条横截面的形状中的一个参数设置为不同,而使得多个光栅子单元411的出光亮度不同,进而保证多个光栅子单元411的出光量不同。当然,可替换地,也可以仅通过将光栅区域的长度和光栅区域的宽度中的一个参数设置为不同,而使得多个光栅子单元411的出光面积不同,进而保证多个光栅子单元411的出光量不同。显然,本领域技术人员应当领会到的是,还可以同时将占空比、栅条高度、栅条横截面的形状、光栅区域的长度和光栅区域的宽度中的至少两个参数设置为不同,以使得多个光栅子单元411的出光量不同。
此外,上述栅条横截面是在平行于显示面板的平面中的截面。在具体实施例中,可以将栅条横截面选择为具有梯形、矩形、半圆弧形等形状。同样地,也可以将栅条横截面选择为具有不同弧度的圆弧形,以使得多个光栅子单元411的出光亮度不同。
同时,对于上述光栅区域的长度以及光栅区域的宽度,可以在制 作过程中直接制作出不同长度和/或宽度的光栅区域。当然,可替换地,也可以首先直接制作出整层连续的光栅结构,并且然后在该光栅结构上覆盖黑矩阵图案。此时,被黑矩阵覆盖的部分无法使光透过,而未覆盖有黑矩阵的位置能够保证光正常透过。这样一来,通过设计黑矩阵图案的形状,可以得到不同长度的光栅区域以及不同宽度的光栅区域。
在此基础上,根据本公开的实施例,可选地,每一个光栅单元包括分别与八个像素子电极311对应的八个光栅子单元411。具体地,这八个光栅子单元411的折射率分别配置成使得在向对应的像素子电极311应用第二电压时允许光以1阶、2阶、4阶、8阶、16阶、32阶、64阶和128阶灰阶值透射通过相应液晶部分。
具体地,分别与八个像素子电极311对应的八个光栅子单元411的分布可以是四行两列的形式,如图2所示。当然,八个光栅子单元411也可以是两行四列、八行一列、或者一行八列的形式。实际上,可以根据实际的需要选择适合的不同设计,并且本公开在这一方面不受限制。
在此基础上,根据本公开的实施例,可选地,在施加第一电压和第二电压的情况下,前述液晶层30的折射率分别可以表示为第一工作折射率N1和第二工作折射率N2,其中第一工作折射率N1或第二工作折射率N2与光栅层402的折射率相同。
具体地,当第一工作折射率N1与光栅层402的折射率相同时,第二工作折射率N2与光栅层402的折射率不同,即N1≠N2。在此情况下,当与像素子电极311对应的液晶层30的折射率为第一工作折射率N1时,光将不能够从与该像素子电极311对应的光栅子单元411射出并且透过该液晶层30。另一方面,当液晶层30的折射率为第二工作折射率N2时,光将能够从与该像素子电极311对应的光栅子单元411射出并且透过该液晶层30进行正常显示。这样一来,通过驱动与每一个像素子电极311对应的液晶层30以具有第一工作折射率N1或者第二工作折射率N2,能够控制光线是否能够从光栅单元中的每一光栅子单元411射出并且正常透过液晶层。
在下文中将对该液晶显示面板如何实现不同灰阶显示的原理做进一步的说明,其中每一个光栅单元包括分别与八个像素子电极311对 应的八个光栅子单元411,其中这八个光栅子单元的折射率分别配置成使得在向对应的像素子电极应用第二电压时允许光以1阶、2阶、4阶、8阶、16阶、32阶、64阶和128阶灰阶值透射通过相应液晶部分。
示意性地,允许光以1阶、2阶、4阶、8阶、16阶、32阶、64阶和128阶灰阶值透过的八个光栅子单元411分别表示为第一光栅子单元、第二光栅子单元、第三光栅子单元、第四光栅子单元、第五光栅子单元、第六光栅子单元、第七光栅子单元和第八光栅子单元。这样一来,当需要实现1阶(L1)、2阶(L2)、4阶(L4)、8阶(L8)、16阶(L16)、32阶(L32)、64阶(L64)或128阶(L128)灰阶值的显示时,只需要单独驱动与第一光栅子单元、第二光栅子单元、第三光栅子单元、第四光栅子单元、第五光栅子单元、第六光栅子单元、第七光栅子单元或第八光栅子单元对应的像素子电极311,以使对应液晶层30的折射率为上述第二折射率N2,即可满足上述灰阶的显示。可替换地,当需要实现255阶(L255)灰阶值的显示时,可以同时驱动与第一光栅子单元、第二光栅子单元、第三光栅子单元、第四光栅子单元、第五光栅子单元、第六光栅子单元、第七光栅子单元和第八光栅子单元对应的像素子电极311,以使对应液晶层30的折射率为上述第二折射率N2,即可满足255阶灰阶值的显示(1+2+4+8+16+32+64+128=255)。进一步可替换地,当需要实现20阶(L20)灰阶值的显示时,可以同时驱动第三光栅子单元(对应于4阶灰阶值)和第五光栅子单元(对应于16阶灰阶值),以使对应液晶层30的折射率为上述第二折射率N2,即可满足20阶灰阶值的显示。进一步可替换地,当需要实现0阶(L0)灰阶值的显示时,可以同时驱动与光栅子单元对应的像素子电极311,以使对应液晶层30的折射率为上述第一折射率N1。即,保证光线无法从各个光栅子单元射出并且透过液晶层30,由此可以满足0阶灰阶值的显示。同样的道理,采用上述方法可以实现0~255阶灰阶值中任一灰阶值的显示,此处不再赘述。
当然,以上内容仅是以第一工作折射率N1与光栅层402的折射率相同而第二工作折射率N2与光栅层402的折射率不同为例进行的说明。可替换地,对于第二工作折射率N2与光栅层402的折射率相同而第一工作折射率N1与光栅层402的折射率不同的情况,同样的分析也 将适用,并且本公开此处不再赘述。
另外,在其它实施例中,每一个光栅单元还可以包括分别与九个像素子电极311对应的九个光栅子单元411,其中这八个光栅子单元的折射率分别配置成使得在向对应的像素子电极应用所述第二电压时允许光以1阶、2阶、4阶、8阶、16阶、32阶、64阶、128阶和256阶灰阶值进行显示。在此情况下,可以实现0~511阶灰阶值中任一灰阶值的显示。具体灰阶显示原理与上述0~255阶灰阶值的显示原理相同,此处不再赘述。当然,还可以对光栅单元做更进一步的细分,以满足更精细的灰度调节。
更进一步地,为了便于灰阶控制以及降低能耗,在本公开中,可选地,上述第一工作折射率N1或第二工作折射率N2为液晶层30的初始折射率。在这样的情况下,液晶层30的初始折射率为液晶层30未经像素电极层31和公共电极层32之间的电场驱动时的折射率,即液晶层30在未施加电场的情况下的折射率。这意味着,如果选择第一工作折射率N1为初始折射率,那么第一电压即为零电压。与此类似,如果第二工作折射率N2选择为初始折射率,那么第二电压即为零电压。
具体地,以第一工作折射率N1为液晶层30的初始折射率为例,可以选取波导层401的折射率为2.0,并且光栅层402的折射率为1.5。在这样的情况下,液晶层30的初始折射率与光栅层402的折射率相同为1.5,即N1=1.5,并且液晶层30在经像素电极层31和公共电极层32之间的电场驱动时的第二工作折射率N2=1.8。这样一来,当需要光线从与某一像素子电极311对应的光栅子单元411射出并且正常透过液晶层30时,可以通过向该像素子电极311施加电信号以驱动该位置的液晶层30的折射率为第二工作折射率N2即可。可替换地,当需要光线不能透射通过与某一像素子电极311对应的光栅子单元411以及因而液晶层30时,不需要向该像素子电极311施加电信号,并且保持该液晶层30的初始折射率与光栅层402的折射率相同。由此,光线无法正常透过对应位置的液晶层30。此处,仅是以液晶层30的折射率在电场驱动下增大为例进行的说明。然而,在实际操作中,也可以选择折射率在电场驱动下减小的液晶类型,并且本公开在这一方面不受限制。
当然,以上内容仅是以初始折射率与光栅层402的折射率相同为例进行的说明。在实际操作中,也可以选择液晶层30的初始折射率与光栅层402的折射率不同,即第一工作折射率N1与光栅层402的折射率不同,而第二工作折射率N2与光栅层402的折射率相同。也就是说,液晶层30在不施加电场的情况下的折射率与光栅层402的折射率不同,而通过施加电场驱动之后液晶层30的折射率与光栅层402的折射率相同。
上述举例仅是以第一工作折射率N1为液晶层30的初始折射率进行的说明。当然,情况也可以是第二工作折射率N2为液晶层30的初始折射率。这样的原理同上,并且此处不再赘述。
接下来对本公开中的液晶显示面板如何实现彩色显示进行简要的说明,其中液晶显示面板划分为多个像素单元,并且每一个像素单元包括第一原色亚像素、第二原色亚像素和第三原色亚像素。
作为示例,对于从第一光栅单元4021、第二光栅单元4022和第三光栅单元4023出射的光线为混色光的情况下,如图3所示,该液晶显示面板还需要在液晶层30和第二衬底基板20之间设置彩膜层50。具体地,该彩膜层50包括彩膜图案,特别地,第一原色图案501、第二原色图案502和第三原色图案503。例如,彩膜层50包括红色彩膜图案、绿色彩膜图案和蓝色彩膜图案。在这样的情况下,第一原色图案501与第一原色亚像素101对应,第二原色图案502与第二原色亚像素102对应,并且第三原色图案503与第三原色亚像素103对应。
这样一来,与第一原色亚像素101对应的第一光栅单元4021发出的混色光在透过第一原色图案501之后变为第一原色光,与第二原色亚像素102对应的第二光栅单元4022发出的混色光在透过第二原色图案502之后变为第二原色光,并且与第三原色亚像素103对应的第三光栅单元4023发出的混色光在透过第三原色图案502之后变为第三原色光。以这样的方式,可以实现不同色彩的显示。
又例如,对于波导光栅而言,通过设置光栅周期可以实现给定波长的光线在给定方向上的出射。这意味着,对于第一光栅单元4021、第二光栅单元4022以及第三光栅单元4023而言,可以通过光栅周期的设定即可实现给定颜色的光线在给定方向上的出射,具体操作原理在下文详细描述。
对于从波导光栅中输出的光线,对应光线波长λ、该输出光线的出光方向和面板平面法线的夹角θ满足以下关系:
Figure PCTCN2017102560-appb-000001
其中Λ为光栅周期,nc为波导上方介质层的折射率,q以及Nm均为已知参数。由此,通过设置光栅周期Λ,各个光栅单元能够实现给定波长的光线在给定方向的出射。
如图1所示,通过设置第一光栅单元4021、第二光栅单元4022以及第三光栅单元4023中的光栅周期Λ,能够允许第一原色亚像素101出射第一原色光线,第二原色亚像素102出射第二原色光线,并且第三原色亚像素103出现第三原色光线,而同时无需设置彩膜层。
此处需要说明的是,图1是以输出光线的出光方向与面板平面法线的夹角θ为90°为例进行的说明。当然,根据具体实施例,也可以将θ设置为其它角度,例如60°。在这样的情况下,各个亚像素中的层间对应关系也为60°倾斜关系。
更进一步地,为了实现近眼光场显示,同样地,通过设置各个光栅单元的光栅周期Λ,可以使第一光栅单元4021用于出射朝向观看位置的第一原色光线,第二光栅单元4022用于出射朝向观看位置的第二原色光线,并且第三光栅单元4023用于出射朝向观看位置的第三原色光线。
本公开的实施例还提供了一种显示装置。如图4所示,该显示装置包括上述任一个实施例描述的液晶显示面板,以及准直光源60,其中该准直光源60位于液晶显示面板中的波导层401的入光侧,特别地,波导层401的侧面。这样的显示装置具有与前述实施例提供的液晶显示面板相同的结构和有益效果。由于前述实施例已经对液晶显示面板的结构和有益效果进行了详细的描述,此处不再赘述。
需要说明的是,上述准直光源60可以由红、绿、蓝三色的半导体激光器芯片制成。当然,也可以由红、绿、蓝三色的发光二极管(Light Emitting Diode,简称LED)芯片经过准直和扩束后制成准直光源60。可替换地,还可以由白光LED芯片经过准直和扩束后制成该准直光源60。进一步地,还可以由条状的冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,简称CCFL)外加一些光线准直结构制成准直光源60。当然,本领域技术人员应当意识到,也可以选用非准直光源。在 本公开中,为了提高光的利用率,可选地采用准直光源。
本公开的实施例还提供了一种用于上述显示装置的驱动方法。如图5所示,该驱动方法包括:步骤S101、逐行扫描该显示装置中的亚像素;以及步骤S102、根据每一个亚像素单元所要求的灰阶值,分别向对应的多个像素子电极输入第一电压或第二电压,以使得所述亚像素单元按照所述灰度值进行显示。
这样一来,对于每一个亚像素而言,通过控制不同像素子电极与公共电极层之间的电场强度,能够调整与各个像素子电极对应的液晶层的折射率变化。由此,通过液晶层折射率的不同,能够控制与各个像素子电极对应的光栅子单元中出射的光线在该位置的液晶层处的透过率,从而实现该亚像素按照预设灰度值进行显示的目的。
进一步地,根据本公开的实施例,在施加第一电压和第二电压的情况下,前述液晶层30的折射率分别可以表示为第一工作折射率N1和第二工作折射率N2,其中第一工作折射率N1或第二工作折射率N2与光栅层402的折射率相同。此时,根据每一个亚像素所要求的灰度值、以及该亚像素中各个光栅子单元411的标准灰阶,可以向该亚像素中各个像素子电极311输入第一电压或第二电压,以使得与各个像素子电极311对应的液晶层30在第一电压的驱动下折射率为第一工作折射率N1,或者在第二电压的驱动下折射率为第二工作折射率N2。
这样一来,通过将与各个像素子电极311对应的液晶层30的折射率驱动为第一工作折射率N1或者第二工作折射率N2,可以控制光线是否能够从光栅单元中的各个光栅子单元411射出并且正常透过液晶层,从而实现各个亚像素按照预设灰度值进行正常显示的目的。
以上所述,仅为本公开的具体实施方式,但是本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可容易想到的各种变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种液晶显示面板,包括像素单元的阵列,其中每一个像素单元包括多个亚像素单元,并且所述液晶显示面板还包括:
    相对设置的第一衬底基板和第二衬底基板;
    位于所述第一衬底基板和所述第二衬底基板之间的液晶层和用于驱动所述液晶层的像素电极层和公共电极层;以及
    位于所述液晶层与所述第一衬底基板之间的波导光栅,其中所述波导光栅包括波导层和位于所述波导层朝向所述液晶层的表面上的光栅层,并且所述光栅层与所述液晶层接触;其中,
    所述像素电极层包括相互绝缘的像素子电极的阵列,其中每一个亚像素单元对应于多个像素子电极;
    所述光栅层包括光栅单元的阵列,其中每一个光栅单元包括多个光栅子单元,并且每一个光栅子单元对应于一个像素子电极;并且
    每一个光栅子单元的折射率配置成使得在向对应的像素子电极应用第一电压时不允许光透射通过相应液晶部分,并且在向对应的像素子电极应用第二电压时允许光以预确定的灰阶值透射通过相应液晶部分,其中所述第二电压不同于所述第一电压。
  2. 根据权利要求1所述的液晶显示面板,其中,
    所述亚像素单元包括第一原色亚像素、第二原色亚像素和第三原色亚像素;并且
    所述光栅单元包括与所述第一原色亚像素对应的第一光栅单元、与所述第二原色亚像素对应的第二光栅单元、以及与所述第三原色亚像素对应的第三光栅单元。
  3. 根据权利要求1所述的液晶显示面板,其中,
    在每一个光栅单元中,所述多个光栅子单元至少在以下各项中的一个或多个中彼此不同:占空比、栅条在垂直于显示面板的方向上的高度、栅条在平行于显示面板的平面中的横截面的形状、光栅区域在平行于显示面板的侧边的方向上的长度和宽度。
  4. 根据权利要求1所述的液晶显示面板,其中,
    每一个光栅单元包括分别与八个像素子电极对应的八个光栅子单元;并且
    所述八个光栅子单元的折射率分别配置成使得在向对应的像素子电极应用所述第二电压时允许光以1阶、2阶、4阶、8阶、16阶、32阶、64阶和128阶灰阶值透射通过相应液晶部分。
  5. 根据权利要求4所述的液晶显示面板,其中,
    所述八个光栅子单元布置为一行八列、八行一列、四行两列或者两行四列的形式。
  6. 根据权利要求1所述的液晶显示面板,其中,
    每一个光栅子单元的折射率配置成与在向对应的像素子电极应用第一电压或第二电压时相应液晶部分的折射率相同。
  7. 根据权利要求6所述的液晶显示面板,其中,
    所述第一电压或第二电压设置为零电压。
  8. 根据权利要求1-7中任一项所述的液晶显示面板,其中,
    所述液晶显示面板还包括位于所述液晶层和所述第二衬底基板之间的彩膜层,其中所述彩膜层包括彩膜图案的阵列,并且每一个彩膜图案分别对应于一个亚像素单元。
  9. 根据权利要求1-7中任一项所述的液晶显示面板,其中,
    所述光栅单元包括:用于输出第一原色光线的第一光栅单元、用于输出第二原色光线的第二光栅单元、以及用于输出第三原色光线的第三光栅单元。
  10. 根据权利要求9所述的液晶显示面板,其中,
    所述第一原色光线、所述第二原色光线和所述第三原色光线配置为朝向观看位置出射。
  11. 一种显示装置,包括:
    根据权利要求1-10中任一项所述的液晶显示面板;以及
    准直光源,其中所述准直光源设置在所述液晶显示面板的波导层的入光侧。
  12. 一种用于根据权利要求11所述的显示装置的驱动方法,包括:
    逐行扫描所述显示装置中的亚像素单元;以及
    根据每一个亚像素单元所要求的灰阶值,分别向对应的多个像素子电极输入第一电压或第二电压,以使得所述亚像素单元按照所述灰度值进行显示。
PCT/CN2017/102560 2017-01-12 2017-09-21 液晶显示面板、显示装置及其驱动方法 WO2018129950A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/759,493 US10690832B2 (en) 2017-01-12 2017-09-21 Liquid crystal display panel, display device and driving method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710023213.X 2017-01-12
CN201710023213.XA CN106681047B (zh) 2017-01-12 2017-01-12 一种液晶显示面板、显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2018129950A1 true WO2018129950A1 (zh) 2018-07-19

Family

ID=58858846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102560 WO2018129950A1 (zh) 2017-01-12 2017-09-21 液晶显示面板、显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US10690832B2 (zh)
CN (1) CN106681047B (zh)
WO (1) WO2018129950A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292051B (zh) 2016-10-21 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106681047B (zh) * 2017-01-12 2020-08-11 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其驱动方法
CN107238968B (zh) * 2017-08-04 2020-02-21 京东方科技集团股份有限公司 一种彩膜基板以及制备方法、液晶显示面板
CN108319070B (zh) * 2018-03-30 2023-08-11 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN110389469B (zh) 2018-04-20 2021-03-30 京东方科技集团股份有限公司 显示装置及其显示方法
CN109799655B (zh) * 2018-09-14 2020-12-25 京东方科技集团股份有限公司 显示基板、显示面板及显示装置
CN109031770A (zh) 2018-09-26 2018-12-18 京东方科技集团股份有限公司 液晶显示面板、显示装置及其工作方法
TWI682223B (zh) * 2018-12-21 2020-01-11 友達光電股份有限公司 顯示模組
CN109541850B (zh) * 2019-01-07 2021-10-29 京东方科技集团股份有限公司 显示装置及其驱动方法
CN109709720B (zh) * 2019-02-25 2022-06-03 京东方科技集团股份有限公司 背光模组和显示装置
CN110501835B (zh) * 2019-09-19 2022-05-13 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN113406804B (zh) * 2021-07-15 2022-10-18 业成科技(成都)有限公司 头戴式显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092590A1 (en) * 2010-10-13 2012-04-19 Samsung Electronics Co., Ltd. Backlight unit and display apparatus employing the same
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN106292049A (zh) * 2016-09-30 2017-01-04 京东方科技集团股份有限公司 显示面板和显示装置
CN106324898A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板及显示装置
CN106681047A (zh) * 2017-01-12 2017-05-17 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其驱动方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990481B2 (en) * 2006-10-30 2011-08-02 Samsung Electronics Co., Ltd. Display device having particular touch sensor protrusion facing sensing electrode
CN101419340B (zh) * 2008-11-18 2010-07-28 友达光电股份有限公司 可切换式光栅及平面显示器
US9039266B2 (en) * 2010-10-27 2015-05-26 Hewlett-Packard Development Company, L.P. Reflective color display with backlighting
US9588374B2 (en) * 2014-02-19 2017-03-07 Lumentum Operations Llc Reflective LC devices including thin film metal grating
CN104076518B (zh) * 2014-06-13 2016-09-07 上海交通大学 一种用于三维光场动态显示的新型像素结构
CN104656306B (zh) * 2015-03-23 2018-04-10 京东方科技集团股份有限公司 设置有黑矩阵的基板及其制造方法、显示装置
CN105589256A (zh) 2016-03-11 2016-05-18 京东方科技集团股份有限公司 显示装置
CN105572984B (zh) 2016-03-23 2017-06-23 京东方科技集团股份有限公司 一种液晶显示模组及液晶显示器
CN106292051B (zh) * 2016-10-21 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106291943B (zh) * 2016-10-24 2017-10-27 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106292124B (zh) * 2016-10-28 2017-10-17 京东方科技集团股份有限公司 显示面板和显示装置
CN106324897B (zh) * 2016-10-28 2019-06-14 京东方科技集团股份有限公司 显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092590A1 (en) * 2010-10-13 2012-04-19 Samsung Electronics Co., Ltd. Backlight unit and display apparatus employing the same
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN106292049A (zh) * 2016-09-30 2017-01-04 京东方科技集团股份有限公司 显示面板和显示装置
CN106324898A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板及显示装置
CN106681047A (zh) * 2017-01-12 2017-05-17 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其驱动方法

Also Published As

Publication number Publication date
CN106681047B (zh) 2020-08-11
US10690832B2 (en) 2020-06-23
US20190129082A1 (en) 2019-05-02
CN106681047A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018129950A1 (zh) 液晶显示面板、显示装置及其驱动方法
US10831053B2 (en) Display panel and display device
JP4499749B2 (ja) Led面光源およびlcdバックライトユニット
CN106292051B (zh) 一种显示装置及其显示方法
JP5324068B2 (ja) バックライトアセンブリ及びそれを有する表示装置
US10663641B2 (en) Display panel and display device
JP4650085B2 (ja) バックライト装置及び液晶表示装置
EP2840611A2 (en) Organic light emitting diode display device
US20190094447A1 (en) Backlight module and liquid crystal display using the same
US20070200121A1 (en) Multi-colored LED array with improved color uniformity
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
JP2008103200A (ja) バックライト装置及びバックライト装置の駆動方法
JP2018146750A (ja) 表示装置、表示方法及び色分離素子
US20120218315A1 (en) Display backlight structure capable of enhancing color saturation degree and brilliance and white balance
JP5294667B2 (ja) 液晶表示装置
US10126594B2 (en) Tri-color LED groups spaced for optimal color mixing
CN113410259B (zh) 倒装芯片空间像素排布结构和显示面板装置
JP4395131B2 (ja) バックライトユニット及びそれを具備した液晶表示装置
US20190245006A1 (en) Micro led display device
TW201629551A (zh) 具有方向性控制輸出之顯示裝置,及該顯示裝置的背光
WO2017118072A1 (zh) 显示装置
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺
US10636344B2 (en) Display panel and display device
JP5143590B2 (ja) 液晶装置及び電子機器
US11749184B1 (en) LED light emitting pixel arrangement structure and display panel device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891349

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17891349

Country of ref document: EP

Kind code of ref document: A1