WO2017114357A1 - 去除透明导电氧化物的方法 - Google Patents

去除透明导电氧化物的方法 Download PDF

Info

Publication number
WO2017114357A1
WO2017114357A1 PCT/CN2016/112112 CN2016112112W WO2017114357A1 WO 2017114357 A1 WO2017114357 A1 WO 2017114357A1 CN 2016112112 W CN2016112112 W CN 2016112112W WO 2017114357 A1 WO2017114357 A1 WO 2017114357A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
oxide layer
aqueous solution
oxide
solution
Prior art date
Application number
PCT/CN2016/112112
Other languages
English (en)
French (fr)
Inventor
克里斯蒂安·德罗斯特
彭寿
Original Assignee
中国建材国际工程集团有限公司
Ctf太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材国际工程集团有限公司, Ctf太阳能有限公司 filed Critical 中国建材国际工程集团有限公司
Publication of WO2017114357A1 publication Critical patent/WO2017114357A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution

Definitions

  • the subject of the invention is a method of removing transparent conductive oxides in which an electrochemical process is utilized.
  • TCO transparent conductive oxide
  • These oxides are metal oxides (such as zinc oxide or tin oxide) which may be doped with other elements or combined with other elements.
  • metal oxides such as zinc oxide or tin oxide
  • ITO indium tin oxide
  • FTO fluorine tin oxide
  • ATO antimony tin oxide
  • stannate such as cadmium stannate
  • substrate includes any material and/or layer sequence on which a transparent conductive oxide can be deposited.
  • the concept "substrate” thus for example also includes so-called sputtered sheets which serve as a framework for the substrate to be coated or as a mask for depositing a defined structure.
  • oxide layer is deposited over the entire surface, then these oxide layers are subsequently structured by means of laser cutting or by machining (for example scribing), as described in document WO 2008/147696 A1.
  • these methods are only limitedly suitable for removing large areas of the deposited layers because they are very time consuming and costly.
  • damage to the substrate underlying the layer may also result during the process.
  • the zinc oxide-based oxide layer can also be removed by etching with hydrochloric acid (HCl).
  • HCl hydrochloric acid
  • tin oxide-based oxide layers are chemically relatively stable and thus difficult to perform wet chemical etching.
  • tin oxide is structured with silicon tetrachloride by reactive ion etching (RIE).
  • RIE reactive ion etching
  • the task therefore is to provide an alternative to the removal of such an oxide layer, which overcomes the drawbacks of the prior art and, in particular, can also be used for tin oxide-based oxide layers.
  • the method of removing a transparent conductive oxide layer from a substrate includes an electrolysis step in which a substrate is immersed in an aqueous solution, and a DC voltage or a direct current is applied to the oxide layer in such a manner that the oxide layer functions as a cathode. .
  • a reduction reaction is initiated on the cathode by an electric current introduced in the aqueous solution, and nascent hydrogen is generated in the reduction reaction.
  • This transiently stable primary hydrogen (abbreviated as H nasc ) has a higher reducing power than molecular hydrogen (H 2 ).
  • H nasc This transiently stable primary hydrogen
  • H 2 molecular hydrogen
  • nascent hydrogen is present in atomic form immediately after formation, and on the other hand, it is in an energy excited state shortly after the formation of H 2 .
  • transparent conductive oxides react with nascent hydrogen, wherein the oxide is reduced to the contained metal or ions containing the metal.
  • the metal or the generated ions are dissolved in the aqueous solution or reacted with the substance contained in the aqueous solution to remove the oxide from the substrate.
  • the method according to the invention thus comprises: at least the oxide layer and a direct voltage source or a step of electrically connecting a direct current source; a step of connecting the anode to a direct current voltage source or a direct current source; a step of at least partially immersing the substrate and the anode into the aqueous solution; and a step of applying a direct current voltage and a direct current to the substrate and the anode During this time the substrate and anode are in an aqueous solution.
  • the oxide layer is preferably electrically connected to the DC voltage source and the DC current source through the substrate. The substrate and/or anode need not be completely immersed in the aqueous solution during the electrolysis step.
  • the oxide layer is only removed from the region immersed in the aqueous solution. Further, the oxide layer is also removed only from the immersed region as long as it is not insulated from the aqueous solution by the non-conductive layer in this region.
  • the substrate and the anode are preferably immersed in an aqueous solution at the same time, but may also be immersed in sequence.
  • the aqueous solution various aqueous solutions which generate nascent hydrogen by electrolysis are used. That is, pure water can also be used in principle.
  • the aqueous solution contains other materials that increase the electrical conductivity of the aqueous solution and/or accelerate the formation of nascent hydrogen.
  • the type of substance which is soluble in water and the solution environment (basic or acidic) formed therefrom are advantageously selected such that one or more materials and/or anodes of the substrate and/or others The solution forms a contact object that is not eroded (eg, corroded).
  • the aqueous solution is preferably an alkaline solution, and it is further preferable to use a substance derived from the group consisting of sodium hydrogencarbonate (NaHCO 3 ), sodium hydroxide (NaOH), potassium hydrogencarbonate (KHCO 3 ), and potassium hydroxide (KOH). Other materials such as sodium carbonate (Na 2 CO 3 ) or lithium hydroxide (LiOH) may also be used.
  • the concentration of the salt contained covers a wide range (from 1 g/L solution to 100 g/L solution). It is especially preferred that the concentration of the salt mentioned in the solution is between 5 g/L solution and 80 g/L solution.
  • the aqueous solution preferably has a concentration between 0.5% and 8%.
  • the electrolysis step is preferably carried out at room temperature (i.e., at about 20 ° C), but can also be carried out at a slightly elevated temperature (up to about 80 ° C).
  • the applied direct current voltage or the introduced direct current is advantageously situated in a range in which the current density between 0.15 A/dm 2 and 25 A/dm 2 is adjusted depending on the size of the substrate.
  • the time for the step of electrolysis depends on the thickness of the oxide layer to be removed and the current density achieved.
  • the electrolysis step is carried out only for a short time, but at a high current density.
  • the time of the electrolysis step is in the range between 30 seconds and 15 minutes.
  • a neutralization step is carried out after the electrolysis step (i.e. after removal of the transparent conductive oxide from the substrate), in which the substrate is placed in a neutralization solution suitable for neutralization of the aqueous solution .
  • the neutralizing solution is an acid solution (such as diluted acetic acid, citric acid or hydrochloric acid), and when an acidic solution is used as the aqueous solution, the neutralizing solution is an alkaline solution.
  • the neutralizing solution is used to neutralize the aqueous solution residue on the substrate to prevent further chemical reactions of the aqueous component.
  • the cleaning step is carried out with a cleaning agent after the electrolysis step. It is particularly preferred that the washing step is carried out after the neutralization step and that the washing step is used to remove residuals of the aqueous solution (and neutralize the solution if necessary) and to remove the transparent conductive which is reduced but also adheres to the substrate. Oxide residue.
  • All suitable media can be used as the cleaning agent, particularly preferably deionized water, and isopropanol or acetone or an aqueous solution or combination of these. Auxiliaryly, it is also possible to carry out a gentle mechanical action by means of a sponge or a brush or by ultrasound, in order to also remove oxide particles adhering to the substrate, if necessary.
  • the substrate is preferably dried.
  • the anode of the electrolysis step a material from the group including platinum, carbon, iron, nickel, titanium, and stainless steel is preferably used.
  • the anode material is inert during electrolysis relative to the aqueous solution employed, i.e., it neither enters the solution and decomposes, does not react with the material from the aqueous solution, or forms oxygen with the anode. react.
  • a uniform current that hardly changes with time can be produced in the aqueous solution because no layer forming electrical insulation occurs on the anode.
  • the anodes are made of iron or stainless steel because they have only a small overvoltage during oxygen generation relative to other anode materials.
  • the method according to the invention provides the possibility of removing the layer consisting of a transparent conductive oxide by wet chemical methods, wherein an oxide which is relatively inert to conventional wet chemical etching can also be applied to the surface of the rough substrate.
  • the oxide is completely and deeply removed.
  • the smooth substrate surface can also be cleaned by the method according to the invention.
  • the use of corrosive and toxic chemicals can be avoided and damage to the surface of the substrate under the oxide to be removed can be avoided.
  • the method according to the invention is fast, precise and inexpensive with respect to the mechanical method of removing the oxide layer, since the oxide can also be removed from the large surface.
  • the metal components of the removed oxide are present in the form of ions or salts in aqueous solution, which can subsequently be recovered by further treatment of the aqueous solution.
  • expensive and/or rare materials like tin Sn, indium In
  • the method according to the invention can be used to remove layers consisting of transparent conductive oxides over the entire surface or to only partially remove such layers.
  • the partial removal preferably involves complete removal of the oxide layer from the defined lateral regions in the thickness direction, while the other lateral regions covered by the suitable cover layer or cover layer during the implementation of the method do not remove the oxide layer.
  • This process then corresponds to a process of structuring the oxide layer in the lateral direction.
  • Figure 1 shows, in cross section, a system in which a substrate 1 is immersed in an aqueous solution 3 in order to remove an oxide layer 2 deposited on a substrate 1, and the substrate serves as a cathode in a direct current circuit. The role.
  • Fig. 2 shows a sputtered sheet 11 as a substrate in which the oxide layer 2 should be removed over the entire surface.
  • Figure 3A shows in perspective view a solar cell semi-finished product in which the oxide layer 2 should be structured by an electrochemical process.
  • Figure 3B shows the solar cell semi-finished product of Figure 3A taken along line A-A Cross section (before removing oxide layer 2).
  • Figure 3C shows the cross section from Figure 3B (after removal of oxide layer 2).
  • Figure 1 shows a system in which a substrate 1 with a transparent conductive oxide layer 2 on a substrate is immersed in an aqueous solution 3.
  • the oxide layer 2 is located on the surface of the substrate 1 and at least partially covers it.
  • the aqueous solution 3 is located in a container 4 having a size corresponding to the size of the substrate 1 and the spacing and volume necessary to carry out the electrochemical process.
  • the substrate 1 is fastened to the holder 51 so that it is immersed in the aqueous solution 3 up to the height h s .
  • the height h s is also referred to as "the immersion depth of the substrate” hereinafter.
  • the substrate 51 can be immersed in an aqueous solution by means of the holder 51, and the substrate can be taken out again from the solution. Furthermore, the height h s can also be adjusted by the bracket 51 and changed as necessary during the method.
  • the oxide layer 2 and/or the substrate 1 are electrically connected to the electrodes of the direct voltage source or the direct current source 7 via electrical lines 61.
  • the other electrode of the DC voltage source or DC current source 7 is electrically connected to the anode 8 via an electrical conductor 62 which is immersed in the aqueous solution by means of a support 52.
  • the electrical connector of conductor 61 or 62 can also be integrated into bracket 51 or 52.
  • sodium hydroxide is used to provide an alkaline medium so as not to corrode the material of the substrate 1 and/or the anode 8 and/or the supports 51, 52 and/or the electrical conductors 61, 62, and to improve the conductivity of the solution.
  • the height h s may also be the entire height of the substrate 1 so that the substrate 1 or at least the entire oxide layer 2 is immersed in the aqueous solution 3. If this is not feasible, and the oxide layer 2 should also be removed from the region of the substrate 1 that is not immersed in the aqueous solution 3, then the method is repeated multiple times with the substrate position changed until the substrate is All areas where the oxide layer should be removed are immersed in the aqueous solution 3 and subjected to electrochemical treatment.
  • the sputter sheet 11 made of stainless steel (having a size of 6 mm ⁇ 6 mm, a thickness of 1 mm) was subjected to the method according to the present invention.
  • Figure 2 shows an embodiment of such a sputtered sheet as a substrate 1 treated in accordance with the method of the invention having an oxide layer 2 deposited thereon over the entire surface (with about 400 Layer thickness to 500 nm). In the case shown, the oxide layer extends over the entire surface of the sputtered sheet 11 on the surface of the sputtered sheet 11.
  • the surface of the sputtered sheet 11 may also have only a certain area, or the other surface of the sputtered sheet 11 (for example, the edge surface of the sputtered sheet 11) may be covered by the oxide layer 2.
  • the sputtered sheet was immersed in a 2% sodium hydroxide solution 3 by means of a jig as a holder 51 at room temperature, and loaded at a voltage of about 10 V for 30 s, wherein the vehicle battery charger was used as a direct current. Voltage source 7. The measured current was 1.5A.
  • a stainless steel sheet (size: 10 cm ⁇ 10 cm) was used as the anode 8, which was immersed in an aqueous solution by a second jig as a holder 52. Electrical conductors 61 and 62 are directly connected to the conductive fixture. In the immersion area of the sputtered sheet 11, the oxide layer 2 is completely removed under the conditions mentioned, wherein the substrate itself is not eroded. It is irrelevant whether the surface of the sputtered sheet 11 (on which the oxide layer 2 is initially applied) is smooth or rough. The oxide layer 2 can be completely removed even on a rough surface.
  • the sputtered sheet 11 was washed in 0.1% hydrochloric acid for 5 s to neutralize the alkaline solution.
  • each 5-10 s washing step was carried out with deionized water and with isopropyl alcohol, and dried at room temperature.
  • a solar cell semi-finished product includes a glass substrate 12 made of float glass, and The inspection has a size of 10 cm x 10 cm and a thickness of 3.2 mm.
  • the entire oxide layer 2 is applied in the same thickness range as described above, which is covered by the cover layer 9 in a defined area.
  • the cover layer 9 is designed not to be eroded by the components of the aqueous solution and the nascent hydrogen, and thus protects the area of the oxide layer 2 covered by it from being removed.
  • the cover layer 9 is, for example, a corrosion-resistant body (Resist) which is common in semiconductor- and micro-system technology, and has a thickness of 100 nm to 200 nm.
  • the oxide layer 2 is thus removed from the glass substrate 12 only partially, that is to say in a lateral region which is not covered by the cover layer 9.
  • the method conditions for structuring the oxide layer 2 on the glass substrate 12 are substantially identical to the method conditions for the sputter sheet 11, as described with reference to FIG.
  • the structure that can be generated in the oxide layer 2 is not limited in principle. However, based on the poor electrical conductivity of the glass substrate 12, it should be noted that the region of the oxide layer 2 to be removed is adjacent to the region where the oxide layer 2 is electrically connected to the direct current voltage source or the direct current source 7 at each method time point. If the substrate under the oxide layer 2 is a conductive material, this limitation also disappears.
  • FIG. 3B a cross section through the glass substrate 12, the oxide layer 2, and the cover layer 9 along the line AA in FIG. 3A is shown (before the oxide layer 2 is removed). Constructed in the structure of the cover layer 9 has a width b d of approximately 50nm.
  • FIG. 3C The same cross section after removal of the oxide layer 2 from the lateral regions not covered by the cover layer 9 is shown in FIG. 3C.
  • the structure formed in the oxide layer 2 is slightly broader in the vacant region of the oxide layer 2 by isotropic etching of the nascent hydrogen, and has a width b 0 of about 60 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种去除透明导电氧化物的方法。从基材去除透明导电氧化物层的方法包括电解步骤,在所述电解步骤中把基材浸入到水溶液中,并把氧化物层与直流电压源或者直流电流源以使得所述氧化物层作为阴极起作用的方式导电连接。

Description

去除透明导电氧化物的方法 技术领域
本发明的主题是一种去除透明导电氧化物的方法,其中,利用了电化学工艺。
背景技术
由透明导电氧化物(TCO)制成的层例如使用在薄层太阳能电池、显示技术中或者使用在建筑玻璃中,以便产生透光的电极。这些氧化物是金属氧化物(譬如氧化锌或者氧化锡),其可以掺杂有其它元素或者与其它元素化合。例如已知氧化铝锌(AZO)、氧化铟锡(ITO)、氧化氟锡(FTO)和氧化锑锡(ATO)以及锡酸盐(譬如锡酸镉)。这些层可以例如通过热解、化学气相沉积、以电化学方式或者通过溅射作为封闭的、大面积的层或者作为经结构化的层施布到基材上。在此,概念“基材”包括在其上可以沉积透明导电氧化物的任意的材料和/或层序列。对于通过溅射产生氧化物,概念“基材”因而例如还包括所谓的溅射片,其用作原本待覆层基材的框架或者用作沉积出限定的结构的掩模。
如果整面地沉积出氧化物层,那么之后这些氧化物层凭借激光切削或者通过机械加工(例如划刻,scribing)进行结构化,譬如在文献WO2008/147696A1中所描述的那样。然而这些方法仅有限地适合于去除沉积出的层的较大区域,因为它们是十分耗时且费用高昂的。此外,在该工艺期间还可能导致对处于该层之下的基材造成损害。基于氧化锌的氧化物层还可以通过用盐酸(HCl)蚀刻来去除。然而,基于氧化锡的氧化物层(特别是当它们掺杂以其它元素时)在化学上是相对稳定的并且因此难以进行湿化学蚀刻。在文献EP0230104中提及了:通过反应性离子蚀刻(RIE)用四氯化硅对氧化锡进行结构化。文献US4752501描述了一种方法,在其中首先沉积出不太稳定的锡化合物 (羧酸锡化合物),并且凭借碱性水溶液进行结构化,其中,经结构化的层接着通过烧结工艺转化为氧化锡。
对于溅射片上沉积出的氧化物层的去除,迄今使用了诸如喷砂、用其它材料(例如干冰)喷射,并使用研磨或者湿化学方法(像蚀刻),譬如在文献US2011/0281026A1和文献DE98/50600A1所描述的那样。然而这些方法是麻烦的并且有时是昂贵的,或者在湿化学蚀刻法中使用腐蚀性且有毒的化学品。此外,残留污染物可能残留在基材上,特别是当该基材具有粗糙表面时。
发明内容
因而任务在于,提供一种去除这种氧化物层的替代方案,该方案克服了现有技术的缺陷,并且特别是也能够用于基于氧化锡的氧化物层。
根据本发明,该任务通过根据权利要求1所述的方法得到解决。有利的方法方式在从属权利要求中得到公开。
从基材去除透明导电氧化物层的方法包括电解步骤,在该电解步骤中把基材浸入到水溶液中,并以使氧化物层作为阴极起作用的方式给氧化物层加载直流电压或者直流电流。通过在水溶液中引入的电流,在阴极上引发了还原反应,在该还原反应中生成初生氢。这种仅短暂稳定的初生氢(缩写为Hnasc)拥有比分子氢(H2)更高的还原能力。一方面,初生氢在刚刚形成之后以原子形态存在,另一方面,在形成H2之后不久,它处于能量激发态。因此,甚至化学上相对惰性的、透明导电的氧化物也与初生氢发生反应,其中,氧化物被还原为所含的金属或者含该金属的离子。该金属或者所生成的离子溶于水溶液,或者与在水溶液所含的物质发生反应,从而把氧化物从该基材去除。
根据本发明的方法因而包括:至少把氧化物层与直流电压源或者 直流电流源导电连接的步骤;把阳极与直流电压源或者直流电流源连接的步骤;把基材和阳极至少部分地浸入到水溶液中的步骤;给基材和阳极加载直流电压和直流电流的步骤,在此期间基材和阳极处于水溶液中。如果该基材由导电材料构成,则氧化物层优选通过基材与直流电压源和直流电流源导电连接。该基材和/或阳极在电解步骤期间不必完全浸入到水溶液中。然而,仅从浸入水溶液的区域去除氧化物层。此外,还仅从如下浸入的区域去除氧化物层,只要它在该区域不通过不导电层与水溶液相绝缘。该基材和该阳极优选同时浸入到水溶液中,然而还可以依次浸入。
作为水溶液使用各种通过电解生成初生氢的水溶液。亦即,原则上还可以采用纯水。然而有利地,该水溶液含有提高了水溶液的电导率和/或加速了初生氢的形成的其它物质。在此,溶于水的物质的类型以及由此生成的溶液环境(碱性或者酸性)以有利的方式选择为,使得基材的一种或多种材料和/或阳极和/或其它与该溶液形成接触的对象不被侵蚀(例如腐蚀)。
水溶液优选为碱性溶液,其进一步优选地可以使用来自包括碳酸氢钠(NaHCO3)、氢氧化钠(NaOH)、碳酸氢钾(KHCO3)和氢氧化钾(KOH)的组的物质。还可以采用其它的物质,像碳酸钠(Na2CO3)或者氢氧化锂(LiOH)。所含的盐的浓度涵盖了一个广的范围(从1g/L溶液到100g/L溶液)。特别优选的是,所提及的盐在溶液中的浓度在5g/L溶液与80g/L溶液之间。该水溶液优选具有在0.5%与8%之间的浓度。
电解步骤优选在室温(亦即在约20℃)下实施,然而还可以在稍微提高的温度(直至约80℃)下实施。所施加的直流电压或所引入的直流电流有利地位于下述范围,即,在该范围中根据基材的尺寸调整出在0.15A/dm2和25A/dm2之间电流密度。
用于电解的步骤的时间(即施加电压或电流的时间)依赖于待去除的氧化物层的厚度以及所达到的电流密度。优选地,电解步骤仅经短时间、然而以高的电流密度实施。电解步骤的时间处在30秒与15分钟之间的范围中。
有利地,在电解步骤之后(亦即在从基材去除透明导电氧化物之后)进行中和步骤,在该步骤中将基材置入中和溶液,该中和溶液适用于对水溶液进行中和。换言之:如果水溶液是碱性溶液,则中和溶液是酸溶液(譬如稀释的醋酸、柠檬酸或者盐酸),而当使用酸性溶液作为水溶液时,中和溶液是碱性溶液。中和溶液用于对基材上的水溶液残留进行中和,从而阻止水溶液组分发生进一步的化学反应。
优选在电解步骤之后用清洗剂进行清洗步骤。特别优选的是,在中和步骤之后进行清洗步骤,并且清洗步骤用于去除水溶液(且在必要时中和溶液)的残留,以及去除经还原的、但是还粘附在基材上的透明导电氧化物残余物。可以使用所有适宜的介质作为清洗剂,特别优选去离子水,以及异丙醇或者丙酮或者这些物质的水溶液或者组合。辅助性地,还可以通过海绵或者毛刷或者通过超声进行轻柔的机械作用,以便于在必要时还去除粘附在基材上的氧化物颗粒。最后,该基材优选经过干燥。
作为电解步骤的阳极,优选使用来自包括铂、碳、铁、镍、钛和不锈钢的组的材料。有利地,阳极材料在电解期间相对于所采用的水溶液是惰性的,亦即,它既不会进入溶液并发生分解,又不会与来自水溶液的物质发生反应,或者与在阳极上形成的氧发生反应。因而,在水溶液中能够产生均匀的、几乎不会随时间发生变化的电流,这是因为,在阳极上不会发生形成电绝缘的层。特别优选的是,阳极由铁或者不锈钢制成,这是因为,它们相对于其它的阳极材料在氧气生成过程中只有很小的过电压。
根据本发明的方法提供了下述可能性,即,用湿化学方法将由透明导电氧化物组成的层去除,其中还能够把对于传统湿化学蚀刻相对惰性的氧化物以及施布到粗糙基材表面的氧化物完全地且深入地去除。特别是可以还把氧化物从粗的基材表面的孔中去除,从而能够实现对基材深入孔隙的清洁。当然,也可以用根据本发明的方法清洁光滑的基材表面。此外可以避免使用腐蚀性的且有毒的化学品并且避免损伤位于待去除的氧化物之下的基材表面。相对于机械的去除氧化物层的方法,根据本发明的方法快速、精确而廉价,这是因为,氧化物也可以从大的表面上去除。由此得出另外的优势,即,通过根据本发明的方法,被去除的氧化物的金属组分在水溶液中以离子或盐的形式存在,它们可以在随后通过对水溶液的进一步处理而回收。因此特别是可以再次利用昂贵的和/或稀有的材料(像锡Sn、铟In)。
根据本发明的方法可以用于整面地去除由透明导电氧化物组成的层,或者用于仅部分地去除这样的层。在此,该部分去除优选涉及从限定的横向区域在厚度方向上完全去除氧化物层,而在其它在实施该方法期间通过适合的遮盖层或者覆盖层覆盖的横向区域不去除氧化物层。该过程于是相当于在横向方向上使氧化物层结构化的工艺。原则上当然还可以在厚度方向上部分地去除氧化物层,这相当于降低氧化物层的层厚,而不完全去除氧化物层。
附图说明
图1以横截面示出了一种系统,在该系统中为了去除沉积于基材1上的氧化物层2而把基材1浸入到水溶液3中,并且该基材在直流电路中起阴极的作用。
图2示出了作为基材的溅射片11,其中,氧化物层2应当被整面地去除。
图3A以立体图示出了一种太阳能电池半成品,在该太阳能电池半成品中该氧化物层2应当通过电化学工艺而结构化。
图3B示出了沿着线A-A的、穿过图3A的太阳能电池半成品的 横截面(在去除氧化物层2之前)。
图3C示出了来自于图3B的横截面(在去除氧化物层2之后)。
具体实施方式
图1示出了一种系统,在其中带有位于基材上的透明导电氧化物层2的基材1被浸入到水溶液3中。氧化物层2位于基材1的表面,并且至少部分地将其覆盖。水溶液3位于容器4内,该容器具有下述尺寸,该尺寸对应于基材1的尺寸以及对于实施电化学工艺所必需的间距和体积。基材1紧固在支架51上,从而它直至高度hs地浸入到水溶液3中。高度hs在下文中也被称作“基材的浸入深度”。凭借支架51可以把基材浸入到水溶液中,并将基材从溶液中再次取出。此外,还可以通过支架51调整高度hs,并在该方法期间在必要时加以改变。
氧化物层2和/或基材1通过电导线61与直流电压源或者直流电流源7的电极导电连接。直流电压源或直流电流源7的另一电极通过电导体62与阳极8导电连接,该阳极凭借支架52浸入到水溶液中。
导体61或62的电接头还可以整合入支架51或52中。
通过向阳极8和作为阴极起作用的氧化物层2施加直流电压和直流电流,在水溶液3中在阴极生成初生氢,其与氧化物层2发生反应并使其溶解。因此在使用0.1%的氢氧化钠水溶液的情况下,对于作为氧化物层的氧化锡在阴极得到下列反应方程:
2H2O+2e-→2Hnasc+2OH-     (1)
SnO2+4Hnasc→Sn+2H2O      (2),
其中,氢氧化钠用于提供碱性介质,以便不会腐蚀基材1和/或阳极8和/或支架51、52和/或电导体61、62的材料,并且改善溶液的电导率。
对于电接头或者电导体61以及基材1与支架51的连接部以及支 架51自身不被电化学工艺或者水溶液3侵蚀的情况,高度hs还可以为基材1的整个高度,从而该基材1或者至少整个氧化物层2浸入到水溶液3中。如果这是不可行的,并且氧化物层2也应当从基材1的没有浸入到水溶液3的区域被去除,那么,该方法在改变基材位置的情况下被重复多次,直至基材的所有应当去除氧化物层的区域浸入到水溶液3中并且经受电化学处理。
为了实验,对由不锈钢制成的溅射片11(尺寸为6mm×6mm,厚度1mm)实施根据本发明的方法。图2示出了这样的溅射片作为基材1的以根据本发明的方法处理的实施例,该溅射片带有整面地沉积在它上面的氧化物层2(其带有约400至500nm的层厚)。在示出的情况下,氧化物层在溅射片11的整个范围上在溅射片11的表面上延伸。然而,溅射片11的表面也可以只有一定区域,或者溅射片11的另外的表面(例如溅射片11的边缘表面)也可以被氧化物层2所覆盖。为了去除氧化物层2,在室温下凭借作为支架51的夹具把溅射片浸入到2%的氢氧化钠溶液3中,并以大约10V的电压加载30s,其中,将车辆电池充电器用作直流电压源7。所测得的电流为1.5A。同样,不锈钢片(尺寸:10cm×10cm)用作阳极8,其通过作为支架52的第二夹具浸入到水溶液中。电导体61和62与导电夹具直接连接。在溅射片11的浸入区域,氧化物层2在所提及的条件下被完全去除,其中,基材自身不受侵蚀。在此溅射片11的表面(氧化物层2最初被施布到它上面)是平滑还是粗糙的是无关紧要的。即使粗糙表面也可以完全清除氧化物层2。
在根据本发明的方法的最后,溅射片11在0.1%盐酸中洗涤5s,用以中和碱性溶液。接着,用去离子水并且用异丙醇进行各5-10s的清洗步骤,并在室温下干燥。
在图3A中示出了根据本发明的方法的另外的使用示例。在此,例如太阳能电池半成品包括由浮法玻璃制成的玻璃基材12,并且为了实 验目的具有10cm×10cm的尺寸和3.2mm的厚度。在该玻璃基材12上以上述相同的厚度范围施布整面的氧化物层2,其在限定的区域被覆盖层9所覆盖。该覆盖层9设计为不会被水溶液的组分以及初生氢所侵蚀,并因此保护由它所覆盖的氧化物层2的区域不受去除。该覆盖层9例如为在半导体-以及微系统技术中常见的耐蚀体(Resist),其带有100nm至200nm的厚度。因此氧化物层2仅部分地,亦即在不被覆盖层9所覆盖的横向区域从玻璃基材12上去除。因而得到了下述可能性,即,对应于在覆盖层9中构造出的结构使氧化物层2结构化,而不会对位于其下的基材造成影响。用于把氧化物层2在玻璃基材12上结构化的方法条件基本上与用于溅射片11的方法条件相一致,正如参照图2所描述的那样。
能够在氧化物层2中生成的结构原则上不受限制。然而,基于玻璃基材12的不良的电导率应当注意,氧化物层2的待去除区域在每个方法时间点都邻接于氧化物层2与直流电压源或者直流电流源7导电连接的区域。如果位于氧化物层2之下的基材是导电材料,则该限制也消失。
在图3B中,示出了沿着图3A中的线A-A的、穿过玻璃基材12、氧化物层2和覆盖层9的横截面(在将氧化物层2去除之前)。在覆盖层9中构造出的结构具有约50nm的宽度bd。而在图3C中示出了同样的、在从未被覆盖层9覆盖的横向区域去除氧化物层2之后的横截面。在氧化物层2中生成的结构通过初生氢的各向同性地侵蚀在氧化物层2的空余区域是稍微更宽的,并且具有约60nm的宽度b0
附图标记说明
1                基材
11               溅射片
12               玻璃基材
2                氧化物层
3                水溶液
4                容器
51、52           支架
61、62           电导体
7                直流电压源或直流电流源
8                阳极
9                覆盖层
hs               基材的浸入深度
bd               覆盖层中的结构的宽度
bo               氧化物层中的结构的宽度

Claims (6)

  1. 一种从基材去除透明导电氧化物层的方法,其特征在于,所述方法包括电解步骤,在所述电解步骤中把基材浸入到水溶液中,并把氧化物层与直流电压源或者直流电流源以使得所述氧化物层作为阴极起作用的方式导电连接。
  2. 根据权利要求1所述的方法,其特征在于,所述水溶液是碱性溶液。
  3. 根据权利要求2所述的方法,其特征在于,所述水溶液含有来自包括碳酸氢钠、氢氧化钠、碳酸氢钾、氢氧化钾的组的物质。
  4. 根据前述权利要求的任意一项所述的方法,其特征在于,在电解步骤之后进行中和步骤,在所述中和步骤中把基材置入中和溶液,所述中和溶液适合于对所述水溶液进行中和。
  5. 根据前述权利要求的任意一项所述的方法,其特征在于,在电解步骤之后用清洗剂进行清洗步骤。
  6. 根据前述权利要求的任意一项所述的方法,其特征在于,作为电解步骤的阳极,使用来自包括铂、碳、铁、镍、钛和不锈钢的组的材料。
PCT/CN2016/112112 2015-12-30 2016-12-26 去除透明导电氧化物的方法 WO2017114357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511022922.3A CN106929906A (zh) 2015-12-30 2015-12-30 去除透明导电氧化物的方法
CN201511022922.3 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017114357A1 true WO2017114357A1 (zh) 2017-07-06

Family

ID=59224607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112112 WO2017114357A1 (zh) 2015-12-30 2016-12-26 去除透明导电氧化物的方法

Country Status (2)

Country Link
CN (1) CN106929906A (zh)
WO (1) WO2017114357A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319724A (zh) * 2019-07-03 2019-10-11 江西华度电子新材料有限公司 一种恢复吸液芯毛细性能的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103333A (en) * 1976-02-27 1977-08-30 Kawasaki Steel Co Method of fabricating tin plated steel plate
JPS62290900A (ja) * 1986-06-11 1987-12-17 Oki Electric Ind Co Ltd 透明導電膜のエツチング方法およびその装置
JP2008305910A (ja) * 2007-06-06 2008-12-18 Hitachi Zosen Corp 導電性金属酸化物薄膜の除去方法及び装置
CN102691093A (zh) * 2012-06-20 2012-09-26 哈尔滨工业大学 利用电化学技术实现氧化铟锡表面快速腐蚀和图案化的方法
CN102822388A (zh) * 2010-04-06 2012-12-12 新日本制铁株式会社 对环境的负荷少的容器材料用钢板的制造方法和对环境的负荷少的容器材料用钢板及使用了其的容器材料用层压钢板及容器材料用涂装预涂钢板
CN103422153A (zh) * 2013-08-22 2013-12-04 大连七色光太阳能科技开发有限公司 一种fto导电薄膜的刻蚀方法
CN104419957A (zh) * 2013-09-04 2015-03-18 天津市大港镀锌厂 电镀镍流水线前处理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491310B1 (en) * 2002-05-16 2009-07-01 Panasonic Corporation Method and apparatus for releasing metal-resin joint
FR2957941B1 (fr) * 2010-03-26 2012-06-08 Commissariat Energie Atomique Procede pour graver une couche d'oxyde metallique conducteur utilisant une microelectrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103333A (en) * 1976-02-27 1977-08-30 Kawasaki Steel Co Method of fabricating tin plated steel plate
JPS62290900A (ja) * 1986-06-11 1987-12-17 Oki Electric Ind Co Ltd 透明導電膜のエツチング方法およびその装置
JP2008305910A (ja) * 2007-06-06 2008-12-18 Hitachi Zosen Corp 導電性金属酸化物薄膜の除去方法及び装置
CN102822388A (zh) * 2010-04-06 2012-12-12 新日本制铁株式会社 对环境的负荷少的容器材料用钢板的制造方法和对环境的负荷少的容器材料用钢板及使用了其的容器材料用层压钢板及容器材料用涂装预涂钢板
CN102691093A (zh) * 2012-06-20 2012-09-26 哈尔滨工业大学 利用电化学技术实现氧化铟锡表面快速腐蚀和图案化的方法
CN103422153A (zh) * 2013-08-22 2013-12-04 大连七色光太阳能科技开发有限公司 一种fto导电薄膜的刻蚀方法
CN104419957A (zh) * 2013-09-04 2015-03-18 天津市大港镀锌厂 电镀镍流水线前处理装置

Also Published As

Publication number Publication date
CN106929906A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
JP2007039742A (ja) 電解用電極及びその製造方法
KR101223154B1 (ko) 프로세스 챔버 부품으로부터 탄탈륨-함유 증착물을 클리닝하는 방법
CN104492426A (zh) 一种改性二氧化锰催化剂及改性二氧化锰催化剂电极和制备方法
CN103668380A (zh) 一种电化学加工用电极的双膜侧壁绝缘方法
CN104120460A (zh) 一种去除电解铜箔用钛阳极表面结垢的方法
CN107732255A (zh) 一种含石墨烯和金属有机框架的复合电极及其制备方法
Pust et al. Electrochemical etching of zinc oxide for silicon thin film solar cell applications
CN104047043A (zh) TiO2/SnO2半导体双层复合膜光阳极的制备方法
WO2017114357A1 (zh) 去除透明导电氧化物的方法
CN109852802A (zh) 一种锂金属电池负极回收再利用的方法
CN100575554C (zh) 耐蚀铝导电性材料及其制造方法
Becker et al. Effects of the electrolyte species on the electrochemical dissolution of polycrystalline ZnO: Al thin films
CN114540824B (zh) 一种利用废酸溶液再生钛阳极板的方法
CN109112605B (zh) 一种电解铜箔用钛基铱-钽氧化物涂层阳极的再生处理液及再生方法
JP2017503084A (ja) 金属カルコゲニド薄膜電極、その生産方法及び使用
CN114717639A (zh) 基于光电化学腐蚀工艺定位氧化镓晶片表面缺陷的方法
WO2014019991A1 (fr) Cellule d'electrolyse et chaine de detection avec ladite cellule et cellule de detection electrochimique de metaux lourds
CN202898591U (zh) 电子铝箔腐蚀用石墨电极反向加电除杂质的装置
JP2007046164A (ja) 有機‐無機コンポジットシートのリサイクルシステム及び方法
JP4554643B2 (ja) 酸化物半導体電極材料の除去方法
KR101676699B1 (ko) 텅스텐 산화물 전극의 제조방법
TW200405838A (en) Method and system for removing thin metal film
CN113106531B (zh) 一种电化学刻蚀金刚石半导体薄膜的方法
US20230352649A1 (en) Regenerating lead acid batteries
TWI500081B (zh) Cleaning method of transparent electrode film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881146

Country of ref document: EP

Kind code of ref document: A1