WO2020197138A1 - 모터 - Google Patents

모터 Download PDF

Info

Publication number
WO2020197138A1
WO2020197138A1 PCT/KR2020/003508 KR2020003508W WO2020197138A1 WO 2020197138 A1 WO2020197138 A1 WO 2020197138A1 KR 2020003508 W KR2020003508 W KR 2020003508W WO 2020197138 A1 WO2020197138 A1 WO 2020197138A1
Authority
WO
WIPO (PCT)
Prior art keywords
pocket
motor
radiating
rotor
core
Prior art date
Application number
PCT/KR2020/003508
Other languages
English (en)
French (fr)
Inventor
조선호
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN202080025624.2A priority Critical patent/CN113646993B/zh
Priority to US17/593,896 priority patent/US11979061B2/en
Publication of WO2020197138A1 publication Critical patent/WO2020197138A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the embodiment relates to a motor.
  • the motor includes a shaft, a rotor and a stator.
  • a plurality of magnets may be disposed on the rotor. It is divided into an IPM (Inner Permanent Magnet) motor in which a magnet is inserted and coupled to the inside of the rotor core, and an SPM (Surface Permanent Magnet) rotor in which a magnet is attached to the surface of the rotor core.
  • IPM Inner Permanent Magnet
  • SPM Surface Permanent Magnet
  • spoke type motor there is a spoke type motor.
  • a magnet longer than the width is arranged radially.
  • the magnet can be placed in the pocket of the rotor core.
  • This spoke type motor is characterized by high power density.
  • the spoke type motor has a problem of deteriorating the performance of the motor as the cogging torque increases due to a high magnetic flux during driving. Accordingly, it is required to reduce the cogging torque of the motor by improving the shape of the rotor core.
  • the embodiment is to solve the above problems, and an object thereof is to provide a motor capable of reducing cogging torque by improving the shape of the rotor core.
  • a motor includes a shaft; A rotor coupled with the shaft; And a stator disposed outside the rotor, wherein the rotor includes a rotor core forming a plurality of pockets radially with respect to the shaft, and a magnet inserted into the pocket, and the rotor core is stacked in an axial direction
  • a plurality of core plates formed, wherein the core plate includes a central portion, a plurality of radiating portions connected to the central portion, and the plurality of radiating portions, and each of the plurality of radiating portions has a step having a step with a surface forming a pocket A portion may be included, and the plurality of step portions may popam at least two of a first step portion, a second step portion, a third step portion, and a fourth step portion having different shapes from each other.
  • the number of pockets is n, and one core plate can be rotated 360/n° with respect to the other core plates stacked in the axial direction.
  • the stacked core plates may have different or identical shapes of each step in the axial direction.
  • the first step portion overlaps one side of the radiating portion and the pocket in a radial direction
  • the second step portion overlaps both sides of the radiating portion and the pocket in a radial direction
  • the third step portion overlaps the other side of the radiating portion and the pocket It overlaps in the radial direction
  • the fourth step portion may not overlap the radiating portion and the pocket in the radial direction.
  • a protrusion may protrude from one surface forming the pocket of the radiating unit, and a portion facing the protrusion may be depressed on the other surface.
  • a protrusion may protrude from one surface and the other surface forming the pocket of the radiating portion, respectively.
  • Protrusions protruding from one surface and the other surface forming the pocket of the radiating unit may be spaced apart from each other.
  • one surface forming the pocket of the radiating portion may be depressed, and the other surface may protrude from a portion facing the depressed position.
  • One surface and the other surface forming the pocket of the radiating portion may be recessed in the fourth stepped portion.
  • the second stepped portion or the fourth stepped portion may be disposed between the first stepped portion and the third stepped portion spaced apart from each other based on a circumferential direction.
  • the second stepped portion or the fourth stepped portion may be disposed between the first stepped portion and the third stepped portion spaced apart from each other in the axial direction.
  • the motor performance can be improved by reducing the cogging torque while maintaining high magnetic performance of the spoke type motor by improving the pocket shape of the rotor.
  • the effect of the skew angle is provided, thereby reducing the cost required for the skew angle when manufacturing the rotor, and providing a low-cost, high-efficiency motor.
  • FIG. 1 is a cross-sectional view showing a motor according to an embodiment
  • Figure 2 is a plan view of the rotor shown in Figure 1;
  • FIG. 3 is an exploded perspective view showing a state in which core plates of the rotor core shown in FIG. 2 are stacked.
  • FIG. 4 is a perspective view showing a state in which core plates of the rotor core shown in FIG. 3 are stacked.
  • Figure 5 is a perspective view of the core plate shown in Figure 3;
  • Figure 6 is a side view showing an enlarged stepped portion of the pocket.
  • FIG. 7 is a view showing the direction of vibration according to the number of poles and slots of the motor.
  • FIG. 8 is a graph showing a cogging torque value according to a rotation angle of a conventional motor of the present invention and a motor according to an embodiment of the present invention.
  • the singular form may include the plural form unless specifically stated in the phrase, and when described as "at least one (or more than one) of A and (and) B and C", it is combined with A, B, and C. It may contain one or more of all possible combinations.
  • first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention.
  • a component when a component is described as being'connected','coupled' or'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also the component and It may also include the case of being'connected','coupled' or'connected' due to another component between the other components.
  • top (top) or bottom (bottom) when it is described as being formed or disposed in the “top (top) or bottom (bottom)" of each component, the top (top) or bottom (bottom) is one as well as when the two components are in direct contact with each other. It also includes a case in which the above other component is formed or disposed between the two components.
  • upper (upper) or lower (lower) when expressed as "upper (upper) or lower (lower)", the meaning of not only an upward direction but also a downward direction based on one component may be included.
  • FIG. 1 is a cross-sectional view showing a motor according to an embodiment.
  • the motor 1 includes a housing 100 with an opening formed on one side, a cover 200 disposed on the housing 100, and a stator disposed inside the housing 100 (300), a rotor 400 disposed inside the stator 300, a shaft 500 that rotates by being coupled to the rotor 400, a bus bar 600 disposed above the stator 300, and a shaft 500 ) May include a sensor unit 700 for monitoring the rotation.
  • the housing 100 and the cover 200 may form the outer shape of the motor 1.
  • the housing 100 and the cover 200 are combined to form an accommodation space.
  • the stator 300, the rotor 400, and the shaft 500 may be disposed in the accommodation space.
  • the shaft 500 is rotatably disposed in the accommodation space.
  • the motor 1 may further include bearings 10 disposed above and below the shaft 500, respectively.
  • the shape or material of the housing 100 may be variously changed.
  • the housing 100 may be made of a metal material that can withstand high temperatures.
  • the cover 200 is disposed above the housing 100 and covers the opening of the housing 100.
  • the stator 300 may be disposed inside the housing 100.
  • the stator 300 may be coupled to the housing 100 through a hot press fitting method. Accordingly, the stator 300 may be supported on the inner circumferential surface of the housing 100.
  • the stator 300 is disposed outside the rotor 400.
  • the stator 300 may include a stator core 310, a coil 320, and an insulator 330.
  • the insulator 330 is mounted on the stator core 310.
  • the coil 320 is wound around the insulator 330.
  • the insulator 330 is disposed between the stator core 310 and the coil 320 to insulate the stator core 310 and the coil 320.
  • a coil 320 forming a rotating magnetic field may be wound around the stator core 310.
  • the stator core 310 may be formed in a form in which a plurality of plates in the form of a thin steel sheet are stacked together, but is not limited thereto.
  • the stator core 310 may be formed as a single product.
  • the stator core 310 may be formed by arranging a plurality of unit stator cores along the circumferential direction.
  • the rotor 400 may be disposed inside the stator 300.
  • the shaft 500 may be coupled to the center.
  • the shaft 500 may be rotatably disposed inside the housing 100 by the bearing 10. In addition, the shaft 500 may rotate together in association with the rotation of the rotor 400.
  • FIG. 2 is a plan view of the rotor shown in FIG. 1.
  • the rotor 400 may include a rotor core 410 and a magnet 420.
  • the rotor core 410 is rotatably disposed in a cylindrical space formed in the center of the stator 300.
  • the rotor core 410 may be formed by stacking a plurality of disk-shaped core plates 411.
  • the rotor core 410 may have a plurality of pockets 410P disposed thereon.
  • the pocket 410P may have an open outer shape.
  • the pocket 410P may have a radial length greater than a circumferential width.
  • the plurality of pockets 410P may be disposed at predetermined intervals in the circumferential direction of the rotor core 410.
  • the plurality of pockets 410P may be disposed in a radial direction based on the center of the rotor core 410.
  • a magnet 420 is disposed in the pocket 410P.
  • the magnet 420 includes a rare earth element.
  • the magnet 420 may be a rare earth magnet (eg, a NdFeB (neodymium) magnet or a SmCo (samarium cobalt) magnet).
  • FIG. 3 is an exploded perspective view showing a state in which the core plates of the rotor core shown in FIG. 2 are stacked
  • FIG. 4 is a perspective view illustrating a state in which the core plates of the rotor core shown in FIG. 3 are stacked.
  • the rotor core 410 is formed by stacking a plurality of core plates 411 in the axial direction of the shaft 500.
  • the core plate 411 is formed of a metal material to form a magnetic flux path between the magnets 420.
  • a nonmagnetic member having a cylindrical shape may be disposed outside the rotor core 410.
  • the material of the non-magnetic member is applied without limitation if it is a material that shields the magnetic force.
  • the core plate 411 includes a central portion 4111 and a plurality of radiating portions 4112 coupled to the central portion 4111.
  • the central portion 4111 and the plurality of radiating portions 4112 may be integrally formed or formed in a combined structure.
  • the center 4111 has a through hole into which the shaft 500 is inserted.
  • the through hole may be formed in a long hole shape.
  • the inner wall of the central part 4111 forming the through hole may be a flat surface, and when combined with the shaft 500, a knurled shape may be formed to increase the fixing force with the shaft 500.
  • the plurality of radiating parts 4112 are radially connected to the outside of the central part 4111.
  • Each of the plurality of radiating portions 4112 includes a pocket 410P.
  • each of the plurality of radiating portions 4112 includes a surface forming the pocket 410P and a step portion 4113 forming a step difference.
  • the step portion 4113 is disposed radially outside the pocket 410P, and when the magnet 220 is disposed in the pocket 410P, it is disposed outside the magnet 220 to constrain the separation of the magnet 220. have.
  • a mold may be injected between the stepped portions 4113.
  • the step portion 4113 of the plurality of radiating portions 4112 of the core plate 411 may have a plurality of shapes.
  • the plurality of radiating portions 4112 may have a step portion 4113 having different shapes from each other, and the step portion 4113 may have a first step portion 4113A and a second step portion having different shapes.
  • 4113B, a third step portion 4113C, and a fourth step portion 4113D may be included.
  • FIG. 5 is a perspective view of a core plate
  • FIG. 6 is a side view showing an enlarged stepped portion of a pocket.
  • the radiating portion 4112 disposed on one side and the pocket 410P overlap in the radial direction.
  • the protrusion 4114 protrudes from one surface 4112A forming the pocket 410P of the radiating portion 4112, and the other surface 4112B has a portion facing the protrusion 4114. It is recessed to form a recessed jaw 4115.
  • the protrusion 4114 may protrude from one surface and the other surface of the second step portion 4113B forming the pocket 410P of the radiating portion 4112.
  • the radiating portion 4112 disposed on the other side and the pocket 410P overlap in the radial direction.
  • one side 4112A forming the pocket 410P of the radiating portion 4112 is recessed to form a recessed jaw 4115, and the other side 4112B faces the recessed position.
  • the protrusion 4114 may protrude from the portion.
  • the radiating portion 4112 and the pocket 410P do not overlap in the radial direction.
  • one surface 4112A and the other surface 4112B forming the pocket 410P of the radiating portion 4112 may be recessed.
  • One core plate 411 may include at least two of the first to fourth stepped portions 4113A, 4113B, 4113C, and 4113D.
  • one core plate 411 may include all of the first to fourth step portions 4113A, 4113B, 4113C, and 4113D.
  • the first to fourth step portions 4113A, 4113B, 4113C, and 4113D may be alternately disposed on one core plate 411 in the circumferential direction.
  • the number and order of each of the first to fourth step portions 4113A, 4113B, 4113C, and 4113D are not limited.
  • first step portion 4113A and the third step portion 4113C are disposed in the circumferential direction with the second step portion 4113C or the fourth step portion 4113D therebetween. That is, the first step portion 4113A and the third step portion 4113C are not disposed adjacent to each other in the circumferential direction.
  • first to fourth stepped portions 4113A, 4113B, 4113C, and 4113D may be repeatedly arranged in a certain order. That is, the first to fourth step portions 4113A, 4113B, 4113C, and 4113D on the core plate 411 may be disposed to be symmetrical. In this case, the symmetrical structure of the first to fourth stepped portions 4113A, 4113B, 4113C, and 4113D may vary according to the number of poles and slots of the motor.
  • FIG. 7 is a view showing the direction of vibration according to the number of poles and slots of the motor.
  • FIG. 7 shows the vibration direction of the 8-pole 9-slot (8p9s) motor
  • (b) shows the vibration direction of the 10-pole 12-slot (10p12s) motor
  • (c) is 6-pole The vibration direction of the 9-slot (6p9s) motor is shown
  • (d) shows the vibration direction of the 8-pole 12-slot (8p12s) motor.
  • the vibration direction of the motor is formed to be inclined in two directions in an oval shape, so the first to fourth steps of the core plate 411 (4113A, 4113B, 4113C) It is preferable that the order of ,4113D) is arranged to have a two-way symmetric structure.
  • the vibration direction of the motor is formed to be inclined in three directions in a triangular shape, so the first to fourth step portions 4113A and 4113B ,4113C, 4113D) are preferably arranged to have a three-way symmetrical structure.
  • the vibration direction of the motor is formed to be inclined in four directions in a rhombus shape, so the first to fourth step portions 4113A and 4113B ,4113C, 4113D) are preferably arranged to have a four-way symmetrical structure.
  • the plurality of core plates 411 are stacked while being rotated at a predetermined angle with respect to the adjacent core plates 411.
  • each core plate 411 may be rotated 360/n° with respect to other core plates stacked in the axial direction.
  • the core plates 411 are stacked in a state rotated by 36° toward the axial direction.
  • first stepped portion 4113A and the third stepped portion 4113C may be disposed in the axial direction with the second stepped portion 4113B or the fourth stepped portion 4113D interposed therebetween. That is, in one pocket 410P, the first step portion 4113A and the third step portion 4113C are not disposed adjacent to each other in the axial direction.
  • FIG. 8 is a graph showing a cogging torque value according to a rotation angle of a conventional spoke type motor of the present invention and a motor according to an embodiment.
  • the conventional spoke type motor has a cogging torque value of about -20mNm to 40mNm as the rotation angle changes.
  • the motor according to the embodiment of the present invention has a cogging torque value of about -10mNm to 10mNm as the rotation angle changes.
  • the motor according to the present invention variously implements the shape of the step portion overlapping the pocket of the core plate, so that the cogging torque can be reduced while the motor having a strong magnetic flux density is driven.
  • the skew angle by giving the effect of the skew angle, it is possible to reduce the cost required for the skew angle when manufacturing the rotor, and provide a low-cost, high-efficiency motor.
  • motor 100: housing, 200: cover, 300: stator, 310: stator core, 320: coil, 330: insulator, 400: rotor, 410: rotor core, 410P: pocket, 411: core plate, 4111: center , 4112: radiating part, 4113: stepped part, 4114: protrusion, 420: magnet, 500: shaft, 600: busbar, 700: sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 샤프트; 상기 샤프트와 결합하는 로터; 및 상기 로터의 외측에 배치되는 스테이터를 포함하고, 상기 로터는 샤프트를 기준으로 방사상으로 복수의 포켓을 형성하는 로터 코어, 상기 포켓에 삽입되는 마그넷 및 상기 마그넷의 외측에 배치되는 상기 로터 코어는 축 방향으로 적층된 복수의 코어 플레이트를 포함하고, 상기 코어 플레이트는 중심부, 상기 중심부와 연결되는 복수개의 방사부 및 상기 복수개의 방사부 각각은 포켓을 형성하는 면과 단차를 갖는 단차부를 포함하고, 상기 복수개의 단차부는 서로 형상이 상이한 제1 단차부, 제2 단차부, 제3 단차부 및 제4 단차부 중 적어도 2개를 포함하는 모터를 제공한다.

Description

모터
실시예는 모터에 관한 것이다.
모터는 샤프트, 로터 및 스테이터를 포함한다. 로터에는 복수 개의 마그넷이 배치될 수 있다. 로터의 코어의 내부에 마그넷이 삽입 결합되는 IPM(Inner Permanent Magnet) 모터와, 로터의 코어의 표면에 마그넷이 부착되는 SPM(Surface Permanent Magnet) 로터로 나뉘어 진다.
IPM 모터 중, 스포크(spoke) 타입의 모터가 있다. 스포크 타입의 모터의 경우, 폭보다 길이가 긴 마그넷이 방사형으로 배치된다. 마그넷은 로터 코어의 포켓에 배치될 수 있다. 이러한 스포크 타입의 모터는 높은 출력 밀도를 갖는 특징이 있다. 이때, 스포크 타입의 모터는 구동시에 높은 자속으로 인하여 코깅 토크(Cogging torque)가 높아지면서 모터의 성능을 저하하는 문제가 있다. 이에, 로터 코어의 형상을 개선하여 모터의 코깅 토크를 절감하는 것이 요구되고 있다.
이에, 실시예는 상기와 같은 문제점을 해결하기 위한 것으로, 로터 코어의 형상을 개선하여 코깅 토크를 절감할 수 있는 모터를 제공하는 것에 그 목적이 있다.
본 발명의 일 실시예에 따른 모터는 샤프트; 상기 샤프트와 결합하는 로터; 및 상기 로터의 외측에 배치되는 스테이터를 포함하고, 상기 로터는 샤프트를 기준으로 방사상으로 복수의 포켓을 형성하는 로터 코어와, 상기 포켓에 삽입되는 마그넷을 포함하고, 상기 로터 코어는 축 방향으로 적층된 복수의 코어 플레이트를 포함하고, 상기 코어 플레이트는 중심부, 상기 중심부와 연결되는 복수개의 방사부 및 상기 복수개의 방사부를 포함하고, 상기 복수개의 방사부 각각은 포켓을 형성하는 면과 단차를 갖는 단차부를 포함하고, 상기 복수개의 단차부는 서로 형상이 상이한 제1 단차부, 제2 단차부, 제3 단차부 및 제4 단차부 중 적어도 2개를 포팜할 수 있다.
상기 포켓의 수가 n개이며, 하나의 코어 플레이트는 축 방향으로 적층된 다른 코어 플레이트에 대하여 360/n°로 회전될 수 있다.
상기 적층된 코어 플레이트는 축 방향으로 각 단차부의 형상이 다르거나, 동일할 수 있다.
상기 제1 단차부는 상기 방사부의 일측과 상기 포켓이 반경 방향으로 오버랩되고, 상기 제2 단차부는 상기 방사부의 양측과 상기 포켓이 반경 방향으로 오버랩되고, 상기 제3 단차부는 상기 방사부의 타측과 상기 포켓이 반경 방향으로 오버랩되고, 상기 제4 단차부는 상기 방사부와 상기 포켓이 반경 방향으로 오버랩되지 않을 수 있다.
상기 제1 단차부는, 상기 방사부의 포켓을 형성하는 일면에서 돌기가 돌출되고, 타면은 상기 돌기와 마주하는 부분이 함몰될 수 있다.
상기 제2 단차부는, 상기 방사부의 포켓을 형성하는 일면 및 타면에서 각각 돌기가 돌출될 수 있다.
상기 방사부의 포켓을 형성하는 일면 및 타면에서 각각 돌출된 돌기는 서로 이격될 수 있다.
상기 제3 단차부는, 상기 방사부의 포켓을 형성하는 일면이 함몰되고, 타면은 상기 함몰된 위치와 마주하는 부분에서 돌기가 돌출될 수 있다.
상기 제4 단차부는, 상기 방사부의 포켓을 형성하는 일면 및 타면이 함몰될 수 있다.
원주 방향을 기준으로 서로 이격된 상기 제1 단차부와 상기 제3 단차부 사이에는 상기 제2 단차부 또는 상기 제4 단차부가 배치될 수 있다.
축 방향을 기준으로 서로 이격된 상기 제1 단차부와 상기 제3 단차부 사이에는 상기 제2 단차부 또는 상기 제4 단차부가 배치될 수 있다.
본 발명에 따르면, 로터의 포켓 형상을 개선하여 스포크 타입 모터의 높은 자력 성능을 유지하면서, 코깅 토크를 절감하여 모터의 성능을 향상시킬 수 있다.
본 발명에 따르면, 로터의 포켓 형상을 개선하여 스큐 앵글의 효과를 주어, 로터 제조 시 스큐 앵글에 소요되는 비용을 줄이고, 저비용 고효율 모터를 제공할 수 있다.
도 1은 실시예에 따른 모터를 도시한 단면도,
도 2는 도 1에서 나타낸 로터의 평면도.
도 3은 도 2에서 나타낸 로터 코어의 코어 플레이트가 적층되는 상태를 도시한 분해 사시도.
도 4는 도 3에서 나타낸 로터 코어의 코어 플레이트가 적층된 상태를 도시한 사시도.
도 5는 도 3에서 나타낸 코어 플레이트의 사시도.
도 6은 포켓에 부위의 단차부를 확대하여 도시한 측면도.
도 7은 모터의 폴과 슬롯 수에 따른 진동의 방향을 도시한 도면.
도 8은 본 발명의 종래의 모터와 본 발명의 실시예에 따른 모터의 회전각에 따른 코깅 토그값을 나타내는 그래프.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 1은 실시예에 따른 모터를 도시한 단면도이다.
도 1을 참조하면, 실시예에 따른 모터(1)는, 일측에 개구가 형성된 하우징(100), 하우징(100)의 상부에 배치되는 커버(200), 하우징(100)의 내부에 배치되는 스테이터(300), 스테이터(300)의 내측에 배치되는 로터(400), 로터(400)에 결합하여 회전하는 샤프트(500), 스테이터(300)의 상측에 배치되는 버스바(600) 및 샤프트(500)의 회전을 감시하는 센서부(700)를 포함할 수 있다.
하우징(100)과 커버(200)는 모터(1)의 외형을 형성할 수 있다. 하우징(100)과 커버(200)는 결합하여 수용 공간을 형성한다. 이때, 수용공간에는 스테이터(300), 로터(400) 및 샤프트(500) 등이 배치될 수 있다. 이때, 샤프트(500)는 수용공간 내에 회전 가능하게 배치된다. 이에, 모터(1)는 샤프트(500)의 상부와 하부에 각각 배치되는 베어링(10)을 더 포함할 수 있다.
하우징(100)의 형상 또는 재질은 다양하게 변경될 수 있다. 예를 들어, 하우징(100)은 고온에서도 잘 견딜 수 있는 금속 재질일 수 있다.
커버(200)는 하우징(100)의 상부에 배치되어, 하우징(100)의 개구를 덮는다.
스테이터(300)는 하우징(100)의 내측에 배치될 수 있다. 이때, 스테이터(300)는 열간압입 방식을 통해 하우징(100)에 결합될 수 있다. 이에, 스테이터(300)는 하우징(100)의 내주면에 지지될 수 있다.
스테이터(300)는 로터(400)의 외측에 배치된다. 스테이터(300)는 스테이터 코어(310)와 코일(320)과 인슐레이터(330)를 포함할 수 있다. 인슐레이터(330)는 스테이터 코어(310)에 장착된다. 이때, 코일(320)은 인슐레이터(330)에 권선된다. 여기서, 인슐레이터(330)는 스테이터 코어(310)와 코일(320) 사이에 배치되어 스테이터 코어(310)와 코일(320)을 절연시킨다.
스테이터 코어(310)에는 회전 자계를 형성하는 코일(320)이 권선될 수 있다.
스테이터 코어(310)는 얇은 강판 형태의 복수 개의 플레이트가 상호 적층된 형태로 이루어질 수 있으나 반드시 이에 한정되는 것은 아니다. 예컨데, 스테이터 코어(310)는 하나의 단일품으로 형성될 수도 있다. 또한, 스테이터 코어(310)는 복수 개의 단위 스테이터 코어를 원주 방향을 따라 배치하여 형성할 수 있다. 로터(400)는 스테이터(300)의 내측에 배치될 수 있다. 그리고, 중심부에 샤프트(500)가 결합될 수 있다.
샤프트(500)는 베어링(10)에 의해 하우징(100)의 내부에서 회전 가능하게 배치될 수 있다. 그리고, 샤프트(500)는 로터(400)의 회전에 연동하여 함께 회전할 수 있다.
도 2는 도 1에서 나타낸 로터의 평면도이다.
도 2를 참조하면, 로터(400)는 로터 코어(410)와 마그넷(420)을 포함할 수 있다.
로터 코어(410)는 스테이터(300)의 중앙에 형성된 원통형의 공간부에 회전 가능하게 배치된다. 이때, 로터 코어(410)는 디스크 형상의 코어 플레이트(411)가 복수 매 적층 되어 형성될 수 있다.
로터 코어(410)는 복수 개의 포켓(410P)이 배치될 수 있다.
포켓(410P)은 외측이 개방된 형상을 가질 수 있다. 포켓(410P)은 반경 방향 길이가 원주 방향 폭보다 클 수 있다. 복수 개의 포켓(410P)은 로터 코어(410)의 원주 방향으로 일정 간격을 두고 배치될 수 있다. 그리고 복수 개의 포켓(410P)은 로터 코어(410) 중심을 기준으로 방사 방향으로 배치될 수 있다. 이러한 포켓(410P)에는 마그넷(420)이 배치된다.
이때, 마그넷(420)은 희토류 원소를 포함한다. 마그넷(420)은 희토류 자석(예, NdFeB(네오디뮴) 자석, SmCo(사마륨 코발트) 자석)일 수 있다.
도 3은 도 2에서 나타낸 로터 코어의 코어 플레이트가 적층되는 상태를 도시한 분해 사시도이며, 도 4는 도 3에서 나타낸 로터 코어의 코어 플레이트가 적층된 상태를 도시한 사시도이다.
도 3을 참조하면, 로터 코어(410)는 복수 매의 코어 플레이트(411)가 샤프트(500)의 축 방향으로 적층 형성된다. 이때, 코어 플레이트(411)는 금속 재질로 형성되어 마그넷(420) 사이의 자속 경로를 형성한다. 이때, 로터 코어(410)의 외측으로 원통 형상의 비자성 부재가 배치될 수 있다. 이때, 비자성 부재의 재질은 자력을 차폐하는 소재면 제한없이 적용 된다.
코어 플레이트(411)는 중심부(4111) 및 상기 중심부(4111)와 결합하는 복수개의 방사부(4112)를 포함한다. 이때, 중심부(4111)와 복수개의 방사부(4112)를 일체로 형성 할 수도 있고, 결합하는 구조로 형성 할 수도 있다.
중심부(4111)는 샤프트(500)가 삽입되는 관통홀이 형성된다. 이때, 관통홀은 장공 형상으로 형성될 수 있다. 상기 관통홀을 형성하는 중심부(4111)의 내벽은 평탄면일 수 있고, 샤프트(500)와 결합 시 샤프트(500)와의 고정력을 증대하기 위하여 널링 형상이 형성될 수도 있다.
복수개의 방사부(4112)는 중심부(4111)의 외측에 방사 형상으로 연결된다. 복수개의 방사부(4112) 각각은 포켓(410P)을 포함한다. 이때, 복수개의 방사부(4112) 각각은 포켓(410P)을 형성하는 면과 단차를 형성하는 단차부(4113)를 포함한다. 단차부(4113)는 포켓(410P)보다 반경방향 외측에 배치되고, 포켓(410P)에 마그넷(220)이 배치되면, 마그넷(220)의 외측에 배치되어 마그넷(220)의 이탈을 구속 할 수 있다. 이때, 단차부(4113)의 사이로 몰드가 주입될 수 있다.
코어 플레이트(411)의 복수개의 방사부(4112)의 단차부(4113)는 복수의 형상을 가질 수 있다. 보다 상세하게는, 복수개의 방사부(4112)는 서로 형상이 상이한 단차부(4113)를 가질 수 있으며, 이때 단차부(4113)는 서로 형상이 상이한 제1 단차부(4113A), 제2 단차부(4113B), 제3 단차부(4113C) 및 제4 단차부(4113D)를 포함할 수 있다.
도 5는 코어 플레이트의 사시이고, 도 6은 포켓에 부위의 단차부를 확대하여 도시한 측면도이다.
도 5 및 도 6을 참조하면, 제1 단차부(4113A)는 일측에 배치된 방사부(4112)와 포켓(410P)이 반경 방향으로 오버랩된다. 이때, 제1 단차부(4113A)는 방사부(4112)의 포켓(410P)을 형성하는 일면(4112A)에서 돌기(4114)가 돌출되고, 타면(4112B)은 돌기(4114)와 마주하는 부분이 함몰되어 함몰턱(4115)이 형성된다.
제2 단차부(4113B)는 양측의 방사부(4112)와 포켓(410P)이 반경 방향으로 오버랩된다. 이때, 제2 단차부(4113B)는 방사부(4112)의 포켓(410P)을 형성하는 일면 및 타면에서 돌기(4114)가 돌출될 수 있다.
제3 단차부(4113C)는 타측에 배치된 방사부(4112)와 포켓(410P)이 반경 방향으로 오버랩된다. 이때, 제3 단차부(4113C)는 방사부(4112)의 포켓(410P)을 형성하는 일면(4112A)이 함몰되어 함몰턱(4115)을 형성하고, 타면(4112B)은 상기 함몰된 위치와 마주하는 부분에서 돌기(4114)가 돌출될 수 있다.
제4 단차부(4113D)는 방사부(4112)와 포켓(410P)이 반경 방향으로 오버랩되지 않는다. 이때, 제4 단차부(4113D)는 방사부(4112)의 포켓(410P)을 형성하는 일면(4112A) 및 타면(4112B)이 함몰될 수 있다.
하나의 코어 플레이트(411)는 제1 내지 제4 단차부(4113A,4113B,4113C,4113D) 중에서 적어도 두 개를 포함할 수 있다. 바람직하게는, 하나의 코어 플레이트(411)는 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)를 모두 포함할 수 있다. 그리고, 하나의 코어 플레이트(411) 상에 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)는 원주 방향으로 번갈아 가면서 배치될 수 있다. 여기서, 각 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)의 개수와 순서는 한정하지 않는다. 단, 제1 단차부(4113A)와 제3 단차부(4113C)는 원주 방향으로 제2 단차부(4113C) 또는 제4 단차부(4113D)를 사이에 두고 배치된다. 즉, 제1 단차부(4113A)와 제3 단차부(4113C)는 원주 방향으로 인접 배치되지 않는다.
한편, 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)는 일정한 순서를 가지고 반복 배치될 수 있다. 즉, 코어 플레이트(411) 상에 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)는 대칭을 이루도록 배치될 수 있다. 이때, 모터의 폴과 슬롯 수에 따라 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)의 대칭 구조가 달라질 수 있다.
도 7은 모터의 폴과 슬롯 수에 따른 진동의 방향을 도시한 도면이다.
도 7을 참조하면, (a)는 8폴 9슬롯(8p9s) 모터의 진동 방향을 나타낸 것이고, (b)는 10폴 12슬롯(10p12s) 모터의 진동 방향을 나타낸 것이며, (c)는 6폴 9슬롯(6p9s) 모터의 진동 방향을 나타낸 것이고, (d)는 8폴 12슬롯(8p12s) 모터의 진동 방향을 나타낸 것이다.
10폴 12슬롯(10p12s) 모터의 경우 (b)와 같이 모터의 진동 방향이 타원 형상으로 두 방향으로 기울어지게 형성되므로, 코어 플레이트(411)의 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)의 순서가 2방향 대칭 구조를 갖도록 배치되는 것이 바람직하다.
또한, 6폴 9슬롯(6p9s) 모터의 경우 (c)와 같이 모터의 진동 방향이 삼각 형상으로 세 방향으로 기울어지게 형성되므로, 코어 플레이트(411)의 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)의 순서가 3방향 대칭 구조를 갖도록 배치되는 것이 바람직하다.
그리고, 8폴 12슬롯(8p12s) 모터의 경우 (d)와 같이 모터의 진동 방향이 마름모 형상으로 네 방향으로 기울어지게 형성되므로, 코어 플레이트(411)의 제1 내지 제4 단차부(4113A,4113B,4113C,4113D)의 순서가 4방향 대칭 구조를 갖도록 배치되는 것이 바람직하다.
복수의 코어 플레이트(411)는 인접한 코어 플레이트(411)에 대하여 소정 각도로 회전된 상태로 적층된다. 이때, 코어 플레이트(411)에 배치된 포켓의 수가 n개일 경우, 각 코어 플레이트(411)는 축 방향으로 적층된 다른 코어 플레이트에 대하여 360/n°로 회전될 수 있다. 예를 들면, 도 3과 같이, 포켓(410P)의 수가 10개인 경우 코어 플레이트(411)는 축 방향으로 갈수록 36°씩 회전된 상태로 적층된다.
이때, 제1 단차부(4113A)와 제3 단차부(4113C)는 축 방향으로 제2 단차부(4113B) 또는 제4 단차부(4113D)를 사이에 두고 배치될 수 있다. 즉, 하나의 포켓(410P) 안에서 제1 단차부(4113A)와 제3 단차부(4113C)는 축 방향으로 인접 배치되지 않는다.
도 8은 본 발명의 종래의 스포크 타입 모터와 실시예에 따른 모터의 회전각에 따른 코깅 토그값을 나타내는 그래프이다.
도 8의 그래프를 참조하면, 종래의 스포크 타입 모터는 회전각이 변화함에 따라, 약 -20mNm 내지 40mNm의 코깅 토크 값을 갖는다. 반면, 본 발명의 실시예에 따른 모터는 회전각이 변화함에 따라, 약 -10mNm 내지 10mNm의 코깅 토크 값을 갖는다.
즉, 본 발명에 따른 모터는 코어 플레이트의 포켓과 오버랩되는 단차부의 형상을 다양하게 구현하여, 자속 밀도가 강한 모터가 구동하는 동안 코깅 토크를 절감할 수 있다. 또한, 스큐 앵글의 효과를 주어, 로터 제조 시 스큐 앵글에 소요되는 비용을 줄이고, 저비용 고효율 모터를 제공할 수 있다.
이상으로 본 발명의 바람직한 하나의 실시예에 따른 모터에 관하여 첨부된 도면을 참조하여 구체적으로 살펴보았다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
1: 모터, 100: 하우징, 200: 커버, 300: 스테이터, 310: 스테이터 코어, 320: 코일, 330: 인슐레이터, 400: 로터, 410: 로터 코어, 410P: 포켓, 411: 코어 플레이트, 4111: 중심부, 4112: 방사부, 4113: 단차부, 4114: 돌기, 420: 마그넷, 500: 샤프트, 600: 버스바, 700: 센서

Claims (11)

  1. 샤프트;
    상기 샤프트와 결합하는 로터; 및
    상기 로터의 외측에 배치되는 스테이터를 포함하고,
    상기 로터는 샤프트를 기준으로 방사상으로 복수의 포켓을 형성하는 로터 코어와, 상기 포켓에 삽입되는 마그넷을 포함하고,
    상기 로터 코어는 축 방향으로 적층된 복수의 코어 플레이트를 포함하고,
    상기 코어 플레이트는 중심부, 상기 중심부와 연결되는 복수개의 방사부 및 상기 복수개의 방사부를 포함하고, 상기 복수개의 방사부 각각은 포켓을 형성하는 면과 단차를 갖는 단차부를 포함하고,
    상기 복수개의 단차부는 서로 형상이 상이한 제1 단차부, 제2 단차부, 제3 단차부 및 제4 단차부 중 적어도 2개를 포함하는 모터.
  2. 제1항에 있어서,
    상기 포켓의 수가 n개이며,
    하나의 코어 플레이트는 축 방향으로 적층된 다른 코어 플레이트에 대하여 360/n°로 회전된 모터.
  3. 제2항에 있어서,
    상기 적층된 코어 플레이트는 축 방향으로 각 단차부의 형상이 다르거나, 동일한 모터.
  4. 제1항에 있어서,
    상기 제1 단차부는 상기 방사부의 일측과 상기 포켓이 반경 방향으로 오버랩되고,
    상기 제2 단차부는 상기 방사부의 양측과 상기 포켓이 반경 방향으로 오버랩되고,
    상기 제3 단차부는 상기 방사부의 타측과 상기 포켓이 반경 방향으로 오버랩되고,
    상기 제4 단차부는 상기 방사부와 상기 포켓이 반경 방향으로 오버랩되지 않는 모터.
  5. 제4항에 있어서,
    상기 제1 단차부는,
    상기 방사부의 포켓을 형성하는 일면에서 돌기가 돌출되고, 타면은 상기 돌기와 마주하는 부분이 함몰되는 모터.
  6. 제4항에 있어서,
    상기 제2 단차부는,
    상기 방사부의 포켓을 형성하는 일면 및 타면에서 각각 돌기가 돌출되는 모터.
  7. 제6항에 있어서,
    상기 방사부의 포켓을 형성하는 일면 및 타면에서 각각 돌출된 돌기는 서로 이격되는 모터.
  8. 제4항에 있어서,
    상기 제3 단차부는,
    상기 방사부의 포켓을 형성하는 일면이 함몰되고, 타면은 상기 함몰된 위치와 마주하는 부분에서 돌기가 돌출되는 모터.
  9. 제4항에 있어서,
    상기 제4 단차부는,
    상기 방사부의 포켓을 형성하는 일면 및 타면이 함몰되는 모터.
  10. 제1항에 있어서,
    원주 방향을 기준으로 서로 이격된 상기 제1 단차부와 상기 제3 단차부 사이에는 상기 제2 단차부 또는 상기 제4 단차부가 배치되는 모터.
  11. 제1항에 있어서,
    축 방향을 기준으로 서로 이격된 상기 제1 단차부와 상기 제3 단차부 사이에는 상기 제2 단차부 또는 상기 제4 단차부가 배치되는 모터.
PCT/KR2020/003508 2019-03-28 2020-03-13 모터 WO2020197138A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080025624.2A CN113646993B (zh) 2019-03-28 2020-03-13 马达
US17/593,896 US11979061B2 (en) 2019-03-28 2020-03-13 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0035670 2019-03-28
KR1020190035670A KR20200114258A (ko) 2019-03-28 2019-03-28 모터

Publications (1)

Publication Number Publication Date
WO2020197138A1 true WO2020197138A1 (ko) 2020-10-01

Family

ID=72610216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003508 WO2020197138A1 (ko) 2019-03-28 2020-03-13 모터

Country Status (4)

Country Link
US (1) US11979061B2 (ko)
KR (1) KR20200114258A (ko)
CN (1) CN113646993B (ko)
WO (1) WO2020197138A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240025399A (ko) * 2022-08-18 2024-02-27 엘지전자 주식회사 모터의 회전자 코어 구조물 및 이를 포함하는 모터의 회전자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231196A (ja) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd 永久磁石ロータ及びその着磁方法
JP2004254496A (ja) * 2003-02-18 2004-09-09 Minebea Co Ltd モータ用ロータアセンブリ、モータ用ステータアセンブリ、永久磁石型モータ、およびモータ
JP2006254598A (ja) * 2005-03-10 2006-09-21 Asmo Co Ltd 埋込磁石型モータ
KR20110028033A (ko) * 2009-09-11 2011-03-17 대성전기공업 주식회사 모터 회전자
CN105226859A (zh) * 2015-11-03 2016-01-06 中科盛创(青岛)电气股份有限公司 一种永磁电机v形斜极的转子结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG39783A1 (en) * 1984-05-08 1986-08-15 Popov Rotor with permanent magnets for electric machine
EP1657800B1 (de) * 2004-11-12 2007-08-08 Grundfos A/S Permanentmagnet-Rotor
US7932658B2 (en) * 2007-03-15 2011-04-26 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP5123008B2 (ja) * 2008-03-05 2013-01-16 株式会社ミツバ ブラシレスモータ
DE102009000681A1 (de) * 2009-02-06 2010-08-12 Robert Bosch Gmbh Synchronmaschine
JP4645765B1 (ja) * 2009-12-24 2011-03-09 トヨタ自動車株式会社 モータロータ及びモータロータ製造方法
CN102290947B (zh) * 2010-06-17 2015-05-20 阿斯莫有限公司 电动机
CN102931795B (zh) * 2011-08-11 2014-11-12 中山大洋电机制造有限公司 一种电机结构
JP2014007939A (ja) * 2012-05-29 2014-01-16 Mitsuba Corp ブラシレスモータ
JP5877777B2 (ja) * 2012-09-26 2016-03-08 日立オートモティブシステムズ株式会社 回転電機、磁極ピース製造方法
KR102116478B1 (ko) * 2013-11-19 2020-05-28 엘지이노텍 주식회사 모터
KR101591048B1 (ko) * 2014-01-23 2016-02-02 엘지이노텍 주식회사 모터용 로터와 이를 포함하는 모터 및 로터의 제조방법
KR20160112412A (ko) 2015-03-19 2016-09-28 주식회사 고아정공 회전자코어를 포함하는 모터의 회전자 및 그 제조 방법
WO2019045305A1 (ko) * 2017-08-28 2019-03-07 엘지이노텍 주식회사 스테이터 및 이를 포함하는 모터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231196A (ja) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd 永久磁石ロータ及びその着磁方法
JP2004254496A (ja) * 2003-02-18 2004-09-09 Minebea Co Ltd モータ用ロータアセンブリ、モータ用ステータアセンブリ、永久磁石型モータ、およびモータ
JP2006254598A (ja) * 2005-03-10 2006-09-21 Asmo Co Ltd 埋込磁石型モータ
KR20110028033A (ko) * 2009-09-11 2011-03-17 대성전기공업 주식회사 모터 회전자
CN105226859A (zh) * 2015-11-03 2016-01-06 中科盛创(青岛)电气股份有限公司 一种永磁电机v形斜极的转子结构

Also Published As

Publication number Publication date
CN113646993B (zh) 2023-08-04
KR20200114258A (ko) 2020-10-07
US11979061B2 (en) 2024-05-07
US20220190659A1 (en) 2022-06-16
CN113646993A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2016148541A1 (ko) 회전자코어를 포함하는 모터의 회전자 및 그 제조 방법
WO2016060311A1 (ko) 평판형 모터의 고정자 및 이를 이용한 평판형 모터
WO2010082705A1 (ko) 액시얼 타입 모터
WO2011162501A2 (ko) 더블 스테이터/더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
CN1819405B (zh) 具有将磁体固定在转子中的盖板的转子
WO2014129791A1 (ko) 전동기 및 전동기 제조방법
WO2018044038A1 (ko) 라인기동식 동기형 릴럭턴스 전동기 및 그 회전자
WO2017150886A1 (ko) 로터 및 이를 포함하는 모터
WO2020138583A1 (ko) 자기부상 회전체를 포함하는 축방향 모터
WO2020197138A1 (ko) 모터
WO2018139791A1 (ko) 모터
WO2017069488A1 (ko) 로터 코어, 로터 및 이를 포함하는 모터
WO2020032600A1 (ko) 회전축 이용을 위한 발전기의 스테이터와 인너로터 제조방법
WO2015190719A1 (en) Brushless motor
WO2015170805A1 (ko) 플럭스 필터링 기능을 갖는 회전자 및 그를 포함하는 동기형 모터
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
WO2014061908A1 (ko) 이중 공극형 발전기
WO2020045936A1 (ko) 모터
WO2012015209A2 (ko) 분할형 전기자 형태의 전동기
JPH11308789A (ja) 電気モータのステータ
WO2020055067A1 (ko) 모터
WO2022181883A1 (ko) 센싱 마그넷 일체형 회전자
WO2014010978A1 (ko) 전기자유닛 및 이를 구비한 회전기
WO2018056561A1 (ko) 무정지 모터
WO2016171500A1 (ko) 발전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779071

Country of ref document: EP

Kind code of ref document: A1