WO2021139454A1 - 永磁无刷电机及包含其的多轴飞行器、机器人 - Google Patents

永磁无刷电机及包含其的多轴飞行器、机器人 Download PDF

Info

Publication number
WO2021139454A1
WO2021139454A1 PCT/CN2020/133269 CN2020133269W WO2021139454A1 WO 2021139454 A1 WO2021139454 A1 WO 2021139454A1 CN 2020133269 W CN2020133269 W CN 2020133269W WO 2021139454 A1 WO2021139454 A1 WO 2021139454A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
permanent magnet
winding
brushless motor
tooth
Prior art date
Application number
PCT/CN2020/133269
Other languages
English (en)
French (fr)
Inventor
潘韫哲
Original Assignee
上海舞肌科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海舞肌科技有限公司 filed Critical 上海舞肌科技有限公司
Publication of WO2021139454A1 publication Critical patent/WO2021139454A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2783Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the field of motor technology, and in particular to a permanent magnet brushless motor and a multi-axis aircraft and robot containing the same.
  • multi-axis aircraft represented by multi-axis drones have developed rapidly, playing an important role in the fields of plant protection, aerial photography, delivery, reconnaissance, rescue, and surveying.
  • the multi-rotor aircraft puts high demands on the motor.
  • a lighter and more efficient motor means that the load can be increased or the battery capacity can be increased, thereby improving the aircraft's endurance and performance.
  • the motors of the existing multi-axis aircraft especially the multi-axis drones, use a stator with a shoe, and the winding coil is wound by a special stator winding machine, which greatly limits the slot full rate of the motor.
  • the motor slot full rate of multi-axis aircraft is only about 30%, which results in low power output, motor constant, and motor efficiency per unit weight and unit volume of the motor.
  • the purpose of this application is to provide a permanent magnet brushless motor and multi-axis aircraft and robots containing it, which can increase the slot full rate while ensuring low manufacturing costs, thereby increasing the motor constant, motor efficiency and power Output.
  • the embodiment of the present application provides a permanent magnet brushless motor, the motor is a fractional slot outer rotor motor, and includes a stator and a rotor; the stator includes a stator core and a stator winding; The stator winding is a concentrated winding, the stator core is an integrated structure; the stator core includes: a stator yoke and a stator tooth; the stator tooth includes: a plurality of stator yokes Stator teeth, the surface of the stator teeth is provided with an insulating layer; the stator winding includes: a preset number of winding coils formed by machine winding, and each of the stator teeth is respectively sheathed with x winding coils; where x is greater than Or equal to 1; the rotor includes a permanent magnet and a rotor core, wherein the permanent magnet is used for excitation to generate a rotating magnetic field.
  • the embodiment of the present application also provides a multi-axis aircraft, including: the permanent magnet brushless motor as described above.
  • An embodiment of the present application also provides a robot, including: the permanent magnet brushless motor as described above.
  • the embodiment of the present application directly winds the winding coils on the stator teeth. As the coils are wound, they will be interfered by the adjacent stator teeth and the winding coils on the stator teeth. The gap between the coils is large, which greatly reduces the slot full rate.
  • the embodiment of the present application discards the existing winding coil arrangement method, and the stator windings of the motor adopt concentrated windings, and the windings are formed by the machine and then set in Stator teeth, so that the winding coil manufacturing process will not be subject to any restrictions, so it can meet the design requirements of the winding coil to a greater extent, reduce the gap between adjacent coils, and increase the air gap area, which is beneficial to improve the slot full rate. In turn, the motor constant and power output of the motor are improved.
  • the width of the stator teeth is the same from the end of the tooth far away from the stator yoke to the root of the tooth close to the stator yoke; or from the end of the tooth far from the stator yoke to the end close to the stator At the root of the yoke, the width of the stator teeth gradually increases.
  • the cross-sectional shape of the cavity enclosed by the winding coil is a rounded rectangle, a racetrack, an ellipse or a rectangle.
  • stator teeth is chamfered.
  • the width of the narrowest part of the stator teeth is greater than or equal to 25% of the inner circumference of the stator/N and less than or equal to 65% of the inner circumference of the stator/N, where N is the number of stator teeth
  • the thickness of the stator yoke is greater than or equal to 30% of the width of the narrowest part of the stator tooth, and less than or equal to 250% of the width of the narrowest part of the stator tooth; an air gap is formed between the stator and the rotor, and The average air gap distance of the motor is less than or equal to 1% of the outer diameter of the stator.
  • the average radial thickness of the permanent magnet is less than or equal to 25 times the average air gap distance, and greater than or equal to 3 times the average air gap distance.
  • the permanent magnet is provided on the inner surface of the rotor core.
  • the permanent magnet includes a plurality of permanent magnet blocks, and each of the permanent magnet blocks is attached to the inner surface of the rotor core; or, the permanent magnet is an integral ring structure, and is sleeved and fixed to The surface of the rotor core.
  • the motor is a three-phase motor, and the greatest common divisor C of the number of stator teeth/3 and the number of poles of the permanent magnet is greater than or equal to 2.
  • stator winding is a parallel winding or a series-parallel hybrid winding; wherein, C of the winding coils are connected in series to form a minimum unit, and the minimum unit is connected in parallel or in series-parallel to form any one phase of the stator winding.
  • the tooth-to-pole ratio of the motor is an integer multiple of 12/10 or 12/14.
  • the x is greater than or equal to 2, and the number of turns of the x winding coils sleeved on the stator teeth is the same.
  • FIG. 1 is a schematic structural diagram of a permanent magnet brushless motor provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a stator of a permanent magnet brushless motor provided by an embodiment of the application;
  • Fig. 3 is a schematic structural diagram of a stator iron core of a permanent magnet brushless motor provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of the winding coil installation structure of the stator of a permanent magnet brushless motor provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of a three-dimensional structure of a winding coil of a stator of a permanent magnet brushless motor provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of a winding coil of a stator of a permanent magnet brushless motor provided by an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a permanent magnet brushless motor rotor provided by an embodiment of the application.
  • 12a and 12b are schematic diagrams of the circumference of the winding coil of the permanent magnet brushless motor provided by an embodiment of the application.
  • inventions of the present application provide a permanent magnet brushless motor, which is a fractional slot outer rotor motor.
  • the motor includes a stator 1 and a rotor 2.
  • the stator 1 includes a stator core 10 and a stator winding.
  • the stator core 10 includes a stator yoke 101 and a stator tooth; the stator tooth includes a plurality of stator teeth 102 arranged on the stator yoke 101.
  • the stator core 10 is an integral structure.
  • the stator core 10 may be laminated by silicon steel sheets or soft magnetic material sheets.
  • the stator winding includes a preset number of winding coils 11 formed by machine winding.
  • the stator winding is a concentrated winding, that is, the pitch of the winding coil is 1, and each winding coil 11 is correspondingly sleeved on one stator tooth 102 instead of a plurality of stator teeth.
  • an insulating layer is provided on the surface of the stator teeth to ensure the insulation of the stator winding and the stator core.
  • each stator tooth is respectively sheathed with x winding coils 11, and x is greater than or equal to 1, and is an integer.
  • a winding coil is sleeved on each stator tooth.
  • two winding coils are sleeved on each stator tooth. This embodiment does not specifically limit the number of winding coils sheathed on each stator tooth.
  • the winding coils after the winding coils are individually processed by machine winding, they can be sleeved and installed on the stator teeth, and can be connected by welding to form a stator winding. Alternatively, multiple connected winding coils can also be wound directly through the machine.
  • This embodiment does not specifically limit the connection mode between the winding coils.
  • the number of winding coils included in the stator winding can be determined according to the number of stator teeth and the number of winding coils sleeved on each stator tooth. For example, the number of stator teeth of a motor is 48. When two winding coils are sleeved on each stator tooth, the stator winding contains 96 winding coils.
  • the winding coils are directly wound on the stator teeth by a dedicated stator winding machine. Therefore, the stator teeth and the winding coils on the stator teeth will cause certain interference in the winding process of the adjacent winding coils, so that the adjacent winding coils
  • the gap between the two is often greater than 2 to 3 mm; in addition, in the prior art, the motor winding arrangement for robots is irregular, these factors seriously affect the slot full rate of the motor, and there is no interference in the winding coil processing process in the embodiment of this application. Therefore, the winding coils obtained by winding are easier to meet the design requirements, so that the gap between adjacent winding coils is greatly reduced, and the slot full rate of the motor can be greatly improved.
  • the coils wound by the machine are arranged neatly, the filling rate is high, and the torque density of the motor can be further improved.
  • the winding coil close to the stator yoke can be sleeved on each stator tooth first, and then the winding coil far away from the stator yoke can be sleeved on each stator tooth.
  • the winding coil when the winding coil is installed near the stator teeth of the stator yoke, it can avoid interference with the winding coils that have been sleeved on the adjacent stator teeth, thereby increasing the slot full rate and thus The motor constant and output power density of the motor.
  • the rotor 2 of the permanent magnet brushless motor includes: a permanent magnet 21 and a rotor core 20, wherein the permanent magnet 21 is used for excitation to generate a rotating magnetic field.
  • the width of the stator teeth is the same everywhere from the tooth end far away from the stator yoke 101 to the tooth root near the stator yoke 101, which facilitates the manufacture of the corresponding winding coil 11 and improves the space utilization rate. , Thereby improving the motor constant per unit weight. It can be understood that, in some examples, the width of the stator teeth can also gradually increase from the end of the tooth away from the stator yoke 101 to the root of the tooth close to the stator yoke 101. It should be noted that in the prior art, the stator teeth generally have an inverted T-shaped structure (that is, the stator teeth have a shoe structure).
  • stator teeth with the shoe will affect the size of the winding coil cavity 110, thereby reducing the winding coil. Space utilization.
  • the elimination of the stator tooth shoe improves the space utilization rate of the winding coil, which in turn is beneficial to further increase the motor constant per unit weight.
  • the cross-sectional shape of the cavity 110 enclosed by each winding coil may be the rounded rectangle shown in FIG. 3.
  • the cross-sectional shape of the cavity 110 may also be a racetrack, ellipse, rectangle, or parallelogram.
  • the cavity 110 may be slightly larger than the stator teeth 102, so that the winding coil 11 can be sleeved on the stator teeth 102.
  • Racetrack shape or oval shape is convenient for the processing of winding coil 11; while rectangle, rounded rectangle and parallelogram have higher space utilization and lower end conductor length. Understandably, due to the processing technology and copper wire physics Due to the limitation of nature, the shape of the cavity 110 in the actual product may have a slight deviation compared with the ideal racetrack, ellipse, rounded rectangle or rectangle.
  • the circumferential protrusions of the stator teeth 102 are chamfered, for example, the four corners of the stator teeth are chamfered, so as to prevent the sharp edges of the stator teeth 102 from damaging the winding coil surface when the winding coil is installed.
  • the insulating paint layer may also be chamfered.
  • the stator 1 may further include an adhesive layer; the winding coil 11 is fixed to the stator tooth 102 through the adhesive layer.
  • the adhesive layer may be formed by curing glue uniformly coated on the surface of the stator teeth 102 or the inner surface of the winding coil 11. Specifically, glue can be evenly coated on part or all of the surface of the stator teeth 102, and then the winding coil 11 is sleeved on the stator teeth 102, and the glue is cured to form an adhesive layer, so that the winding coil 11 and the stator teeth 102 are fixed together. Not easy to loosen.
  • this embodiment makes further improvements to the size and structure of the motor, which are specifically as follows:
  • Figure 8 it is a schematic diagram of the simulation effect of stator tooth width/(stator inner circumference/number of teeth) and motor constant per unit weight.
  • the thickness L of the stator yoke is greater than or equal to 30% of the width of the narrowest part of the stator tooth, and less than or equal to 250% of the width w of the narrowest part of the stator tooth.
  • FIG. 9 it is a schematic diagram of the simulation effect of the thickness of the stator yoke/the width of the stator teeth and the motor constant per unit weight.
  • An air gap is formed between the stator 1 and the rotor 2, and the average air gap distance g of the motor is less than or equal to 1% of the stator outer diameter d2.
  • FIG 10 it is the ratio of the average air gap distance to the stator outer diameter and the unit weight Schematic diagram of the simulation effect of the motor constant.
  • the average radial thickness t of the permanent magnet is less than or equal to 25 times the average air gap distance g, and greater than or equal to 3 times the average air gap distance g.
  • FIG. 11 it is a schematic diagram of the simulation effect of the ratio of the average radial thickness of the permanent magnet to the average air gap distance and the motor constant per unit weight.
  • the further optimization of the above-mentioned structural dimensions in this embodiment is proposed by the inventor based on comprehensive consideration of factors such as the difficulty of process realization and the electromagnetic performance of the motor.
  • the above-mentioned optimization of the relevant dimensions of the motor makes the production, manufacturing and assembly of the motor less difficult, and is beneficial to increase the slot full rate and increase the air gap area, thereby increasing the torque density of the permanent magnet brushless motor.
  • the permanent magnet is arranged on the inner surface of the rotor core 20.
  • the permanent magnet 21 can be made of a neodymium iron boron magnet.
  • the permanent magnet 21 in this embodiment includes several permanent magnet blocks, and each of the permanent magnet blocks is attached to the inner surface of the rotor core 20, that is, the permanent magnet blocks are surface-mounted permanent magnet blocks. .
  • the permanent magnet 21 may be an integral ring structure, and is sleeved and fixed on the inner surface of the rotor core 20.
  • the permanent magnet 21 can be fixed to the inner surface of the rotor core by glue.
  • the permanent magnet brushless motor in this embodiment is a three-phase motor, and the greatest common divisor C of the number of stator teeth/3 and the number of poles of the permanent magnet is greater than or equal to 2.
  • the stator windings may be parallel windings or series-parallel hybrid windings, wherein C winding coils are connected in series to form the smallest unit, and the smallest unit is connected in parallel or serial-parallel hybrid to form any one phase of the stator winding.
  • the tooth-to-pole ratio of the motor can be an integer multiple of 12/14. In this embodiment, the number of teeth is 48 and the number of poles is 56. This tooth-to-pole ratio can effectively reduce the cogging torque and make the motor run smoothly.
  • the resistance of the stator winding can be adjusted by changing the series-parallel connection of the winding coils in the stator winding, so as to achieve the purpose of setting different working voltages and rated speeds, eliminating the trouble of changing the wire diameter of the motor winding coils, and simplifying ⁇ the manufacturing process.
  • the circumference 111 of the winding coil on the stator teeth shows an increasing trend.
  • the circumference 111a of the winding coil close to the tooth root is less than or equal to the circumference 111b of the winding coil close to the tooth end, thereby helping to increase the slot full rate and simplify the sheathing process.
  • the number of turns of the two winding coils can be the same, and the two winding coils 11 can be connected in parallel to reduce the resistance of the stator winding, thereby increasing the maximum speed of the motor under the condition of the same voltage. , Thereby increasing the power output density.
  • the motor constant per unit mass of the embodiments of this application can reach Compared with the existing technology, it is significantly improved.
  • the output power of the permanent magnet brushless motor of this embodiment can be increased by more than 30%, or the same power output and efficiency can be reduced by more than 25%.
  • the embodiment of the present application also provides a multi-axis aircraft, including the permanent magnet brushless motor as described above.
  • the embodiment of the present application also provides a robot including the permanent magnet brushless motor as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种永磁无刷电机及包含其的多轴飞行器、机器人,涉及电机技术领域。该电机为分数槽外转子电机,其包括:定子(1)以及转子(2);定子(1)包括:定子铁芯(10)以及定子绕组;定子绕组为集中式绕组,定子铁芯(10)为一体式结构;定子铁芯(10)包括:定子轭部(101)以及定子齿部;定子齿部包括:若干个设置于定子轭部的定子齿(102);定子绕组包括:预设数目个机器绕线成型的绕组线圈(11),且各定子齿(102)分别套设有x个绕组线圈(11);转子(2)包括:永磁体(21)和转子铁芯(20)。该方案可在保证制造成本低的情况下提高槽满率,优化电磁设计,从而提高电机的电机常数、电机效率和功率输出。

Description

永磁无刷电机及包含其的多轴飞行器、机器人
交叉引用
本申请引用于2020年04月24日递交的名称为“永磁无刷电机及包含其的多轴飞行器、机器人”的第202010330814.7号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电机技术领域,特别涉及一种永磁无刷电机及包含其的多轴飞行器、机器人。
背景技术
近年来,以多轴无人机为代表的多轴飞行器发展迅速,在植保、航拍、送货、侦察、救助、勘测等领域发挥重要作用。多轴飞行器对电机提出了很高的要求。在输出功率不变的情况下,更轻更高效的电机意味着可以增加载重或增加电池容量,从而提升飞行器的续航时间和性能。
目前现有多轴飞行器,尤其是多轴无人机的电机采用带靴的定子,绕线线圈采用专用的定子绕线机绕制,这大大限制了电机的槽满率,以市场上常见的产品为例,一般多轴飞行器电机槽满率仅30%左右,导致电机单位重量和单位体积的功率输出、电机常数、电机效率较低。
发明内容
有鉴于此,本申请的目的在于提供一种永磁无刷电机及包含其的多轴飞行器、机器人,在保证制造成本低的情况下提高槽满率,从而提高电机电机常数、电机效率和功率输出。
为解决上述技术问题,本申请的实施例提供了一种永磁无刷电机,所述电机为分数槽外转子电机,包括:定子以及转子;所述定子包括:定子铁芯以及定子绕组;所述定子绕组为集中式绕组,所述定子铁芯为一体式结构;所述定子铁芯包括:定子轭部以及定子齿部;所述定子齿部包括:若干个设置于所述定子轭部的定子齿,所述定子齿表面设有绝缘层;所述定子绕组包括:预设数目个机器绕线成型的绕组线圈,且各所述定子齿分别套设有x个绕组线圈;其中,x大于或等于1;所述转子包括:永磁体和转子铁芯,其中,所述永磁体用于励磁产生旋转磁场。
本申请的实施例还提供了一种多轴飞行器,包括:如前所述的永磁无刷电机。
本申请的实施例还提供了一种机器人,包括:如前所述的永磁无刷电机。
本申请实施例相对于现有技术而言,现有技术是直接将绕组线圈绕设于定子齿,由于线圈绕设时会受到相邻定子齿及其上的绕组线圈的干涉,导致绕制后的线圈之间的空隙较大,大大降低了槽满率,本申请实施例摈弃了现有绕组线圈的设置方式,电机定子绕组均采用集中式绕组,且由机器绕线成型后再套设于定子齿,从而使得绕组线圈制作过程不会受到任何限制,因此可更大程度满足绕组线圈的设计要求,减小相邻线圈之间的间隙、增大气隙面积,从而 有利于提高槽满率,进而提高电机的电机常数和功率输出。
另外,从远离所述定子轭部的齿端部到靠近所述定子轭部的齿根部,所述定子齿的宽度均相同;或者从远离所述定子轭部的齿端部到靠近所述定子轭部的齿根部,所述定子齿的宽度逐渐增大。
另外,所述绕组线圈围成的空腔的截面形状为圆角矩形、跑道形、椭圆形或者矩形。
另外,所述定子齿周向突出部分形成倒角。
另外,所述定子齿最窄处宽度大于或者等于所述定子内圆周长/N的25%,且小于或者等于所述定子内圆周长/N的65%,其中,N为定子齿的个数;所述定子轭部厚度大于或者等于所述定子齿最窄处宽度的30%,且小于或者等于所述定子齿最窄处宽度的250%;所述定子和转子之间形成气隙,且所述电机的平均气隙距离小于或者等于所述定子外径的1%。
另外,所述永磁体的平均径向厚度小于或者等于所述平均气隙距离的25倍,且大于或者等于所述平均气隙距离的3倍。
另外,所述永磁体设置于所述转子铁芯内侧表面。
另外,所述永磁体包括若干个永磁块,各所述永磁块均贴附于所述转子铁芯内侧表面;或者,所述永磁体为一体式环状结构,且套设并固定于所述转子铁芯表面。
另外,所述电机为三相电机,所述定子齿数/3与所述永磁体磁极数的最大公约数C大于或者等于2。
另外,所述定子绕组为并联绕组或串并混联绕组;其中,C个所述绕组线圈串联构成最小单元,所述最小单元并联或者串并混连以形成任意一相所述 定子绕组。
另外,所述电机的齿极数比为12/10或12/14的整数倍。
另外,从靠近所述定子轭部到远离所述定子轭部,所述定子齿上绕组线圈的周长呈增大的趋势。
另外,所述x大于或等于2,所述定子齿上套设的x个绕组线圈的匝数相同。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,可以理解地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请一实施例提供的永磁无刷电机的结构示意图;
图2为本申请一实施例提供的永磁无刷电机定子的结构示意图;
图3为本申请一实施例提供的永磁无刷电机定子铁芯的结构示意图;
图4为本申请一实施例提供的永磁无刷电机定子的绕组线圈安装结构示意图;
图5为本申请一实施例提供的永磁无刷电机定子的绕组线圈的立体结构示意图;
图6为本申请一实施例提供的永磁无刷电机定子的绕组线圈的结构示意图;
图7为本申请一实施例提供的永磁无刷电机转子的结构示意图;
图8至图11为本申请一实施例提供的永磁无刷电机的力矩性能仿真效果示意图;
图12a、图12b为本申请一实施例提供的永磁无刷电机的绕组线圈的周长示意图。
其中:1-定子,10-定子铁芯,101-定子轭部,102-定子齿,11-绕组线圈,110-空腔,111-绕组线圈的周长,111a-靠近齿根的绕组线圈的周长,111b-靠近齿端的绕组线圈的周长,2-转子,20-转子铁芯,21-永磁体。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使本技术领域的技术人员更好地理解本申请方案,下面结合附图和具体实施例对本申请做进一步详细的说明。
如图1至图7所示,本申请实施例提供了一种永磁无刷电机,该电机为分数槽外转子电机。该电机包括:定子1以及转子2。其中,定子1包括定子铁芯10以及定子绕组。本实施例中,定子铁芯10包括:定子轭部101以及定子齿部;定子齿部包括:若干个设置于定子轭部101的定子齿102。本实施例中,定子铁芯10为一体式结构,作为示例而非限制,定子铁芯10可以由硅钢片或软磁材料片叠压而成。定子绕组包括预设数目个机器绕线成型的绕组线圈11。定子绕组为集中式绕组,即绕组线圈的节距为1,每个绕组线圈11对应套 设于一个而非多个定子齿102上。本实施例中,定子齿表面设有绝缘层,从而保证定子绕组和定子铁芯的绝缘性。在本实施例中各个定子齿分别套设有x个绕组线圈11,x大于或等于1,且为整数。如图1所示,每个定子齿上套设有一个绕组线圈。在下文的其他示例中,每个定子齿上套设有两个绕组线圈。本实施例对于各个定子齿上套设的绕组线圈的数量不做具体限制。
本实施例中,绕组线圈通过机器绕线单独加工完成后,可套设安装于定子齿上,并可通过焊接相连形成定子绕组。或者,也可直接通过机器绕出相连的多个绕组线圈。本实施例对于各绕组线圈之间的连接方式不做具体限制。作为示例而非限制,本实施例中,定子绕组包含的绕组线圈的数量,可以根据定子齿的数量以及每个定子齿上套设的绕组线圈的数量确定,比如,电机定子齿的数量为48个,每个定子齿上套设2个绕组线圈时,定子绕组包含96个绕组线圈。
现有技术中绕组线圈通过专用定子绕线机直接绕设于定子齿上,因此定子齿及其上的绕组线圈对相邻绕组线圈的绕设过程会造成一定的干涉,使得相邻绕组线圈之间的间隙常常大于2~3mm;此外,现有技术中机器人用电机绕线排布不规则,这些因素严重影响电机的槽满率,而本申请实施例在绕组线圈加工过程中不存在任何干涉,因此绕制得到的绕组线圈更易达到设计要求,使得相邻绕组线圈之间的间隙大大减小,从而可大幅提高电机槽满率。此外,本实施例中,通过机器绕制的线圈排布整齐,填充率高,可进一步提高电机力矩密度。并且,当每个定子齿上设置多个绕组线圈时,可以在每个定子齿上先套设靠近定子轭部的绕组线圈,再套设远离定子轭部的绕组线圈,相对每个定子齿上设置数量较少的绕组线圈而言,在靠近定子轭部的定子齿部位安装绕组线圈 时,可避免与相邻定子齿上已套设的绕组线圈产生干涉,从而可提高槽满率,进而提高电机的电机常数和输出功率密度。
如图7所示,本实施例中,永磁无刷电机的转子2包括:永磁体21和转子铁芯20,其中,永磁体21用于励磁产生旋转磁场。
可选地,本实施例中,从远离定子轭部101的齿端部到靠近定子轭部101的齿根部,定子齿的宽度处处相同,便于对应绕组线圈11的制造,且能提高空间利用率,从而提升单位重量的电机常数。可以理解的是,在一些例子中,从远离定子轭部101的齿端部到靠近定子轭部101的齿根部,定子齿宽度也可以逐渐增大。需要说明的是,现有技术中,定子齿一般为倒T形结构(即定子齿具有靴部结构),带有靴部的定子齿会影响绕组线圈空腔110的大小,从而降低了绕组线圈的空间利用率。而本实施例中,定子齿靴部的取消提高了绕组线圈的空间利用率,进而有利于进一步提高单位重量的电机常数。
可选地,如图6所示,本实施例中,各绕组线圈围成的空腔110的截面形状可以为图3所示的圆角矩形。在一些应用中,空腔110的截面形状也可以为跑道形、椭圆形、矩形或者平行四边形,空腔110可略大于定子齿102,从而便于将绕组线圈11套设于定子齿102上。跑道形或者椭圆形等便于绕组线圈11的加工;而矩形、圆角矩形和平行四边形,有较高的空间利用率和较低的端部导体长度,可以理解地,由于加工工艺和铜线物理性质的限制,实际产品中空腔110的形状与理想的跑道形、椭圆形、圆角矩形或矩形相比会存在一定的微小偏差。
可选地,本实施例中,定子齿102周向突出部分形成倒角,比如定子齿的四个棱角位置均形成倒角,从而可防止安装绕组线圈时定子齿102的尖锐边 缘损伤绕组线圈表面的绝缘漆层。在一些应用中,定子齿102与定子轭部101的连接处也可形成倒角。
在本实施例中,为了进一步提高绕组线圈11与定子齿102结合的牢固程度,定子1还可以包括粘合层;绕组线圈11通过粘合层固定于定子齿102。其中,粘合层可以为均匀涂布于定子齿102表面或者绕组线圈11内表面的胶水固化后形成。具体地,可在定子齿102表面的部分或者全部均匀涂布胶水,然后将绕组线圈11套装于定子齿102上,胶水固化后形成粘合层,使得绕组线圈11与定子齿102固定在一起,不易松脱。
在上述实施例的基础上,本实施例对电机的尺寸结构做出进一步改进,具体如下:
本实施例中,定子齿最窄处宽度大于或者等于定子内圆周长/N的25%,且小于或者等于定子内圆周长/N的65%,其中N为定子齿102的个数。在本实施例中,N=48。如图8所示,为定子齿宽度/(定子内圆周长/齿数)与单位重量的电机常数的仿真效果示意图。定子轭部厚度L大于或者等于定子齿最窄处宽度的30%,且小于或者等于定子齿最窄处宽度w的250%。如图9所示,为定子轭部厚度/定子齿宽度与单位重量的电机常数的仿真效果示意图。定子1和转子2之间形成气隙,且电机的平均气隙距离g小于或者等于定子外径d2的1%,如图10所示,为平均气隙距离与定子外径之比与单位重量的电机常数的仿真效果示意图。永磁体的平均径向厚度t小于或者等于平均气隙距离g的25倍,且大于或者等于平均气隙距离g的3倍。如图11所示,为永磁体的平均径向厚度与平均气隙距离之比与单位重量的电机常数的仿真效果示意图。
需要说明的是,本实施例中对于上述结构尺寸等的进一步优化是发明人 基于工艺实现难易以及电机电磁性能等因素综合考虑之后提出的。本实施例通过对电机的相关尺寸做出上述优化,使得电机生产制造加工以及组装难度低,且有利于提高槽满率、增大气隙面积,从而提高永磁无刷电机的力矩密度。
如图7所示,本实施例中,所述永磁体设置于所述转子铁芯20内侧表面。该永磁体21可由钕铁硼磁铁制成。
作为一种实现方式,本实施例中永磁体21包括若干个永磁块,各所述永磁块均贴附于所述转子铁芯20内侧表面,即永磁块为表贴式永磁块。
作为另一种实现方式,永磁体21可以为一体式环状结构,且套设并固定于转子铁芯20内侧表面。永磁体21可以通过胶水固定于转子铁芯内侧表面。
在本实施例中的永磁无刷电机为三相电机,且定子齿数/3与所述永磁体磁极数的最大公约数C大于或者等于2。作为示例而非限制,定子绕组可以为并联绕组或串并混联绕组,其中,C个绕组线圈串联构成最小单元,该最小单元并联或者串并混连以形成任意一相所述定子绕组。电机的齿极数比可以为12/14的整数倍。在本实施例中,齿数为48,极数为56,此齿极数比可有效降低齿槽转矩,使电机运行平稳。本实施例对于电机的定子齿数以及永磁体的磁极数均不作限制。本实施例中,可以通过改变定子绕组中绕组线圈的串并联来调整定子绕组的电阻,以达到设定不同的工作电压和额定转速的目的,省去了改变电机绕组线圈线径的麻烦,简化了制造工艺。
如图1、图5、图12a、12b所示,在本实施例中,从靠近定子轭部到远离定子轭部,定子齿上绕组线圈的周长111呈增大的趋势,举例而言,靠近齿根的绕组线圈的周长111a小于或等于靠近齿端的绕组线圈的周长111b,从而有助提高槽满率和简化套设工艺。
在另一个实施例中,定子齿上套设有两个绕组线圈11,即x=2。作为示例而非限制,这两个绕组线圈的匝数可以相同,且该两个绕组线圈11可通过并联连接,以降低定子绕组的电阻,从而在电压不变的情况下,提高电机的最高转速,进而提高功率输出密度。
本申请实施例单位质量的电机常数可达到
Figure PCTCN2020133269-appb-000001
相比现有技术有显著提高。在电机重量相等或相近,相同工作电压、散热良好的情况下,本实施例永磁无刷电机的输出功率可提高30%以上,或相同功率输出和效率,减重25%以上。
本申请实施例还提供了一种多轴飞行器,包括如前所述的永磁无刷电机。
本申请实施例还提供了一种机器人,包括如前所述的永磁无刷电机。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (15)

  1. 一种永磁无刷电机,所述电机为分数槽外转子电机,其特征在于,包括:定子以及转子;
    所述定子包括:定子铁芯以及定子绕组;所述定子绕组为集中式绕组,所述定子铁芯为一体式结构;
    所述定子铁芯包括:定子轭部以及定子齿部;所述定子齿部包括:若干个设置于所述定子轭部的定子齿,所述定子齿表面设有绝缘层;
    所述定子绕组包括:预设数目个机器绕线成型的绕组线圈,且各所述定子齿分别套设有x个绕组线圈;其中,x大于或等于1;
    所述转子包括:永磁体和转子铁芯,其中,所述永磁体用于励磁产生旋转磁场。
  2. 根据权利要求1所述的永磁无刷电机,其中,从远离所述定子轭部的齿端部到靠近所述定子轭部的齿根部,所述定子齿的宽度均相同;或者
    从远离所述定子轭部的齿端部到靠近所述定子轭部的齿根部,所述定子齿的宽度逐渐增大。
  3. 根据权利要求1所述的永磁无刷电机,其中,所述绕组线圈围成的空腔的截面形状为圆角矩形、跑道形、椭圆形或者矩形。
  4. 根据权利要求1所述的永磁无刷电机,其中,所述定子齿周向突出部分形成倒角。
  5. 根据权利要求1所述的永磁无刷电机,其中,所述定子齿最窄处宽度大于或者等于所述定子内圆周长/N的25%,且小于或者等于所述定子内圆周长/N的65%,其中,N为定子齿的个数;
    所述定子轭部厚度大于或者等于所述定子齿最窄处宽度的30%,且小于或者等于所述定子齿最窄处宽度的250%;
    所述定子和转子之间形成气隙,且所述电机的平均气隙距离小于或者等于所述定子外径的1%。
  6. 根据权利要求5所述的永磁无刷电机,其中,所述永磁体的平均径向厚度小于或者等于所述平均气隙距离的25倍,且大于或者等于所述平均气隙距离的3倍。
  7. 根据权利要求1所述的永磁无刷电机,其中,所述永磁体设置于所述转子铁芯内侧表面。
  8. 根据权利要求7所述的永磁无刷电机,其中,所述永磁体包括若干个永磁块,各所述永磁块均贴附于所述转子铁芯内侧表面;或者,所述永磁体为一体式环状结构,且套设并固定于所述转子铁芯表面。
  9. 根据权利要求5或6所述的永磁无刷电机,其中,所述电机为三相电机,所述定子齿数/3与所述永磁体磁极数的最大公约数C大于或者等于2。
  10. 根据权利要求9所述的永磁无刷电机,其中,所述定子绕组为并联绕组或串并混联绕组;
    其中,C个所述绕组线圈串联构成最小单元,所述最小单元并联或者串并混连以形成任意一相所述定子绕组。
  11. 根据权利要求10所述的永磁无刷电机,其中,所述电机的齿极数比为12/10或12/14的整数倍。
  12. 根据权利要求1所述的永磁无刷电机,其中,从靠近所述定子轭部到远离所述定子轭部,所述定子齿上绕组线圈的周长呈增大的趋势。
  13. 根据权利要求1所述的永磁无刷电机,其中,所述x大于或等于2,所述定子齿上套设的x个绕组线圈的匝数相同。
  14. 一种多轴飞行器,其特征在于,包括如权利要求1至13中任一项所述的永磁无刷电机。
  15. 一种机器人,其特征在于,包括如权利要求1至13中任一项所述的永磁无刷电机。
PCT/CN2020/133269 2020-01-07 2020-12-02 永磁无刷电机及包含其的多轴飞行器、机器人 WO2021139454A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202020022641.8 2020-01-07
CN202020022641 2020-01-07
CN202020251532.3 2020-03-04
CN202020251532 2020-03-04
CN202010330814.7A CN111509874A (zh) 2020-01-07 2020-04-24 永磁无刷电机及包含其的多轴飞行器、机器人
CN202010330814.7 2020-04-24
CN202020633221.3U CN212323826U (zh) 2020-01-07 2020-04-24 永磁无刷电机及包含其的多轴飞行器、机器人
CN202020633221.3 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021139454A1 true WO2021139454A1 (zh) 2021-07-15

Family

ID=71813014

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/133270 WO2021139455A1 (zh) 2020-01-07 2020-12-02 永磁无刷电机及机器人关节、伺服舵机执行器、机器人
PCT/CN2020/133269 WO2021139454A1 (zh) 2020-01-07 2020-12-02 永磁无刷电机及包含其的多轴飞行器、机器人

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133270 WO2021139455A1 (zh) 2020-01-07 2020-12-02 永磁无刷电机及机器人关节、伺服舵机执行器、机器人

Country Status (3)

Country Link
US (1) US20230124308A1 (zh)
CN (6) CN212323826U (zh)
WO (2) WO2021139455A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212323826U (zh) * 2020-01-07 2021-01-08 上海舞肌科技有限公司 永磁无刷电机及包含其的多轴飞行器、机器人
CN112202303B (zh) * 2020-08-24 2022-03-08 浙江中博传动科技有限公司 一种高强度电动机定子
CN112994283B (zh) * 2021-01-05 2023-03-24 上海电气风电集团股份有限公司 定子及包括其的电机
WO2023020578A1 (zh) * 2021-08-19 2023-02-23 上海舞肌科技有限公司 永磁无刷电机及其制造方法、多轴飞行器以及机器人
WO2023020601A1 (zh) * 2021-08-19 2023-02-23 上海舞肌科技有限公司 永磁无刷电机及其制造方法、关节执行器以及机器人
CN114598050A (zh) * 2022-05-11 2022-06-07 广东美的智能科技有限公司 用于电机的定子、电机以及定子的加工方法
CN117614163B (zh) * 2024-01-17 2024-04-19 北京中航科电测控技术股份有限公司 一种人形机器人用关节模组电机及关节模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762084A (zh) * 2003-03-31 2006-04-19 勒鲁瓦-索梅尔发动机公司 包括定子和至少一个转子的同步电动机械和配套的控制装置
US20070075604A1 (en) * 2005-10-03 2007-04-05 Ut-Battelle, Llc High Slot Utilization Systems for Electric Machines
CN1976169A (zh) * 2005-12-02 2007-06-06 勒华-索梅发动机公司 具有降低的扭矩波动的旋转电机
CN102577036A (zh) * 2009-08-04 2012-07-11 菲艾姆股份有限公司 电机
CN105680581A (zh) * 2016-03-04 2016-06-15 上海电气集团股份有限公司 一种高功率密度的永磁伺服电机及其定子结构
CN111509874A (zh) * 2020-01-07 2020-08-07 上海舞肌科技有限公司 永磁无刷电机及包含其的多轴飞行器、机器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI119748B (fi) * 2006-12-21 2009-02-27 Kone Corp Sähkömoottori
CN101018002B (zh) * 2006-12-28 2013-03-27 李平 小型三相高性能方波永磁直流低速无刷电机
CN201910715U (zh) * 2010-12-28 2011-07-27 日立电梯电机(广州)有限公司 电机及其线圈绕组
US20140015348A1 (en) * 2012-07-13 2014-01-16 Sinoelectric Powertrain Corporation Electric motors with double layer formed coil lapped winding
CN103647421A (zh) * 2013-11-20 2014-03-19 江苏大学 一种高槽满率高性能开口槽直齿永磁电机
US10326326B2 (en) * 2016-09-30 2019-06-18 Faraday & Future Inc. IPM machine with specialized winding for automotive electric vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762084A (zh) * 2003-03-31 2006-04-19 勒鲁瓦-索梅尔发动机公司 包括定子和至少一个转子的同步电动机械和配套的控制装置
US20070075604A1 (en) * 2005-10-03 2007-04-05 Ut-Battelle, Llc High Slot Utilization Systems for Electric Machines
CN1976169A (zh) * 2005-12-02 2007-06-06 勒华-索梅发动机公司 具有降低的扭矩波动的旋转电机
CN102577036A (zh) * 2009-08-04 2012-07-11 菲艾姆股份有限公司 电机
CN105680581A (zh) * 2016-03-04 2016-06-15 上海电气集团股份有限公司 一种高功率密度的永磁伺服电机及其定子结构
CN111509874A (zh) * 2020-01-07 2020-08-07 上海舞肌科技有限公司 永磁无刷电机及包含其的多轴飞行器、机器人

Also Published As

Publication number Publication date
US20230124308A1 (en) 2023-04-20
CN111509874A (zh) 2020-08-07
CN212323826U (zh) 2021-01-08
CN212323827U (zh) 2021-01-08
CN111725906A (zh) 2020-09-29
CN111490611A (zh) 2020-08-04
CN212323825U (zh) 2021-01-08
WO2021139455A1 (zh) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2021139454A1 (zh) 永磁无刷电机及包含其的多轴飞行器、机器人
CN104617689B (zh) 风力发电机及其定子铁心以及定子的铁心模块
CN104917348A (zh) 电动车用大功率奇数分数槽电机
CN101262151B (zh) 低速大转矩永磁无刷电机的分数槽绕组
CN106026448A (zh) 一种eps用无刷电机
CN203911601U (zh) 定子冲片、定子铁芯及电机
CN100405704C (zh) 低速大转矩永磁无刷电机的分数槽绕组
CN105391261B (zh) 气隙磁场正弦分布的隐极同步电机转子结构参数确定方法
CN116722681A (zh) 一种定子混合模块化永磁游标电机
CN203278578U (zh) 一种新型轴向磁场永磁同步电机
CN109256879A (zh) 一种内外层永磁体错位的双定子电机
CN107370269A (zh) 一种永磁转子及异步起动永磁同步电动机
WO2023020578A1 (zh) 永磁无刷电机及其制造方法、多轴飞行器以及机器人
CN209375272U (zh) 一种内外层永磁体错位的双定子电机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
CN103904796A (zh) 盘式电机
WO2012151817A1 (zh) 一种永磁内转子电机
CN112910119A (zh) 永磁无刷电机及包含其的执行器、机器人
WO2023020601A1 (zh) 永磁无刷电机及其制造方法、关节执行器以及机器人
CN107359761B (zh) 单相感应电机和压缩机
CN207039424U (zh) 一种永磁低速直驱同步电动机
CN206389198U (zh) 高效节能的植保无人机用外转子永磁同步电机
WO2022000790A1 (zh) 电机的线圈及其制作方法、电机定子及其制作方法、电机
WO2019062130A1 (zh) 电机转子、永磁电机和压缩机
CN113691034B (zh) 一种基于轴向磁通电机的定子结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912298

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20912298

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20912298

Country of ref document: EP

Kind code of ref document: A1