WO2017116089A1 - 유도 전동기의 회전자 구조 - Google Patents

유도 전동기의 회전자 구조 Download PDF

Info

Publication number
WO2017116089A1
WO2017116089A1 PCT/KR2016/015215 KR2016015215W WO2017116089A1 WO 2017116089 A1 WO2017116089 A1 WO 2017116089A1 KR 2016015215 W KR2016015215 W KR 2016015215W WO 2017116089 A1 WO2017116089 A1 WO 2017116089A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor bar
rotor
conductor
induction motor
bar
Prior art date
Application number
PCT/KR2016/015215
Other languages
English (en)
French (fr)
Inventor
이수진
서정호
박지훈
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of WO2017116089A1 publication Critical patent/WO2017116089A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/18Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors

Definitions

  • the present invention relates to a rotor structure of an induction motor, and in particular, to improve the efficiency of the induction motor by optimizing the shape of the conductor bar of the rotor. That is, the present invention relates to a rotor structure of an induction motor capable of driving at low pressure and high power by introducing a predetermined double cage shape into the conductor bar of the rotor.
  • a motor In general, a motor (or motor) is a device that generates rotational force by converting electrical energy into mechanical energy, and is widely used in homes and industries. Such motors can be broadly classified into an AC motor and a DC motor.
  • the induction motor of the AC motor can be rotated by the induction magnetic field of the stator and the magnet installed in the rotor by the induction magnetic field of the rotor, and the secondary current generated by the voltage induced in the conductor bar of the rotor
  • the rotor may start to rotate and be driven by the torque generated by the interaction of the magnetic flux generated by the winding of the stator.
  • the rotor rotation efficiency can be increased by the interaction between the rotating magnetic flux generated by the stator structure and the induction current generated in the conductor bar of the rotor, and thus the structure of the conductor bar for improving the rotation efficiency of the induction motor Many studies have been conducted.
  • the rotor of an induction motor includes a conductor bar formed of an inner conductor formed in a metal having a higher conductivity than an outer conductor, which is formed inside an inner slot.
  • the rotor structure of the induction motor is presented.
  • An object of the present invention is to provide a rotor structure of an induction motor that optimizes the shape of the conductor bar of the rotor to improve the efficiency of the induction motor.
  • the present invention introduces a predetermined double squirrel shape into the conductor bar of the rotor to drive at high pressure at low pressure, while improving the torque density per unit current at rated voltage, increasing the power factor, and improving the starting characteristics of the rotor.
  • the rotor structure of the induction motor according to the present invention includes, in the rotor of the induction motor, a first conductor bar having a double squirrel shape and a second conductor bar having an overall elongated rectangular bar shape, wherein the first conductor bar is at least a second conductor.
  • the rotor can be arranged in three times the number of bars.
  • the first conductor bar may be formed to have the same length as the second conductor bar.
  • first conductor bar may be disposed after at least three second conductor bars are arranged in succession.
  • the induction motor can be applied to low pressure high power.
  • the first conductor bar may be formed of an upper conductor bar having a high impedance and configured at the outer side of the rotor and a lower conductor bar having a low impedance and configured at the inside of the rotor.
  • the first conductor bar may be rounded at one side near the axis.
  • the first conductor bar may use a length less than or equal to one of the second conductor bars and three times more than the number of second conductor bars in order to maximize the angular acceleration of the rotor at the rating.
  • the first conductor bar may use a length less than or equal to the second conductor bar in order to maximize the power factor at the rating.
  • the first conductor bar may use the length less than or equal to 1 and the number more than three times the number of the second conductor bars.
  • the rotor structure of the induction motor according to the present invention has an advantage of improving the efficiency of the induction motor by optimizing the conductor bar shape of the rotor.
  • the rotor structure of the induction motor according to the present invention introduces a double double-shape shape into the conductor bar of the rotor to drive at high pressure at low pressure, thereby improving torque density per unit current at rated power, increasing power factor, and improving starting characteristics.
  • FIG. 1 is a view showing a rotor structure of an induction motor according to an embodiment of the present invention.
  • FIG. 2 is a view illustrating in detail the structures of the second conductor bar and the first conductor bar of FIG. 1.
  • FIG. 2 is a view illustrating in detail the structures of the second conductor bar and the first conductor bar of FIG. 1.
  • FIG. 3 is a contour diagram of a T / I ratio at a rating according to the length and number of first conductor bars of FIG. 1.
  • FIG. 4 is a contour diagram of a power factor according to the length and number of first conductor bars of FIG. 1.
  • FIG. 5 is a contour diagram of a T / I ratio in a starting state according to the length and number of first conductor bars of FIG. 1.
  • FIG. 1 is a view showing a rotor structure of an induction motor according to an embodiment of the present invention
  • Figures 2 to 5 are diagrams and contour diagrams for explaining in detail to FIG.
  • FIGS. 1 to 5 a rotor structure of an induction motor according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • a rotor structure of an induction motor includes a first conductor bar 100 having a double squirrel shape and an overall elongated square bar shape in a rotor of an induction motor. And a second conductor bar 200, and the first conductor bar 100 is disposed on the rotor 300 at least three times as large as the second conductor bar 200.
  • the second conductor bar 200 is a rectangular bar having an elongated shape as a whole.
  • the second conductor bar 200 is round in the vicinity of the shaft.
  • a current flows to the upper side of the second conductor bar 200. 200) evenly distributed throughout. Therefore, there is an effect that the cost can be reduced by rounding around the axis that is not used at startup.
  • the first conductor bar 100 is composed of the upper conductor bar 110 and the lower conductor bar 120 and flows to the upper conductor bar 110 composed of high resistance at the time of starting, thereby producing a high output at a low voltage.
  • the rated driving flows to the lower conductor bar 120 having a low impedance has the advantage of reducing the heat loss.
  • the upper conductor bar 110 and the lower conductor bar 120 may be formed by die casting or inserted separately through the conductor bar insertion hole.
  • induction by alternately arranging the double conductor-shaped first conductor bar 100 on the rotor 300 of the induction motor in a ratio of 3: 1 and the second conductor bar 200 having an elongated ellipse shape as a whole. Maximize the efficiency of the motor.
  • the first conductor bar 100 and the second conductor bar 200 are installed in the rotor 300, and the rotating magnetic flux and the rotor 300 generated due to the structure of the stator when a current is applied to the coil of the stator.
  • the rotor 300 rotates with high efficiency by the interaction with the induced current generated in the first conductor bar 100 and the second conductor bar 200.
  • FIG. 2 is a view illustrating in detail the structures of the second conductor bar 200 and the first conductor bar 100 of FIG. 1.
  • the first conductor bar 100 is formed to have the same length as the second conductor bar 200.
  • first conductor bar 100 is disposed after at least three second conductor bars 200 are disposed continuously.
  • the first conductor bar 100 includes an upper conductor bar 110 having a high impedance and configured at the outer side of the rotor 300, and a lower conductor bar 120 having a low impedance and configured at the inside of the rotor 300. .
  • the first conductor bar 100 is characterized in that one side near the shaft is rounded.
  • first conductor bar 100 and the second conductor bar 200 may be formed at equal intervals, and the same widths of the conductors of the first conductor bar 100 and the second conductor bar 200 are used.
  • the first conductor bar 100 is formed to have the same length as the second conductor bar 200 and uses three times the number of the second conductor bars 200, so as to be described below.
  • T / I Torque / moment of Inertia
  • FIG. 3 is a contour diagram of a T / I ratio at a rating according to the length and number of first conductor bars 100 of FIG. 1.
  • the first conductor bar 100 uses a length less than or equal to the second conductor bar 200 in order to maximize the angular acceleration of the rotor at rated and the second conductor bar 200. ) Use three times more than the number.
  • the length and number of the first conductor bars 100 may affect the angular acceleration performance of the rotor 300 at the rating.
  • the lengths thereof are two.
  • the angular acceleration performance of the rotor 300 drops from 3.8 or more to 3.6 or less.
  • the length of the first conductor bar 100 is the same as the second conductor bar 200, but the number of the first conductor bars 100 is three times the second conductor bar 200.
  • the angular acceleration performance of the rotor 300 drops from 3.8 or more to 3.8 or less.
  • the number of first conductor bars 100 is three times greater than the second conductor bars 200 and the length of the first conductor bars 100 is less than the length of the second conductor bars 200.
  • the area 400 there is an effect that the angular acceleration performance at the rating of the rotor 300 is maximized.
  • FIG. 4 is a contour diagram of a power factor according to the length and number of first conductor bars 100 of FIG. 1.
  • the first conductor bar 100 uses a length less than or equal to the second conductor bar 200 in order to maximize the power factor at the rating.
  • the length of the first conductor bar 100 affects the power factor at the rating.
  • the lengths thereof are two.
  • the power factor drops from above 0.94 to below 0.92.
  • the length of the first conductor bars 100 is less than or equal to the length of the second conductor bars 200. This has the effect of maximizing.
  • FIG. 5 is a contour diagram of a T / I ratio in a starting state according to the length and number of first conductor bars 100 of FIG. 1.
  • the first conductor bar 100 uses a length less than or equal to the second conductor bar 200 in order to maximize the angular acceleration of the rotor in the starting state, and the second conductor bar ( 200) Use more than three times the number.
  • the length and number of the first conductor bars 100 affect the angular acceleration performance of the rotor 300 in the activated state.
  • the lengths thereof are two.
  • the angular acceleration performance in the maneuver state of the rotor 300 drops from 0.99 or more to 0.98 or less.
  • the length of the first conductor bar 100 is the same as the second conductor bar 200, but the number of the first conductor bars 100 is three times the second conductor bar 200.
  • the angular acceleration performance of the rotor 300 falls from 0.99 or more to 0.95 or less.
  • the number of first conductor bars 100 is three times greater than the second conductor bars 200 and the length of the first conductor bars 100 is less than the length of the second conductor bars 200.
  • the area 600 there is an effect that the angular acceleration performance in the starting state of the rotor 300 is maximized.
  • the double conductor-shaped first conductor bar 100 is disposed on the rotor 300 of the induction motor in a ratio of 3: 1 to the second conductor bar 200 having an elongated rectangular bar shape. And by forming the same length to maximize the low pressure high output characteristics of the induction motor.
  • the rotor structure of the induction motor according to the present invention has an advantage of improving the efficiency of the induction motor by optimizing the shape of the conductor bar of the rotor, and introducing a predetermined double squirrel shape into the conductor bar of the rotor to output high power at low pressure. It is possible to improve the torque density per unit current at the rated current, increase the power factor, and improve the starting characteristics.
  • the present invention relates to a rotor structure of an induction motor, and can be used in the field of electric motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)

Abstract

본 발명은 회전자의 도체바 형상을 최적화하여 유도 전동기의 효율을 향상시키는 것이다. 즉, 본 발명은 회전자의 도체바에 소정의 이중 농형 형상을 도입하여 저압에서 고출력으로 구동하는 유도 전동기의 회전자 구조에 관한 것이다. 본 발명의 유도 전동기의 회전자 구조는 유도 전동기의 회전자에 있어서, 이중 농형 형상의 제 1 도체바 및 전체적으로 길쭉한 사각바 형상으로 이루어진 제 2 도체바를 포함하고, 제 1 도체바는 적어도 제 2 도체바의 3배의 개수로 회전자에 배치된다.

Description

유도 전동기의 회전자 구조
본 발명은 유도 전동기의 회전자 구조에 관한 것으로, 상세하게는, 회전자의 도체바 형상을 최적화하여 유도 전동기의 효율을 향상시키는 것이다. 즉, 본 발명은 회전자의 도체바에 소정의 이중 농형 형상을 도입하여 저압에서 고출력으로 구동할 수 있는 유도 전동기의 회전자 구조에 관한 것이다.
통상적으로 모터(motor, 또는 전동기)는 전기적 에너지를 기계적 에너지로 변환시켜 회전력을 발생시키는 장치로서, 가정용 및 산업용으로 널리 사용되고 있다. 이러한 모터는 크게 교류 모터(AC motor)와 직류 모터(DC motor)로 구분할 수 있다.
한편, 교류 모터 중 유도 전동기는 고정자의 유도 회전 자계와 회전자에 설치된 자석으로 회전자의 유도자계에 의해 회전할 수 있으며, 또한, 회전자의 도체바에 유기되는 전압에 의하여 생성되는 2차 전류와, 고정자의 권선에 의하여 발생하는 자속의 상호작용에 의하여 발생하는 토크에 의해 회전자가 회전을 시작하고, 기동되어 운전할 수 있다.
이때, 고정자의 구조로 인해 발생하는 회전 자속과 회전자의 도체바에서 발생하는 유도 전류와의 상호 작용에 의해 회전자 회전 효율을 높일 수도 있어 유도 전동기의 회전 효율을 높이기 위한 도체바의 구조에 대해 많은 연구가 진행되어 왔다.
그 일례로, 대한민국 특허공보 제10- 2005-0016291호에서는 유도 전동기의 회전자에서, 내측 슬롯의 내부에 형성되되 외 측 도체보다 높은 도전율을 갖는 금속으로 형성되는 내 측 도체로 이루어지는 도체바를 포함하는 유도 전동기의 회전자 구조를 제시하였다.
그러나, 이 경우에서도 저압에서 고출력으로 동작하는 유도 전동기의 효율을 충분히 올리지 못하는 문제가 있다.
본 발명의 목적은, 회전자의 도체바 형상을 최적화하여 유도 전동기의 효율을 향상시키는 유도 전동기의 회전자 구조를 제공하는 데에 있다.
본 발명은 회전자의 도체바에 소정의 이중 농형 형상을 도입하여 저압에서 고출력으로 구동할 수 있는 한편, 정격에서의 단위 전류당 토크 밀도 향상, 역률 증가, 및 기동 특성을 개선하는 유도 전동기의 회전자 구조를 제공하는데 또 다른 목적이 있다.
본 발명에 따른 유도 전동기의 회전자 구조는 유도 전동기의 회전자에서, 이중 농형 형상의 제 1 도체바 및 전체적으로 길쭉한 사각바 형상으로 이루어진 제 2 도체바를 포함하고, 제 1 도체바는 적어도 제 2 도체바의 3배의 개수로 회전자에 배치될 수 있다.
여기서, 제 1 도체바는 제 2 도체바와 동일한 길이로 형성될 수 있다.
또한, 제 1 도체바는 제 2 도체바가 적어도 연속 3 개 이상 배치된 후 배치될 수 있다.
여기서, 유도 전동기는 저압 고출력에 적용될 수 있다.
또한, 제 1 도체바는 임피던스가 높고 회전자의 외 측에 구성된 상부 도체바 및 임피던스가 낮고 회전자의 내측에 구성된 하부 도체바로 이루어질 수 있다.
여기서, 제 1 도체바는 축 부근의 일측이 둥글게 이루어질 수 있다.
또한, 제 1 도체바는 정격에서 회전자의 각 가속도를 최대로 하기 위해 제 2 도체바 대비 길이를 1 이하로 사용하고 제 2 도체바 대비 개수를 3배 이상으로 사용할 수 있다.
여기서, 제 1 도체바는 정격에서 역률을 최대로 하기 위해 제 2 도체바 대비 길이를 1이하로 사용할 수 있다.
또한, 제 1 도체바는 기동상태에서 회전자의 각 가속도를 최대로 하기 위해 제 2 도체바 대비 길이를 1 이하로 사용하고 제 2 도체바 대비 개수를 3배 이상으로 사용할 수 있다.
본 발명에 의한 유도 전동기의 회전자 구조는 회전자의 도체바 형상을 최적화하여 유도 전동기의 효율을 향상시키는 장점이 있다.
또는 본 발명에 의한 유도 전동기의 회전자 구조는 회전자의 도체바에 소정의 이중 농형 형상을 도입하여 저압에서 고출력으로 구동하여 정격에서의 단위 전류당 토크 밀도 향상, 역률 증가, 및 기동 특성을 개선할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 유도 전동기의 회전자 구조를 나타낸 도면이다.
도 2는 도 1의 제 2 도체바 및 제 1 도체바의 구조를 상세히 나타낸 도면이다.
도 3은 도 1의 제 1 도체바의 길이 및 개수에 따른 정격에서의 T/I비에 대한 등고선도이다.
도 4는 도 1의 제 1 도체바의 길이 및 개수에 따른 역률에 대한 등고선도이다.
도 5는 도 1의 제 1 도체바의 길이 및 개수에 따른 기동 상태에서의 T/I비에 대한 등고선도이다.
본 발명의 실시를 위한 구체적인 실시예를 첨부된 도면들을 참조하여 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 의도는 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 유도 전동기의 회전자 구조에 대해 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 유도 전동기의 회전자 구조를 나타낸 도면이며, 도 2 내지 도 5는 도 1을 상세히 설명하기 위한 도면 및 등고선도이다.
이하, 도 1 내지 도 5를 참조하여 본 발명의 일 실시예에 따른 유도 전동기의 회전자 구조를 설명한다.
먼저, 도 1을 참조하면, 본 발명의 일 실시예에 따른 유도 전동기의 회전자 구조는 유도 전동기의 회전자에서, 이중 농형 형상의 제 1 도체바(100) 및 전체적으로 길쭉한 사각바 형상으로 이루어진 제 2 도체바(200)를 포함하고, 제 1 도체바(100)는 적어도 제 2 도체바(200)의 3배의 개수로 회전자(300)에 배치된다.
제 2 도체바(200)는 전체적으로 길쭉한 형상의 사각바로서 축 부근에는 둥글게 구성한 것으로, 기동 시 실효저항을 크게 하기 위해 제 2 도체바(200)의 상부 측으로 전류가 흐르며 정격에서는 제 2 도체바(200) 전체적으로 고르게 분포될 수 있다. 따라서, 기동시에 사용되지 않는 축 부근에 대해 둥글게 구성하여 비용을 절감할 수 있는 효과가 있다.
또한, 제 1 도체바(100)는 상부 도체바(110)와 하부 도체바(120)로 구성되고 기동시 고저항으로 구성된 상부 도체바(110)로 흐르게 되어 낮은 전압으로 고출력을 낼 수 있는 효과가 있으며, 정격 운행 시에는 임피던스가 낮은 하부 도체바(120)로 흐르게 되어 열손실을 적게할 수 있는 장점이 있다.
상부 도체바(110)와 하부 도체바(120)는 도체바 삽입구멍을 통해 다이캐스팅으로 형성할 수도 있고 별도로 만들어 삽입될 수도 있다.
본 발명에서는, 유도 전동기의 회전자(300)에 이중 농형 형상의 제 1 도체바(100)를 전체적으로 길쭉한 타원 형상으로 이루어진 제 2 도체바(200)와 3:1의 비율로 교대로 배치함으로써 유도 전동기의 효율을 극대화 한다.
여기서, 제 1 도체바(100)와 제 2 도체바(200)는 회전자(300)에 설치되어, 고정자의 코일에 전류가 인가될 때 고정자의 구조로 인해 발생하는 회전 자속과 회전자(300)의 제 1 도체바(100) 및 제 2 도체바(200)에서 발생하는 유도 전류와의 상호 작용에 의해 회전자(300)가 고효율로 회전한다.
도 2는 도 1의 제 2 도체바(200) 및 제 1 도체바(100)의 구조를 상세히 나타낸 도면이다.
도 2에서 볼 수 있는 바와 같이, 제 1 도체바(100)는 제 2 도체바(200)와 동일한 길이로 형성된다.
또한, 제 1 도체바(100)는 제 2 도체바(200)가 적어도 연속 3 개 이상 배치된 후 배치된다.
또한, 제 1 도체바(100)는 임피던스가 높고 회전자(300)의 외 측에 구성된 상부 도체바(110) 및 임피던스가 낮고 회전자(300)의 내측에 구성된 하부 도체바(120)로 이루어진다.
여기서, 제 1 도체바(100)는 축 부근의 일측이 둥글게 이루어지는 것을 특징으로 한다.
한편, 제 1 도체바(100)와 제 2 도체바(200)는 등간격으로 형성될 수 있으며, 제 1 도체바(100)와 제 2 도체바(200)의 도체 폭도 동일하게 사용한다.
이와 같이 제 1 도체바(100)가 제 2 도체바(200)와 동일한 길이로 형성되고 제 2 도체바(200)의 3배수를 사용함으로써, 이하에서 설명하는 바와 같이 정격 및 운행 중 회전자(300)의 각가속도인 T/I(Torque / moment of Inertia)비를 높일 수 있는 장점이 있으며, 정격에서의 역률을 높일 수 있는 효과가 있다.
도 3은 도 1의 제 1 도체바(100)의 길이 및 개수에 따른 정격에서의 T/I비에 대한 등고선도이다.
도 3에서 알 수 있는 바와 같이, 제 1 도체바(100)는 정격에서 회전자의 각 가속도를 최대로 하기 위해 제 2 도체바(200) 대비 길이를 1 이하로 사용하고 제 2 도체바(200) 대비 개수를 3배 이상으로 사용한다.
여기서, 제 1 도체바(100)의 길이와 개수는 정격에서의 회전자(300)의 각 가속도 성능에 대해 영향을 미칠 수 있다.
예를 들어, 제 1 도체바(100)의 개수가 제 2 도체바(200)의 3배이나 제 1 도체바(100)의 길이가 제 2 도체바(200)와 같은 경우에서 그 길이가 두 배로 증가할 때 회전자(300)의 각 가속도 성능은 3.8이상에서 3.6 이하로 떨어진다.
또한, 제 1 도체바(100)의 길이가 제 2 도체바(200)와 동일하나 제 1 도체바(100)의 개수가 제 2 도체바(200)의 3배수에서 제 2 도체바(200)와 동일한 비율로 사용할 경우 회전자(300)의 각 가속도 성능은 3.8 이상에서 3.8 이하로 떨어진다.
따라서, 제 1 도체바(100)의 개수가 제 2 도체바(200)의 3배 이상이고 제 1 도체바(100)의 길이가 제 2 도체바(200)의 길이 이하로 형성될 경우가 최적 영역(400)으로서, 회전자(300)의 정격에서의 각 가속도 성능이 최대가 되는 효과가 있다.
도 4는 도 1의 제 1 도체바(100)의 길이 및 개수에 따른 역률에 대한 등고선도이다.
도 4에서 볼 수 있는 바와 같이, 제 1 도체바(100)는 정격에서 역률을 최대로 하기 위해 제 2 도체바(200) 대비 길이를 1이하로 사용한다.
여기서, 제 1 도체바(100)의 길이는 정격에서의 역률에 대해 영향을 미친다.
예를 들어, 제 1 도체바(100)의 개수가 제 2 도체바(200)의 3배이나 제 1 도체바(100)의 길이가 제 2 도체바(200)와 같은 경우에서 그 길이가 두 배로 증가할 때 역률은 0.94이상에서 0.92 이하로 떨어진다.
한편, 제 1 도체바(100)의 길이가 제 2 도체바(200)와 동일할 경우 제 1 도체바(100)의 개수에 따라 역률 변화가 거의 없다.
따라서, 제 1 도체바(100)의 개수와 무관하게 제 1 도체바(100)의 길이는 제 2 도체바(200)의 길이 이하로 형성될 경우가 최적 영역(500)으로서, 정격에서의 역률이 최대가 되는 효과가 있다.
도 5는 도 1의 제 1 도체바(100)의 길이 및 개수에 따른 기동 상태에서의 T/I비에 대한 등고선도이다.
도 5에서 알 수 있는 바와 같이, 제 1 도체바(100)는 기동상태에서 회전자의 각 가속도를 최대로 하기 위해 제 2 도체바(200) 대비 길이를 1 이하로 사용하고 제 2 도체바(200) 대비 개수를 3배 이상으로 사용한다.
여기서, 제 1 도체바(100)의 길이와 개수는 기동 상태에서의 회전자(300)의 각 가속도 성능에 대해 영향을 미친다.
예를 들어, 제 1 도체바(100)의 개수가 제 2 도체바(200)의 3배이나 제 1 도체바(100)의 길이가 제 2 도체바(200)와 같은 경우에서 그 길이가 두 배로 증가할 때 회전자(300)의 기동 상태에서 각 가속도 성능은 0.99 이상에서 0.98 이하로 떨어진다.
또한, 제 1 도체바(100)의 길이가 제 2 도체바(200)와 동일하나 제 1 도체바(100)의 개수가 제 2 도체바(200)의 3배수에서 제 2 도체바(200)와 동일한 개수로 사용할 경우 회전자(300)의 각 가속도 성능은 0.99 이상에서 0.95 이하로 떨어진다.
따라서, 제 1 도체바(100)의 개수가 제 2 도체바(200)의 3배 이상이고 제 1 도체바(100)의 길이가 제 2 도체바(200)의 길이 이하로 형성될 경우가 최적 영역(600)으로서, 회전자(300)의 기동 상태에서의 각 가속도 성능이 최대가 되는 효과가 있다.
이상에서와같이, 본 발명에서는 유도 전동기의 회전자(300)에 이중 농형 형상의 제 1 도체바(100)를 전체적으로 길쭉한 사각바 형상의 제 2 도체바(200)와 3:1의 비율로 배치하고 동일한 길이로 형성함으로써 유도 전동기의 저압 고출력 특성을 최대화하고 있다.
이상과 같이 본 발명에 따른 유도 전동기의 회전자 구조는 회전자의 도체바 형상을 최적화하여 유도 전동기의 효율을 향상시키는 장점이 있으며, 회전자의 도체바에 소정의 이중 농형 형상을 도입하여 저압에서 고출력으로 구동하여 정격에서의 단위 전류당 토크 밀도 향상, 역률 증가, 및 기동 특성을 개선할 수 있는 장점이 있다.
상술한 것은 하나 이상의 실시예의 실례를 포함한다. 물론, 상술한 실시예들을 설명할 목적으로 컴포넌트들 또는 방법들의 가능한 모든 조합을 기술할 수 있는 것이 아니라, 당업자들은 다양한 실시예의 많은 추가 조합 및 치환할 수 있음을 인식할 수 있다. 따라서 설명한 실시예들은 첨부된 청구범위의 진의 및 범위 내에 있는 모든 대안, 변형 및 개조를 포함하는 것이다.
본 발명은 유도 전동기의 회전자 구조에 관한 것으로서, 전동기 분야에 이용가능하다.

Claims (9)

  1. 유도 전동기의 회전자에 있어서,
    이중 농형 형상의 제 1 도체바; 및
    전체적으로 길쭉한 사각바 형상으로 이루어진 제 2 도체바;를 포함하고,
    상기 제 1 도체바는 적어도 상기 제 2 도체바의 3배의 개수로 회전자에 배치되는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  2. 제 1항에 있어서,
    상기 제 1 도체바는, 상기 제 2 도체바와 동일한 길이로 형성되는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  3. 제 1항에 있어서,
    상기 제 1 도체바는, 상기 제 2 도체바가 적어도 연속 3 개 이상 배치된 후 배치되는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  4. 제 1항에 있어서,
    상기 유도 전동기는, 저압 고출력에 적용되는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  5. 제 1항에 있어서,
    상기 제 1 도체바는, 임피던스가 높고 상기 회전자의 외 측에 구성된 상부 도체바; 및
    임피던스가 낮고 상기 회전자의 내측에 구성된 하부 도체바;를 포함하는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  6. 제 1항에 있어서,
    상기 제 1 도체바는, 축 부근의 일측이 둥글게 이루어지는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  7. 제 1항에 있어서,
    상기 제 1 도체바는, 정격에서 회전자의 각 가속도를 최대로 하기 위해 상기 제 2 도체바 대비 길이를 1 이하로 사용하고 상기 제 2 도체바 대비 개수를 3배 이상으로 사용하는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  8. 제 1항에 있어서,
    상기 제 1 도체바는, 정격에서 역률을 최대로 하기 위해 상기 제 2 도체바 대비 길이를 1이하로 사용하는 것을 특징으로 하는 유도 전동기의 회전자 구조.
  9. 제 1항에 있어서,
    상기 제 1 도체바는, 기동상태에서 회전자의 각 가속도를 최대로 하기 위해 상기 제 2 도체바 대비 길이를 1 이하로 사용하고 상기 제 2 도체바 대비 개수를 3배 이상으로 사용하는 것을 특징으로 하는 유도 전동기의 회전자 구조.
PCT/KR2016/015215 2015-12-30 2016-12-23 유도 전동기의 회전자 구조 WO2017116089A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0190510 2015-12-30
KR1020150190510A KR101801125B1 (ko) 2015-12-30 2015-12-30 유도 전동기의 회전자 구조

Publications (1)

Publication Number Publication Date
WO2017116089A1 true WO2017116089A1 (ko) 2017-07-06

Family

ID=59225349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015215 WO2017116089A1 (ko) 2015-12-30 2016-12-23 유도 전동기의 회전자 구조

Country Status (2)

Country Link
KR (1) KR101801125B1 (ko)
WO (1) WO2017116089A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317414A (zh) * 2017-07-28 2017-11-03 北京交通大学 一种复合槽型电机转子及电机
US11923735B2 (en) 2018-12-14 2024-03-05 Ge Energy Power Conversion Technology Limited Rotor with non-through shaft and associated rotary electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198858A (ja) * 1983-04-25 1984-11-10 Mitsubishi Electric Corp 誘導電動機のかご形回転子
JPH08140319A (ja) * 1994-11-11 1996-05-31 Nissan Motor Co Ltd 誘導モータのロータ
JPH0993883A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd 電動機用回転子
KR20090124025A (ko) * 2008-05-29 2009-12-03 (주)시대전기 농형 유도전동기의 회전자 제조 방법
WO2015001601A1 (ja) * 2013-07-01 2015-01-08 株式会社日立産機システム 回転電機及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198858A (ja) * 1983-04-25 1984-11-10 Mitsubishi Electric Corp 誘導電動機のかご形回転子
JPH08140319A (ja) * 1994-11-11 1996-05-31 Nissan Motor Co Ltd 誘導モータのロータ
JPH0993883A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd 電動機用回転子
KR20090124025A (ko) * 2008-05-29 2009-12-03 (주)시대전기 농형 유도전동기의 회전자 제조 방법
WO2015001601A1 (ja) * 2013-07-01 2015-01-08 株式会社日立産機システム 回転電機及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317414A (zh) * 2017-07-28 2017-11-03 北京交通大学 一种复合槽型电机转子及电机
US11923735B2 (en) 2018-12-14 2024-03-05 Ge Energy Power Conversion Technology Limited Rotor with non-through shaft and associated rotary electric machine

Also Published As

Publication number Publication date
KR101801125B1 (ko) 2017-12-20
KR20170079694A (ko) 2017-07-10

Similar Documents

Publication Publication Date Title
WO2011136475A2 (ko) 이중돌극형 영구자석 전기기기의 권선 배치법
WO2017078455A1 (ko) 버스바, 모터, 및 이를 포함하는 동력 전달 시스템
WO2010082705A1 (ko) 액시얼 타입 모터
WO2016021974A1 (en) Wire assembly for rotary electric machine and corresponding method to obtain the wire assembly
WO2012060493A1 (ko) 개량된 형태의 저속발전기
WO2014046348A1 (ko) 발전기
WO2017116089A1 (ko) 유도 전동기의 회전자 구조
WO2019041915A1 (zh) 电机及压缩机
CN101227127A (zh) 马达及其转子结构
WO2015170805A1 (ko) 플럭스 필터링 기능을 갖는 회전자 및 그를 포함하는 동기형 모터
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
CN104967272B (zh) 一种永磁笼型的转子变极变频调速电机
WO2014061908A1 (ko) 이중 공극형 발전기
WO2021194241A1 (ko) 다중 도전체 재질의 입력단을 포함하는 6상 구동모터
WO2018110714A1 (ko) 코어리스 발전기의 코일 구조
WO2016108614A1 (ko) 전동기의 회전자
WO2010058885A2 (ko) 단상 유도 모터
CN211481123U (zh) 无定子多回路节能电动机
WO2020197138A1 (ko) 모터
CN106505831A (zh) 双磁悬浮平台循环发电系统
CN206992836U (zh) 电枢组件及直线电机
WO2018124634A1 (ko) 로터 및 이를 포함하는 모터
WO2010013895A2 (ko) 분할 코일체를 갖는 회전판과 분할 자석체를 갖는 고정판에 의한 전동장치
CN102468732B (zh) 一种低损耗的低速永磁同步电机
WO2016013876A1 (ko) 전력생산장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882041

Country of ref document: EP

Kind code of ref document: A1