WO2022000790A1 - 电机的线圈及其制作方法、电机定子及其制作方法、电机 - Google Patents

电机的线圈及其制作方法、电机定子及其制作方法、电机 Download PDF

Info

Publication number
WO2022000790A1
WO2022000790A1 PCT/CN2020/114885 CN2020114885W WO2022000790A1 WO 2022000790 A1 WO2022000790 A1 WO 2022000790A1 CN 2020114885 W CN2020114885 W CN 2020114885W WO 2022000790 A1 WO2022000790 A1 WO 2022000790A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
motor
coil
turns
stator
Prior art date
Application number
PCT/CN2020/114885
Other languages
English (en)
French (fr)
Inventor
高亚州
何海涛
夏静
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to CA3178250A priority Critical patent/CA3178250A1/en
Priority to EP20942862.2A priority patent/EP4135173A4/en
Priority to BR112022024130A priority patent/BR112022024130A2/pt
Priority to AU2020455722A priority patent/AU2020455722B2/en
Priority to US17/998,184 priority patent/US20230261558A1/en
Publication of WO2022000790A1 publication Critical patent/WO2022000790A1/zh
Priority to ZA2022/12124A priority patent/ZA202212124B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/026Wound cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the application relates to the field of wind turbines, and in particular to a coil of a motor and a manufacturing method thereof, a motor stator and a manufacturing method thereof, and a motor.
  • the permanent magnet direct drive generator also plays the role of connecting the hub and the base in the unit, when the unit has a demand for liter power, if the size of the motor changes, it will bring about changes in the size of the motor itself and other large components of the unit. Since most of these large parts are processed by casting, it will bring redesign of production molds and capital investment, and the economy is very poor.
  • the present application provides a coil of a motor and a manufacturing method thereof, which can obtain a coil that meets the requirements according to the expected power of the motor.
  • the present application provides a motor stator and a manufacturing method thereof, a motor, and a motor stator and a motor that can obtain desired power at a lower cost.
  • the present application provides a method for manufacturing a coil of a motor, which includes: providing a first conductor and a second conductor, wherein the resistivity of the second conductor is lower than that of the first conductor;
  • Rated current boost factor the rated current boost factor is the ratio of the rated current of the motor with the desired power to the rated current of the reference motor, wherein the conductors of the coils in the reference motor are the first conductors;
  • the number of turns of the first conductor of the first conductor and the number of turns of the second conductor of the second conductor; the coil is made according to the number of turns of the first conductor and the number of turns of the second conductor.
  • the total number of turns of conductors of the coil is a predetermined value.
  • obtaining the number of turns of the first conductor of the first conductor and the number of turns of the second conductor of the second conductor in the coil according to the rated current boost factor includes: obtaining the number of turns of the conductor according to the following formula parameter:
  • N 0 is the conductor turns parameter
  • N T is the total number of conductor turns
  • K is the rated current boost coefficient
  • R A is the resistivity of the first conductor
  • R B is the resistivity of the second conductor
  • the predetermined value is an even number from 20 to 30.
  • obtaining the rated current boost coefficient according to the expected power of the motor includes: establishing a first mapping model between the rated power of the motor and the rated current boost coefficient; obtaining the expected power of the motor and the mapping model Rated current boost factor.
  • establishing a first mapping model between the rated power of the motor and the rated current boost coefficient includes: establishing a second mapping model between the rated power of the motor and the rated current of the motor; obtaining a reference The rated current of the motor; the first mapping model is obtained according to the second mapping model and the rated current of the reference motor.
  • the second mapping model includes:
  • P is the rated power of the motor
  • m is a number of phases of the motor
  • E 0 is the unloaded motor back EMF
  • i is the rated current
  • i q is the rated current value of the motor shaft cross
  • the component on the direct axis of the motor X d is the quadrature axis synchronous reactance of the motor
  • X q is the direct axis synchronous reactance of the motor
  • R 1 is the stator resistance of the motor.
  • the first conductor is an aluminum conductor and the second conductor is a copper conductor.
  • fabricating the coil according to the number of turns of the first conductor and the number of turns of the second conductor includes: fabricating a first coil unit and a second coil unit, the first coil unit and the second coil unit being respectively Including a first conductor coil and/or a second conductor coil with a preset number of turns, the material of the first conductor coil is the same as that of the first conductor, and the material of the second conductor coil is the same as that of the second conductor coil, wherein a first coil unit and a second coil unit, the total number of turns of the first conductor loop is equal to the number of turns of the first conductor, and the total number of turns of the second conductor loop is equal to the number of turns of the second conductor.
  • each of the first coil units and each of the second coil units respectively includes two connected active sides, one active side of a first coil unit and a second coil unit
  • One of the effective sides can be accommodated in the same tooth slot of the iron core.
  • an embodiment of the present application provides a coil of a motor, which is manufactured according to the method for manufacturing a coil of a motor of any one of the foregoing embodiments of the first aspect of the present application.
  • an embodiment of the present application provides a method for manufacturing a motor stator, which includes: providing an iron core of the stator, the iron core including a plurality of tooth slots, and each tooth slot is used for accommodating a coil; In one embodiment, the coil of the motor is mounted in the cogging slot.
  • an embodiment of the present application provides a motor stator, the stator includes: an iron core, the iron core includes a hollow cylindrical body and a plurality of tooth slots spaced along the circumference of the body; and a winding, including on the circumference of the iron core
  • a plurality of coils of the motor according to any embodiment of the second aspect of the present application are arranged upward, and each coil is located in a cogging slot.
  • the total number of turns of the conductors in the slots containing the conductors in each tooth slot of the core is a predetermined value, and the number of turns of the first conductors of the first conductors in each tooth slot is smaller than that of the conductors in the slots A positive integer for the total number of turns.
  • the iron core further includes a ventilation channel penetrating the body in a radial direction.
  • an embodiment of the present application provides a motor including the motor stator according to any embodiment of the fourth aspect of the present application.
  • the rated current boost coefficient is obtained according to the expected power of the motor, and the number of turns of the first conductor of the first conductor and the number of turns of the second conductor in each coil are obtained according to the rated current boost coefficient.
  • the number of turns of the second conductor, and then the coil is fabricated according to the number of turns of the first conductor and the number of turns of the second conductor in each coil, so as to obtain a coil of the motor that meets the desired power.
  • the rated power of the motor including the stator can be adjusted. , to improve the scalability of motor power without changing the size of the stator.
  • different expected powers of the motor can be met, and the adjustment of the rated power of the motor can be satisfied without changing the size of the stator and other components in the motor that match the stator.
  • the cost of redesigning the stator and the large-sized components matched with the stator is eliminated, the coil and stator of the motor with desired power can be obtained at a lower cost, and the manufacturing economy of the stator and the motor is improved.
  • FIG. 1 is a partial cross-sectional schematic diagram of an iron core of a stator provided according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for manufacturing a coil of a motor provided according to an embodiment of the present application
  • FIG. 3 is a graph showing the relationship between the rated current boost coefficient of the motor and the number of turns of the second conductor in each cogging slot in the method for fabricating the stator of the motor provided according to the embodiment of the present application;
  • FIG. 4 is a partial cross-sectional schematic diagram of a stator provided according to an embodiment of the present application.
  • Fig. 5 is a partial cross-sectional schematic diagram of the stator provided according to the first embodiment of the present application.
  • FIG. 6 is a partial cross-sectional schematic diagram of a stator provided according to a second embodiment of the present application.
  • FIG. 7 is a partial cross-sectional schematic diagram of a stator provided according to a third embodiment of the present application.
  • FIG. 8 is a partial cross-sectional schematic diagram of a stator provided according to a fourth embodiment of the present application.
  • FIG. 9 is a schematic perspective view of a wind turbine provided according to an embodiment of the present application.
  • the embodiments of the present application provide a coil of a motor and a method for manufacturing the same, a stator for a motor and a method for manufacturing the same. Coils make stators that meet power requirements.
  • FIG. 1 is a partial cross-sectional schematic diagram of an iron core of a stator provided according to an embodiment of the present application.
  • the iron core 110 includes a plurality of tooth slots 112 . Each slot 112 is used to accommodate a coil.
  • the iron core 110 includes a hollow cylindrical body 111 and a plurality of racks 113 spaced along the circumference of the body 111 .
  • a slot structure is formed between every two adjacent racks 113 .
  • the tooth slot 112 is an open slot structure, and each tooth slot 112 is a rectangular slot structure.
  • the body 111 of the iron core 110 has a hollow cylindrical shape, and thus includes an outer peripheral surface and an inner peripheral surface.
  • the tooth slot 112 and the rack 113 are arranged on the outer peripheral surface of the main body 111.
  • the motor obtained by combining the stator including the iron core 110 with the rotor at least part of the structure of the rotor surrounds the stator.
  • the outer peripheral side of the motor is an outer rotor and an inner stator motor.
  • the tooth slot 112 and the rack 113 may be disposed on the inner peripheral surface of the body 111 .
  • the motor obtained by combining the stator including the iron core 110 with the rotor, at least part of the structure of the stator surrounds On the outer peripheral side of the rotor, that is, the motor is an inner rotor and an outer stator motor.
  • the type of the motor, the motor stator and the iron core of the stator can be selected according to the expected power of the motor, so as to obtain an iron core that meets the requirements.
  • a plurality of design parameters of the motor correspondingly have certain values.
  • a selected type of motor, the motor stator and the iron core of the stator will be exemplified for the convenience of explanation. It can be understood that, in actual implementation, multiple parameters of the motor, the motor stator and the iron core of the stator can be Not limited to the examples in the following, each parameter is adjusted according to actual design needs.
  • the stator of the motor further includes a winding
  • the winding includes a plurality of coil units (not shown in the figure) arranged in the circumferential direction of the iron core 110 .
  • a plurality of coil units are connected in parallel or in series to form a predetermined structure to form the winding.
  • the winding is a double-layer distributed winding, that is, each coil unit is wound in two tooth slots 112 of the iron core 110 that are separated by a preset pitch, and each coil unit includes two interconnected Active sides, each slot 112 accommodates an active side of one coil unit and an active side of another coil unit.
  • the number p of pole pairs of the motor is 42, and the total number Q of slots 112 of the core 110 is 360.
  • the preset pitch y in the above-mentioned windings is, for example, four.
  • the number a of parallel branches of the motor is, for example, three.
  • the total number of turns of the conductors of the coil, that is, the total number of turns N T of the conductors in each slot 112 of the core 110 that accommodates the conductors is a predetermined value. In some embodiments, the predetermined value is an even number from 20 to 30.
  • the total number of turns N T slot conductor 24 For example, the total number of turns N T slot conductor 24.
  • the winding is a two-layer distributed winding, so the number of turns of the second coil of each coil is 12.
  • the relationship between the number of pole pairs p of the motor, the total number of slots Q of the cogging of the stator, the number of parallel branches a of the winding and the preset pitch y in the winding is as follows:
  • LCM is the least common multiple calculator
  • LCM(2y,Q1) calculates twice the preset pitch The least common multiple of y and the minimum electrical unit slot number Q1.
  • the number a of parallel branches of the motor is 3 as an example for description.
  • the manufacturing method of the motor stator also includes installing the coil of the motor in the tooth slot.
  • the coil of the motor may be the coil of the motor manufactured according to the manufacturing method of the coil of the motor provided by any embodiment of the present application.
  • the coil of the motor refers to the set of conductors accommodated in each slot 112 of the iron core 110 .
  • FIG. 2 is a flowchart of a method for fabricating a coil of a motor according to an embodiment of the present application, and the method for fabricating a stator of the motor includes steps S110 to S140 .
  • step S110 a first conductor and a second conductor are provided, and the resistivity of the second conductor is lower than that of the first conductor.
  • the resistivity of the second conductor is lower than that of the first conductor, which means that the resistivity of the second conductor is lower than that of the first conductor at the same temperature (eg, normal temperature).
  • the rated current boost coefficient is obtained according to the expected power of the motor.
  • the rated current boost coefficient is the ratio of the rated current of the motor with the desired power to the rated current of the reference motor, wherein the conductors of the coils in the reference motor are all first conductors. Except that the conductors of the coils are all first conductors, the other structures of the reference motor are basically the same as those of the motor with desired power.
  • the first conductor is an aluminum conductor. Due to the high resistivity of the aluminum conductor, even if the thickness of the single turn of the aluminum conductor in the coil is large, it will not produce a large AC resistivity.
  • the iron core 110 further includes a ventilation channel penetrating the body 111 in the radial direction, so that the heat dissipation area of the iron core 110 is also increased, and the heat dissipation capability of the stator is ensured.
  • the step S120 of obtaining the rated current boost coefficient according to the expected power of the motor further includes: establishing a first mapping model of the rated power of the motor and the rated current boost coefficient; and obtaining the rated current according to the expected power of the motor and the mapping model Lift factor.
  • a determined first mapping model can be obtained after the motor, the motor stator and the iron core of the stator are selected according to the expected power of the motor, for the selected type of motor, the motor stator and the iron core of the stator.
  • a determined first mapping model can be obtained.
  • the rated current boost coefficient has a one-to-one correspondence with the expected power.
  • establishing a first mapping model between the rated power of the motor and the rated current boost factor includes: establishing a second mapping model between the rated power of the motor and the rated current of the motor; obtaining the rated current of the reference motor; and according to The second mapping model and the rated current of the reference motor obtain the first mapping model.
  • a determined second mapping model can be obtained for the selected type of motor, motor stator and stator core.
  • the rated power and the rated current of the motor have a one-to-one correspondence.
  • the second mapping model includes:
  • P is the rated power of the motor
  • m is the number of phases of the motor
  • E 0 is the no-load back EMF of the motor
  • i is the rated current
  • i q is the component of the rated current on the quadrature axis of the motor
  • id d is the component of the rated current on the direct axis of the motor
  • X d is the quadrature axis synchronous reactance of the motor
  • X q is the direct axis synchronous reactance of the motor
  • R 1 is the stator resistance of the motor.
  • the iron core material of the motor stator is a nonlinear ferromagnetic material
  • the ampere-turns and the magnetomotive force in the stator winding are proportional to the current, and the iron core will be closer.
  • the saturation section of the magnetization curve (BH curve) of the core material so the increase coefficient of the rated power of the motor is slightly smaller than the increase coefficient of the current.
  • the total loss of the stator winding can be guaranteed to remain unchanged.
  • the rated power of the motor can be approximately considered to be proportional to the quadrature axis component of the rated current.
  • the corresponding rated current can be obtained.
  • the rated current corresponding to each desired power is compared with the rated current of the reference motor to obtain the rated current boost coefficient corresponding to each desired power, that is, the first mapping model is obtained.
  • step S130 the number of turns of the first conductor of the first conductor and the number of turns of the second conductor of the second conductor in each coil are obtained according to the rated current boost coefficient.
  • the first conductor is, for example, an aluminum conductor.
  • the second conductor can be any conductor whose resistivity is lower than that of the first conductor, for example, a copper conductor.
  • the number of parallel branches a of the motor remains unchanged, on the premise that the total loss of the stator winding remains unchanged, only the first conductor turns of the first conductor in the coil are changed.
  • the number of turns of the second conductor and the number of turns of the second conductor of the second conductor can change the rated current and rated power of the motor.
  • the rated frequency of the motor is lower (eg, when the motor is used in a permanent magnet direct drive wind turbine), ignoring the skin effect and eddy currents between the different conductor types (first conductor and second conductor) After the effect difference, the relationship between the number of turns matching schemes of different conductor types and the corresponding rated current boost factor is as follows:
  • the conductor turns parameter is obtained according to the following formula:
  • N B is the number of turns of the second conductor
  • N T is the total number of turns of conductor
  • K is the rated current lift coefficient
  • R A is the resistance of the first conductor
  • R B is the resistance of the second conductor.
  • the number of turns N B of the second conductor is less than or equal to the total number of turns N T of the conductor.
  • the total number of turns N T of conductors of the coil is 24, and the number of turns N B of the second conductors ranges from 0 to 24.
  • the resistivity R A first conductor is 20 °C conductor resistivity of aluminum (2.83 ⁇ 10 -8 ⁇ ⁇ m )
  • the resistance R B of the second conductor is 20 °C resistivity of copper conductors (1.72 ⁇ 10 - 8 ⁇ m).
  • the relationship between the rated current boost coefficient of the motor and the number of turns of the second conductor of the second conductor in the coil is shown in Figure 3.
  • the motor rated power can be adjusted in the range of 1 to 1.25 times the rated power of the reference motor. That is, when the expected power of the motor is 1 to 1.25 times the rated power of the reference motor, the same type of motor stator can be used without changing the size of the stator.
  • the step S130 of obtaining the number of turns of the first conductor of the first conductor and the number of turns of the second conductor of the second conductor in the coil according to the rated current boost factor further includes the following steps:
  • the conductor turns parameter is obtained according to the following formula:
  • N 0 is the number of turns of conductor parameters
  • N T is the total number of turns of conductor
  • K is the rated current lift coefficient
  • R A is the resistance of the first conductor
  • R B is the resistance of the second conductor.
  • the conductor turns parameter N 0 is rounded to obtain the second conductor turns N B .
  • the method of rounding the conductor turns parameter N 0 can be rounded up, rounded down, or rounded according to the rounding method.
  • the specific method of rounding can be configured according to actual needs.
  • step S140 a coil is fabricated according to the number of turns of the first conductor and the number of turns of the second conductor.
  • fabricating the coil according to the number of turns of the first conductor and the number of turns of the second conductor includes: fabricating a first coil unit and a second coil unit, wherein the first coil unit and the second coil unit respectively include a first coil unit with a preset number of turns.
  • the material of the first conductor coil is the same as that of the first conductor, and the material of the second conductor coil is the same as that of the second conductor coil.
  • the total number of turns of the first conductor circle is equal to the number of turns of the first conductor
  • the total number of turns of the second conductor circle is equal to the number of turns of the second conductor.
  • the total number of turns of the conductor coil is 24 N T
  • the number of turns of the first coil unit 12 comprises a first conductor coil turns and / or the second conductor coil
  • the second coil unit 12 comprises a number of turns of the first turns conductor loop and/or second conductor loop.
  • each of the first coil units and each of the second coil units respectively includes two connected active sides, and an active side of a first coil unit and an active side of a second coil unit can be accommodated in the within the same tooth slot 112 of the iron core 110 .
  • the step of installing the coil of the motor in the cogging slot of the iron core is included. After the coils are installed in the cogging of the iron core, the windings are obtained by connecting the coils to each other in parallel or in series.
  • the embodiment of the present application also provides a stator of an electric motor, and the stator of the electric motor can be manufactured according to the manufacturing method of the stator of the electric motor of the foregoing embodiments of the present application.
  • FIG. 4 is a partial cross-sectional schematic diagram of a stator provided according to an embodiment of the present application.
  • the stator includes an iron core 110 and windings.
  • the iron core 110 includes a hollow cylindrical body 111 and a plurality of tooth slots 112 spaced along the circumference of the body 111 .
  • the iron core 110 further includes a plurality of racks 113 arranged at intervals along the circumferential direction of the body 111 , and a tooth slot 112 is formed between every two adjacent racks 113 .
  • the tooth slot 112 is an open slot structure, and each tooth slot 112 is a rectangular slot structure.
  • the winding includes a plurality of coils 120 arranged in the circumferential direction of the iron core 110 , wherein the coils 120 may be coils manufactured according to the method for manufacturing a coil of a motor of any embodiment of the present application, and each coil 120 is located in the cogging slot 112 .
  • Coil 120 includes multiple turns of conductors.
  • the multiple turns of conductors of each coil 120 include a first conductor and/or a second conductor, wherein the second conductor has a lower resistivity than the first conductor.
  • the coil 120 of the motor refers to a collection of conductors accommodated in each tooth slot 112 of the iron core 110 .
  • the total number of turns N T of conductors in each slot 112 of the iron core 110 for accommodating conductors is a predetermined value, that is, the total number of turns N T of conductors of the coil is a predetermined value.
  • the rated power of the motor can be changed by adjusting the number of turns of the first conductor of the first conductor and the number of turns of the second conductor of the second conductor in the slot 112 .
  • the number p of pole pairs of the motor is 42, and the total number Q of slots 112 of the core 110 is 360.
  • the preset pitch y in the windings is, for example, four.
  • the number a of parallel branches of the motor is, for example, three.
  • the total number of turns N T of conductors in each slot 112 of the core 110 that accommodates the conductor is a predetermined value. In some embodiments, the predetermined value is an even number from 20 to 30.
  • the resistivity of the second conductor is lower than that of the first conductor, wherein the first conductor is, for example, an aluminum conductor, and the second conductor is, for example, a copper conductor.
  • FIG. 5 , FIG. 6 , and FIG. 7 are partial cross-sectional schematic diagrams of stators provided according to the first embodiment, the second embodiment, and the third embodiment of the present application, respectively.
  • the multiple turns of conductor received within each tooth slot 112 include a first conductor CA and a second conductor CB, the second conductor CB having a lower resistivity than the first conductor.
  • the total number of turns N T of the conductors in the slot accommodating conductors in each slot 112 of the core is a predetermined value, and the number of turns of the first conductor of the first conductor in each slot 112 is less than the total number of turns of the conductors in the slot N T is a positive integer number of turns.
  • the ratio of the first conductor CA to the second conductor CB in each tooth slot 112 is equal, that is, the number of turns of the first conductor of the first conductor CA in each tooth slot 112 is equal to the number of turns of the second conductor CB.
  • a step of manufacturing a coil according to the number of turns of the first conductor and the number of turns of the second conductor is included.
  • the step of fabricating the coil may include fabricating a first coil unit and a second coil unit, and the number of coil turns of the first coil unit and the number of coil turns of the second coil unit are equal.
  • the first coil units are formed by winding the first conductor
  • the second coil units are formed by winding the second conductor.
  • the first coil unit includes 12 turns of the first conductor
  • the second coil unit includes 12 turns of the second conductor
  • the first coil unit includes 12 turns of the second conductor.
  • the material of the coil is the same as that of the first conductor
  • the material of the second conductor coil is the same as that of the second conductor coil.
  • the rated power of the motor including the stator of the second embodiment is increased by 14% compared to the reference motor in which the conductors accommodated in each cogging slot 112 are the first conductors CA.
  • the number of second conductor turns of the second conductor CB in each tooth slot 112 is smaller than the number of first conductor turns of the first conductor CA.
  • a step of manufacturing a coil according to the number of turns of the first conductor and the number of turns of the second conductor in each tooth slot is included.
  • the step of fabricating the coil may include fabricating a first coil unit and a second coil unit.
  • the first coil unit is formed by winding the first conductor
  • the second coil unit is formed by jointly winding the first conductor and the second conductor.
  • the first coil unit when the total number of turns N T of the conductors in each slot 112 accommodating conductors is 24, the first coil unit includes 12 turns of the first conductor, the second coil unit includes 10 turns of the first conductor and 2 turns of the first conductor Two conductor coils.
  • the rated power of the motor including the stator of the first embodiment is increased by 1.17% to 12.9% in power. %.
  • the number of second conductor turns of the second conductor CB in each tooth slot 112 is greater than the number of first conductor turns of the first conductor CA.
  • a step of manufacturing a coil according to the number of turns of the first conductor and the number of turns of the second conductor in each tooth slot is included.
  • the step of fabricating the coil may include fabricating a first coil unit and a second coil unit.
  • each of the first coil units is formed by winding the second conductor
  • the second coil unit is formed by jointly winding the first conductor and the second conductor.
  • the first coil unit when the total number of turns N T of the conductors in each slot 112 accommodating conductors is 24, the first coil unit includes 12 turns of the second conductor, and the second coil unit includes 7 turns of the first conductor and 5 turns of the first conductor. Two conductor coils.
  • the rated power of the motor including the stator of the third embodiment is increased by 15.2% to 26.9% in power. %.
  • each coil 120 includes both the first conductor and the second conductor, and the number of turns of the first conductor and the number of turns of the second conductor in each coil 120 are different, so that a plurality of conductors
  • the coil 120 formed by stacking has an asymmetric structure, that is, the stacked structure of the first conductor and the stacked structure of the second conductor are arranged asymmetrically in the coil 120 . Due to the different materials and thermal expansion coefficients of the first conductor and the second conductor, during the operation of the motor, the volume of the first conductor and the volume of the second conductor have different degrees of change respectively.
  • the stacked structure of the conductors is asymmetrically arranged, which makes the outer surface of the coil 120 more irregular under the working state of the motor, improves the connection stability between the coil 120 and the tooth slot 112 , and reduces the possibility of the coil 120 falling off to a greater extent.
  • the step of attaching the coil to the slot of the iron core is included.
  • the first coil unit and the second coil unit may be arranged and installed in the tooth slots 112 along the circumferential direction of the main body 111 in a preset periodic repeating arrangement structure, wherein each tooth slot 112 accommodates a coil of the first coil unit. an active side and an active side of a second coil unit.
  • the multi-turn conductor accommodated in each tooth slot 112 is not limited to include both the first conductor CA and the second conductor CB.
  • FIG 8 is a partial cross-sectional schematic diagram of a stator provided according to a fourth embodiment of the present application.
  • the multiple turns of conductors accommodated in each tooth slot 112 are second conductors CB.
  • each coil 120 is formed by winding the second conductor CB.
  • the rated power of the motor including the stator of the fourth embodiment is increased by 28% compared to the reference motor in which the conductors accommodated in each cogging slot 112 are the first conductors CA.
  • the iron core 110 further includes a ventilation channel (not shown in the figure) penetrating the body 111 in the radial direction, so that the heat dissipation area of the iron core 110 is increased and the heat dissipation capability of the stator is ensured.
  • the cooling method of the motor including the stator may be configured as forced air cooling.
  • each tooth slot 112 accommodates two conductors with different resistivities from each other.
  • the number of turns of the second conductor CB can realize the adjustment of the rated power of the motor including the stator, and improve the expandability of the motor power without changing the size of the stator.
  • the stator of the above embodiments of the present application is used in an electric motor, where the electric motor may be an electric motor or a generator.
  • the embodiments of the present application further provide a motor, which includes the motor stator according to any one of the foregoing embodiments of the present application.
  • the electric machine is, for example, an electric machine in a wind turbine.
  • FIG. 9 is a schematic perspective view of a wind turbine generator set according to an embodiment of the present application.
  • the wind turbine generator set includes a generator MT and an impeller IM connected to a rotating part of the generator.
  • the generator MT may include a stator and a rotor coaxially connected to the stator, the rotor can rotate relative to the stator, and the rotor is coaxially connected to the impeller IM and can rotate with the impeller IM when it rotates.
  • the structure of the rotor surrounds the outer peripheral side of the stator, that is, the generator MT is an outer rotor, inner stator motor.
  • the stator includes an iron core and windings.
  • the iron core includes a hollow cylindrical body and a plurality of tooth slots spaced along the circumference of the body.
  • the winding includes a plurality of coils arranged in the circumferential direction of the core, each coil being located in a cogging slot.
  • the rotor includes a yoke surrounding the outer peripheral side of the stator, and a plurality of permanent magnets are provided on the inner peripheral surface of the yoke (toward the peripheral surface of the stator).
  • the generator MT is an outer rotor and inner stator motor. In other embodiments, the generator MT may also be an inner rotor and outer stator motor.
  • Each coil includes multiple turns of conductors, and the conductors may include a first conductor and a second conductor, the second conductor having a lower resistivity than the first conductor.
  • the rated power of the generator MT can be adjusted on the condition that other components of the generator MT remain unchanged.
  • the corresponding rated power can be adjusted without changing the size of the stator and other components matching the stator in the generator MT, and the manufacturing economy of the stator and the generator MT can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种电机的线圈及其制作方法、电机定子及其制作方法、电机,定子的制作方法包括:提供第一导体和第二导体,第二导体的电阻率低于第一导体的电阻率(S110);根据电机的期望功率获得额定电流提升系数(S120),额定电流提升系数为期望功率的电机的额定电流与基准电机的额定电流的比值,其中,基准电机中线圈的导体均为第一导体;根据额定电流提升系数得到每个线圈中第一导体的第一导体匝数和第二导体的第二导体匝数(S130);根据第一导体匝数和第二导体匝数制作线圈(S140)。根据该电机的线圈的制作方法,能够根据电机的期望功率获得满足要求的线圈。

Description

电机的线圈及其制作方法、电机定子及其制作方法、电机
相关申请的交叉引用
本申请要求2020年6月30日提交的、申请号为202010611208.2、发明名称为“电机的线圈及其制作方法、电机定子及其制作方法、电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及风力发电机组领域,具体涉及一种电机的线圈及其制作方法、电机定子及其制作方法、电机。
背景技术
永磁直驱风力发电机与其他类型的风电机机组相比,取消了叶轮和电机之间的齿轮箱,在整机可靠性和传动效率方面都具有独特的优势。但在电机额定功率恒定的前提下,电机体积和转速成反比,没有齿轮箱后电机的转速和叶轮转速相同,所以永磁直驱电机的体积要比其他类型电机大很多。
因为永磁直驱发电机在机组中还承担着连接轮毂和底座的作用,当机组有升功率的需求时,如果电机尺寸发生变化,会带来电机本身和机组其他大部件的尺寸变更。由于这些大部件大多是采用铸造加工方式,所以会带来生产模具的重新设计和资金投入,经济性很差。
因此,当电机的额定功率发生变化时,降低该电机的设计及生产成本是期望解决的技术问题。
发明内容
本申请提供了一种电机的线圈及其制作方法,能够根据电机的期望功率获得满足要求的线圈。本申请提供了一种电机定子及其制作方法、电机, 能以更低成本得到期望功率的电机的定子及电机。
第一方面,本申请提供了一种电机的线圈的制作方法,其包括:提供第一导体和第二导体,第二导体的电阻率低于第一导体的电阻率;根据电机的期望功率获得额定电流提升系数,额定电流提升系数为期望功率的电机的额定电流与基准电机的额定电流的比值,其中,基准电机中线圈的导体均为第一导体;根据额定电流提升系数得到每个线圈中第一导体的第一导体匝数和第二导体的第二导体匝数;根据第一导体匝数和第二导体匝数制作线圈。
根据本申请第一方面的前述实施方式,线圈的导体总匝数为预定值。
根据本申请第一方面的前述任一实施方式,根据额定电流提升系数得到线圈中第一导体的第一导体匝数和第二导体的第二导体匝数包括:根据以下式子得到导体匝数参数:
Figure PCTCN2020114885-appb-000001
其中,N 0为导体匝数参数,N T为导体总匝数,K为额定电流提升系数,R A为第一导体的电阻率,R B为第二导体的电阻率;将导体匝数参数取整,得到第二导体匝数;以及将导体总匝数与第二导体匝数相减,得到第一导体匝数。
根据本申请第一方面的前述任一实施方式,预定值为取自20至30的偶数。
根据本申请第一方面的前述任一实施方式,根据电机的期望功率获得额定电流提升系数包括:建立电机的额定功率与额定电流提升系数的第一映射模型;根据电机的期望功率与映射模型获得额定电流提升系数。
根据本申请第一方面的前述任一实施方式,建立电机的额定功率与额定电流提升系数的第一映射模型包括:建立电机的额定功率与电机的额定电流之间的第二映射模型;获得基准电机的额定电流;根据第二映射模型与基准电机的额定电流获得第一映射模型。
根据本申请第一方面的前述任一实施方式,第二映射模型包括:
P=mE 0×i q+(X d-X q)i di q-i 2R 1
其中,P为电机的额定功率,m为电机的相数,E 0为电机的空载反电势,i为额定电流,i q为额定电流在电机交轴上的分量,i d为额定电流在电机直轴上的分量,X d为电机的交轴同步电抗,X q为电机的直轴同步电抗,R 1为电机的定子电阻。
根据本申请第一方面的前述任一实施方式,第一导体为铝导体,第二导体为铜导体。
根据本申请第一方面的前述任一实施方式,根据第一导体匝数和第二导体匝数制作线圈包括:制作第一线圈单元以及第二线圈单元,第一线圈单元、第二线圈单元分别包括预设匝数的第一导体圈和/或第二导体圈,第一导体圈的材质与第一导体相同,第二导体圈的材质与第二导体圈相同,其中,一个第一线圈单元和一个第二线圈单元中,第一导体圈的总匝数等于第一导体匝数,第二导体圈的总匝数等于第二导体匝数。
根据本申请第一方面的前述任一实施方式,每个第一线圈单元、每个第二线圈单元分别包括相连的两个有效边,一个第一线圈单元的一个有效边以及一个第二线圈单元的一个有效边能够容纳于铁心的同一齿槽内。
第二方面,本申请实施例提供一种电机的线圈,其根据本申请第一方面的前述任一实施方式的电机的线圈的制作方法制作。
第三方面,本申请实施例提供一种电机定子的制作方法,其包括:提供定子的铁心,铁心包括多个齿槽,每个齿槽用于容纳线圈;将根据本申请第二方面的任一实施方式的电机的线圈安装于齿槽内。
第四方面,本申请实施例提供一种电机定子,定子包括:铁心,铁心包括呈空心圆柱状的本体以及沿本体的周向间隔排布的多个齿槽;以及绕组,包括在铁心的周向上排布的多个根据本申请第二方面的任一实施方式的电机的线圈,每个线圈位于齿槽内。
根据本申请第四方面的前述实施方式,铁心的每个齿槽中容纳导体的槽内导体总匝数为预定值,每个齿槽中第一导体的第一导体匝数为小于槽内导体总匝数的正整数。
根据本申请第四方面的前述任一实施方式,铁心还包括沿径向贯穿本体的通风道。
第五方面,本申请实施例提供一种电机,其包括根据本申请第四方面的任一实施方式的电机定子。
根据本申请实施例提供的电机的线圈及其制作方法,根据电机的期望功率获得额定电流提升系数,根据额定电流提升系数得到每个线圈中第一导体的第一导体匝数和第二导体的第二导体匝数,之后根据每个线圈中第一导体匝数和第二导体匝数制作线圈,从而获得满足期望功率的电机的线圈。通过改变线圈中第一导体匝数和第二导体匝数,能够满足电机的不同期望功率,其中无需改变定子以及电机中与定子匹配的其它部件的尺寸即可满足电机额定功率的调整,省去了对定子以及与定子匹配的大尺寸部件的重新设计成本,以更低成本得到期望功率电机的线圈、定子,提高线圈、定子及电机的制造经济性。
根据本申请实施例提供的电机定子及其制作方法,通过调节线圈中第一导体的第一导体匝数和第二导体的第二导体匝数,能够实现包含该定子的电机的额定功率的调整,在不改变定子尺寸的前提下提高电机功率的可拓展性。通过改变线圈中第一导体匝数和第二导体匝数,能够满足电机的不同期望功率,其中无需改变定子以及电机中与定子匹配的其它部件的尺寸即可满足电机额定功率的调整,省去了对定子以及与定子匹配的大尺寸部件的重新设计成本,以更低成本得到期望功率电机的线圈、定子,提高定子及电机的制造经济性。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是根据本申请实施例提供的定子的铁心的局部截面示意图;
图2是根据本申请实施例提供的电机的线圈的制作方法的流程图;
图3是根据本申请实施例提供的电机的定子的制作方法中电机的额定电流提升系数与每个齿槽中第二导体匝数的关系的曲线图;
图4是根据本申请实施例提供的定子的局部截面示意图;
图5是根据本申请第一实施例提供的定子的局部截面示意图;
图6是根据本申请第二实施例提供的定子的局部截面示意图;
图7是根据本申请第三实施例提供的定子的局部截面示意图;
图8是根据本申请第四实施例提供的定子的局部截面示意图;
图9是根据本申请实施例提供的风力发电机组的立体示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请实施例提供一种电机的线圈及其制作方法、一种电机定子及其制作方法,该线圈的制作方法能够根据电机的期望功率制作得到线圈,该电机定子的制作方法能够根据制得的线圈制作满足功率要求的定子。
电机定子的制作方法包括提供定子的铁心。图1是根据本申请实施例提供的定子的铁心的局部截面示意图。其中,铁心110包括多个齿槽112。每个齿槽112用于容纳线圈。
在一些实施例中,铁心110包括呈空心圆柱状的本体111以及沿本体 111的周向间隔排布的多个齿条113,本文中,术语“齿槽”指沿铁心110的本体111周向上每相邻两个齿条113之间形成的槽结构。可选地,齿槽112为开口槽结构,每个齿槽112为矩形槽结构。
铁心110的本体111呈空心圆柱状,因而包括外周面和内周面。在1涉及实施例中,齿槽112、齿条113设置于本体111的外周面,此时,将包含该铁心110的定子与转子相组合所得到的电机中,转子的至少部分结构环绕于定子的外周侧,即电机为外转子、内定子电机。在其它一些实施例中,齿槽112、齿条113可以设置于本体111的内周面,此时,将包含该铁心110的定子与转子相组合所得到的电机中,定子的至少部分结构环绕于转子的外周侧,即电机为内转子、外定子电机。
在提供定子的铁心的步骤中,可以根据电机的期望功率对电机、电机定子及定子的铁心进行选型,从而获得满足需求的铁心。对于类型选定的电机、电机定子及定子的铁心,电机的多个设计参数相应具有确定值。在后文的描述中,将示例一种类型选定的电机、电机定子及定子的铁心,以便于说明,可以理解的是,实际实施时,电机、电机定子及定子的铁心的多个参数可以不限于后文中的示例,各参数根据实际设计需要调整。
例如,电机的定子还包括绕组,绕组包括在铁心110的周向上排布的多个线圈单元(图中未绘示)。多个线圈单元通过并联或串联,连接为预设的结构,形成该绕组。在本实施例中,绕组为双层分布式绕组,即每个线圈单元绕设于铁心110的相隔预设节距的两个齿槽112内,并且,每个线圈单元包括相互连接的两个有效边,每个齿槽112内容纳一个线圈单元的一个有效边以及另一个线圈单元的一个有效边。
例如,电机的极对数p是42,铁心110的齿槽112的总槽数Q是360。上述绕组中的预设节距y例如是4。电机的并联支路数a例如是3。线圈的导体总匝数也即铁心110的每个齿槽112中容纳导体的槽内导体总匝数N T为预定值。在一些实施例中,该预定值为取自20至30的偶数。
例如,槽内导体总匝数N T是24。绕组为双层分布式绕组,因此每个线圈第二线圈的匝数为12。
在电机中,电机的极对数p、定子的齿槽的总槽数Q、绕组的并联支 路数a以及绕组中的预设节距y的关系如下:
电机中最小电气单元槽数Q1=Q÷GCD(2p,Q)=360÷GCD(84,360)=30,其中GCD为最大公约数计算符,GCD(2p,Q)即计算电机的极数2p与总槽数Q的最大公约数。
电机中一个并联支路中的最小槽数Q2=LCM(2y,Q1)=LCM(8,30)=120,LCM为最小公倍数计算符,LCM(2y,Q1)即计算2倍预设节距y与最小电气单元槽数Q1的最小公倍数。
电机中最大并联支路数a=Q÷Q2=360÷120=3。本实施例中,以电机的并联支路数a是3为例进行说明。
电机定子的制作方法还包括将电机的线圈安装于齿槽内。其中,该电机的线圈可以是根据本申请任一实施方式提供的电机的线圈的制作方法制得的电机的线圈。
以下将对本申请实施例的电机的线圈的制作方法进行说明。下文中,电机的线圈是指铁心110的每个齿槽112内所容纳导体的集合。
图2是根据本申请实施例提供的电机的线圈的制作方法的流程图,该电机的定子的制作方法包括步骤S110至步骤S140。
在步骤S110中,提供第一导体和第二导体,第二导体的电阻率低于所述第一导体的电阻率。本文中,第二导体的电阻率低于第一导体的电阻率,是指在同一温度下(例如常温下),第二导体的电阻率低于第一导体的电阻率。
在步骤S120中,根据电机的期望功率获得额定电流提升系数。其中,额定电流提升系数为期望功率的电机的额定电流与基准电机的额定电流的比值,其中,该基准电机中线圈的导体均为第一导体。基准电机除线圈的导体均为第一导体外,其它结构与期望功率的电机的结构基本相同。例如,在基准电机中,电机并联支路数a=3,线圈的导体总匝数,也即铁心110的每个齿槽112中容纳导体的槽内导体总匝数N T为24,每个线圈中24匝导体均为第一导体。
例如,第一导体为铝导体。由于铝导体具有较高的电阻率,即使线圈中单匝铝导体的厚度较大,也不会产生较大的交流电阻系数。此外在一些 实施例中,铁心110还包括沿径向贯穿本体111的通风道,使得铁心110的散热面积也有所增加,保证了定子的散热能力。
在一些实施例中,根据电机的期望功率获得额定电流提升系数的步骤S120进一步包括:建立电机的额定功率与额定电流提升系数的第一映射模型;以及根据电机的期望功率与映射模型获得额定电流提升系数。其中,根据电机的期望功率对电机、电机定子及定子的铁心进行选型后,对于类型选定的电机、电机定子及定子的铁心,可以得到确定的第一映射模型,该第一映射模型中,额定电流提升系数与期望功率具有一一对应的关系。
在一些实施例中,建立电机的额定功率与额定电流提升系数的第一映射模型包括:建立电机的额定功率与电机的额定电流之间的第二映射模型;获得基准电机的额定电流;以及根据第二映射模型与基准电机的额定电流获得第一映射模型。对于类型选定的电机、电机定子及定子的铁心,可以得到确定的第二映射模型,该第二映射模型中,额定功率与电机的额定电流具有一一对应的关系。
在一些实施例中,第二映射模型包括:
P=mE 0×i q+(X d-X q)i di q-i 2R 1         (1)
式(1)中,P为电机的额定功率,m为电机的相数,E 0为电机的空载反电势,i为额定电流,i q为额定电流在电机交轴上的分量,i d为额定电流在电机直轴上的分量,X d为电机的交轴同步电抗,X q为电机的直轴同步电抗,R 1为电机的定子电阻。
考虑到电机定子的铁心材料是一种非线性的铁磁材料,随着电机额定电流的增加,定子绕组中的安匝数和磁动势与电流成正比的关系增加,此时铁心会更加接近铁心材料的磁化曲线(B-H曲线)的饱和段,因此电机额定功率的增加系数略小于电流的增加系数。
根据第一映射模型,在本申请实施例中,对于类型选定的电机、电机定子及定子的铁心,可以保证定子绕组的总损耗不变,在变流器弱磁电压设置值大于电机输出侧的电压的前提下,电机的额定功率可以近似认为与额定电流的交轴分量成正比。
因此,对于类型选定的电机、电机定子及定子的铁心,根据电机的期 望功率,能够获得相应的额定电流。将各期望功率对应的额定电流与基准电机的额定电流作比值,得到各期望功率对应的额定电流提升系数,即得到第一映射模型。
在步骤S130中,根据额定电流提升系数得到每个线圈中第一导体的第一导体匝数和第二导体的第二导体匝数。
本实施例中,第一导体例如是铝导体。第二导体可以任意电阻率低于第一导体电阻率的导体,例如是铜导体。对于类型选定的电机、电机定子及定子的铁心,电机的并联支路数a不变时,在保证定子绕组的总损耗不变的前提下,仅改变线圈中第一导体的第一导体匝数和第二导体的第二导体匝数,能够改变电机的额定电流和额定功率。在一些实施例中,电机的额定频率较低(例如,电机应用于永磁直驱风力发电机组中时),在忽略不同导体类型(第一导体与第二导体)间的集肤效应和涡流效应差异性后,不同导体类型的匝数配合方案与对应的额定电流提升系数的关系如下:
根据以下式子得到导体匝数参数:
Figure PCTCN2020114885-appb-000002
式(2)中,N B为第二导体匝数,N T为导体总匝数,K为额定电流提升系数,R A为第一导体的电阻率,R B为第二导体的电阻率。其中,第二导体匝数N B小于等于导体总匝数N T
在一个示例中,线圈的导体总匝数N T为24,第二导体匝数N B的取值为0至24。例如,第一导体的电阻率R A为20℃下铝导体的电阻率(2.83×10 -8Ω·m),第二导体的电阻率R B为20℃下铜导体的电阻率(1.72×10 - 8Ω·m)。
根据上述示例的参数,电机的额定电流提升系数与线圈中第二导体的第二导体匝数的关系如图3,在上述示例参数下,根据前述电机的额定功率与额定电流的关系,仅需改变线圈中第一导体的第一导体匝数和第二导体的第二导体匝数,可以大致实现电机额定功率在1至1.25倍基准电机额定功率的范围内的调整。即当电机的期望功率在基准电机额定功率的1至1.25倍时,可以采用同一类型的电机定子,无需对定子的尺寸进行变更。 因此,根据电机期望功率的不同,可以通过调整线圈中第一导体的第一导体匝数和第二导体的第二导体匝数,实现不同额定功率下电机其他部件和冷却系统的通用化设计。
在一些实施例中,根据额定电流提升系数得到线圈中第一导体的第一导体匝数和第二导体的第二导体匝数的步骤S130进一步包括以下步骤:
首先,根据以下式子得到导体匝数参数:
Figure PCTCN2020114885-appb-000003
式(3)中,N 0为导体匝数参数,N T为导体总匝数,K为额定电流提升系数,R A为第一导体的电阻率,R B为第二导体的电阻率。
之后,将导体匝数参数N 0取整,得到第二导体匝数N B。其中,将导体匝数参数N 0取整的方式,可以向上取整,可以向下取整,也可以根据四舍五入的方式取整,取整的具体方式可以根据实际需要进行相应的配置。
之后,将导体总匝数N T与第二导体匝数N B相减,得到第一导体匝数N A。至此,得到每个齿槽112中第一导体的第一导体匝数N A和第二导体的第二导体匝数N B
在步骤S140中,根据第一导体匝数和第二导体匝数制作线圈。
在一些实施例中,根据第一导体匝数和第二导体匝数制作线圈包括:制作第一线圈单元以及第二线圈单元,第一线圈单元、第二线圈单元分别包括预设匝数的第一导体圈和/或第二导体圈。第一导体圈的材质与第一导体相同,第二导体圈的材质与第二导体圈相同。其中,一个第一线圈单元和一个第二线圈单元中,第一导体圈的总匝数等于第一导体匝数,第二导体圈的总匝数等于第二导体匝数。例如,线圈的导体总匝数N T为24,则第一线圈单元包括匝数为12匝的第一导体圈和/或第二导体圈,第二线圈单元包括匝数为12匝的第一导体圈和/或第二导体圈。
在一些实施例中,每个第一线圈单元、每个第二线圈单元分别包括相连的两个有效边,一个第一线圈单元的一个有效边以及一个第二线圈单元的一个有效边能够容纳于铁心110的同一齿槽112内。
至此,可以得到电机的线圈。根据本申请实施例提供的电机的线圈及 其制作方法,根据电机的期望功率获得额定电流提升系数,根据额定电流提升系数得到每个线圈中第一导体的第一导体匝数和第二导体的第二导体匝数,之后根据每个线圈中第一导体匝数和第二导体匝数制作线圈,从而获得满足期望功率的电机的线圈。通过改变线圈中第一导体匝数和第二导体匝数,能够满足电机的不同期望功率,其中无需改变定子以及电机中与定子匹配的其它部件的尺寸即可满足电机额定功率的调整,省去了对定子以及与定子匹配的大尺寸部件的重新设计成本,以更低成本得到期望功率电机的线圈、定子,提高线圈、定子及电机的制造经济性。
如前所述,在电机定子的制作方法中,包括将电机的线圈安装于铁心的齿槽内的步骤。将线圈安装于铁心的齿槽后,通过将线圈以并联或串联的方式相互连接,得到绕组。
根据本申请实施例提供的电机的定子的制作方法,通过改变线圈(也即每个齿槽112)中第一导体匝数和第二导体匝数,能够满足电机的不同期望功率,其中无需改变定子以及电机中与定子匹配的其它部件的尺寸即可满足电机额定功率的调整,省去了对定子以及与定子匹配的大尺寸部件的重新设计成本,以更低成本得到期望功率电机的定子,提高定子及电机的制造经济性。
本申请实施例还通过一种电机的定子,该电机的定子可以根据前述本申请实施方式的电机的定子的制作方法制作。
图4是根据本申请实施例提供的定子的局部截面示意图。定子包括铁心110以及绕组。
铁心110包括呈空心圆柱状的本体111以及沿本体111的周向间隔排布的多个齿槽112。本实施例中,铁心110还包括沿本体111的周向间隔排布的多个齿条113,每相邻两个齿条113之间形成的齿槽112。可选地,齿槽112为开口槽结构,每个齿槽112为矩形槽结构。
绕组包括在铁心110的周向上排布的多个线圈120,其中线圈120可以是根据前述本申请任一实施方式的电机的线圈的制作方法制得的线圈,每个线圈120位于齿槽112内。
线圈120包括多匝导体。每个线圈120的多匝导体包括第一导体和/或 第二导体,其中第二导体的电阻率低于第一导体的电阻率。其中,电机的线圈120是指铁心110的每个齿槽112内所容纳导体的集合。
铁心110的每个齿槽112中容纳导体的槽内导体总匝数N T为预定值,也即线圈的导体总匝数N T为预定值。当槽内导体总匝数N T为预定值时,可以通过调整齿槽112内第一导体的第一导体匝数和第二导体的第二导体匝数,实现电机额定功率的改变。因此,根据电机期望功率的不同,仅需调整齿槽112内第一导体的第一导体匝数和第二导体的第二导体匝数,能够实现不同额定功率下电机其他部件和冷却系统的通用化设计。
例如,电机的极对数p是42,铁心110的齿槽112的总槽数Q是360。绕组中的预设节距y例如是4。电机的并联支路数a例如是3。铁心110的每个齿槽112中容纳导体的槽内导体总匝数N T为预定值。在一些实施例中,该预定值为取自20至30的偶数。
第二导体的电阻率低于第一导体的电阻率,其中,第一导体例如是铝导体,第二导体例如是铜导体。
图5、图6、图7分别是根据本申请第一实施例、第二实施例、第三实施例提供的定子的局部截面示意图。在一些实施例中,每个齿槽112内容纳的多匝导体包括第一导体CA和第二导体CB,第二导体CB的电阻率低于第一导体的电阻率。通过调节每个齿槽112内第一导体CA和第二导体CB的占比,能够在保证电机其他部件不变的情况下,实现电机额定功率的调整。与每个齿槽112内容纳的导体均为第一导体CA的基准电机相比,包含本申请实施例定子的电机的额定功率能够具有一定程度的提升。
在一些实施例中,铁心的每个齿槽112中容纳导体的槽内导体总匝数N T为预定值,每个齿槽112中第一导体的第一导体匝数为小于槽内导体总匝数N T的正整数。
第二实施例中,每个齿槽112内第一导体CA与第二导体CB的占比相等,即每个齿槽112中第一导体CA的第一导体匝数等于第二导体CB的第二导体匝数。在第二实施例的定子的制作过程中,包括根据第一导体匝数和第二导体匝数制作线圈的步骤。具体地,制作线圈的步骤可以包括制作第一线圈单元以及第二线圈单元,第一线圈单元的线圈匝数和第二线圈单 元的线圈匝数相等。其中在第二实施例中,第一线圈单元均由第一导体绕制形成,第二线圈单元均由第二导体绕制形成。例如,每个齿槽112中容纳导体的槽内导体总匝数N T为24时,第一线圈单元包括12匝第一导体圈,第二线圈单元包括12匝第二导体圈,第一导体圈的材质与第一导体相同,第二导体圈的材质与第二导体圈相同。此时,与每个齿槽112内容纳的导体均为第一导体CA的基准电机相比,包含第二实施例的定子的电机的额定功率,其在功率上的提升幅度为14%。
第一实施例中,每个齿槽112内第二导体CB的第二导体匝数小于第一导体CA的第一导体匝数。在第一实施例的定子的制作过程中,包括根据每个齿槽中第一导体匝数和第二导体匝数制作线圈的步骤。具体地,制作线圈的步骤可以包括制作第一线圈单元以及第二线圈单元。其中在第一实施例中,第一线圈单元均由第一导体绕制形成,第二线圈单元由第一导体和第二导体共同绕制形成。例如,每个齿槽112中容纳导体的槽内导体总匝数N T为24时,第一线圈单元包括12匝第一导体圈,第二线圈单元包括10匝第一导体圈以及2匝第二导体圈。此时,与每个齿槽112内容纳的导体均为第一导体CA的基准电机相比,包含第一实施例的定子的电机的额定功率,其在功率上的提升幅度为1.17%~12.9%。
第三实施例中,每个齿槽112内第二导体CB的第二导体匝数大于第一导体CA的第一导体匝数。在第三实施例的定子的制作过程中,包括根据每个齿槽中第一导体匝数和第二导体匝数制作线圈的步骤。具体地,制作线圈的步骤可以包括制作第一线圈单元以及第二线圈单元。其中在第三实施例中,第一线圈单元均由第二导体绕制形成,第二线圈单元由第一导体和第二导体共同绕制形成。例如,每个齿槽112中容纳导体的槽内导体总匝数N T为24时,第一线圈单元包括12匝第二导体圈,第二线圈单元包括7匝第一导体圈以及5匝第二导体圈。此时,与每个齿槽112内容纳的导体均为第一导体CA的基准电机相比,包含第三实施例的定子的电机的额定功率,其在功率上的提升幅度为15.2%~26.9%。
在上述第一实施例和第三实施例中,每个线圈120同时包括第一导体和第二导体,并且每个线圈120中第一导体匝数与第二导体匝数不同,使 得多个导体叠设形成的线圈120为非对称结构,即第一导体的堆叠结构和第二导体的堆叠结构在线圈120中不对称布置。由于第一导体和第二导体的材质不同,热膨胀系数不同,在电机工作中,第一导体的体积和第二导体的体积分别产生不同程度的变化,又由于第一导体的堆叠结构和第二导体的堆叠结构不对称布置,使得电机工作状态下线圈120的外表面更加不规则化,提高线圈120与齿槽112间的连接稳定性,从而更大程度降低线圈120脱落的可能性。
在定子的制作过程中,包括将线圈安装于铁心的齿槽的步骤。具体地,可以将第一线圈单元、第二线圈单元以预设周期性重复排列结构沿本体111的周向排列安装于齿槽112,其中,每个齿槽112内容纳一个第一线圈单元的一个有效边以及一个第二线圈单元的一个有效边。将线圈安装于铁心的齿槽后,通过将线圈以并联或串联的方式相互连接,得到绕组。
根据前述本申请实施方式的电机的定子的制作方法制作的定子中,每个齿槽112内容纳的多匝导体不限于是同时包括第一导体CA和第二导体CB。
图8是根据本申请第四实施例提供的定子的局部截面示意图,在第四实施例中,每个齿槽112内容纳的多匝导体均为第二导体CB。在第四实施例中,每个线圈120均由第二导体CB绕制形成。此时,与每个齿槽112内容纳的导体均为第一导体CA的基准电机相比,包含第四实施例的定子的电机的额定功率,其在功率上的提升幅度为28%。
此外,在一些实施例中,铁心110还包括沿径向贯穿本体111的通风道(图中未绘示),使得铁心110的散热面积所增加,保证了定子的散热能力。在一实施例中,包含该定子的电机的冷却方式可以配置为强迫风冷。
根据本申请实施例提供的电机的定子,每个齿槽112中容纳有电阻率彼此不同的两种导体,通过调节每个齿槽112中第一导体的第一导体匝数和第二导体CB的第二导体CB匝数,能够实现包含该定子的电机的额定功率的调整,在不改变定子尺寸的前提下提高电机功率的可拓展性。
上述本申请实施例的定子用于电机中,其中电机可以是电动机,也可以是发电机。本申请实施例还提供一种电机,其包括根据前述本申请任一 实施方式的电机定子。电机例如是风力发电机组中的电机。
图9是根据本申请实施例提供的风力发电机组的立体示意图,该风力发电机机组包括发电机MT以及与发电机的转动部件连接的叶轮IM。发电机MT可以包括定子以及与定子同轴连接的转子,转子能够相对定子转动其中,转子与叶轮IM同轴连接,并且能在叶轮IM转动时随之转动。
在一些实施例中,转子的至少部分结构环绕于定子的外周侧,即发电机MT为外转子、内定子电机。其中,定子包括铁心以及绕组。铁心包括呈空心圆柱状的本体以及沿本体的周向间隔排布的多个齿槽。绕组包括在铁心的周向上排布的多个线圈,每个线圈位于齿槽内。转子包括环绕于定子的外周侧的磁轭,磁轭的内周面(朝向定子的周面)设有多个永磁体。转子随与叶轮IM转动时,绕组切割磁力线,从而感生电势。在上述实施例中,发电机MT为外转子、内定子电机,在其它一些实施例中,发电机MT也可以是内转子、外定子电机。
每个线圈包括多匝导体,导体可以包括第一导体和第二导体,第二导体的电阻率低于第一导体的电阻率。通过调节线圈中第一导体和第二导体的占比,能够在保证发电机MT其他部件不变的情况下,实现发电机MT额定功率的调整。当风力发电机组有功率变化需求时,能够在不改变定子以及发电机MT中与定子匹配的其它部件的尺寸的前提下,实现相应额定功率的调整,提高定子及发电机MT的制造经济性。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该申请仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。

Claims (16)

  1. 一种电机的线圈的制作方法,包括:
    提供第一导体和第二导体,所述第二导体的电阻率低于所述第一导体的电阻率;
    根据所述电机的期望功率获得额定电流提升系数,所述额定电流提升系数为所述期望功率的电机的额定电流与基准电机的额定电流的比值,其中,所述基准电机中线圈的导体均为第一导体;
    根据所述额定电流提升系数得到每个线圈中所述第一导体的第一导体匝数和所述第二导体的第二导体匝数;
    根据所述第一导体匝数和所述第二导体匝数制作线圈。
  2. 根据权利要求1所述的电机的线圈的制作方法,其中,所述线圈的导体总匝数为预定值。
  3. 根据权利要求2所述的电机的线圈的制作方法,其中,所述根据所述额定电流提升系数得到线圈中所述第一导体的第一导体匝数和所述第二导体的第二导体匝数包括:
    根据以下式子得到导体匝数参数:
    Figure PCTCN2020114885-appb-100001
    其中,N 0为所述导体匝数参数,N T为导体总匝数,K为所述额定电流提升系数,R A为所述第一导体的电阻率,R B为所述第二导体的电阻率;
    将导体匝数参数取整,得到所述第二导体匝数;以及
    将导体总匝数与所述第二导体匝数相减,得到所述第一导体匝数。
  4. 根据权利要求2所述的电机的线圈的制作方法,其中,所述预定值为取自20至30的偶数。
  5. 根据权利要求1所述的电机的线圈的制作方法,其中,所述根据所述电机的期望功率获得额定电流提升系数包括:
    建立所述电机的额定功率与额定电流提升系数的第一映射模型;
    根据所述电机的期望功率与所述映射模型获得所述额定电流提升系数。
  6. 根据权利要求5所述的电机的线圈的制作方法,其中,所述建立所述电机的额定功率与额定电流提升系数的第一映射模型包括:
    建立所述电机的额定功率与所述电机的额定电流之间的第二映射模型;
    获得所述基准电机的额定电流;
    根据所述第二映射模型与所述基准电机的额定电流获得所述第一映射模型。
  7. 根据权利要求6所述的电机的线圈的制作方法,其中,所述第二映射模型包括:
    P=mE 0×i q+(X d-X q)i di q-i 2R 1
    其中,P为所述电机的额定功率,m为所述电机的相数,E 0为所述电机的空载反电势,i为所述额定电流,i q为所述额定电流在所述电机交轴上的分量,i d为所述额定电流在所述电机直轴上的分量,X d为所述电机的交轴同步电抗,X q为所述电机的直轴同步电抗,R 1为所述电机的定子电阻。
  8. 根据权利要求1所述的电机的线圈的制作方法,其中,所述第一导体为铝导体,所述第二导体为铜导体。
  9. 根据权利要求1所述的电机的线圈的制作方法,其中,所述根据所述第一导体匝数和所述第二导体匝数制作线圈包括:
    制作第一线圈单元以及第二线圈单元,所述第一线圈单元、所述第二线圈单元分别包括预设匝数的第一导体圈和/或第二导体圈,所述第一导体圈的材质与所述第一导体相同,所述第二导体圈的材质与所述第二导体圈相同,其中,一个所述第一线圈单元和一个所述第二线圈单元中,所述第一导体圈的总匝数等于所述第一导体匝数,所述第二导体圈的总匝数等于所述第二导体匝数。
  10. 根据权利要求9所述的电机的线圈的制作方法,其中,每个所述第一线圈单元、每个所述第二线圈单元分别包括相连的两个有效边,
    一个所述第一线圈单元的一个有效边以及一个所述第二线圈单元的一个有效边能够容纳于铁心的同一齿槽内。
  11. 一种电机的线圈,所述线圈根据权利要求1至10任一项所述的电机的线圈的制作方法制作。
  12. 一种电机定子的制作方法,包括:
    提供定子的铁心,所述铁心包括多个齿槽,每个所述齿槽用于容纳线圈;
    将根据权利要求11所述的电机的线圈安装于所述齿槽内。
  13. 一种电机定子,所述定子包括:
    铁心,所述铁心包括呈空心圆柱状的本体以及沿所述本体的周向间隔排布的多个齿槽;以及
    绕组,包括在所述铁心的周向上排布的多个根据权利要求11所述的电机的线圈,每个所述线圈位于所述齿槽内。
  14. 根据权利要求13所述的电机定子,其中,所述铁心的每个所述齿槽中容纳导体的槽内导体总匝数为预定值,
    每个所述齿槽中所述第一导体的第一导体匝数为小于所述槽内导体总匝数的正整数。
  15. 根据权利要求13所述的电机定子,其中,所述铁心还包括沿径向贯穿所述本体的通风道。
  16. 一种电机,包括根据权利要求13至15任一项所述的电机定子。
PCT/CN2020/114885 2020-06-30 2020-09-11 电机的线圈及其制作方法、电机定子及其制作方法、电机 WO2022000790A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3178250A CA3178250A1 (en) 2020-06-30 2020-09-11 Coil of electrical machinery and method for forming the same, stator of electrical machinery and method for forming the same, and electrical machinery
EP20942862.2A EP4135173A4 (en) 2020-06-30 2020-09-11 MOTOR COIL AND MANUFACTURING METHOD THEREOF, MOTOR STATOR AND MANUFACTURING METHOD THEREOF AND MOTOR
BR112022024130A BR112022024130A2 (pt) 2020-06-30 2020-09-11 Métodos para conformar bobinas de um maquinário elétrico e para conformar um estator, bobinas de um maquinário elétrico, estator de um maquinário elétrico e maquinário elétrico
AU2020455722A AU2020455722B2 (en) 2020-06-30 2020-09-11 Motor coil and manufacturing method therefor, motor stator and manufacturing method therefor, and motor
US17/998,184 US20230261558A1 (en) 2020-06-30 2020-09-11 Coil of electrical machinery and method for forming the same, stator of electrical machinery and method for forming the same, and electrical machinery
ZA2022/12124A ZA202212124B (en) 2020-06-30 2022-11-07 Coil of electrical machinery and method for forming the same, stator of electrical machinery and method for forming the same, and electrical machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010611208.2 2020-06-30
CN202010611208.2A CN113872401B (zh) 2020-06-30 2020-06-30 电机的线圈及其制作方法、电机定子及其制作方法、电机

Publications (1)

Publication Number Publication Date
WO2022000790A1 true WO2022000790A1 (zh) 2022-01-06

Family

ID=78981175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114885 WO2022000790A1 (zh) 2020-06-30 2020-09-11 电机的线圈及其制作方法、电机定子及其制作方法、电机

Country Status (9)

Country Link
US (1) US20230261558A1 (zh)
EP (1) EP4135173A4 (zh)
CN (1) CN113872401B (zh)
AU (1) AU2020455722B2 (zh)
BR (1) BR112022024130A2 (zh)
CA (1) CA3178250A1 (zh)
CL (1) CL2022003373A1 (zh)
WO (1) WO2022000790A1 (zh)
ZA (1) ZA202212124B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183741A (ja) * 2009-02-05 2010-08-19 Aisin Aw Co Ltd 電機子
CN105229899A (zh) * 2013-05-20 2016-01-06 三菱电机株式会社 固定件以及使用该固定件的电动机
CN106787335A (zh) * 2016-12-16 2017-05-31 华中科技大学 一种混合导体绕组结构及具有该结构的电机及其应用
CN109450120A (zh) * 2018-10-26 2019-03-08 珠海格力电器股份有限公司 电机定子及其线圈绕制方法、电机及其工作方法、家用电器及其工作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781739A (en) * 1973-03-28 1973-12-25 Westinghouse Electric Corp Interleaved winding for electrical inductive apparatus
JP2004153874A (ja) * 2002-10-28 2004-05-27 Nissan Motor Co Ltd モータの固定子
JP2005278373A (ja) * 2004-03-26 2005-10-06 Jatco Ltd 誘導電動機の回転子
DE102012213058A1 (de) * 2011-08-19 2013-02-21 Emerson Electric Co. Dynamoelektrische maschinen und statoren mit vielen phasen, bei denen phasenwicklungen aus unterschiedlichen leitermaterialien ausgebildet sind
DE102016108712A1 (de) * 2016-05-11 2017-11-16 Wobben Properties Gmbh Synchrongenerator einer getriebelosen Windenergieanlage sowie Verfahren zum Herstellen eines Synchrongenerators und Verwendung von Formspulen
JP7046155B2 (ja) * 2018-02-21 2022-04-01 三菱電機株式会社 固定子、電動機、圧縮機および空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183741A (ja) * 2009-02-05 2010-08-19 Aisin Aw Co Ltd 電機子
CN105229899A (zh) * 2013-05-20 2016-01-06 三菱电机株式会社 固定件以及使用该固定件的电动机
CN106787335A (zh) * 2016-12-16 2017-05-31 华中科技大学 一种混合导体绕组结构及具有该结构的电机及其应用
CN109450120A (zh) * 2018-10-26 2019-03-08 珠海格力电器股份有限公司 电机定子及其线圈绕制方法、电机及其工作方法、家用电器及其工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4135173A4 *

Also Published As

Publication number Publication date
AU2020455722B2 (en) 2023-09-28
CL2022003373A1 (es) 2023-05-26
US20230261558A1 (en) 2023-08-17
BR112022024130A2 (pt) 2023-01-31
ZA202212124B (en) 2024-01-31
CN113872401B (zh) 2022-12-27
CN113872401A (zh) 2021-12-31
AU2020455722A1 (en) 2022-12-15
EP4135173A1 (en) 2023-02-15
CA3178250A1 (en) 2022-01-06
EP4135173A4 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
CN101809847B (zh) 轴向间隙型无芯旋转机
US6445105B1 (en) Axial flux machine and method of fabrication
WO2021139454A1 (zh) 永磁无刷电机及包含其的多轴飞行器、机器人
KR20170060055A (ko) 적층 시트 와인딩을 갖는 전기 모터
TW201225485A (en) Power generator and wind power generation system
US20140306565A1 (en) Coaxial Motor
US9618003B2 (en) High efficiency transverse flux motor fan
CN104917348A (zh) 电动车用大功率奇数分数槽电机
CN108880049A (zh) 一种定子组件以及多层正弦绕组的无槽高速永磁电机
CN111193336A (zh) 一种少槽多极永磁容错轮缘推进电机
CN101262151A (zh) 低速大转矩永磁无刷电机的分数槽绕组
CN100405704C (zh) 低速大转矩永磁无刷电机的分数槽绕组
WO2022000790A1 (zh) 电机的线圈及其制作方法、电机定子及其制作方法、电机
CN2389440Y (zh) 多极分数槽绕组无刷直流电动机
US20230042319A1 (en) Electrical machine including axial flux rotor and coreless stator
WO2010058885A2 (ko) 단상 유도 모터
CN110401273A (zh) 低谐波的分数槽集中绕组设计方法
EP1636893B1 (en) Single-phase asynchronous motor with stepped air gap
CN205453447U (zh) 导磁介质结构及具有该结构的定子盘和无铁芯盘式电机
CN117318355B (zh) 一种无人机的电机和无人机
CN219801988U (zh) 一种永磁同步电机
WO2019062130A1 (zh) 电机转子、永磁电机和压缩机
CN218040947U (zh) 用于轴向磁通电机的定子以及轴向磁通电机
EP4164092A1 (en) Single-phase brushless direct current motor
JP2013094030A (ja) 電機子コイル及び同期回転機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3178250

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020942862

Country of ref document: EP

Effective date: 20221107

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022024130

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020455722

Country of ref document: AU

Date of ref document: 20200911

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022024130

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221125

NENP Non-entry into the national phase

Ref country code: DE