WO2019041915A1 - 电机及压缩机 - Google Patents

电机及压缩机 Download PDF

Info

Publication number
WO2019041915A1
WO2019041915A1 PCT/CN2018/088650 CN2018088650W WO2019041915A1 WO 2019041915 A1 WO2019041915 A1 WO 2019041915A1 CN 2018088650 W CN2018088650 W CN 2018088650W WO 2019041915 A1 WO2019041915 A1 WO 2019041915A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
coil
stator
lead
leads
Prior art date
Application number
PCT/CN2018/088650
Other languages
English (en)
French (fr)
Inventor
徐飞
乔正忠
邱小华
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710778317.1A external-priority patent/CN107465279B/zh
Priority claimed from CN201721112311.2U external-priority patent/CN207184181U/zh
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to JP2019566575A priority Critical patent/JP2020522226A/ja
Priority to EP18850551.5A priority patent/EP3644476A4/en
Publication of WO2019041915A1 publication Critical patent/WO2019041915A1/zh
Priority to US16/741,878 priority patent/US11545864B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0062Manufacturing the terminal arrangement per se; Connecting the terminals to an external circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the field of compressor technology, and in particular to a motor and a compressor.
  • the speed adjustment range is small, usually 30 rps-90 rps, and if the rotation speed of the motor is forcibly increased, This will cause the motor to enter the weak magnetic zone, which will cause the coil current of the motor to rise rapidly. As a result, the temperature of the coil will rise sharply, causing insulation aging of the motor wires, affecting motor reliability and motor performance.
  • the exemplary method currently used is to inject a negative direct current to the coil set of the motor to demagnetize the permanent magnet, thereby reducing the back electromotive force and achieving the purpose of expanding the operating range of the motor.
  • the use of a negative direct current to the coil input of the motor results in a lower efficiency of the motor operating at high frequencies.
  • the main object of the present application is to provide a motor that can improve the working efficiency of the motor.
  • an electric motor including a motor stator and a motor rotor, the motor stator including:
  • stator core having a plurality of stator teeth spaced along a circumferential direction thereof, and two adjacent stator teeth defining a stator slot
  • each of the coil sets including a plurality of coils wound on the stator teeth, each of the coil sets having an incoming end and an outgoing end composed of the same number of joints;
  • each of the motor lead sets having a plurality of motor leads arranged to connect the coil sets and a motor control circuit, the total number of motor leads in each of the motor lead sets being The number of coil sets is equal, and each of the motor leads is connected to one of the incoming or outgoing ends of one of the coil sets.
  • the motor satisfies the relationship: 5.18 ⁇ 10 -7 ⁇ T ⁇ Di ⁇ 3 ⁇ TPV ⁇ 1 ⁇ 1.17 ⁇ 10 -6 , where T is the rated torque of the motor, and the unit is N• m, Di is the minimum inner diameter of the stator core, the unit is mm, TPV is the unit volume torque of the rotor, the unit is kN•m•m -3 , and 5kN•m•m -3 ⁇ TPV ⁇ 45kN•m•m -3 .
  • the motor stator further includes a plurality of connectors, and the plurality of motor leads in each of the motor lead sets are plugged into the motor control circuit through at least one of the connectors.
  • the number of the connectors is two, and the plurality of motor leads in each motor lead set are plugged into the motor control circuit through one of the connectors.
  • the number of the connectors corresponds to the number of the plurality of motor leads, and is connected in one-to-one correspondence with the plurality of the motor leads.
  • each of the coil sets has 2n of the joints, wherein n is a positive integer, and 2n of the joints are divided into n incoming wire joints constituting the incoming end and n outgoing lines constituting the outgoing end a connector, one of the two connectors is connected to one of the motor leads connecting n of the wire connectors, and the other is connected to one of the motor leads connecting the n of the wire connectors.
  • the number of coil sets is three, and each coil set has one incoming wire joint and one outgoing wire joint.
  • the motor has a first wiring state and a second wiring state.
  • a back EMF coefficient of the motor is ke1
  • the motor is The back EMF coefficient is ke2, where ke1 ⁇ 45 V/k rpm and 1.6 ⁇ ke1/ke2 ⁇ 1.8.
  • the rated speed of the motor is greater than or equal to 6000 rpm.
  • the maximum speed of the motor is greater than or equal to 9000 revolutions per minute.
  • the application also proposes a compressor comprising a motor as described above, the motor comprising a motor stator and a motor rotor, the motor stator comprising:
  • stator core having a plurality of stator teeth spaced along a circumferential direction thereof, and two adjacent stator teeth defining a stator slot
  • each of the coil sets including a plurality of coils wound on the stator teeth, each of the coil sets having an incoming end and an outgoing end composed of the same number of joints;
  • each of the motor lead sets having a plurality of motor leads arranged to connect the coil sets and a motor control circuit, the total number of motor leads in each of the motor lead sets being The number of coil sets is equal, and each of the motor leads is connected to one of the incoming or outgoing ends of one of the coil sets.
  • the present invention electrically connects each of the two sets of motor lead wires connecting the motor control circuit and the plurality of coil sets to one of the coil sets, so that the motor control circuit can be switched to corresponding according to different operating conditions of the motor.
  • the coil group wiring method improves the working efficiency of the motor.
  • FIG. 1 is a schematic view showing a radial structure of an embodiment of a motor stator of the present application
  • FIG. 2 is a schematic axial structural view of an embodiment of a motor stator of the present application
  • FIG. 3 is a schematic perspective structural view of an embodiment of a motor stator of the present application.
  • FIG. 4 is a schematic structural view of another embodiment of a motor stator of the present application.
  • FIG. 5 is a schematic structural view of an embodiment of a compressor upper casing assembly of the present application.
  • FIG. 6 is a schematic diagram showing the relationship between the rotational speed and the efficiency of the motor of the present application at high speed and low speed;
  • Figure 7 is a schematic view showing the structure of an embodiment of the compressor of the present application.
  • first”, “second”, and the like in the present application are set for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. Nor is it within the scope of protection required by this application.
  • the application proposes a compressor having a motor.
  • the motor can be a permanent magnet motor, a three-phase asynchronous motor, etc., which is not limited in this embodiment.
  • the motor includes a motor stator 10 including a stator core 101 and a plurality of coil sets, and a stator core 101 having a plurality of stator teeth 101b spaced along the circumferential direction thereof.
  • the adjacent two stator teeth 101b define a stator slot 101a; each coil group includes a plurality of coils 102 wound on the stator teeth 101b, and each coil group has a line end composed of the same number of joints And the outlet.
  • each coil group has a plurality of coils 102
  • the coil group when a plurality of coils 102 in one coil group are all connected in series, the coil group has two joints, and at this time, one joint serves as the coil group.
  • the incoming end and the other as the outgoing end; when the multiple coils 102 in a coil set are not all connected in series, the number of joints of the coil set will be greater than two and even numbers, at this time, the total number of joints is half
  • the incoming end of the coil set is formed, and the other half constitutes the outgoing end.
  • the motor stator 10 further includes two motor lead sets 103, each motor lead set 103 having a plurality of motor leads 103a disposed to connect motor control circuits (not shown) and coil sets of joints.
  • the total number of motor leads 103a in each motor lead set 103 is equal to the number of coil sets, and each motor lead 103a is connected to one of the incoming or outgoing ends of one of the coil sets.
  • the motor control circuit can switch the wiring mode of multiple coil groups in the motor according to the working condition of the motor. For example, the motor control circuit controls between the manner in which the plurality of coil sets are connected together at the incoming ends of the plurality of coil sets and the manner in which the incoming and outgoing ends of the two coil sets are connected according to different operating frequencies of the motor. Switching, so that the work efficiency of the motor at high frequency and low frequency.
  • the motor can have the first wiring state and the second wiring state by changing the wiring manner, and the back electromotive force coefficient ke1 when the motor has the first wiring state is greater than when the motor has the second wiring state.
  • Back EMF ke2. Therefore, the motor can be in the first wiring state when the motor is in the low speed running state, and the motor is in the second wiring state when the motor is in the high speed running state, so as to prevent the motor from entering the weak magnetic field and reduce the motor to generate the same torque.
  • the required winding current reduces copper consumption and makes the motor more efficient.
  • ke1 ⁇ 45V / krpm can be made to make the motor have higher efficiency at low speed operation.
  • 1.6 ⁇ ke1/ke2 ⁇ 1.8 can be made to balance the working efficiency of the motor at high speed and low speed, and improve the overall performance of the motor.
  • the specific value of ke1 and ke2 can be determined according to the type of the motor, for example, the back electromotive force coefficient ke1 when the motor has the first wiring state is 84.33 V/krpm, the back electromotive force coefficient ke2 of the motor with the second wiring state is 48.89 V/krpm, so that the motor has high working efficiency at high speed and low speed, and is matched with the compressor.
  • the foregoing wiring manners may be various, and may be determined according to the type of the motor.
  • the lead ends of the plurality of windings of the motor may be electrically connected to each other, or The lead ends of the plurality of windings of the motor are electrically connected to each other such that the back electromotive force coefficient of the motor is ke1, so that when the motor is in the second wiring state, the leads of the plurality of windings of the motor can be electrically connected to each other to make the motor
  • the back EMF coefficient is ke2.
  • the motor control parameters can be changed to make the motor run more stably and efficiently.
  • the motor can have two sets of motor control parameters.
  • the motor is controlled by different motor control parameters to ensure stable and efficient operation of the motor.
  • the wiring mode of the motor is changed to increase the back electromotive force coefficient of the motor, the line resistance ⁇ of the motor, the peak-to-peak value of the magnetic flux (mWb.T), and the cross-axis inductance Ld/Lq(mH) can be One or more parameters are increased to ensure stable and efficient operation of the motor.
  • other parameter changes of the motor can also be controlled, which is not limited in this embodiment.
  • the line resistance ⁇ is 7.42 ⁇
  • the line magnetic flux peak-to-peak value (mWb.T) is 75.4 mWb.T
  • the cross-axis inductance Ld/Lq(mH) is 27.37 mH/41.23 mH
  • the line resistance ⁇ is 2.48 ⁇
  • the line magnetic flux peak-to-peak value (mWb.T) is 43.9mWb.T
  • the cross-axis inductance Ld/Lq(mH) is 10.03mH/13.53mH, so that the motor is Stable and efficient operation in both wiring states.
  • the motor can also have a third wiring state, a fourth wiring state, etc., so that the motor has more different back EMF coefficients, and correspondingly, the motor also has more sets of motor control parameters to correspond to different Wiring status.
  • the motor can be switched between different wiring states by means of program control, or the motor can be switched between different wiring states by means of circuit control.
  • the motor can be comprised of an electrical control board that is electrically coupled to the leads of the motor to control the switching of the motor between different wiring states.
  • the motor in order to better fit the motor and the compressor, can satisfy the formula: 5.18 ⁇ 10 -7 ⁇ T ⁇ Di - 3 ⁇ TPV -1 ⁇ 1.17 ⁇ 10 -6 , where T is The rated torque of the motor is in units of N•m; Di is the minimum inner diameter of the stator core 101, that is, as shown in FIG. 2, the plurality of stator teeth 101b of the stator core 101 are oriented toward the center of the stator core 101.
  • TPV the torque per unit volume of the rotor 20
  • the unit is kN•m•m -3 , and 5 kN•m• m -3 ⁇ TPV ⁇ 45 kN•m•m -3 .
  • the motor stator 10 may further include a plurality of connectors, each of which is in the motor lead set 103.
  • the motor lead 103a is plugged into the motor control circuit via at least one connector.
  • the connector can adopt the structure of the connector 104 shown in FIG. 1 to FIG. 3, and the structure of the connector 104a shown in FIG. 4 can also be adopted.
  • the connector 104 shown in FIG. 1 to FIG. 3 is a junction box structure, and the connector 104 is more suitable for connection with a plurality of motor leads 103a.
  • the connector 104a shown in FIG. 4 has a conductive insert structure, and each of the connectors 104a is more suitable for connection to a motor lead 103a.
  • the connector can also adopt other structures, which are not limited in this embodiment.
  • the number of the connectors 104 may be two, and the plurality of motor leads 103a in each of the motor lead sets 103 are controlled by a connector 104 and a motor.
  • the circuit is plugged in to increase the efficiency of the connection of the two motor lead sets 103 to the motor control circuit.
  • each coil set has 2n joints, where n is a positive integer, and 2n joints can be divided into n incoming wire joints 102a constituting the incoming end and n outgoing joints 102b constituting the outgoing end, two inserts One of the connectors 104 is connected to one motor lead 103a connected to the n incoming connectors 102a, and the other is connected to a motor lead 103a connected to the n outgoing connectors 102b, thereby making the coil assembly and the motor control circuit The connection is more convenient.
  • the number of coil groups in the motor depends on the type of the motor, for example, the number of coil groups can be three, and that multiple coils in each coil group are connected in series, and each coil The group has an inlet connector 102a and an outlet connector 102b to simplify the structure of the coil assembly and improve the control effect of the motor control circuit on the motor.
  • the number of the connectors 104a may be corresponding to the number of the plurality of motor leads 103a, and the plurality of connectors 104a are connected to the plurality of motor leads 103a in one-to-one correspondence, thereby The connection of each motor lead set 103 to the motor control circuit is made more flexible.
  • the number of connectors may be greater than or equal to two and less than or equal to the total number of motor leads 103a, which will not be described herein.
  • each of the two motor lead sets 103 is employed.
  • the way in which the lead 103a is connected to one of the joints of one of the coil sets increases the efficiency of the motor.
  • the compressor includes a housing 30, a crankshaft 40, a cylinder 50, a piston 60, a main bearing 70, a secondary bearing 80, and a motor as described above.
  • the outer casing 30 is disposed in a cylindrical shape, and has a accommodating cavity 31 extending along the axial direction thereof.
  • the crankshaft 40 is disposed in the accommodating cavity 31 and arranged along the axial direction of the outer casing 30, and the lower end of the crankshaft 40 passes through the cylinder. 50. Further, a portion of the crankshaft 40 that projects into the cylinder 50 forms an eccentric portion and is provided with a piston 60.
  • the main bearing 70 and the sub-bearing 80 are sleeved on the crankshaft 40 from the upper and lower ends of the crankshaft 40, respectively, and are coupled to the cylinder 50.
  • the upper and lower ends are fixedly coupled to seal the compression chamber 51 of the cylinder 50, the motor is disposed in the housing chamber 31 of the housing 30, and the rotor core 20 of the motor is coupled to the upper end of the crankshaft 40.
  • the inner wall of the accommodating cavity 31 of the compressor may be disposed at a terminal connected to the control circuit of the motor, and the terminal is correspondingly inserted into the connector of the motor, thereby controlling the motor lead 103a and the motor.
  • the circuit is electrically connected.
  • the top of the compressor may have an upper casing assembly 90, and on the side of the upper casing assembly 90 facing the accommodating cavity 31, a plurality of terminals 901, a plurality of terminals The 901 is inserted into the connector of the motor to electrically connect the motor lead 103a to the motor control circuit.
  • the terminal 901 can include a plurality of terminals 902, and the plurality of terminals 902 are plugged into the connector.
  • the number of the terminals depends on the number of connectors of the plurality of coil sets of the motor. Since the number of windings of the motor generally does not exceed three, each coil group has one incoming end and one outgoing end. Therefore, at least six binding posts 902 can be provided on the compressor to enable the compressor to be combined with more models. Motor adapter.
  • the present application is based on the fact that the total number of motor leads 103a in the two motor lead sets 103 is equal to twice the number of all coil sets, so that each motor lead 103a can be combined with one or more joints of one coil set.
  • the terminals are connected to realize the purpose of switching the wiring mode of the plurality of coil groups in the motor conveniently according to the working condition of the motor.
  • the manner in which the plurality of motor leads 103a are electrically connected to the control circuit is not limited to the above embodiment, and in order to improve the connection efficiency of the motor lead 103a and the motor control circuit, other structures similar to the connector may be added, of course, It is also possible to slightly deform based on the structure of the above-mentioned connector, and the present application is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种电机及压缩机,电机包括电机定子(10)及电机转子(20),电机定子(10)包括:定子铁芯(101)、线圈组及电机引线组(103),定子铁芯(101)具有多个沿其周向间隔设置的定子凸齿(101b),相邻两个定子凸齿(101b)限定出定子槽隙(101a);线圈组的数量为多个,每个线圈组包括多个绕制于定子凸齿(101b)上的线圈(102),每个线圈组具有由相同数量的接头组成的进线端(102a)和出线端(102b);电机引线组(103)的数量为两个,每个电机引线组(103)具有多根设置为连接线圈组的接头和电机控制电路的电机引线(103a),每个电机引线组(103)中的电机引线总根数与线圈组的数量相等,每根电机引线与一个线圈组的一个进线端(102a)或一个出线端(102b)连接。

Description

电机及压缩机
技术领域
本申请涉及压缩机技术领域,尤其涉及一种电机及压缩机。
背景技术
现有采用永磁电机的旋转式直流变频压缩机中,由于永磁电机的励磁磁场不可调节,因此,其调速范围较小,通常为30rps-90rps,若要强行提升该电机的转速,则会使得电机进入弱磁区,进而使电机的线圈电流迅速升高,由此,会导致线圈的温度大幅升高,造成电机导线的绝缘老化,影响电机可靠性和电机性能。
为了避免出现上述问题,目前采用的示例性方法是对电机的线圈组注入负的直轴电流,以对永磁体进行去磁,从而降低反电势,达到扩展电机运行范围的目的。但是,采用对电机的线圈输入负的直轴电流的方法会使得电机运行在高频下的工作效率较低。
发明内容
本申请的主要目的在于提供一种电机,其可提高电机的工作效率。
为实现上述目的,本申请提出一种电机,所述电机包括电机定子及电机转子,所述电机定子包括:
定子铁芯,所述定子铁芯具有多个沿其周向间隔设置的定子凸齿,相邻两个所述定子凸齿限定出定子槽隙;
多个线圈组,每个所述线圈组包括多个绕制于所述定子凸齿上的线圈,每个所述线圈组具有由相同数量的接头组成的进线端和出线端;
两个电机引线组,每个所述电机引线组具有多根设置为连接所述线圈组的接头和电机控制电路的电机引线,每个所述电机引线组中的电机引线总根数与所述线圈组的数量相等,每根所述电机引线与一个所述线圈组的一个进线端或一个出线端连接。
可选地,所述电机满足关系式:5.18×10-7≤T×Di-3×TPV-1≤1.17×10-6,其中,T为所述电机的额定转矩,其单位为N•m,Di为所述定子铁芯的最小内径,其单位为mm,TPV为所述转子的单位体积转矩,其单位为kN•m•m-3,且5kN•m•m-3≤TPV≤45kN•m•m-3
可选地,所述电机定子还包括多个插接件,每个电机引线组中的多根所述电机引线通过至少一个所述插接件与电机控制电路插接。
可选地,所述插接件的数量为两个,每个电机引线组中的多根所述电机引线通过一个所述插接件与电机控制电路插接。
可选地,所述插接件的数量与多根所述电机引线的数量对应,且与多根所述电机引线一一对应连接。
可选地,每个所述线圈组具有2n个所述接头,其中n为正整数,2n个所述接头分为n个组成所述进线端的进线接头和n个组成所述出线端的出线接头,两个插接件中的一个与连接n个所述进线接头的一根所述电机引线连接,另一个与连接n个所述出线接头的一根所述电机引线连接。
可选地,所述线圈组的数量为3个,每个线圈组具有一个进线接头和一个出线接头。
可选地,所述电机具有第一接线状态及第二接线状态,处于所述第一接线状态时,所述电机的反电势系数为ke1,处于所述第二接线状态时,所述电机的反电势系数为ke2,其中,ke1≥45V/krpm,且1.6≤ke1/ke2≤1.8。
可选地,所述电机的额定转速大于或者等于6000转/分钟。
可选地,所述电机的最大转速大于或者等于9000转/分钟。
本申请还提出一种压缩机,该压缩机包括如上所述的电机,所述电机包括电机定子及电机转子,所述电机定子包括:
定子铁芯,所述定子铁芯具有多个沿其周向间隔设置的定子凸齿,相邻两个所述定子凸齿限定出定子槽隙;
多个线圈组,每个所述线圈组包括多个绕制于所述定子凸齿上的线圈,每个所述线圈组具有由相同数量的接头组成的进线端和出线端;
两个电机引线组,每个所述电机引线组具有多根设置为连接所述线圈组的接头和电机控制电路的电机引线,每个所述电机引线组中的电机引线总根数与所述线圈组的数量相等,每根所述电机引线与一个所述线圈组的一个进线端或一个出线端连接。
本申请通过将连接电机控制电路和多个线圈组的两组电机引线组中的每一根电机引线与一个线圈组中一个接头电连接,使电机控制电路能够根据电机的不同运行情况切换成相应的线圈组接线方式,从而提高电机的工作效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请电机定子一实施例的径向结构示意图;
图2为本申请电机定子一实施例的轴向结构示意图;
图3为本申请电机定子一实施例的立体结构示意图;
图4为本申请电机定子另一实施例的结构示意图;
图5为本申请压缩机上壳体组件一实施例的结构示意图;
图6为本申请电机在高速和低速下的转速与效率的关系示意图;
图7为本申请压缩机一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
10 电机定子 101a 定子槽隙
20 电机转子 101b 定子凸齿
30 外壳 102 线圈
31 容纳腔 102a 进线接头
40 曲轴 102b 出线接头
50 气缸 103 电机引线组
51 压缩腔 103a 电机引线
60 活塞 104 插接件
70 主轴承 104a 插接件
80 副轴承 901 接线端子
90 上壳体组件 902 接线柱
101 定子铁芯
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅设置为解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅设置为描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种压缩机,该压缩机具有电机。其中,该电机可以为永磁电机、三相异步电机等,本实施例不作限制。
参照图1至图3,该电机包括电机定子10及电机转子20,电机定子10包括定子铁芯101及多个线圈组,定子铁芯101具有多个沿其周向间隔设置的定子凸齿101b,相邻两个定子凸齿101b限定出定子槽隙101a;每个线圈组包括多个绕制于定子凸齿101b上线圈102,且每个线圈组具有由相同数量的接头组成的进线端和出线端。
可以理解的是,由于每个线圈组具有多个线圈102,当一个线圈组中的多个线圈102全部串联连接时,则该线圈组具有两个接头,此时,一个接头作为该线圈组的进线端,另一个作为出线端;当一个线圈组中的多个线圈102未全部串联连接时,则该线圈组的接头数量会大于两个,且为偶数,此时,接头总量的一半组成该线圈组的进线端,另一半组成出线端。
继续参照图1至图3,该电机定子10还包括两个电机引线组103,每个电机引线组103具有多根设置为连接电机控制电路(未示出)和线圈组的接头的电机引线103a,其中,每个电机引线组103中的电机引线103a总数与线圈组的数量相等,并且,每根电机引线103a与一个线圈组的一个进线端或出线端连接。
可以理解的是,由于每个电机引线组103中的电机引线103a总数与线圈组的数量相等,且每根电机引线103a与一个线圈组的一个或多个接头所组成的接线端连接,从而使电机控制电路能够根据电机的工作情况对电机中多个线圈组的接线方式进行切换。例如:电机控制电路根据电机的不同工作频率,控制多个线圈组在多个线圈组的进线端连接在一起的方式和两两线圈组的进线端与出线端相连接的方式之间进行切换,从而兼顾电机在高频和低频下的工作能效。
如图6所示,当电机在高速状态下运行时,电机转速在n1时的效率最高,当电机在低速状态运行时,电机的转速在n2时的效率最高。
在一实施例中,可以通过改变接线方式,以使电机具有第一接线状态和第二接线状态,并使电机具有第一接线状态时的反电势系数ke1,大于电机具有第二接线状态时的反电势系数ke2。由此,可以在电机处于低速运行状态时,使电机处于第一接线状态,在电机处于高速运行状态时,使电机处于第二接线状态,以防止电机进入弱磁,降低电机产生相同的转矩时所需的绕组电流,减小铜耗,使电机具有较高的效率。
其中,可以使ke1≥45V/krpm,以使电机在低速运行时具有较高的效率。
进一步地,可以使1.6≤ke1/ke2≤1.8,以兼顾电机在高速和低速下的工作效率,提高电机的整体性能。其中,ke1和ke2的具体数值可根据电机的型号而定,例如:可以使电机具有第一接线状态时的反电势系数ke1为84.33 V/krpm,使电机具有第二接线状态时的反电势系数ke2为48.89 V/krpm,以使电机在高速和低速状态下均具有较高的工作效率,并与压缩机适配。
需要说明的是,上述接线方式可以有多种,具体可根据电机的类型而定,例如,当电机处于第一接线状态时,可以将电机的多个绕组的引线尾端相互电连接,或者,将电机的多个绕组的引线首端相互电连接,以使电机的反电势系数为ke1,使电机处于第二接线状态时,可以使电机的多个绕组的引线首尾相互电连接,以使电机的反电势系数为ke2。
另外,还可以通过对电机控制参数的改变,以使电机能够更加稳定高效的运行。具体地,可以使电机具有两套电机控制参数,当电机的接线方式改变时,通过不同的电机控制参数对电机进行控制,以保证电机能够稳定高效的运行。具体地,当电机的接线方式改变,以使电机的反电势系数增大时,可以将电机的线电阻Ω、线磁通量峰峰值(mWb.T)及交直轴电感Ld/Lq(mH)中的一个或多个参数增大,以保证电机能够稳定高效的运行。当然,也可以控制电机的其它参数改变,本实施例不作限制。
在一优选的实施例中,当电机处于第一接线状态,并使反电势系数ke1为84.33 V/krpm,可以使线电阻Ω为7.42Ω、线磁通量峰峰值(mWb.T)为75.4mWb.T,并使交直轴电感Ld/Lq(mH)为27.37mH/41.23mH;当电机处于第二接线状态,并使反电势系数ke2为48.89 V/krpm,可以使线电阻Ω为2.48Ω、线磁通量峰峰值(mWb.T)为43.9mWb.T,并使交直轴电感Ld/Lq(mH)为10.03mH/13.53mH,以使电机在两种接线状态下均能够稳定高效的运行。
在此基础上,电机还可以具有第三接线状态、第四接线状态等等,以使电机具有更多不同的反电势系数,对应的,电机也具有更多套的电机控制参数,以对应不同的接线状态。
本实施例中,可以通过程序控制的方式使电机在不同的接线状态之间进行切换,也可以通过电路控制的方式使电机在不同的接线状态之间进行切换。在一优选的实施例中,可以使电机包括电控板,该电控板与电机的引线电连接,以控制电机在不同的接线状态之间进行切换。
在一实施例中,为了使电机与压缩机更好的适配,可以使电机满足公式:5.18×10-7≤T×Di-3×TPV-1≤1.17×10-6,其中,T为电机的额定转矩,其单位为N•m;Di为定子铁芯101的最小内径,也即:如图2所示,定子铁芯101的多个定子凸齿101b朝向定子铁芯101的中心线方向的一端端部所围合形成的圆的直径,其中,Di的单位为mm;TPV为转子20的单位体积转矩,其单位为kN•m•m-3,且5 kN•m•m-3≤TPV≤45 kN•m•m-3
当然,上述电机还可以用于其它领域,具体根据电机的型号和尺寸而定。
为了快速方便的将每个电机引线组103中的电机引线103a与电机控制电路连接,在一实施例中,电机定子10还可以包括多个插接件,每个电机引线组103中的多根电机引线103a通过至少一个插接件与电机控制电路插接。
其中,该插接件可以采用图1至图3所示的插接件104结构,也可以采用图4所示的插接件104a结构。图1至图3所示插接件104为接线盒结构,该插接件104更适合与多根电机引线103a连接,图4所示的插接件104a导电插片结构,每个插接件104a更适合与一根电机引线103a连接。当然,插接件也可以采用其它结构,本实施例不作限制。
在一实施例中,如图1至图3所示,可以使插接件104的数量可以为两个,每个电机引线组103中的多根电机引线103a通过一个插接件104与电机控制电路插接,从而提高两个电机引线组103与电机控制电路连接的效率。
在一实施例中,每个线圈组具有2n个接头,其中n为正整数,2n个接头可分为n个组成进线端的进线接头102a和n个组成出线端的出线接头102b,两个插接件104中的一个与连接n个进线接头102a的一根电机引线103a连接,另一个与连接n个出线接头102b的一根电机引线103a连接,从而使线圈组的接头和电机控制电路的连接更加方便。
在一实施例中,电机中的线圈组数量根据电机的型号而定,例如:可以使线圈组的数量为3个,并且,每个线圈组中的多个线圈均串联连接,则每个线圈组具有一个进线接头102a和一个出线接头102b,以简化线圈组的结构,提高电机控制电路对电机的控制效果。
在一实施例中,如图4所示,也可以使插接件104a的数量与多根电机引线103a的数量对应,且多个插接件104a与多根电机引线103a一一对应连接,从而使每个电机引线组103与电机控制电路的连接更加灵活。
当然,插接件的数量可以大于或等于两个,且小于或等于电机引线103a的总数,此处不再赘述。
在一实施例中,当电机的额定运行转速大于或等于6000转/分钟时,或者,当电机的最大运行转速大于或等于9000转/分钟时,采用两个电机引线组103中的每根电机引线103a与一个线圈组的一个接头连接的方式对电机的效率提升更高。
在一实施例中,如图5所示,压缩机包括外壳30、曲轴40、气缸50、活塞60、主轴承70、副轴承80以及如上所述的电机。
其中,外壳30呈筒状设置,且其具有沿其轴向延伸的容纳腔31,曲轴40设在容纳腔31内并沿外壳30的轴向布置,曲轴40的下端穿过气缸 50,并且,曲轴40伸入气缸50的部分形成偏心部且其上套装有活塞60,主轴承70和副轴承80分别自曲轴40的上端和下端套设在曲轴40上,并与气缸50的上下两端固定连接以对气缸50的压缩腔51进行密封,电机设置在外壳30的容纳腔31内,并且,电机的转子铁芯20与曲轴40的上端连接。
在一实施例中,可以将在压缩机的容纳腔31的内壁上设置于电机的控制电路连接的接线端子,该接线端子与电机的插接件对应插接,从而将电机引线103a与电机控制电路电连接。具体地,如图5及图7所示,可以使压缩机的顶部具有上壳体组件90,并在上壳体组件90面向容纳腔31的一侧设置多个接线端子901,多个接线端子901与电机的插接件对应插接,从而将电机引线103a与电机控制电路电连接。
在一实施例中,可以使接线端子901包括多个接线柱902,多个接线柱902与插接件插接,该接线柱的数量具体根据电机的多个线圈组的接头数量而定。由于电机的绕组数量一般不会超出三个,每个线圈组具有一个进线端和一个出线端,因此,可以在压缩机上设置至少六个接线柱902,以使压缩机能够与更多型号的电机适配。
需要说明的是,本申请是基于两个电机引线组103中的电机引线103a总数与所有线圈组数量的两倍相等,以使每根电机引线103a能够与一个线圈组的一个或多个接头所组成的接线端连接,从而实现电机控制电路根据电机的工作情况方便的对电机中多个线圈组的接线方式进行切换的目的。在此基础上,多根电机引线103a与控制电路电连接的方式不限于上述实施例,且为了提高电机引线103a和电机控制电路的连接效率,可以增加其它类似于插接件的结构,当然,也可以基于上述插接件的结构稍作变形,本申请不作限制。
可以理解的是,由于本申请提出的压缩机包括上述电机的所有实施例的所有方案,因此,至少具有与所述电机相同的技术效果,此处不一一阐述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

  1. 一种电机,其中,所述电机包括电机定子及电机转子,所述电机定子包括:
    定子铁芯,所述定子铁芯具有多个沿其周向间隔设置的定子凸齿,相邻两个所述定子凸齿限定出定子槽隙;
    多个线圈组,每个所述线圈组包括多个绕制于所述定子凸齿上的线圈,每个所述线圈组具有由相同数量的接头组成的进线端和出线端;
    两个电机引线组,每个所述电机引线组具有多根设置为连接所述线圈组的接头和电机控制电路的电机引线,每个所述电机引线组中的电机引线总根数与所述线圈组的数量相等,每根所述电机引线与一个所述线圈组的一个进线端或一个出线端连接。
  2. 如权利要求1所述的电机,其中,所述电机满足关系式:5.18×10-7≤T×Di-3×TPV-1≤1.17×10-6,其中,T为所述电机的额定转矩,其单位为N•m,Di为所述定子铁芯的最小内径,其单位为mm,TPV为所述转子的单位体积转矩,其单位为kN•m•m-3,且5kN•m•m-3≤TPV≤45kN•m•m-3
  3. 如权利要求2所述的电机,其中,所述电机定子还包括多个插接件,每个电机引线组中的多根所述电机引线通过至少一个所述插接件与电机控制电路插接。
  4. 如权利要求3所述的电机,其中,所述插接件的数量为两个,每个电机引线组中的多根所述电机引线通过一个所述插接件与电机控制电路插接。
  5. 如权利要求3所述的电机,其中,所述插接件的数量与多根所述电机引线的数量对应,且与多根所述电机引线一一对应连接。
  6. 如权利要求4所述的电机,其中,每个所述线圈组具有2n个所述接头,其中n为正整数,2n个所述接头分为n个组成所述进线端的进线接头和n个组成所述出线端的出线接头,两个插接件中的一个与连接n个所述进线接头的一根所述电机引线连接,另一个与连接n个所述出线接头的一根所述电机引线连接。
  7. 如权利要求6所述的电机,其中,所述线圈组的数量为3个,每个线圈组具有一个进线接头和一个出线接头。
  8. 如权利要求1或2所述的电机,其特征在于,所述电机具有第一接线状态及第二接线状态,处于所述第一接线状态时,所述电机的反电势系数为ke1,处于所述第二接线状态时,所述电机的反电势系数为ke2,其中,ke1≥45V/krpm,且1.6≤ke1/ke2≤1.8。
  9. 如权利要求1所述的电机,其中,所述电机的额定转速大于或者等于6000转/分钟。
  10. 如权利要求1所述的电机,其中,所述电机的最大转速大于或者等于9000转/分钟。
  11. 一种压缩机,其特征在于,包括权利要求1至9中任意一项所述的电机,所述压缩机上设置有至少六个设置为与所述电机引线连接的接线柱。
PCT/CN2018/088650 2017-08-31 2018-05-28 电机及压缩机 WO2019041915A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019566575A JP2020522226A (ja) 2017-08-31 2018-05-28 電気モーター及びコンプレッサー
EP18850551.5A EP3644476A4 (en) 2017-08-31 2018-05-28 ENGINE AND COMPRESSOR
US16/741,878 US11545864B2 (en) 2017-08-31 2020-01-14 Electric motor and compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710778317.1A CN107465279B (zh) 2017-08-31 2017-08-31 电机及压缩机
CN201710778317.1 2017-08-31
CN201721112311.2U CN207184181U (zh) 2017-08-31 2017-08-31 电机及压缩机
CN201721112311.2 2017-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/741,878 Continuation US11545864B2 (en) 2017-08-31 2020-01-14 Electric motor and compressor

Publications (1)

Publication Number Publication Date
WO2019041915A1 true WO2019041915A1 (zh) 2019-03-07

Family

ID=65524886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088650 WO2019041915A1 (zh) 2017-08-31 2018-05-28 电机及压缩机

Country Status (4)

Country Link
US (1) US11545864B2 (zh)
EP (1) EP3644476A4 (zh)
JP (1) JP2020522226A (zh)
WO (1) WO2019041915A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200381984A1 (en) * 2019-05-31 2020-12-03 MagniX USA, Inc. High-torque electric motor assembly
JP2022531342A (ja) * 2019-08-26 2022-07-06 安徽美芝精密制造有限公司 ローター、モーター、圧縮機及び冷却機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644476A4 (en) * 2017-08-31 2020-07-15 Guangdong Meizhi Compressor Co., Ltd. ENGINE AND COMPRESSOR
WO2019128051A1 (zh) * 2017-12-27 2019-07-04 安徽美芝精密制造有限公司 永磁电机及压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141864A (en) * 1998-01-15 2000-11-07 Trw Inc. Motor stator winding tool
US20060123621A1 (en) * 2003-10-17 2006-06-15 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing stator of rotating electric machine
CN206211741U (zh) * 2016-09-22 2017-05-31 中山大洋电机股份有限公司 一种可调速电机引线结构及可调速电机
CN107017709A (zh) * 2017-05-31 2017-08-04 广东美芝制冷设备有限公司 电机定子、永磁电机以及压缩机
CN107465279A (zh) * 2017-08-31 2017-12-12 广东美芝制冷设备有限公司 电机及压缩机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342954A (ja) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd 電動圧縮機及びそれを用いた冷却装置
JP4619826B2 (ja) * 2005-03-07 2011-01-26 三菱電機株式会社 電動機駆動装置、電動機駆動方法及び圧縮機
CN103795304B (zh) * 2012-11-01 2015-11-25 珠海格力节能环保制冷技术研究中心有限公司 三相同步电动机驱动控制系统及控制方法
US9925889B2 (en) * 2015-08-24 2018-03-27 GM Global Technology Operations LLC Electric machine for hybrid powertrain with dual voltage power system
EP3644476A4 (en) * 2017-08-31 2020-07-15 Guangdong Meizhi Compressor Co., Ltd. ENGINE AND COMPRESSOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141864A (en) * 1998-01-15 2000-11-07 Trw Inc. Motor stator winding tool
US20060123621A1 (en) * 2003-10-17 2006-06-15 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing stator of rotating electric machine
CN206211741U (zh) * 2016-09-22 2017-05-31 中山大洋电机股份有限公司 一种可调速电机引线结构及可调速电机
CN107017709A (zh) * 2017-05-31 2017-08-04 广东美芝制冷设备有限公司 电机定子、永磁电机以及压缩机
CN107465279A (zh) * 2017-08-31 2017-12-12 广东美芝制冷设备有限公司 电机及压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3644476A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200381984A1 (en) * 2019-05-31 2020-12-03 MagniX USA, Inc. High-torque electric motor assembly
US11711003B2 (en) 2019-05-31 2023-07-25 MagniX USA, Inc. High voltage converter for use as electric power supply
JP2022531342A (ja) * 2019-08-26 2022-07-06 安徽美芝精密制造有限公司 ローター、モーター、圧縮機及び冷却機器

Also Published As

Publication number Publication date
US11545864B2 (en) 2023-01-03
JP2020522226A (ja) 2020-07-27
EP3644476A4 (en) 2020-07-15
US20200153304A1 (en) 2020-05-14
EP3644476A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
WO2019041915A1 (zh) 电机及压缩机
WO2018038339A1 (ko) 클러스터 조립체 및 이를 포함하는 전동식 압축기
WO2017078455A1 (ko) 버스바, 모터, 및 이를 포함하는 동력 전달 시스템
CN107465279B (zh) 电机及压缩机
WO2011136475A2 (ko) 이중돌극형 영구자석 전기기기의 권선 배치법
CN103997137A (zh) 用于轴向场装置的扇块式定子
CN1076137C (zh) 在交流发电机中提供励磁电流的桥式整流器的结构和装配
JP6639569B2 (ja) ステータアセンブリ
WO2017003134A1 (ko) 청소기
WO2021025366A1 (ko) 영구자석 동기전동기 및 이를 사용한 밀폐형 압축기
WO2018139827A1 (ko) 브러시 모터
WO2015165012A1 (en) Brushless motor and system thereof
WO2021045383A1 (ko) 스테이터
WO2021137544A1 (ko) 3상 교류 전동기
WO2015190719A1 (en) Brushless motor
WO2010058885A2 (ko) 단상 유도 모터
WO2021194241A1 (ko) 다중 도전체 재질의 입력단을 포함하는 6상 구동모터
WO2017116089A1 (ko) 유도 전동기의 회전자 구조
WO2016108614A1 (ko) 전동기의 회전자
WO2020153682A1 (ko) 전동 압축기
WO2021221240A1 (ko) 모터 어셈블리
CN107370256B (zh) 电机定子、三相永磁电机及压缩机
WO2020080869A1 (ko) 인버터 모듈 및 이를 포함하는 전동압축기
WO2018124634A1 (ko) 로터 및 이를 포함하는 모터
WO2016208937A2 (ko) 배터리 팩용 다중 냉각팬 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566575

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018850551

Country of ref document: EP

Effective date: 20200121

NENP Non-entry into the national phase

Ref country code: DE