WO2010058885A2 - 단상 유도 모터 - Google Patents

단상 유도 모터 Download PDF

Info

Publication number
WO2010058885A2
WO2010058885A2 PCT/KR2009/003081 KR2009003081W WO2010058885A2 WO 2010058885 A2 WO2010058885 A2 WO 2010058885A2 KR 2009003081 W KR2009003081 W KR 2009003081W WO 2010058885 A2 WO2010058885 A2 WO 2010058885A2
Authority
WO
WIPO (PCT)
Prior art keywords
induction motor
phase induction
winding
auxiliary winding
resistance
Prior art date
Application number
PCT/KR2009/003081
Other languages
English (en)
French (fr)
Other versions
WO2010058885A3 (ko
Inventor
조성국
김병택
김경호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN200980000452.7A priority Critical patent/CN102379083B/zh
Priority to EP09793445.9A priority patent/EP2211455A4/en
Priority to US12/450,878 priority patent/US8253369B2/en
Publication of WO2010058885A2 publication Critical patent/WO2010058885A2/ko
Publication of WO2010058885A3 publication Critical patent/WO2010058885A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/04Asynchronous induction motors for single phase current

Definitions

  • the present invention relates to a single phase induction motor. More particularly, it relates to a single-phase induction motor in which a variable resistance element capable of changing the number of turns of the main winding or the auxiliary winding which can generate a magnetic field at start-up is connected in parallel with a part of the main winding or the auxiliary winding.
  • a single phase induction motor is wound around the stator in a space 90 ° away from the main coil and the auxiliary coil, the power supply voltage is applied directly to the main coil and the auxiliary coil through a capacitor and a switch. This is because the main coil alone does not start even when a voltage is applied. Therefore, a rotor system is generated in the stator through a starting device such as the auxiliary coil so that the rotor can be started.
  • Such starting devices are classified into a divided phase starting type, a shading coil type, a capacitor starting type, or a rebound starting type according to the type thereof.
  • FIGS. 1 and 2 An example of a single phase induction motor having such a starting device is a capacitor start type single phase induction motor shown in FIGS. 1 and 2.
  • FIG. 1 shows a stator and a rotor of a typical single phase induction motor
  • FIG. 2 shows a simplified circuit of the rotor and stator coils.
  • the auxiliary coil 14 is wound around the stator to generate a rotating magnetic field, and the rotor is started and rotated in a predetermined direction by the rotating magnetic field. That is, starting torque is generated through such a magnetic field.
  • the capacitor 15 plays a role of delaying the phase of the current applied to the auxiliary coil 14 to generate starting torque through interaction with the main coil 12. Once started, the rotor maintains its rotation even if no power is applied to the auxiliary coil. Therefore, the power supply does not need to be applied to the auxiliary coil when the engine is rotated more than a predetermined number of revolutions after starting. However, since the starting torque is required when the load is variable, it is preferable that the auxiliary coil is always supplied with power through a capacitor.
  • Such a single phase induction motor does not require an inverter configuration like a brushless DC (BLDC) motor or a reluctance motor, and can be started using a single phase commercial power supply as it has an advantage of being excellent in price competitiveness.
  • BLDC brushless DC
  • the stator 10 has a hollow inside and is disposed at predetermined angular intervals along an inner circumference so as to have a polarity of the N pole or the S pole when the first order current is applied and a plurality of teeth ll protrude radially inwardly. It comprises a main coil 12 wound around each of the teeth (ll).
  • an insulator (not shown) is provided between the tooth 11 and the main coil 12 to perform an insulation function between the tooth and the main coil and to easily wind the main coil. .
  • the stator 10 comprises an auxiliary coil 14 to form a rotating magnetic field when the current is applied to the main coil 12 spatially at a predetermined angle.
  • the auxiliary coil is also wound around the tooth 11 through an insulator, and may be referred to as a stator coil or a coil of the main coil 12 and the auxiliary coil 14.
  • the coils 12 and 14 are connected to a single-phase power source, and the main coil 12 and the auxiliary coil 14 are connected to each other in parallel.
  • a capacitor 15 is connected in series to the auxiliary coil.
  • the capacitor may be selectively connected to a power source through a switch.
  • FIGS. 1 and 2 show the squirrel rotor.
  • the rotor 20 is usually formed by stacking steel sheets having a plurality of slots 21 formed at predetermined angles along an outer circumference at a predetermined radial position in a center. And, the rotor includes a rod-shaped conductor bar 22 inserted into the slot 21 of the rotor core, the rod-shaped conductor bar is usually used copper or aluminum rod.
  • both ends of the cage rotor core is connected to the end ring (not shown, see Figs. 11 to 12) to form an electrical short through the conductor bar, it is generally formed by aluminum die casting. That is, the conductor bar 22 and the end ring are integrally formed through aluminum die casting, and the end rings are respectively formed on the upper and lower portions of the rotor core.
  • the rotor 20 has a shaft hole 24 is formed in the center.
  • a rotation shaft (not shown) for transmitting the rotational force of the rotor to the outside is press-fitted so that the rotor and the rotation shaft are integrally rotated.
  • the single-phase induction motor when the power is applied to the coil, the single-phase induction motor generates an induction current in the conductor bar 22, and rotates by the induction torque generated therethrough.
  • An object of the present invention is to provide a single-phase induction motor having an increased starting torque by increasing the amount of current flowing in the main winding or the auxiliary winding during starting.
  • the present invention by connecting a variable resistance element in parallel with a part of the main winding or a part of the auxiliary winding and the resistance changes, it is possible to improve the starting torque at the start without lowering the static torque in normal operation It is an object of the present invention to provide a single-phase induction motor.
  • an object of the present invention is to provide a single-phase induction motor using a PTC element or an E-PTC element as a variable resistance element, which can reduce the resistance and leakage reactance values of the main winding or auxiliary winding during startup.
  • the present invention relates to a single-phase induction motor including a stator having a core, a main winding, and an auxiliary winding, and a rotor rotating by mutual electromagnetic force, including a resistance variable element connected in parallel with a part of the main winding.
  • a single phase induction motor is provided.
  • the remaining portion of the main winding provides a single-phase induction motor, characterized in that electrically connected in series with the portion of the main winding and the resistance variable element.
  • a single-phase induction motor wherein the resistance variable element is a PTC element.
  • the resistance variable element provides a single-phase induction motor, characterized in that the E-PTC element.
  • a resistance variable element has a low resistance at start-up and has a resistance high enough to cut off a current flowing to the resistance variable element at normal operation. do.
  • the main winding provides a single-phase induction motor, characterized in that a plurality of coils connected in parallel to each other is wound together in the stator core, the resistance variable element is connected in parallel with one of the plurality of coils.
  • the present invention provides a single-phase induction motor including a stator having a core, a main winding, and an auxiliary winding, and a stator and a rotor rotating by mutual electromagnetic force, the capacitor being connected in series with the auxiliary winding, a part of the auxiliary winding, and a capacitor;
  • a single phase induction motor comprising a resistance variable element connected in parallel.
  • the present invention is a single-phase induction motor comprising a stator having a core, a main winding, an auxiliary winding and a rotor rotating by mutual electromagnetic force, a part of the resistance variable element and the auxiliary winding connected in series to the auxiliary winding and
  • a single phase induction motor comprising a resistance variable element connected in parallel with the resistance variable element.
  • a single-phase induction motor wherein the resistance variable element is a PTC element.
  • a resistance variable element provides a single phase induction motor characterized by the E-PTC element.
  • a resistance variable element provides a single phase induction motor having a low resistance at start-up and a resistance high enough to cut off a current flowing to the resistance variable element at normal operation.
  • a single-phase induction motor further comprising an additional resistance variable element connected in parallel with a part of the main winding.
  • a single-phase induction motor wherein the additional resistance variable element is an E-PTC element.
  • the single-phase induction motor provided by the present invention can change the magnitude of the current flowing in the main winding during startup and normal operation, so that even in a single-phase induction motor with a large static torque, the starting torque can be improved without deterioration in efficiency.
  • the single-phase induction motor provided by the present invention can change the magnitude of the current flowing in the auxiliary winding during startup and normal operation, it is possible to improve the starting torque.
  • FIG. 1 is a view showing a stator and a rotor of a typical single phase induction motor
  • Figure 2 shows a simplified circuit of the rotor and stator coils
  • FIG. 3 is a simplified circuit diagram of a single phase induction motor according to a first embodiment of the present invention
  • FIG. 4 is a view showing inductance vectors occurring in the main winding and the auxiliary winding of the stator according to the first embodiment of the present invention
  • FIG. 5 is a graph showing a change in torque according to a change in the stator circuit according to the first embodiment of the present invention
  • FIG. 8 is a graph illustrating a change in the impedance of the auxiliary winding and the current flowing in the auxiliary winding according to the change in the number of turns of the auxiliary winding;
  • FIG. 9 is a graph showing a change in starting torque according to a change in the number of turns of an auxiliary winding
  • the single-phase induction motor according to an embodiment of the present invention includes a stator to which a single-phase AC power is applied and a rotor to which a conductor bar is inserted to rotate the stator and mutual electromagnetic force.
  • the stator is wound around the stator core with a 90 ° spacing between the main winding and the auxiliary winding. Even if the single-phase AC power is applied to the main winding and the auxiliary winding, the rotor does not rotate because a balanced magnetic field is generated, which changes only in magnitude at a 90 ° angle.
  • the single phase induction motor of the present invention is a capacitor start type single phase induction motor using a capacitor (capacitor) for starting.
  • the condenser start type single phase induction motor has better efficiency and power factor than other single phase induction motors, and generates a nearly circular rotor magnetic field.
  • the capacitor-driven single-phase induction motor is connected to the capacitor and the auxiliary winding, so that a current that is out of phase with the voltage flows through the auxiliary winding, so that the main winding and the auxiliary winding have a phase difference of approximately 90 degrees.
  • the starting torque of the condenser starting type single-phase induction motor is affected by the magnitude of the current flowing through the main winding, the magnitude of the current flowing through the auxiliary winding, the phase difference between the currents flowing through the main winding and the auxiliary winding, and the effective turns ratio of the main winding and the auxiliary winding. .
  • the main winding is wound in order to improve the efficiency of the single-phase induction motor or the torque during normal operation (constant torque)
  • the effective winding ratio of the motor decreases and the starting torque of the motor is greatly reduced, so that starting torque is difficult to start.
  • less winding main winding has the disadvantage that the efficiency or static torque of the single-phase induction motor is reduced.
  • the single phase induction motor of the present invention has a tab in the main winding circuit as shown in FIG. 3 to connect the variable resistance elements in parallel.
  • the variable resistance element is a PTC element.
  • the temperature of the PTC device rises and the resistance increases infinitely, leaving the circuit almost open. Therefore, when the PTC element is used as the variable resistance element, a separate control unit for controlling the variable resistance element is not required, and after a predetermined time, a circuit to which the PTC element is connected is opened.
  • a part of the main winding and a PTC element are connected in parallel at the start, and a part of the main winding and the remaining part of the main winding connected in parallel with the PTC element and the PTC element are Are connected in series with each other.
  • the inductance of the PTC element and the part of the main winding connected in parallel to the PTC element is reduced.
  • the coil of the main winding (main coil) is wound on the teeth of the stator core
  • two strands or more coils may be wound at once to facilitate the winding.
  • it is ideal to wind a lot of thick coils, but it is difficult to achieve both of them because of problems such as size. If you use a thick coil, you can only detect a little, and if you want to wind a lot, you have to use a thin line.
  • the advantage of thick coils is that they can flow large currents at once. This increases the magnetic force on the rotor side and increases the repelling force with the permanent magnet, so that the torque and the rotation speed can be increased.
  • the main winding has a shape in which a plurality of main coils are wound in this way, it is easier to configure a circuit in which PTC elements are connected than when winding with one coil.
  • Connecting a PTC device to the end of at least one of the coils makes connecting the PTC device much easier than tapping a PTC device in the middle of the wound coil.
  • the winding of the plurality of main coils shows almost the same coil characteristics as the winding of one thick main coil.
  • FIG. 4 is a diagram illustrating inductance vectors generated in the main winding and the auxiliary winding of the stator according to the first embodiment of the present invention. If the main and auxiliary windings of the same size and number of turns are used, and a PTC element is connected in parallel to a part of the main winding at startup, the single phase induction motor according to the first embodiment at startup will be connected to the conventional single phase induction motor. Compared with the reduction in the number of windings of the main winding, and compared with the inductance (Lm ') of the conventional main winding has the same effect as the reduction in inductance (Lm). On the other hand, if the inductance of the main winding is reduced, the value of the current flowing through the main winding is increased, thus increasing the starting torque of the single-phase induction motor.
  • FIG. 5 is a graph showing a change in torque according to a change in the stator circuit according to the first embodiment of the present invention.
  • the temperature of the PTC element is continuously increased, and the resistance of the PTC element is increased to almost infinity. This results in an open circuit with little current flowing through the PTC device connected in parallel to part of the main winding. Therefore, almost all of the current flows through the main winding and has the same inductance as in the prior art. That is, after a predetermined time, the PTC element is connected to a part of the main winding in parallel so that only the remaining part of the main winding generates a rotational alternating magnetic field, and the entire main winding is changed to an operation state circuit in which the rotational alternating magnetic field is generated.
  • FIG. 6 and 7 schematically illustrate the stator circuit according to the second and third embodiments of the present invention.
  • the auxiliary winding and the capacitor are connected in series and have a tab on the auxiliary winding to connect the variable resistance element to the auxiliary winding and the capacitor in parallel (second embodiment)
  • the auxiliary winding and the variable resistance element are connected in series and a tab is provided on the auxiliary winding to connect the capacitor in parallel to the auxiliary winding and the variable resistance element (third embodiment).
  • the variable resistance element is connected by tapping the auxiliary winding, the number of windings of the auxiliary winding is reduced when starting the current flowing through the resistor, so that the inductance of the auxiliary winding is reduced and The current flowing increases.
  • FIG. 9 is a graph showing a change in starting torque according to a change in the number of turns of the auxiliary winding.
  • the change of starting torque was examined by changing the number of turns of the auxiliary winding in the single phase induction motor model.
  • the PTC element used was 4.8 ⁇
  • the single phase induction motor model used a single phase induction motor for a reciprocating compressor having a starting torque of 0.38 Nm.
  • the starting torque increases from as little as 0.3 Nm to as much as 0.9 Nm when using the auxiliary winding having about 10% to 70% fewer windings than during normal operation. have. That is, the starting torque is improved when Keff (the number of windings of the auxiliary winding during start up / the number of windings of the auxiliary winding during operation) is 0.35 to 0.9, and particularly when the value is between 0.4 and 0.8, the starting torque is improved by 0.6Nm or more. You can see that.
  • both the main winding and the auxiliary winding may have variable resistance elements connected in parallel with a portion thereof.
  • the PTC device used as one of the resistive variable devices has a small power but a steady power loss of about 2W during normal operation. Therefore, at this time, if the electric positive temperature coefficient (E-PTC) element is used as the resistance variable element, the current flowing to the E-PTC element is completely blocked after a predetermined time and there is no power loss due to the installation of the E-PTC element. .
  • E-PTC electric positive temperature coefficient
  • the starting winding always increases when the number of windings decreases, but the auxiliary winding may vary according to the specifications of the main winding. Therefore, it is easier to adjust the starting torque by installing PTC elements in parallel in the main winding. Due to the power dissipation caused by the installation, the current drawn to the main winding during normal operation is small, which is a slight disadvantage in the efficiency of single-phase induction motors. Of course, even in this case, by using the E-PTC element, it is possible to improve the starting torque without deterioration of efficiency in the normal operation of the single-phase induction motor. However, the PTC element in the auxiliary winding circuit is significantly higher than that of the PTC element. It is better to adjust the starting torque by installing it.
  • the resistance size of the optimum PTC element installed in the auxiliary winding circuit and the installation position of the tab formed in the auxiliary winding for installing the PTC element vary, so that the PTC element is installed in the auxiliary winding in parallel during the design stage.
  • the installation of a PTC element in the auxiliary winding has the advantage that the efficiency of the single-phase induction motor in normal operation does not have a large effect and is advantageous in terms of cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Induction Machinery (AREA)

Abstract

본 발명은 단상 유도 전동기에 관한 것이다. 더욱 상세하게는, 기동 시에 자계를 발생시킬 수 있는 주 권선 또는 보조 권선의 권선 수를 변경시킬 수 있는 가변 저항 소자가 주 권선 또는 보조 권선의 일부와 병렬로 연결된 단상 유도 전동기에 관한 것이다. 본 발명은, 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서, 주권선의 일부와 병렬로 연결되는 저항 가변 소자를 포함하는 것을 특징으로 하는 단상 유도 전동기를 제공한다. 또한 본 발명은 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서, 보조권선과 직렬로 연결되는 커패시터 및 보조권선의 일부 및 커패시터와 병렬로 연결되는 저항 가변 소자를 포함하는 것을 특징으로 하는 단상 유도 전동기를 제공한다.

Description

단상 유도 모터
본 발명은 단상 유도 전동기에 관한 것이다. 더욱 상세하게는, 기동 시에 자계를 발생시킬 수 있는 주 권선 또는 보조 권선의 권선 수를 변경시킬 수 있는 가변 저항 소자가 주 권선 또는 보조 권선의 일부와 병렬로 연결된 단상 유도 전동기에 관한 것이다.
일반적으로 단상(single phase)용 유도 모터는 스테이터에 주 코일과 보조 코일을 서로 공간적으로 90°벗어난 곳에 권선하고,전원 전압은 주 코일에 직접 가하고 보조 코일에는 커패시터와 스위치를 통하여 가한다. 그 이유는 주 코일만으로는 전압을 가해도 기동되지 않는 성질이 있기 때문이다. 따라서,상기 보조 코일 등과 같은 기동 장치를 통하여 스테이터에서 로터계를 발생시켜 로터가 기동 할 수 있도록 한다.
이러한 기동 장치는 그 종류에 따라 분상 기동형, 세이딩 코일형, 커패시터 기동형 또는 반발 기동형 등으로 분류된다.
이러한 기동 장치를 갖는 단상용 유도 모터의 예로 커패시터 기동형 단상 유도 모터가 도 l과 도 2에 도시되어 있다.
도 1에는 일반적인 단상 유도 모터의 스테이터와 로터가 도시되어 있으며, 도 2에는 상기 로터와 스테이터 코일의 간략한 회로가 도시되어 있다.
상기 스테이터(10)에 주 코일(12)만 권선된 경우에는 상기 스테이터(10)에서 교번자계만이 발생되어 로터(20)의 기동이 이루어지지 않는다. 따라서,상기 스테 이터에 보조 코일(14)을 권선하여 회전자계를 발생시키고,상기 회전자계에 의해서 상기 로터가 일정한 방향으로 기동되어 회전하게 된다. 즉,이러한 회전자계를 통하여 기동토크가 발생되는 것이다.
여기서,상기 커패시터(15)는 상기 보조 코일(14)에 인가되는 전류의 위상을 지연시켜 주 코일(12)과의 상호 작용을 통하여 기동 토크를 발생시키게 역할을 수 행한다. 일단 기동되면 부하의 변동이 없는 경우 상기 보조 코일에 전원이 인가되 지않더라도 로터는 회전을 유지한다. 따라서 기동 후 일정 회전수 이상인 경우에 상기 보조 코일에는 전원이 인가되지 않아도 된다. 그러나,부하가 가변되는 경우에는 기동 토크가 필요하므로 상기 보조 코일은 항상 커패시터를 통해 전원이 공급되는 것이 바람직하다.
물론, 3상 유도 모터의 경우에는 주 코일만 스테이터에 권선되는 경우에도 회전계가 발생하기 때문에 전술한 보조 코일이 스테이터에 권선될 필요가 없다. 즉,별도의 기동장치가 필요 없게 된다.
이러한 단상 유도 모터는 BLDC(brushless DC) 모터나 릴럭턴스 모터와 같이 인버터 구성을 필요로 하지 않고, 단상 상용 전원을 그대로 이용하여 기동이 가능 하기 때문에 가격 경쟁력이 우수하다는 장점을 갖는다.
도 1과 도 2를 참조하여 일반적인 단상 유도 모터에 대해서 상세히 설명한다.
상기 스테이터(10)는,내부가 중공이며,내주변을 따라 소정 각도 간격으로 배치되어 반경 방향 내측으로 돌출되는 복수개의 티스(ll) 및 l차 전류 인가시 N극 또는 S극의 극성을 갖도록 상기 티스(ll) 각각에 권선되는 주 코일(12)을 포함하여 이루어진다.
여기서, 상기 티스(11)와 주 코일(12) 사이에는 인슐레이터(미도시)가 구비 되어 상기 티스와 주 코일 사이에서 절연 기능을 수행하는 한편 주 코일이 용이하 게 권선되도록 하는 기능을 수행하게 된다.
또한, 상기 스테이터(10)는 상기 주 코일(12)과 공간적으로 소정 각도를 두 고 감겨 전류 인가시 회전자계를 형성하도록 하는 보조 코일(14)을 포함하여 이루 어진다. 물론, 상기 보조 코일도 인슐레이터를 통하여 티스(11)에 권선되며,상기 주 코일(12)과 보조 코일(14)를 통틀어 스테이터 코일 또는 코일이라고 할 수 있다.
상기 코일(12,14)은 단상 전원과 연결되며,상기 주 코일(12)과 보조 코일(14)은 서로 병렬로 연결된다. 아울러,상기 보조 코일에는 커패시터(15)가 직렬로 연결되어 있다. 그리고,도시되지는 않았지만 상기 커패시터는 스위치를 통해 선택적으로 전원과 연결될 수 있다.
상기 로터(20)는,일반적으로 농형(罷形) 로터(squirrel cage rotor)가 많이 사용되며,도 l 및 도 2에는 상기 농형 로터가 도시된 것이다.
이러한 로터(20)는 보통 중심에서 소정 반경 위치에 외주를 따라 소정 각도로 배치된 복수 개의 슬롯(21)이 형성된 강판을 적층하여 형성한다. 그리고,상기 로터는 상기 로터 코어의 슬롯(21) 내에 삽입되는 봉 형상의 도체바(22)를 포함하 며,이러한 봉 형상의 도체바는 보통 구리 또는 알루미늄 봉이 사용된다.
그리고,상기 농형 로터 코어의 양단부는 상기 도체바를 통한 전기적 단락을 이루기 위하여 엔드링(미도시,도 11 내지 도 12 참조)으로 연결되며,일반적으로 이는 알루미늄 다이캐스팅으로 형성된다. 즉,알루미늄 다이캐스팅을 통하여 상기 도체바(22)와 엔드링이 일체로 형성되며,상기 로터 코어의 상부와 하부에 각각 상 기 엔드링이 형성된다.
한편,상기 로터(20)는 중심부에 축공(24)이 형성된다. 상기 축공에는 상기 로터의 회전력을 외부로 전달하는 회전축(미도시)이 압입되어 상기 로터와 상기 회 전축은 일체로 회전하게 된다.
이러한, 단상 유도 모터는 코일에 전원이 인가되면 상기 도체바(22)에 유도 전류가 발생되고,이를 통해 발생되는 유도 토크에 의해서 회전한다.
본 발명은, 기동 시 주 권선 또는 보조 권선에 흐르는 전류의 크기를 키워 기동 토크가 향상된 단상 유도 전동기를 제공하는 것을 목적으로 한다.
또한 본 발명은, 주 권선의 일부 또는 보조 권선의 일부와 병렬로 연결되며 저항의 크기가 변하는 가변 저항 소자를 연결하여, 정상 운전 시의 정동 토크를 저하시키지 않으면서 기동 시 기동 토크를 향상시킬 수 있는 단상 유도 전동기를 제공하는 것을 목적으로 한다.
또한 본 발명은 가변 저항 소자로서, PTC 소자 또는 E-PTC 소자를 사용하여, 기동 시 주권선 또는 보조 권선의 저항 및 누설 리액턴스 값을 줄여줄 수 있는 단상 유도 전동기를 제공하는 것을 목적으로 한다.
본 발명은, 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서, 주권선의 일부와 병렬로 연결되는 저항 가변 소자를 포함하는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 주권선의 나머지 일부는 주권선의 일부 및 저항 가변 소자와 전기적으로 직렬 연결되는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 저항 가변 소자는 PTC 소자인 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 저항 가변 소자는 E-PTC 소자인 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 저항 가변 소자는, 기동 시에 낮은 저항을 가지고, 정상 운전 시에 저항 가변 소자로 흐르는 전류를 차단할 수 있을 정도로 높은 저항을 가지는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 주 권선은 서로 병렬 연결된 복수 개의 코일이 스테이터 코어에 함께 권선되며, 저항 가변 소자는 복수 개의 코일 중 하나와 병렬 연결되는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명은 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서, 보조권선과 직렬로 연결되는 커패시터 및 보조권선의 일부 및 커패시터와 병렬로 연결되는 저항 가변 소자를 포함하는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명은 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서, 보조권선에 직렬로 연결되는 저항 가변 소자 및 보조권선의 일부 및 저항 가변 소자와 병렬로 연결되는 저항 가변 소자를 포함하는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 저항 가변 소자는 PTC 소자인 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 저항 가변 소자는, E-PTC 소자인 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 저항 가변 소자는 기동 시에 낮은 저항을 가지고, 정상 운전 시에 저항 가변 소자로 흐르는 전류를 차단할 수 있을 정도로 높은 저항을 가지는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 주권선의 일부와 병렬로 연결되는 추가의 저항 가변 소자를 더 포함하는 것을 특징으로 하는 단상 유도 전동기를 제공한다.
또한 본 발명의 다른 일 태양으로서, 추가의 저항 가변 소자는, E-PTC 소자인 것을 특징으로 하는 단상 유도 전동기를 제공한다.
본 발명이 제공하는 단상 유도 전동기는 기동 시와 정상 운전 시 주권선에 흐르는 전류의 크기를 변경할 수 있어, 정동 토크가 큰 단상 유도 전동기에서도 효율의 저하 없이 기동 토크를 향상시킬 수 있다.
또한 본 발명이 제공하는 단상 유도 전동기는 기동 시와 정상 운전 시에 보조 권선에 흐르는 전류의 크기를 변경할 수 있어, 기동 토크를 향상시킬 수 있다.
도 1에는 일반적인 단상 유도 모터의 스테이터와 로터를 도시한 도면,
도 2에는 상기 로터와 스테이터 코일의 간략한 회로를 도시한 도면,
도 3은 본 발명의 제1 실시예에 따른 단상 유도 전동기의 회로도를 간략하게 도시한 도면,
도 4는 본 발명의 제1 실시예에 따른 스테이터의 주 권선 및 보조 권선에 발생하는 인덕턴스 벡터를 도시한 도면,
도 5는 본 발명의 제1 실시예에 따른 스테이터 회로의 변경에 따른 토크의 변경을 도시한 그래프,
도 6 및 도 7은 본 발명의 제2 및 제3 실시예에 따른 스테이터 회로를 개략적으로 도시한 도면,
도 8은 보조 권선의 권선 수의 변화에 따른 보조 권선의 임피던스와 보조 권선에 흐르는 전류의 변화를 도시한 그래프,
도 9는 보조권선의 권선 수의 변화에 따른 기동 토크의 변화를 도시한 그래프.
도 3은 본 발명의 제1 실시예에 따른 단상 유도 전동기의 회로도를 간략하게 도시한 도면이다. 본 발명의 일 실시예에 따른 단상 유도 전동기는, 단상 교류 전원이 인가되는 스테이터와 도체바가 삽입되어 스테이터와 상호 전자기력에 의해 회전하는 로터를 포함한다. 스테이터는, 스테이터 코어에 주 권선과 보조권선이 공간적으로 90°의 간격을 두고 권선되어 있다. 주권선과 보조권선에 단상 교류전원이 인가되어도, 90°각도를 이루며 크기만이 변화하는 평형자계가 발생하므로, 로터가 회전하지 못한다. 따라서 보조권선에는 보조권선에 흐르는 전류의 위상을 변경시켜주는 소자가 연결되어야 하며, 본 발명의 단상 유도 전동기는 기동을 위해 커패시터(콘덴서)가 이용되는 콘덴서 기동형 단상 유도 전동기이다. 콘덴서 기동형 단상 유도 전동기는 다른 단상 유도 전동기에 비해서 효율과 역률이 좋으며, 거의 원형에 가까운 회전자계가 발생하므로 진동과 소음도 적고 운전 상태가 양호하다. 콘덴서 기동형 단상 유도 전동기는 커패시터와 보조권선이 접속되어, 보조 권선에 전압보다 위상이 빠른 전류가 흐르게 되므로, 대략 주 권선과 보조 권선이 90°의 위상차를 가지게 된다. 콘덴서 기동형 단상 유도 전동기의 기동 토크는, 주 권선에 흐르는 전류의 크기, 보조 권선에 흐르는 전류의 크기, 주 권선과 보조 권선에 흐르는 전류의 위상차, 주 권선과 보조 권선의 유효 권선비 등의 영향을 받는다. 단상 유도 전동기의 효율이나 정상 작동시의 토크(정동 토크)를 향상시키기 위하여 주권선을 많이 감을 경우, 모터의 유효 권선비가 작아져서 모터의 기동 토크가 크게 떨어지므로 기동 토크가 떨어져 기동이 어렵다. 이를 위해, 주권선을 적게 감으면 대신 단상 유도 전동기의 효율이나 정동 토크가 저하되는 단점이 있다.
본 발명의 단상 유도 전동기는 기동 토크 및 정동 토크를 함께 확보하기 위하여, 도 3에 도시된 바와 같이 주 권선 회로에 탭을 두어 가변 저항 소자를 병렬로 연결한다. 바람직하게 가변 저항 소자는, PTC 소자이다. PTC 소자는 전류가 흐르면 PTC 소자의 온도가 올라가게 되고, 저항이 무한히 증가하여 회로를 거의 오픈 상태로 만들어 준다. 따라서 가변 저항 소자로서 PTC 소자를 이용하게 되면, 가변 저항 소자를 제어할 별도의 제어부가 요구되지 않고, 소정 시간이 지나면, PTC 소자가 연결된 회로가 오픈된다.
따라서 본 발명의 제1 실시예에 따른 단상 유도 전동기는, 기동 시에 주 권선의 일부와 PTC 소자가 병렬로 연결되며, PTC 소자 및 PTC 소자와 병렬로 연결된 주 권선의 일부와 주권선의 나머지 일부는 서로 직렬로 연결된다. 한편, PTC 소자와 PTC 소자에 병렬로 연결된 주 권선의 일부는 인덕턴스가 감소하게 된다.
한편, 스테이터 코어의 티스에 주권선의 코일(주 코일)이 권선될 때, 권선을 용이하게 하기 위하여 두 가닥 또는 그 이상의 코일을 한번에 권선할 수 있다. 강한 토크를 얻기 위해서는, 두꺼운 코일을 많이 감는 것이 이상적이지만, 크기 등의 문제가 있으므로 이 두가지를 양립하는 것은 곤란하다. 두꺼운 코일을 사용하면, 조금밖에 감지 못하고, 많이 감으려면 엷은 선을 사용할 수 밖에 없다. 두꺼운 코일의 장점은, 대전류를 단숨에 흘릴수 있다는 것이다. 이것은 로터측의 자력을 보다 강하게 하여, 영구자석과의 반발력을 높이기 때문에 토크, 회전수를 높일수 있다. 그러나, 두꺼운 코일은 선 자체의 단단함이 있어서 구부리기가 어렵기 때문에조밀하게 감을 수가 없다. 그래서, 자속밀도가 떨어져서 자력이 약해지거나 하는 문제가 생긴다. 여기서 생각해내게 된 것이 여러 가닥의 코일을 사용하는 멀티와인드이다. 이중, 삼중으로 가닥수가 늘어날수록 선도 가늘어지기 때문에, 코일의 권선수가 늘어나게 되고, 자속밀도가 높아지게 된다.
이렇게 주 권선이 복수 개의 주 코일이 권선된 형태일 때는, 하나의 코일로 권선할 때보다 PTC 소자가 연결된 회로를 구성하기 용이하다. 그 중 적어도 하나의 코일의 끝단에 PTC 소자를 연결하면, 권선된 코일의 중간에 탭을 내어 PTC 소자를 연결하는 것보다 훨씬 쉽게 PTC 소자를 연결할 수 있다. 복수 개의 주 코일이 권선된 것은, 굵은 주 코일 하나가 권선된 것과 거의 동일한 코일 특성을 나타낸다. 복수 개의 주 코일 중 하나 이상에 PTC 소자가 병렬로 연결되면, PTC 소자가 연결된 주 코일의 인덕턴스가 감소한다. 이후, PTC 소자의 온도가 상승하여, PTC 소자로 흐르는 전류가 차단되면, PTC 소자가 병렬 연결된 주 코일도 원래의 인덕턴스를 거의 회복하게 된다.
도 4는 본 발명의 제1 실시예에 따른 스테이터의 주 권선 및 보조 권선에 발생하는 인덕턴스 벡터를 도시한 도면이다. 동일한 크기 및 권선 수의 주 권선, 보조 권선을 사용하고, 기동 시 주 권선의 일부에 병렬로 PTC 소자를 연결하면, 기동 시에 제1 실시예에 따른 단상 유도 전동기는, 종래의 단상 유도 전동기에 비해 주 권선의 권선 수가 감소한 것과 같고, 종래의 주 권선의 인덕턴스(Lm')에 비해 인덕턴스(Lm)가 감소한 것과 같은 효과를 낸다. 한편, 주 권선의 인덕턴스가 감소하면 주 권선에 흐르는 전류값이 커지게 되고, 따라서 단상 유도 전동기의 기동 토크가 커지게 된다.
도 5는 본 발명의 제1 실시예에 따른 스테이터 회로의 변경에 따른 토크의 변경을 도시한 그래프이다. 전류가 지속적으로 흘게 되면, PTC 소자의 온도가 지속적으로 상승하게 되고, PTC 소자의 저항이 거의 무한대로 상승하게 된다. 따라서 주 권선의 일부에 병렬로 연결된 PTC 소자에는 전류가 거의 흐르지 않는 OPEN 상태의 회로가 된다. 따라서 전류는 거의 모두 주 권선 전체로 흐르게 되며, 종래와 동일한 인덕턴스를 가지게 된다. 즉, 소정 시간이후, PTC 소자가 주 권선의 일부에 병렬로 연결되어 주 권선의 나머지 일부만이 회전 교번 자계를 발생시키는 기동 회로에서 주 권선 전체가 회전 교번 자계를 발생시키는 운전 상태 회로로 변경된다. 0.38Nm의 기동 토크를 가지는 단상 유도 전동기를 사용하여, 주 권선의 권선 수를 변화시키며 기동 토크의 변화를 살펴본 결과, 주 권선의 권선 수를 약 10% 저감시켰을 때, 0.40Nm의 기동 토크를 가져 대략 5% 정도 기동 토크가 향상된 것을 확인할 수 있었다.
도 6 및 도 7은 본 발명의 제2 및 제3 실시예에 따른 스테이터 회로를 개략적으로 도시한 도면이다. 본 발명의 제2 및 제3 실시예에 따른 스테이터 회로는 보조 권선과 커패시터가 직렬로 연결되고 보조 권선에 탭을 두어 보조 권선 및 커패시터에 가변 저항 소자를 병렬로 연결하거나(제2 실시예), 보조 권선과 가변 저항 소자를 직렬로 연결하고 보조 권선에 탭을 두어 보조 권선 및 가변 저항 소자에 커패시터를 병렬로 연결한다(제3 실시예). 보조 권선에 탭을 두어 가변 저항 소자를 연결한 경우에도 마찬가지로, 저항에 전류가 흐르는 기동 시에는 보조 권선의 권선 수가 저감되는 것과 같은 효과를 주므로, 기동 시에 보조 권선의 인덕턴스가 작아지고 보조 권선에 흐르는 전류가 증가하게 된다.
Figure PCTKR2009003081-appb-I000001
Figure PCTKR2009003081-appb-I000003
Figure PCTKR2009003081-appb-I000004
Figure PCTKR2009003081-appb-I000005
상기 식과 도 8을 참조하면, a가 감소할 때(즉, 보조 권선의 권선 수가 감소할 때) 보조권선에 흐르는 전류 Ia는 일정구간 증가하고, 위상 차도 증가하므로, 식
Figure PCTKR2009003081-appb-I000006
로부터 기동 토크 Tst가 증가한다는 것을 알 수 있다. 기동 토크가 가장 커지는 최적점 이후, 주권선과 보조권선의 위상차는 90°에 근접하게 되지만, │Ia│의 크기가 감소하기 때문에 Tst가 감소하게 된다.
도 9는 보조권선의 권선 수의 변화에 따른 기동 토크의 변화를 도시한 그래프이다. 상기한 식이 실제 단상 유도 전동기에서도 적용되는지 단상 유도 전동기 모델에서 보조권선의 권선 수를 변화시켜가며 기동토크의 변화를 살펴보았다. PTC 소자는 4.8Ω인 것을 사용하였으며, 단상 유도 전동기 모델은 0.38Nm의 기동 토크를 가지는 레시프로케이팅 압축기 용 단상 유도 전동기를 사용하였다.
표 1
Model Winding Starting Torque
Base Model 0.38Nm
Aux.winding(Sub coil) +10% 0.34Nm
-10% 0.41Nm
-20% 0.45Nm
-30% 0.46Nm
-40% 0.47Nm
-50% 0.46Nm
-60% 0.43Nm
-70% 0.36Nm
-50% 0.54Nm PTC 4.8
상기 표와, 도 9를 살펴보면, 기동 운전 시에 정상 운전시보다 대략 10% 내지 70% 적은 권선 수의 보조 권선을 이용하는 경우, 적게는 0.3Nm에서 많게는 0.9Nm까지 기동 토크가 증가하는 것을 알 수 있다. 즉, Keff (기동 시 보조 권선의 권선 수/운전 시 보조 권선의 권선 수)가 0.35 내지 0.9인 경우 기동 토크가 향상되고, 특히 0.4 내지 0.8 사이의 값을 가질 경우 0.6Nm 이상 기동 토크가 향상되는 것을 확인할 수 있다.
한편 주 권선과 보조 권선 모두 각각 그 일부와 병렬로 연결되는 가변 저항 소자를 구비할 수 있다. 다만 저항 가변 소자의 하나로 이용되는 PTC 소자의 경우, 적은 값이기는 하나 정상 운전 시에 대략 2W 정도의 꾸준한 전력 손실을 가져온다. 따라서 이 때, 저항 가변 소자로서 E-PTC(electrical positive temperature coefficient) 소자를 이용하게 되면, 소정 시간 경과 후 E-PTC 소자로 흐르는 전류가 완전히 차단되어 E-PTC 소자의 설치로 인한 전력 손실이 없다.
한편, 주 권선은 권선 수가 감소할 때 기동 토크가 항상 증가하나, 보조 권선은 주권선의 사양에 따라 달라질 수 있으므로, 주 권선에 PTC 소자를 병렬 설치하여 기동 토크를 조절하는 것이 수월하나, PTC 소자의 설치로 인한 전력 손실 때문에 정상 운전 시 주 권선에 걸리는 전류가 작아져서 단상 유도 전동기의 효율 면에서 약간 불리한 면이 있다. 물론 이 경우에도 E-PTC 소자를 사용함으로써, 단상 유도 전동기의 정상 운전 시 효율 저하 없이 기동 토크를 향상시킬 수 있으나, PTC 소자에 비해 E-PTC 소자가 상당히 고가인 점에서 보조 권선 회로에 PTC 소자를 설치하여 기동 토크를 조절하는 편이 낫다. 주 권선의 사양 변화에 따라 보조 권선 회로에 설치되는 최적 PTC 소자의 저항 크기 및 PTC 소자의 설치를 위한 보조 권선에 형성되는 탭의 설치 위치가 달라지므로, 설계 단계에서는 보조 권선에 PTC 소자를 병렬 설치하는 것이 더 복잡하지만, 보조 권선에 PTC 소자를 설치하는 것은 정상 운전 시 단상 유도 전동기의 효율에 큰 영향이 없고, 비용 측면에서도 유리하다는 장점이 있다.

Claims (15)

  1. 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서,
    주권선의 일부와 병렬로 연결되는 저항 가변 소자;를 포함하는 것을 특징으로 하는 단상 유도 전동기.
  2. 제1항에 있어서,
    주권선의 나머지 일부는, 주권선의 일부 및 저항 가변 소자와 전기적으로 직렬 연결되는 것을 특징으로 하는 단상 유도 전동기.
  3. 제1항에 있어서,
    저항 가변 소자는, PTC 소자인 것을 특징으로 하는 단상 유도 전동기.
  4. 제1항에 있어서,
    저항 가변 소자는, E-PTC 소자인 것을 특징으로 하는 단상 유도 전동기.
  5. 제1항에 있어서,
    저항 가변 소자는, 기동 시에 낮은 저항을 가지고, 정상 운전 시에 저항 가변 소자로 흐르는 전류를 차단할 수 있을 정도로 높은 저항을 가지는 것을 특징으로 하는 단상 유도 전동기.
  6. 제1항에 있어서,
    주 권선은 서로 병렬 연결된 복수 개의 코일이 스테이터 코어에 함께 권선되며, 저항 가변 소자는 복수 개의 코일 중 하나와 병렬 연결되는 것을 특징으로 하는 단상 유도 전동기.
  7. 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서,
    보조권선과 직렬로 연결되는 커패시터; 및
    보조권선의 일부 및 커패시터와 병렬로 연결되는 저항 가변 소자;를 포함하는 것을 특징으로 하는 단상 유도 전동기.
  8. 코어, 주권선, 보조권선을 구비하는 스테이터와 스테이터와 상호전자기력에 의해 회전하는 로터를 포함하는 단상 유도 전동기에 있어서,
    보조권선에 직렬로 연결되는 저항 가변 소자; 및
    보조권선의 일부 및 저항 가변 소자와 병렬로 연결되는 커패시터;를 포함하는 것을 특징으로 하는 단상 유도 전동기.
  9. 제7항 및 제8항 중 어느 한 항에 있어서,
    저항 가변 소자는, PTC 소자인 것을 특징으로 하는 단상 유도 전동기.
  10. 제7항 및 제8항 중 어느 한 항에 있어서,
    저항 가변 소자는, E-PTC 소자인 것을 특징으로 하는 단상 유도 전동기.
  11. 제7항 및 제8항 중 어느 한 항에 있어서,
    저항 가변 소자는, 기동 시에 낮은 저항을 가지고, 정상 운전 시에 저항 가변 소자로 흐르는 전류를 차단할 수 있을 정도로 높은 저항을 가지는 것을 특징으로 하는 단상 유도 전동기.
  12. 제7항 및 제8항 중 어느 한 항에 있어서,
    기동 운전 시에 이용되는 보조 권선의 권선 수가 정상 운전 시에 이용되는 보조 권선의 권선 수에 대한 비가 0.35 내지 0.9 사이의 값을 가지는 것을 특징으로 하는 단상 유도 전동기.
  13. 제7항 및 제8항 중 어느 한 항에 있어서,
    다른 소자와 병렬로 연결되는 보조 권선의 일부는, 전체 보조 권선에 대해 10 내지 65% 사이의 값을 가지는 것을 특징으로 하는 단상 유도 전동기.
  14. 제7항 및 제8항 중 어느 한 항에 있어서,
    주권선의 일부와 병렬로 연결되는 추가의 저항 가변 소자;를 더 포함하는 것을 특징으로 하는 단상 유도 전동기.
  15. 제12항에 있어서,
    추가의 저항 가변 소자는, E-PTC 소자인 것을 특징으로 하는 단상 유도 전동기.
PCT/KR2009/003081 2008-11-24 2009-06-09 단상 유도 모터 WO2010058885A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980000452.7A CN102379083B (zh) 2008-11-24 2009-06-09 单相感应电机
EP09793445.9A EP2211455A4 (en) 2008-11-24 2009-06-09 SINGLE-PHASE INDUCTION MOTOR
US12/450,878 US8253369B2 (en) 2008-11-24 2009-06-09 Single phase induction motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0117107 2008-11-24
KR1020080117107A KR20100058343A (ko) 2008-11-24 2008-11-24 단상 유도 모터

Publications (2)

Publication Number Publication Date
WO2010058885A2 true WO2010058885A2 (ko) 2010-05-27
WO2010058885A3 WO2010058885A3 (ko) 2012-08-23

Family

ID=42198610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003081 WO2010058885A2 (ko) 2008-11-24 2009-06-09 단상 유도 모터

Country Status (5)

Country Link
US (1) US8253369B2 (ko)
EP (1) EP2211455A4 (ko)
KR (1) KR20100058343A (ko)
CN (1) CN102379083B (ko)
WO (1) WO2010058885A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165811B2 (en) * 2012-01-27 2019-01-01 The Cozmix Inc. Interchangeable fabric accessory and method of use
US20150091493A1 (en) * 2012-03-02 2015-04-02 Tribi Systems Private Limited, Company Using pulse width modulation in a single phase drive system
DE102021128668A1 (de) * 2021-11-04 2023-05-04 Ebm-Papst Mulfingen Gmbh & Co. Kg Messanordnung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2025842A1 (ko) * 1968-12-11 1970-09-11 Pirelli
DE3800771A1 (de) * 1988-01-13 1989-07-27 Siemens Ag Einphasenasynchronmotor
US5212436A (en) * 1991-12-06 1993-05-18 Texas Instruments Incorporated Single phase motor start system
JP3272493B2 (ja) * 1992-12-05 2002-04-08 山田電機製造株式会社 単相誘導電動機の起動装置
DE19547454A1 (de) * 1995-12-19 1997-06-26 Bosch Siemens Hausgeraete Steuervorrichtung für einen Motor, insbesondere für einen Motor einer Umwälzpumpe
DE602004029852D1 (de) * 2003-07-09 2010-12-16 Panasonic Corp Synchroner induktionsmotor und ein hermetischer verdichter mit einem solchen motor
KR100823920B1 (ko) * 2003-07-23 2008-04-22 엘지전자 주식회사 하이브리드 인덕션 모터의 구동회로 및 방법
DE602005017970D1 (de) * 2004-04-24 2010-01-14 Lg Electronics Inc Motor mit variabler Geschwindigkeit
KR100707424B1 (ko) * 2004-08-17 2007-04-13 엘지전자 주식회사 단상 유도 전동기의 기동장치
KR20060016835A (ko) 2006-02-06 2006-02-22 박영춘 음식진열대용 밀폐장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2211455A4

Also Published As

Publication number Publication date
EP2211455A4 (en) 2015-02-25
US20110025254A1 (en) 2011-02-03
CN102379083B (zh) 2015-02-18
CN102379083A (zh) 2012-03-14
US8253369B2 (en) 2012-08-28
KR20100058343A (ko) 2010-06-03
EP2211455A2 (en) 2010-07-28
WO2010058885A3 (ko) 2012-08-23

Similar Documents

Publication Publication Date Title
US6819026B2 (en) Induction motor
EP2401803B1 (en) Two conductor winding for an induction motor circuit
EP0511796A1 (en) Synchronous motor with two permanent magnet rotor portions
JP3466591B2 (ja) 回転電機
JP2001211585A (ja) 交流発電機
US20070024146A1 (en) Single-phase motor and stator winding method thereof
WO2019041915A1 (zh) 电机及压缩机
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
WO2010058885A2 (ko) 단상 유도 모터
US4387330A (en) Balanced single phase alternating current induction motor
CN111835107A (zh) 旋转电机的转子
JP2004328900A (ja) 回転電機
WO2014061908A1 (ko) 이중 공극형 발전기
US20050017592A1 (en) Rotary electric machine having armature winding connected in delta-star connection
JP2002272067A (ja) 籠形回転子および該籠形回転子を用いる電動機
JP2002247816A (ja) 誘導始動同期電動機
KR20130020583A (ko) 다상의 다이나모 일렉트릭 머신 및 다른 전도체 물질로 형성된 위상 권선들을 갖는 고정자
US20150372575A1 (en) High speed induction machine with fractional-slot tooth-coil winding
CN1309153C (zh) 一种变极起动绕线转子感应电动机
JPH10271781A (ja) ブラシレス自励形同期発電機
CN2627722Y (zh) 一种采用串级联接调速原理的变极起动绕线转子感应电动机
WO2022000790A1 (zh) 电机的线圈及其制作方法、电机定子及其制作方法、电机
JP2686869B2 (ja) コンデンサ駆動型誘導電動機
WO2004114504A1 (en) Single-phase asynchronous motor with stepped air gap
KR930008989B1 (ko) 3상농형 유도전동기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000452.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12450878

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009793445

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09793445

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE